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Abstract

Pre-trained Language Models (PLMs) can rea-
son about causality leveraging vast pre-trained
knowledge and text descriptions of datasets,
proving its effectiveness even when data is
scarce. However, there are crucial limitations in
the current PLM-based causal reasoning meth-
ods: i) PLM cannot utilize large datasets in
prompt due to the limits of context length, and
ii) the methods are not adept at comprehending
the whole interconnected causal structures. On
the other hand, data-driven causal discovery
can discover the causal structure as a whole,
although it works well only when the num-
ber of data observations is large enough. To
overcome each other’s limitations, we propose
a new framework that integrates PLMs-based
causal reasoning into data-driven causal discov-
ery, which results in more improved and ro-
bust performance. Furthermore, our framework
extends to the time-series data and exhibited
superior performance.

1 Introduction

Causal discovery (Spirtes et al., 2000; Glymour
et al., 2019) attempts to figure out the causal re-
lations among the variables in a dataset, playing
a core role in science and various applications
(De La Fuente et al., 2004; Addo et al., 2021).
Unfortunately, data are often scarce in real-world,
thus causal discovery algorithms cannot accurately
recover underlying causal structures. One ap-
proach to handle such data scarcity issue is using
prior domain knowledge (Borboudakis et al., 2011;
Kalainathan et al., 2018), e.g., by using an appro-
priate prior graph, the causal discovery algorithms
can be guided by the prior when determining the
direction of edges (Borboudakis and Tsamardinos,
2012; Sinha et al., 2021).

Recent breakthroughs in PLMs have demon-
strated their potential for diverse reasoning tasks
(Wei et al., 2022; OpenAl, 2023; Anil et al., 2023;

Which of the following causal relationship is correct?

A. Changing {o} can directly change {3}.

B. Changing {3} can directly change {«}.

C. Both A and B are true.

D. None of the above. No direct relationship exists.

Let’s think step-by-step to make sure that we have the
right answer. Then provide your final answer within the
tags, (Answer) A/B/C/D (/Answer)

Figure 1: A multiple-choice template used in Kiciman
et al. (2023), to determine a pairwise causal relation.

Touvron et al., 2023). Given the broad spectrum
of text corpora utilized during pre-training, PLMs
can address diverse tasks by employing specifically
crafted task descriptions, including commonsense
and numerical reasoning (Suzgun et al., 2022),
code generation (Chen et al., 2021), and dialogue
generation (Thoppilan et al., 2022).

Kiciman et al. (2023) initiated reasoning-based
causal discovery, harnessing such reasoning ca-
pability of PLMs. In particular, the authors de-
signed a prompt template (Fig. 1), which queries
whether one entity causes another entity, where
the entities correspond to the column names of a
tabular dataset. By recovering a causal structure
via querying a causal relationship for every pair
of variables, their method outperformed conven-
tional causal discovery algorithms on benchmark
datasets. This work showed the potential of uti-
lizing the pre-trained knowledge of PLMs, at the
same time, bypassing the issue of data scarcity.

However, PLM-based causal reasoning methods
have inherent limitations compared to data-driven
causal discovery. First, they cannot properly uti-
lize large tabular data. Despite attempts to make
use of tabular data with text, text-table multimodal
models are limited to handling only small-scale
tabular data (Wang et al., 2022; Dong et al., 2022;
Liu et al., 2023; Lei et al., 2023; Li et al., 2023).
Second, they mostly predict pairwise causal rela-
tions individually and cannot properly comprehend



entire, interconnected causal structures.

Given that both PLM-based causal reasoning and
data-driven causal discovery algorithms have their
own strengths and weaknesses, we propose a novel
framework that integrates the two approaches. In
particular, we can harness the pre-trained knowl-
edge of PLM to address data scarcity and utilize the
patterns extracted from a dataset through causal dis-
covery to gain a better understanding of the overall
causal structure.

Moreover, we extended the application of PLM-
based reasoning to our framework for addressing
time-series datasets, which have numerous practi-
cal applications across various fields (Ding et al.,
2006; Runge et al., 2019; Peters et al., 2013) but
have not yet been addressed. We revealed that time-
series causal discovery relying solely on PLMs is
largely influenced by prompt design artifacts. We
combined (i) the strengths of data-driven causal
discovery, which is suitable for large datasets and
capable of understanding the entire causal structure,
with (ii) the effectiveness of PLM-based causal rea-
soning, which works well with small data, thereby
outperforming both approaches.

Contributions We summarize our contributions.
First, we demonstrate that PLM-based pairwise
causal reasoning methods are not suitable for holis-
tically eliciting a causal structure. Second, we pro-
pose a framework that integrates PLM-based causal
reasoning with data-driven causal discovery, which
compensates for one’s weakness with the other’s
strength. Third, the proposed framework enhances
the performance of existing causal discovery algo-
rithms from static datasets to time-series datasets.

2 Preliminaries

In this section, we explain causal discovery algo-
rithms and PLM-based causal reasoning.

2.1 Causal Discovery Algorithms

Causal discovery algorithms figure out a latent
causal graph from a numeric dataset and are adept
at effectively utilizing large tabular datasets. To be-
gin with, we introduce notations. Given d variables
and a dataset X € R"*? with n observations, a
causal graph can be expressed as a structural coeffi-
cients matrix W € R4*? under a linear assumption
where W; ; represents how much variable 5 would
directly change to the change of variable 7 linearly.

First, DAG-GNN (Yu et al., 2019), learns a struc-
tural coefficient matrix through continuous opti-

mization to approximate the distribution of causal
graph of a dataset. Equipped with an encoder-
decoder architecture, DAG-GNN is formulated as
a variational autoencoder (Kingma and Welling,
2013), employing an acyclicity constraint and evi-
dence lower bound. Zheng et al. (2018) proposed
NOTEARS to solve combinatorial optimization
as a continuous optimization, utilizing a DAG
constraint. NOTEARS minimizes the following
training objective, L(W) := 5| X — XW||3, +
A|W/||1, where the first term, fitting loss, is the
Frobenius norm which indicates how well W fits
the data, and the second term, sparsity loss, en-
courages a smaller number of edges, controlled by
hyperparameter A\. NOTEARS minimizes the ob-
jective while ensuring the acyclicity of the learned
graph (the acyclicity constraint is not shown here).

Time-series causal discovery aims to uncover
temporal causal relationships, determining how
variables influence each other across different time
lags. DYNOTEARS (Pamfil et al., 2020) extends
NOTEARS for time-series data, modelling time-
lagged causal relations with a structural coefficient
matrix called intra-slice W, which represents con-
temporaneous causal relations, and a matrix called
inter-slice A € R(T*®xd hich represents time-
lagged causal relations, where 7' is the maximum
time lag. On the other hand, Sun et al. (2021) de-
vised NTS-NOTEARS, which constructs weighted
matrices with 1-dimensional CNNs for both intra-
slice and inter-slice connections. It does not rely on
the linear assumption. For readability, we simply
refer the concatenation of W and A as W, if no
confusion can arise.

2.2 PLM-based Causal Reasoning

PLM-based causal reasoning on a static dataset
Kiciman et al. (2023) developed a multiple-choice
prompt template (Fig. 1) for extracting pairwise
causal relations through PLMs. By inserting the
names of the variables into the prompt’s « and 3,
PLM is guided to reason the existence and direction
of causal relation between « and 3. This process is
repeated for all pairwise combinations of variables
to build the causal graph.

Expansion to time-series data We expand the
application of PLM-based causal reasoning to time-
series datasets by proposing a prompt template
(Fig. 2), which generalizes the multiple-choice
prompt template (Fig. 1, Kiciman et al. 2023). The
prompt template (Fig. 2) inquires both time-lagged



Which of the following causal relationship is correct? For specific time step t,

A. Change {a} of time step t can directly change {/3} of time step t+1.
B. Change {3} of time step t can directly change {} of time step t+1.
C. Both A and B are true.

D. None of the above.

Let’s think step-by-step to make sure that we have the right answer. Then
provide your final answer within the tags, (Answer) A/B/C/D (/Answer)

‘Which of the following causal relationship is correct? For specific time step,
A. Change {a} of time step can directly change {3} of the same time step.
B. Change {3} of time step can directly change {a} of the same time step.
C. Both A and B are true.

D. None of the above.

Let’s think step-by-step to make sure that we have the right answer. Then provide
your final answer within the tags, (Answer) A/B/C/D (/Answer)

Figure 2: A multichoice template for the causal relation
between two variables in time-series data. The upper
prompt is for inter-slice, and the lower is for intra-slice.

and contemporaneous causal relations for pairwise
variables, {«} and {$}. We compared reasoning
performance varying time units in the prompts (see
Appendix B), and chose ‘time step’ as in Fig. 2
because there was no consistently meaningful dif-
ference across time unit.

Utilizing the prompt templates for static and
time-series datasets, we can aggregate pairwise
causal relations to construct a causal graph. The
causal graph obtained by PLM is represented as a
binary adjacency matrix, K € R%*?, where K, ;
is 1 if ¢ directly causes 7 and 0O, otherwise. Since
we do not enforce acyclicity, K might contain cy-
cles. For time-series data, we similarly construct
K through concatenating two adjacency matrices:
one for intra-slice and the other for inter-slice.

3  Why Do We Need Causal Discovery for
PLM-Based Causal Reasoning

We explain ablation studies about prompt templates
to assess whether PLM can recognize the entire
causal structure and to what extent PLM is affected
by prompt artifacts when applied to time-series
datasets. We first examine whether PLM recog-
nizes the entire causal structure when determining
pairwise causal relations, as data-driven causal dis-
covery does by optimizing W. Then, we explore
how PLM’s causal reasoning is affected by causally
irrelevant artifacts of prompts, especially when ap-
plied to time-series datasets.

Issue: limited capability to comprehend holis-
tic causal structure To examine PLM’s ability
in comprehending a causal structure, we borrow
the idea of Ban et al. (2023), who employed two
phases of causal reasoning. First, in the reasoning
phase, PLM predicts causal relations for pairwise
variables, and then, in the following revision phase,

Method | NHDJ, NHD-R| SHD| #Edge FDR| FPR| TPRT

2 GPT4 |0.23 0.42 19 32 028 0.09 047
E Revised | 0.27 0.40 23 50 042 021 0.60
%’) GPT-4 |0.14 0.45 18 21 047 0.09 057
& Revised | 0.16 0.52 20 19 052 0.09 047

Table 1: Causal graph revision experiment using the
Ban et al. (2023) revision prompt.

Method NHD} NHD-R| SHDJ #Edge FDR| FPR] TPR?}

Pairwise 023 042 19 32 028 0.09 047

LLM-complete 0.33  1.00 30 0 0.00 0.00 0.00
LLM-cumulative 0.31  0.73 29 13 038 0.05 0.16
LLM-ancestor ~ 0.34  0.92 30 5 0.60 0.03 0.04

GT-complete 033 1.00 30 0 0.00 0.00 0.00
GT-cumulative  0.27  0.60 26 18 027 0.05 027
GT-ancestor 031 081 28 6 0.17 0.01 0.10

Arctic Sea Ice

Table 2: An ablation study to assess the effect of pro-
viding causal relations in prompts. Symbol | indicates
a lower-is-better metric. Full table is in Appendix G.

PLM revises the whole causal relations via a revi-
sion prompt,
Based on your explanation, check whether the

following causal statements are correct, and give
the reasons.

{a}1 = {B}1,... . {a}i = {a}i

where the entire causal relations predicted in the
reasoning phase are provided to be revised.

We investigated the effect of the revision prompt
in static dataset (Arctic Sea Ice, Huang et al. 2021,
on Earth science) with 10 repetitions and analyzed
revised predictions. As depicted in Table 1, we
can observe only a marginal effect of revision by
prompt engineering.'

For in-depth investigations of structure-aware
reasoning, we examined the effect of the quantity
and quality of information provided. To verify
the effect of the amount of information, we ex-
perimented with cumulative prompting, bridging
Kiciman et al. (2023) and Ban et al. (2023), which
focuses only on pairwise causal relations (Kiciman
et al., 2023) at first and converges to the revision
methodology (Ban et al., 2023) as the predicted
causal relations accumulate. The result in Table 2
shows that PLM only repeats its predictions rather
than revising the predictions considering the accu-
mulated causal structure. Providing all pairwise

'SHD is the hamming distance between the estimated and
true causal graphs (i.e., the number of wrongly predicted
edges). NHD normalizes SHD by the size of adjacency matrix,
and NHD ratio further normalizes NHD by baseline NHD (the
worst case NHD with the same number of predicted edges).
Considering correctly predicted edges as true positives, FDR,
FPR, and TPR are computed. See Appendix C.1 for details.
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Figure 3: F1 of GPT-4 prediction (averaged over 10 rep-
etitions) on time-lagged causal relations in two datasets.
Shades represent 95% confidence interval.

relations at once in the prompt, referred to as com-
plete prompting, also decreased the performance.
The full prompts of cumulative prompting and com-
plete prompting are in Appendix A.

We investigated that the low performance of the
previous result was due to the low quality of its
predictions in the reasoning phase. However, we
still observed lower performance despite improved
the quality of information in revision prompts. For
this, we substituted PLM-predicted relations with
the ground truth causal relations (rows starting with
GT (Ground Truth) in Table 2). Similarly, there
was no notable change in performance despite pro-
viding the true causal relations.

Given helpful information for the prediction,
such as actual ground truth or causal ancestors,
PLM’s causal reasoning is expected to demonstrate
better performance than that of vanilla pairwise rea-
soning. However, the experimental results indicate
that whether predicted by PLM or known as ground
truth, providing information on causal structure
did not fulfill better performance than vanilla pair-
wise reasoning. This indicates that structure-aware
PLM-based reasoning is not easily achievable via
prompt engineering only.

Issue: prompt artifacts’ influence in time-series
While extending PLM’s causal reasoning to time
series, we discovered that the performance varies
by prompt artifacts. To illustrate this, we experi-
mented changing the way a one-step time-lagged
causal relation in the prompt to explore the extent
to which PLMs are influenced by the word choice
in prompts rather than semantic meaning represent-
ing causality. We selected temporal domains where
the maximum time lag is 1 and set the temporal
causal relation unchanged, even if the start point is
changed under the assumption that the causal struc-
ture remains unchanged over time. For example,
querying whether «;_1 is the cause of 5; and oy

is the cause of f;41 should give the same result.
The experiment in Fig. 3 demonstrates that GPT-
4’s causal reasoning performance fluctuates based
on specific numbers of time steps, even when all of
them represent a one-step time lag.

These two experiments (i.e., on the lack of capa-
bility to comprehend causal structures and on being
affected by prompt artifacts) suggest that PLM-
based causal reasoning does not adhere strictly to
the domain knowledge and that prompt engineering
alone is insufficient to overcome these limitations.
Therefore, it is desired to formally integrate PLM-
based causal reasoning into time-series causal dis-
covery algorithms, as we will do in the next section.

4 Causal Discovery with PLM-derived
Priors

We now propose a causal discovery framework
which incorporates PLM causal reasoning into
an optimization-based causal discovery algorithm,
by utilizing a prior knowledge K extracted from
PLM. The overall framework is depicted in Fig. 4.
Given static or time-series datasets as input, our
framework performs PLM-based reasoning through
specifically designed prompts (Figs. 1 and 2). Then,
by aggregating pairwise causal relations, we ac-
quire a prior K. The causal discovery algorithm’s
optimization process then makes use of the prior K
in three ways (not exclusively): The prior can be
used as a starting point (Sec. 4.1); A regularization
term is added to guide the learned structure reflects
the given prior (Sec. 4.2) and; Boundaries are set
for the structural coefficients based on the prior
(Sec. 4.3). After the algorithm returns an estimated
structural coefficient matrix, a threshold is applied
to transform the structural coefficient matrix into a
binary adjacency matrix (i.e., a directed graph).

4.1 Graph Initialization via Prior Knowledge

We suggest using K as an initial point for updating
the edges. Typically, W is initialized as zero ad-
jacency matrices (Zheng et al., 2018) without any
prior. However, naively initializing the structural
coefficient matrix can be sub-optimal by getting
caught in local optima. Therefore, we devised ini-
tializing W = \jp; K expecting that K of appro-
priate quality would help W avoid getting caught
in local optima, where the scaling factor Ay is
introduced for adjustment of K.
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Figure 4: Overview of our framework. Given dataset, PLM-based causal reasoning returns an adjacency matrix as
prior. Utilizing the prior, a causal discovery algorithm takes the dataset and returns a structural coefficient matrix,

which is then mapped to a binary adjacency matrix.

4.2 Regularization with Prior Knowledge

We introduce a regularization term in the learn-
ing objective so that W reflects K throughout the
optimization process, where the term is defined as

> i |(0(Wi5) —

which can be viewed as ¢;-regularization between
K and the transformed, intermediate adjacency ma-
trix W. When regularizing W; ; with binary K ;
we applied a clamping function o, which maps
W, j between [0, 1], to prevent large gradient flow
from the regularization loss into W ;. Then, our
goal is to find an optimal matrix W, which satisfies

Lsim(W) := Ki,j)‘a

W* = arg min L(W) + )\simLSim(W)7
%%

where Agi, is the hyperparameter for scaling the
regularization loss.

4.3 Setting Boundaries for Optimization

We now consider applying prior knowledge in set-
ting each structural coefficient’s boundary B as
Biower < Wi,j < Bupper, where Biower, Bupper €
R, to be utilized during the optimization process.
Sun et al. (2021) set Bjower larger than or equal to
the threshold if edge (i, j) exists in the prior, and
set Biower = Bupper = 0 for W ; if prior knowl-
edge indicates the absence of edge (3, 7).

In our setting, the prior knowledge K is
imperfect—we need to mitigate the risk of hal-
lucination in prior knowledge. Therefore, we
set a lower bound larger than O but smaller than
the threshold for W ; if the corresponding edge
presents in the prior, i.e., K;; = 1. If there is
no edge in the prior, i.e., K; ; = 0, we only set
Biower = 0. This modification prevents data-driven

causal discovery from just following the predic-
tion of K because the algorithm can now learn a
structural coefficient W ; whose absolute value is
smaller than the threshold. We implemented such
boundary conditions for algorithms that employ
L-BFGS (Byrd et al., 1995) (e.g., NOTEARS, and
DYNOTEARS), replacing L-BFGS with L-BFGS-
B (Zhu et al., 1997). Note that, when applying
boundaries, we directly optimized the elements
of the structural coefficient matrix W ; within
[Biower; Bupper], Without clamping, to ensure W ;
within boundaries.

S Experiments

We evaluate our proposed framework across the
static and time-series datasets with various metrics.

5.1 Experimental Setup

We primarily investigated GPT-4 as our choice of
PLM (OpenAl, 2023) since it outperformed other
evaluated PLMs (detailed in Appendix D). We con-
trolled the stochasticity of PLM by setting its tem-
perature to 0.7 based on our experimental results
over various temperature values. The prior knowl-
edge K was determined based on the majority vote
from 10 results (see Appendix C.2).

We employed NOTEARS, DAG-GNN, and
CGNN for static datasets. For time-series, we em-
ployed a linear model, DYNOTEARS, and a non-
linear model, NTS-NOTEARS. The regularization
method was not applied to NTS-NOTEARS since
it is not straightforward to apply regularization over
its architecture, i.e., convolution layers. The details
on hyperparameters are in Appendix C.2, and the
background and results of CGNN are illustrated in
Appendices F and G.1.



Method | NHD (1) NHD Ratio () SHD (]) #Edges FDR (}) FPR () TPR (1)
GPT-4 0.23 0.42 19 32 0.28 0.09 0.47

o NOTEARS 0.31 0.63 26 23 0.43 0.10 0.27

= w/random prior | 0.44 (A0.13) 0.60 (v0.03) 37 (a1l) 56 0.63 (A0.20) 0.37 (A0.27) 0.43 (A0.16)

;nii w/ GPT-4 prior | 0.22 (v0.09) 0.40 (v0.23) 18 (v8) 33 0.27 (v0.16) 0.09 (v0.01) 0.50 (40.23)

.2 DAG-GNN 0.31 0.76 27 12 0.41 0.05 0.14

é’ w/ random prior | 0.41 (A0.10) 0.64 (v0.12) 37 (A10) 44 0.62 (A0.21) 0.29 (A0.24) 0.33 (A0.19)
w/ GPT-4 prior | 0.22 (v0.09) 0.40 (v0.36) 17 (v10) 33 0.27 (v0.14) 0.09 (A0.04) 0.50 (A0.36)
CMA 0.25 0.46 - 36 0.33" 0.13" 0.50"
GPT-4 0.14 0.45 18 21 0.47 0.09 0.57
NOTEARS 0.22 0.65 22 22 0.68 0.14 0.36

2 w/random prior | 0.27 (A0.05) 0.82 (40.17) 28 (A6) 21 0.83 (A0.15) 0.17 (A0.03) 0.18 (v0.18)

§ w/ GPT-4 prior | 0.10 (v0.12) 0.41(v0.24) 13(v9) 12 0.25 (v0.43) 0.02 (v0.12) 0.47 (a0.11)
DAG-GNN 0.18 0.68 19 13 0.61 0.07 0.26
w/ random prior | 0.27 (A0.09) 0.81 (A0.13) 29 (a10) 21 0.83 (A0.22) 0.17 (A0.10) 0.20 (v0.06)
w/ GPT-4 prior | 0.12 (v0.06) 0.36 (v0.32) 15(v4) 22 0.40 (v0.21) 0.08 (A0.01) 0.68 (A0.42)

Table 3: Performances of NOTEARS and DAG-GNN on Arctic Sea Ice and Sachs datasets are indicated by red
(improved) and blue (declined) arrows against the vanilla algorithm. For each algorithm, with and without GPT-4
prior, and random prior whose number of edges is the same with GPT-4 prior are investigated. * indicates metrics
that can be calculated via the true positive, precision, and recall reported in the CMA paper (Abdulaal et al., 2024).

5.2 Causal Discovery in Static Dataset

We report experimental results on two real-world
datasets, Arctic Sea Ice (Huang et al., 2021) and
Sachs (Sachs et al., 2005). Additional experi-
ments on a physical-commonsense-based synthetic
dataset are reported in Appendices E.1.3 and G.2.

Arctic Sea Ice  Arctic Sea Ice dataset comprises
12 Earth science-related variables and only 486
observations, which is relatively small. Its causal
graph, constructed by a meta-analysis of literature
referred to in (Huang et al., 2021), contains 48
edges and includes cycles. This dataset presents
two challenges for conventional causal discovery
algorithms due to 1) a small sample size and 2)
possible discrepancies between the causal relation-
ships in the underlying data and the ground truth.
We present the performance in Table 3.

GPT-4 shows better performance than data-
driven causal discovery algorithms across metrics
with big margins, in contrast, NOTEARS and DAG-
GNN record NHD near 0.33, which is equivalent to
NHD of an empty graph. The higher performance
of PLM-based causal reasoning than data-driven
causal discovery algorithms can be explained with
the pre-train knowledge of the metadata. As PLM-
based causal reasoning leverages the names of vari-
ables and related prior knowledge obtained in pre-
training, it is not affected by the size of the dataset.
Because the evaluation graph of Arctic Sea Ice
dataset is constructed based on a meta-analysis of

the literature, GPT-4 could have lots of chances to
learn related prior knowledge.

Our proposed framework induces overall perfor-
mance improvement with a big margin compared to
causal discovery algorithms and even better or the
same than GPT-4 across all metrics. Our frame-
work also outperformed a recent work, Causal
Modelling Agents (CMA) (Abdulaal et al., 2024),
which likewise combines PLM and causal discov-
ery, across all metrics except for TPR. Interest-
ingly, when prior knowledge is incorporated, FDR
decreases with little expense of FPR. This improve-
ment is attributable to a well-constructed graph by
PLM, and the revision by data-driven causal dis-
covery with the support of data.

To better understand the effect of integration,
we visualized the structural coefficients matrices
as heatmaps (Figs. 5a to 5c). White circles de-
note false positives, and blue circles denote false
negatives. The darker shades indicate the higher
structural coefficients for the edges. In Fig. 5, our
framework with DAG-GNN (Fig. 5¢) resolves false
positives and negatives by learning from the data
compared to GPT-4 (Fig. 5a). We also observed
that our model created edges where necessary, un-
like the vanilla algorithm (Fig. 5b). Other heatmaps
are in Appendix G. The effect of varying threshold
values is depicted in Fig. 5d. We observed FDR
and FPR of vanilla DAG-GNN and our framework
with DAG-GNN, as increasing the threshold.

In addition, to investigate the effect of the quality
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Figure 5: Predictions in Arctic Sea Ice of GPT-4, DAG-GNN, and DAG-GNN with GPT-4 prior. Dark circles
are false negatives and white circles are false positives. A threshold is annotated as a line in a colorbar. (d) False

prediction of DAG-GNN.

of a prior, we conducted an ablation analysis of our
framework with a randomly sampled DAG of 43
edges as a prior where 43 is the number of edges
predicted by GPT-4. Based on 20 repeated trials,
the experimental results show that the performance
improvement is not achieved by inadequate priors.

Sachs Sachs dataset (Sachs et al., 2005) is about
protein signaling pathways and comprises 11 vari-
ables with 7,466 observations. Its causal graph
consists of 19 edges and is acyclic (Ramsey and
Andrews, 2018). Sachs dataset, in contrast to Arc-
tic Sea Ice, is a wealth of data and exhibits strong
alignment with the causal graph. For PLM prompt-
ing, we used full names instead of the abbreviations
in the original data. We report experimental results
in Table 3 where causal discovery algorithms ex-
hibited different performance trends.

For DAG-GNN, we observed overall improve-
ments except for the FPR. The reason vanilla DAG-
GNN recorded a lower FPR without the PLM prior
is that it predicted causal relations at roughly half
the number of our framework. On the other hand,
by increasing edge accurate predictions, our model
improved performance except for FPR. Moreover,
DAG-GNN with prior outperformed GPT-4 across
all metrics. For NOTEARS, it gets even more con-
sistent benefits than DAG-GNN, indicating that
applying our framework improves performance
across all metrics over vanilla NOTEARS. When
compared to GPT-4, NOTEARS with prior outper-
form all metrics except for TPR, especially by big
margins for FDR and FPR.

These results highlight the effectiveness of our
framework. The overall improvement in FDR and
FPR in every algorithm, compared to TPR, resulted
in an overall increase in performance, as evidenced
by NHD and SHD.

5.3 Causal Discovery in Time-series Datasets

For time-series, we simulated synthetic datasets
regarding the well-known Partial Differential Equa-
tions (PDEs) with a maximum time lag of 1 where
we adopted Black-Scholes (MacBeth and Merville,
1979) model in the finance domain and SEIHR
(Niu et al., 2020) model in the epidemic domain.
The reason why we used those synthetic datasets is
that the conventional time-series dataset for causal
discovery lacks the actual relationships among the
variables for utilizing the pre-train knowledge of
PLMs. The synthetic datasets via PDEs can offer
rich, real-world semantic meanings annotated by
domain experts, which provide PLMs enriched op-
portunities to learn necessary prior knowledge for
causal reasoning at the same time while providing
scalability in dataset size. Further detailed reasons
for this selection are explained in Appendix E.2.

The overall process for creating these datasets in-
volves 1) selecting a mathematical model with trust-
worthy, universally acceptable names and relation-
ships, 2) generating time-series synthetic datasets,
and 3) utilizing the models.

Black-Scholes Black-Scholes model is a proba-
bilistic method to predict future stock prices, de-
termining the current value of options (MacBeth
and Merville, 1979). The PDEs of the model repre-
sents dynamics of future stock price, which acts as
dependent variable. Based on the PDEs, we anno-
tated the evaluation graph with 3 nodes and 5 edges.
For each time step, we sampled observations with
added noise.

Firstly, the overall performance of our frame-
work with NTS-NOTEARS demonstrated a marked
improvement compared to the vanilla NTS-
NOTEARS and GPT-4 as detailed in Table 4. The
prediction by our framework inferred the presence,
absence, and direction of edges more accurately,



Method |NHD (})  NHDRatio(}) SHD(}) #Edges FDR (}) FPR ({) TPR (1)
. GPT4 0.11 0.40 5 0.40 0.06 0.60
2 NTS-NOTEARS | 0.22 0.67 7 0.71 0.16 0.40
3 w/random prior | 0.22 0.80(A0.13) 5 0.80(40.09) 0.13(v0.03) 0.20(v0.20)
% w/GPT-4prior | 0.06(v0.16) 0.20(v0.47) (v6) 5 0.20(v0.51) 0.03(v0.13) 0.80(A0.40)
Q
= DYNOTEARS | 022 0.67 7 0.71 0.16 0.40
w/ random prior | 0.22 1.00(40.33) 3 1.00(A0.29) 0.10(v0.06) 0.00(v0.40)
w/ GPT-4 prior | 0.08(v0.14) 0.33(v0.34) (v5) 4 0.25(v0.46) 0.03(v0.13) 0.60(0.20)
GPT-4 0.09 033 14 0.36 0.06 0.69
o NTS-NOTEARS | 0.1 0.44 11 12 0.42 0.06 0.54
£  w/random prior | 0.16(A0.05) 0.67(A0.23)  16(A5) 11 0.64(A0.22) 0.08(A0.02) 0.31(v0.23)
D w/GPT-4prior |0.07(v0.04) 030(v0.14)  7(v4) 10 0.20(v0.22) 0.02(v0.04) 0.62(A0.08)
DYNOTEARS | 0.12 0.67 12 5 0.40 0.02 0.23
w/ random prior | 0.14(A0.02) 0.70(A0.03)  14(A2) 7 0.57(A0.17) 0.05(0.03) 0.23
w/ GPT-4 prior | 0.08(v0.04) 0.33(v0.34) 8(v4) 11 0.27(v0.13) 0.03(A0.01) 0.62(A0.39)

Table 4: Performances of NTS-NOTEARS, DYNOTEARS on Black-Scholes and SEIHR datasets are indicated
by red (improved) and blue (declined) arrows against the vanilla algorithm. For each algorithm, with and without
GPT-4 prior, and random prior whose number of edges is the same with GPT-4 prior are investigated.

which was evident across all metrics. Compared to
GPT-4, our framework with NTS-NOTEARS also
outperformed GPT-4 in all the metrics.

Overall performance of our framework with
DYNOTEARS also was improved across all met-
rics than the vanilla model and GPT-4. Our model
outperformed the vanilla DYNOTEARS across all
metrics. Compared to GPT-4, our model showed
significant improvement in overall metrics, espe-
cially FPR and FDR. Although the number of pre-
dicted edges is decreased, the reduction in FPR and
FDR led to more accurate predictions, thus low-
ering SHD and NHD. This trend was consistently
observed across different algorithms and datasets.

SEIHR SEIHR model estimates the transmission
rate of an infectious disease (Niu et al., 2020). The
dynamics of SEIHR is modeled using PDEs with 5
nodes and 13 edges.

In SEIHR dataset, we also found a consistent
improvement in performance with our framework
compared to the vanilla algorithms and GPT-4. In
the case of NTS-NOTEARS, the integration of pri-
ors contributed to an overall performance increase,
as seen in Table 4. SHD decreased by 4, and the per-
formance enhancement in FPR and FDR was par-
ticularly notable compared to other metrics. When
compared to GPT-4, there was an improvement in
all metrics except TPR.

In DYNOTEARS, the overall performance im-
provement was significant, even with an increase
in the number of predicted edges, compared to the
vanilla algorithm. While the increase of 6 edges
led to a slight rise in FPR, TPR saw a substan-

tial increase, leading to an overall improvement
compared to the vanilla DYNOTEARS. In contrast,
when compared to GPT-4, there was no correspond-
ing overall performance enhancement. We conjec-
ture that the discrepancy may arise from the nonlin-
earity of the data, violating the linearity assumption
of DYNOTEARS. Nonetheless, the ability of this
approach to increase the number of edges while
simultaneously enhancing precision, as opposed to
vanilla DYNOTEARS, highlights the potential of
our framework.

6 Conclusion

We proposed a novel framework that incorporates
the prior knowledge extracted from PLMs into
score-based causal discovery algorithms for both
static and time-series datasets. The integration
is achieved through graph initialization, regular-
ization, and setting boundaries of structural coef-
ficients, all leveraging the prior. This approach
combines the strengths of both worlds: reducing
the potential for false predictions of PLMs by ap-
plying data-driven structural learning and enhanc-
ing causal discovery performance by incorporating
prior knowledge extracted from PLMs. We also
demonstrated that solely relying on prompt engi-
neering might diminish performance even when
information is introduced to aid causal reason-
ing. This highlights the importance of combin-
ing data-driven causal discovery algorithms with
PLM-based causal reasoning. We expect that our
framework will open up new avenues for research
and exploration in causal discovery.



7 Limitations

This paper has a few limitations. First, our assump-
tion for time-series causal discovery is based on
the premise that the latent causal structure does not
change; therefore, performance may vary in cases
where the causal structure changes. Second, the
number of variables in our dataset was not large
enough. Especially for time-series causal discov-
ery, where variable names need to exist and have
realistic relationships, we could not experiment
with datasets that have an arbitrarily large number
of variables.

8 Ethics Statement

We outline our ethics statement of the work as
follows. (1) Our framework, based on a causal
discovery algorithm, has less potential risks. We
revealed our hyperparameters and other experimen-
tal settings in Sec. 5.1 and appendix C, and our
experiments are based on repeated experiments.
Moreover, while hallucinations within PLMs can
lead to erroneous decision-making, the integration
of causal discovery algorithms significantly mini-
mizes such negative effects. Thereby, we propose
that our work is robust to potential risks. (2) The
static data used in the experiments are all open-
source datasets and the time series datasets are
newly created numeric data based on PDEs by us.
Arctic Sea Ice and Sachs datasets are licensed un-
der the Creative Commons Attribution-Share Alike
License. Furthermore, we ensured that there is no
data capable of identifying individuals. (3) The
physical synthetic dataset in Appendix E.1.3, was
annotated by human annotators using PIQA data
(Bisk et al., 2019) to create ground truth graphs. We
recruited student annotators with payment above
the country’s legal minimum wage. We announced
to the annotators that the curated dataset and the
annotations would be used for research purposes.
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A Prompt Templates for Revision

Here, we describe the full text of the cumulative
prompting Fig. 6 and complete prompting (Fig. 7).
In both types of prompts, information about a
causal structure is specified within (Found Causal
Relation) . .. (/Found Causal Relation). In cumu-
lative prompting, PLM performs causal reasoning
over entire pairwise variables just once, and the
predicted causal relations are accumulated. On
the other hand, in complete prompting, PLM first
performs causal reasoning over entire pairwise
variables to draft an intermediate causal structure.
Then, PLM repeats the causal reasoning again
over the entire pairwise variables given the inter-
mediate causal structure between (Found Causal
Relation) . .. (/Found Causal Relation).

Here are previously found causal relations.

(Found Causal Relation)

Changing {«} can directly change {3}.

Changing {~} can directly change {c}.

Changing {} and changing {J} have no direct causal relation.
(/Found Causal Relation)

Not only considering provided causal relationships but also incorporating your
reasoning about the following question,

Which of the following causal relationship is correct?

A. Changing {«} can directly change {€}.

B. Changing {€} can directly change {c}.

C. Both A and B are true.

D. None of the above. No direct relationship exists.

Let’s think step-by-step to make sure that we have the right answer. Then
provide your final answer within the tags, (Answer) A/B/C/D (/Answer)

Figure 6: A modified prompts from (Kiciman et al.,
2023) named ‘“‘cumulative prompt” that uses cumula-
tively found relations from the previous prompts or
ground-truth relationships.

B Prompt Engineering for Time-series
Datasets

This section explains the ablation studies conducted
to design prompts for time-series datasets. We con-
ducted the ablation study where specific time units
such as hour, day, month, and year were given in-
stead of referring to it as a ‘time step’, as shown in
Table 5. This approach somewhat yielded perfor-
mance improvements in certain instances, though
the effectiveness varied across different datasets. In
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Here are previously found causal relations.

(Found Causal Relation)
Changing {«} can directly change {3}.
Changing {«} and changing {~} have no direct causal relation.

(relation between {ac} and {€} is not provided)

Changing {4} can directly change {c}.
(/Found Causal Relation)

Not only considering provided causal relationships but also incorporating your
reasoning about the following question,

Which of the following causal relationship is correct?

A. Changing {a} can directly change {€}.

B. Changing {€} can directly change {a}.

C. Both A and B are true.

D. None of the above. No direct relationship exists.

Let’s think step-by-step to make sure that we have the right answer. Then
provide your final answer within the tags, (Answer) A/B/C/D (/Answer)

Figure 7: A modified prompt from (Kiciman et al., 2023)
named “complete prompt” that uses all causal relations
(except the relation to be queried) found from previous
reasoning attempt or ground-truth relationships.

detail, for SEIHR model, using “day” and “hour” as
the time unit yielded effective results, while in the
case of Black-Scholes model, characterizing the in-
terval as a ‘time step’ was more effective. Although
the specific training corpora of PLM (GPT-4) is un-
known, we guess that there were likely many pre-
dictions about the day-to-day variation in patient
numbers since SEIHR model is based on COVID-
19. For Black-Scholes model, the term “time step
t” is frequently used in economics, supporting this
assumption.

C Experimental Details

In this section, we illustrated the definitions of the
metrics and the experimental setup for reproducibil-

ity.
C.1 Metrics

We introduce metrics employed in the experiments.
Structural Hamming Distance (SHD) is the sum
of the number of missing edges (false negative),
extra edges (false positive), and reversed edges
(Tsamardinos et al., 2006). Normalized Hamming
Distance (NHD) is a metric that normalizes Ham-
ming distance by dividing the distance by its ma-
trix size. This yields values between 0 and 1, with
lower values indicating greater similarity to the
causal graph. NHD ratio is an NHD divided by the
baseline NHD, which is the worst case NHD for
the same number of edges. With NHD ratio, we
can figure out how much the estimated adjacency
matrix is improved compared to the worst case.
False Discovery Rate (FDR), False Positive Rate
(FPR), and True Positive Rate (TPR) are derived
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Time Unit Naming | NHD (}) NHD Ratio (}) SHD(|) #Edges FDR(}) FPR(}) TPR ()
8 Time-step 0.11 0.40 4 5 0.40 0.06 0.60
£ Hours 0.14 0.56 5 4 0.50 0.06 0.40
@ Day 0.14 0.56 5 4 0.50 0.06 0.40
= Month 0.14 0.56 5 4 0.50 0.06 0.40
= Year 0.14 0.56 5 4 0.50 0.06 0.40

Time-step 0.09 0.33 9 14 0.36 0.06 0.69
~  Hours 0.07 0.26 7 14 0.29 0.05 0.77
L Day 0.07 0.26 7 14 0.29 0.05 0.77
&2 Month 0.11 0.38 11 16 0.44 0.08 0.69

Year 0.11 0.35 11 18 0.44 0.09 0.77

Table 5: Ablation study for time-series datasets varying time unit specified in prompt, all with GPT-4.

from the four outcomes of a confusion matrix:
False Positive, False Negative, True Positive, and
True Negative and these metrics collectively evalu-
ate the errors in classification:

FP TP
FDR = ——, FPR = , TPR = )
FP + TP FP + TN TP + FN
C.2  Setup

The experimental setup, such as hyperparameter
and model architecture, is as follows: First, GPT-4
prior is selected from start time ¢ and time lag 1 and
determined by majority voting over 10 repetitions.
To leverage PLMs as causal reasoning agents, we
should consider their randomness, which is usually
controlled by temperature or top-p values in nu-
cleus sampling. However, we found that just pick-
ing a deterministic result by setting the temperature
near zero does not give the best performance. To
handle the randomness of PLMs in causal reason-
ing and, at the same time, choose the best among
diverse reasoning results, we collected 10 indepen-
dent causal reasoning results for each dataset with
varying temperatures. Given the result in Table 6,
we chose temperature 0.7.

Second, in the experiment by Ban et al. (2023),
further refining the Ban 2023 revision prompt, we
utilized a modified version to revise a GPT-4 prior
graph that we got from pairwise prompting. After
10 repetitions, we obtained a revised graph through
majority voting and measured the performance by
comparing the resulting revised graph with both
the ground truth graph and the GPT-4 prior graph.

Third, we detail the hyperparameter of
NOTEARS and DYNOTEARS—t, Agm, thresh-
olds in Table 7. Ajyjt is the scaling factor for graph
initialization and Ay, is that for prior similarity
regularization. As we mentioned in the Experi-
mental setup of Sec. 5, hyperparameters of base-
line were tuned to reproduce baseline experiments,
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and that of our experiments were selected by fine-
tuning. For NTS-NOTEARS and DYNOTEARS,
we experimented with two boundary settings for
L-BFGS-B optimization, which is specified in the
parentheses. The specific boundary setting is as
follows. (NTS-NOTEARS, BS) : (0.4, 3.0), (NTS-
NOTEARS, SEIHR) : (1.05, 3.0), (DYNOTEARS,
BS) : (0.5, 3.0), (DYNOTEARS, SEIHR) : (0.8,
3.0).

Fourth, the model architecture and other setups
are as follows. For DAG-GNN, we used the Adam
optimizer and two layers each for the encoder and
the decoder. We allocated 64 hidden nodes in each
layer for Arctic Sea Ice model and 128 hidden
nodes in each layer for Sachs model, with a uniform
batch size set at 100 for DAG-GNN. For CGNN,
we employed an average of K instead of using
vanilla K to prevent CGNN being captured in a
local minimum originated from the discrete value
of W. Moreover, CGNN does not use prior regular-
ization in contrast to NOTEARS and DAG-GNN.
The reason is that CGNN does not use explicit mod-
eling of the structural coefficient matrix, which is
essential in prior regularization.

Though the experiments are feasible on CPUs,
our experiments were primarily conducted using
NVIDIA RTX A6000 and Tesla V100-SXM2-
32GB GPUs. Without repetition, individual train-
ing of algorithms can be conducted within an hour.
All the baseline algorithms including DAG-GNN,
NOTEARS, NTS-NOTEARS, DYNOTEARS have
trainable parameters fewer than 10k. The base-
line code was referenced from (Kalainathan and
Goudet, 2020; Yu et al., 2019), CausalNex?.

2ht’cps: //github.com/quantumblacklabs/causalnex


https://github.com/quantumblacklabs/causalnex

Temp. | NHD (}) NHDRatio(}) SHD () #Edges FDR(}) FPR(}) TPR(1)
o 001 |027 0.43 23 41 0.39 0.15 0.52
=005 | 028 0.48 24 36 0.39 0.15 0.46
8 010 | 026 0.4 24 37 0.35 0.14 0.50
o 050 | 024 0.44 19 30 0.27 0.08 0.46
5 070 | o023 0.42 19 32 0.28 0.09 0.47
< 100 | 029 0.57 26 26 0.38 0.10 0.33
001 | 0.20 0.57 22 23 0.61 0.14 0.47
0.05 | 0.18 0.52 22 23 0.57 0.13 0.53
£ 010 | 017 0.54 21 20 0.55 0.11 0.47
g 050 |017 0.51 20 22 0.55 0.12 0.53
070 | 0.17 0.50 20 21 0.52 0.11 0.53
.00 | 0.18 0.58 21 19 0.58 0.11 0.42

Table 6: Performances of GPT-4 under varing temperatures on Arctic Sea Ice and Sachs dataset.

Method | Prior Ainit  Asim  Threshold
o NOTEARS | GPT-4 055 0.6 0.2
ﬁ CGNN GPT-4 1 - 0.99
& DAG-GNN | GPT4 0.5 0.9 0.3
o NOTEARS | None - - 0.1
S CGNN None - - -
< DAG-GNN | None - - 0.3
NOTEARS | GPT-4 0.3 0.4 0.2
CGNN GPT4 1 - 0.65
% DAG-GNN | GPT-4 0.5 0.7 0.3
& NOTEARS | None - - 0.09
CGNN None - - -
DAG-GNN | None - - 0.3

Table 7: Hyperparameters of Arctic Sea Ice and Sachs

D Comparison of Causal Reasoning
Performance across PLMs

We chose GPT-4 as the baseline PLM for causal
reasoning in our framework, based on compara-
tive experiments conducted with recent PLMs on
static datasets, detailed in Table 8. We tested GPT4,
GPT4 turbo (OpenAl, 2023), PaLLM 2 (Anil et al.,
2023), Claude?, and Gemini Pro (Team et al., 2023).
GPT-4 and GPT-4 turbo recorded the best perfor-
mance on both datasets, except for PaLM 2’s ex-
ceptionally low FDR and FPR due to merely fewer
edge predictions. Despite fluctuations in perfor-
mance between GPT-4 and GPT-4 turbo, GPT-
4 generally outperformed GPT-4 turbo on both
dataset.

E Datasets

We explain the details of the datasets. For static
datasets, we describe the characteristics of each
dataset, the ground truth graphs, and the generation
process of the physical commonsense-based static

3https ://www.anthropic.com/product
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Figure 8: Arctic Sea Ice ground truth graph

dataset. For time-series datasets, we illustrate the
reason why we used the datasets based on PDEs in-
stead of existing datasets, descriptions of the PDEs
for each model, and the generation process based
on PDEs.

E.1 Static Datasets

E.1.1 Arctic Sea Ice

Arctic Sea Ice dataset (Huang et al., 2021) consists
of 12 Earth science-related variables and only 486
instances. Its causal graph (Fig. 8), constructed by
a meta-analysis of literature referred to in (Huang
et al., 2021), contains 48 edges without acyclicity.
This dataset presents two challenges for conven-
tional causal discovery algorithms due to 1) a small
sample size and 2) possible discrepancies between
the causal relationships in the underlying data and
the ground truth because the causal graph of Arctic
Sea Ice is annotated based on a literature review,
without a comprehensive examination of alignment
among the sources.

We infer that PLMs are not affected since each
causal relation in the ground truth is based on pub-
lished papers. Thus, PLMs could have learned


https://www.anthropic.com/product

Method | NHD(}) NHDRatio(}) SHD()) #Edges FDR(}) FPR(}) TPR(1)
GPT4 0.23 0.42 19 32 0.28 0.09 0.47
GPT4 turbo | 0.26 0.34 26 62 0.41 0.27 0.75
Arctic SeaTce  PALM 2 0.27 0.71 22 8 0.00 0.00 0.16
*Claude 0.40 0.41 38 92 0.55 0.53 0.85
Gemini Pro | 0.27 0.37 24 57 0.42 0.25 0.68
GPT4 0.14 0.45 18 21 0.47 0.09 0.57
GPT4 turbo | 0.15 0.54 19 16 0.50 0.07 0.42
Sachs PaLM 2 0.19 1.00 22 5 1.00 0.04 0.00
#Claude 0.33 0.54 33 55 0.69 037 0.89
Gemini Pro | 0.35 0.64 35 48 0.75 0.35 0.63

Table 8: Performances of GPT-4, GPT-4 turbo,PalLM 2, Claude and Gemini Pro priors on the Arctic Sea Ice and
Sachs dataset. Priors are determined by majority voting over 10 repetitions.(* only 1 time for Claude)

Figure 9: Sachs ground truth graph

related knowledge. This implies that the annotated
causal graph could be misaligned with the ground
truth in the data generation process in nature (e.g.,
cyclic). The two challenges mentioned previously
contribute to the difficulties faced by traditional
causal discovery algorithms in producing accurate
predictions.

E.1.2 Sachs

Sachs dataset (Sachs et al., 2005) consists of pro-
tein signaling pathways and comprises 11 vari-
ables with 7,466 observations. Its associated causal
graph (Fig. 9) has a DAG structure with 19 edges
(Ramsey and Andrews, 2018). Sachs dataset, in
contrast to Arctic Sea Ice dataset, is a wealth of
data and exhibits strong alignment with the causal
graph. We replaced abbreviations of Sachs’ origi-
nal names of the variables with their full names for
making the prior graph by PLMs.

E.1.3 Physical Commonsense-Based Synthetic
Dataset

In this section, we explain why we created a physi-
cal commonsense-based synthetic dataset and how
to construct it for evaluating causal discovery algo-
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rithms and the causal reasoning ability of PLM.

Reason for constructing physical commonsense-
based synthetic dataset To evaluate the reason-
ing ability of PLM, we chose to construct a knowl-
edge base within a specific domain. Because causal
reasoning focuses on logical relations between vari-
ables, the annotated content based on the selected
domain should contain clear ground truth. For this
reason, domains where consensus on the ground
truth is challenging, such as social or cultural do-
mains, are unsuitable, so we decided to construct
knowledge based on physics.

We utilized PIQA (Bisk et al., 2019) which is the
QA dataset of physical commonsense to select the
proper physical event that has indisputable causal
relationships. We removed text that is ambiguous
or described too specifically from our knowledge
base. We selectively annotated entities that de-
scribe phase transition which refers to phenomena
where a matter’s phase, such as solid, liquid, or gas,
transit to another phase. For example, the increase
in ‘surface air temperature’ causes a change in the
evaporation rate of water, transferring the object
from the liquid phase to the gas phase.

Using this strategy to annotate PIQA dataset,
we gathered the nodes of a causal graph whose
nodes are entities involved in the phase transition.
Then, human annotators evaluated the causal re-
lationships among the nodes, to construct causal
graph in Fig. 10.

Generation process of physical commonsense-
based synthetic dataset To generate a synthetic
dataset based on a physical commonsense-based
causal graph, we selected seven nodes that repre-
sent the evaporation of water such that collected
nodes and edges satisfy the DAG constraint. Given
the causal graph, we added subgraphs of five and
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Figure 10: Physical knowledge-based synthetic graph
with size 7. The components of the graph are Rainfall
(RNFL), Total Solar Irradiance (TSI), Surface Air Tem-
perature (SAT), Wind Speed (WS), Evaporation Rate
(ER), Moisture Content of object (MC), and Weight of
object (Wgt).

three nodes from the predefined graph by ensur-
ing that causal relations were preserved even when
nodes were removed. Removing nodes, we add
additional edges from ancestor to descendant when-
ever the removed node connects the ancestor and
descendant so that the chain relation holds. Using
the constructed 3, 5, and 7 nodes graphs, we as-
sumed a linear Structural Equation Model between
variables and Gaussian noise of ¢ ~ N(0,0.5)
within a given causal graph and generate 5000 data
points.

E.2 Time-series Datasets

Numerous studies prefer synthetic datasets for time-
series causal discovery due to scalability in dataset
size and error-free evaluation. However, purely
synthetic data lacks the semantic meaning found in
written text, preventing using PLMs’ causal reason-
ing. On the other hand, the synthetic datasets via
PDE can offer real-world semantic meanings anno-
tated by domain experts, which provide PLMs en-
riched opportunities to learn necessary prior knowl-
edge for causal reasoning.

Our framework necessitates specific dataset con-
ditions to effectively utilize Pre-trained Language
Models (PLM). 1) The variable should be aligned
with the consensus in the domain so that a solid
ground truth holds; 2) The text descriptions based
on the consensus are represented in various web-
based sources so that PLMs can learn prior knowl-
edge during the pre-training. However, several
well-known datasets used in time-series causal dis-
covery fail to fulfill both criteria, usually meeting
only one of these conditions. Real datasets often
come with meaningful variable names but lack a
universally agreed-upon ground truth. For example,
figuring out a consensus on the ground truth for the
S&P 100 dataset is challenging hindering PLMs
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from learning the actual relationships.

E.2.1 Black-Scholes

Black-Scholes model is a probabilistic model of
predicting future stock prices, determining the cur-
rent value of options (MacBeth and Merville, 1979).
This model accounts for various factors, including
the price of the call options (C'), the price of the put
options (P), the current stock price (5), the strike
price (K) of the option contract, the time remaining
until the option’s maturity (1), the prevailing risk-
free interest rate (1), and the expected stock price
volatility (o). Normal distribution of d; and ds rep-
resent the sensitivity of the option price to changes
in the price of the underlying asset and the prob-
ability when the underlying asset’s price exceeds
the strike price at maturity, i.e., the probability that
a European call option will be exercised.

C = SN(dy) — Ke " TN (dy) (1)

P=Ke TN (—dy) — SN(—d;)
¢ R Rl
.
o/ (T —t)
¢ Rl
=
o/ (T —t)

This equation estimates the expected option value
of the stocks based on the stochastic path of the
stock price (Eq. (1)).

We synthetically generated data for C', P, and S
as the same as the equation assuming a hypothetical
company’s stock price as the basis for .S. The as-
sumption about S is grounded in the core principle
of the model, that log S follows a normal distribu-
tion. K and T are constant values, while S has
been modified to mimic realistic stock price fluctu-
ations by adding Gaussian noise of € ~ A/(0,0.05).
We set the random number at 1, the interest rate
at 0.05, and the initial values for .S and K at 100,
with o established at 0.3. The data was generated
for a total of 100 steps.

Subsequently, for each time point with the added
noise, we applied these values of 5, to the model
equation, generating values for C' and P as shown
in Fig. 11. Fig. 12 is the ground truth graph of
Black-Scholes model.

E.2.2 SEIHR

SEIHR model estimates the transmission rate dur-
ing the spread of an infectious disease (Niu et al.,
2020) as follows:

S =—(nE+al)S/N
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Figure 11: Data sampled from Black-Scholes model.

Figure 12: Black-Scholes model as a window causal
graph.

E=nE+al)S/N — (8+wg)E
I=BE—(y+wn)I
H:’yl—wHH

R=wgF +wil +wygH,

where variables are susceptible individuals (S5),
those exposed to the disease (F), infected individ-
uals (1), individuals receiving treatment (/), and
individuals who have recovered (R). Other con-
stants are as follows: 7 represents the transmission
rate of individuals who have been exposed to the
disease. « signifies the transmission rate, primarily
applicable to infected individuals showing symp-
toms. [ stands as the reciprocal of the mean latent
period. ~y represents the rate at which infected in-
dividuals require hospitalization. wg, wy, and wg
are all denoting recovery rates. Specifically, wg
stands for the rate at which non-hospitalized ex-
posed individuals recover, while wy represents the
recovery rate for non-hospitalized infected individ-
uals. Lastly, wg corresponds to the rate at which
hospitalized individuals recover.

We used the Italian region model in Niu et al.
(2020). The reason for choosing the Italian region
is that it presented a case where transmission dy-
namics were observable, offering a believable con-
text for transmission events. The Italian region pa-
rameters assume a total population of 60,461,828,
with an initial infected count of 1, and hyperparam-
eters set as 1 at 0.35, « at 0.46, 3 at 0.14 and all
w at 0.1 over 180 days. Fig. 13 shows the result of
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Figure 13: Data sampled from SEITHR model.

Figure 14: Ground truth graph of SEIHR model as a
window causal graph.

the setting and Fig. 14 is a ground truth graph of
SEIHR model.

F Preliminary of CGNN

CGNN is a differentiable generative model for
score-based causal discovery (Goudet et al., 2018).
We selected CGNN as a representative method to
show the effectiveness of graph initialization be-
cause CGNN optimizes a skeleton graph derived
from either the data or a prior graph. A skeleton
graph is refined via a greedy procedure by revers-
ing, adding, or removing edges.

G Additional Experimental Results of
Section 5

We also conducted other experimental results and
figures. Regardless of the choice of algorithm
or dataset, we observed that our method reduced
false positives and false negatives, resulting in a
higher performance. Fig. 15 illustrates heatmaps
for NOTEARS in Arctic Sea Ice dataset and Fig. 16
depicts heatmaps for NOTEARS and DAG-GNN
for Sachs dataset. Figs. 17 and 18 are heatmaps for
NTS-NOTEARS and DYNOTEARS representing
both inter-slice and intra slice on Black-Scholes
and SEIHR dataset. Table 9 and Table 10 details
the result of CGNN on Arctic Sea Ice and Sachs
dataset. Fig. 19 and Fig. 20 each shows SHD, FDR,
TPR and FPR, NHD, NHD ratio of NOTEARS
and CGNN on physical knowledge-based synthetic



datasets whose sizes are 3, 5, and 7 nodes.

G.1 Experimental Results of CGNN

CGNN showed a notable performance improve-
ment by solely using graph initialization.

CGNN exhibited higher performance compared
to random prior and GPT-4 in Arctic Sea Ice dataset.
Vanilla CGNN failed to make any predictions, but
with GPT-4 prior, it produced more accurate pre-
dictions than GPT-4 as detailed in Table 9. Using
a random prior resulted in worse predictions than
making no predictions at all, showing a decline
in performance. However, it still slightly outper-
formed GPT-4.

In Sachs dataset, it also outperformed vanilla
CGNN and performed similarly to GPT-4. The
performance improved across all metrics compared
to vanilla CGNN and to CGNN with a random prior,
but there was no significant difference compared to
GPT-4 as detailed in Table 10.

G.2 Experimental Results on Physical
Synthetic Dataset

We report all results about the physical synthetic
dataset in Table 11. Overall, we observed that the
integration of PLM prior improves performance
when the number of nodes is larger than three (ex-
cept for TPR of CGNN on five node dataset). When
the number of nodes is three, the causal graph of
the dataset is too simple for NOTEARS so that it
exactly predicted causal graphs of the dataset, re-
sulting in no difference whether integrating PLM
prior or not. If the number of nodes is larger than
three, vanilla NOTEARS did not predict any edges,
and integration of PLM prior brings out consistent
performance enhancement over all metrics.
Similarly to NOTEARS, when the node size is
smallest, CGNN showed no difference following
the integration of PLM prior. However, except for
TPR, CGNN performance is improved with a huge
difference, more than that of NOTEARS. From the
insights of (Goudet et al., 2018), which indicate
that utilizing priors closer to the ground truth graph
enhances the performance of CGNN, we interpret
that PLM priors provide promising skeleton graphs.
Generally, the bigger the number of nodes gets,
the harder the combinatorial problems are so SHD
and TPR are getting worse as we can observe in
Figs. 19 and 20. In contrast, our framework miti-
gated the decline in performance than conventional
causal discovery algorithms and GPT-4. For the
five and seven nodes datasets, NOTEARS shows
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enhancement of all the metrics concretely when
integrated with PLM prior.

G.3 Full Results of Revision Prompt

In Table 12, we provide a full table including the
results of Sachs Dataset. Similar to the result of
the Arctic Sea Ice dataset, the simplest pairwise
causal reasoning prompt recorded the best perfor-
mance across all metrics, proving that mere prompt
engineering is not effective in utilizing additional
information of causal structure.



Method | NHD ({) NHD Ratio (}) SHD (J) #Edges FDR (}) FPR (}) TPR (1)
GPT-4 | 0.23 0.42 19 32 0.28 0.09 0.47
CGNN(*) 0.33 0.33 48 0 - - -

w/ random prior | 0.42 (A0.09) 0.66 (A0.33) 39(v9) 43 0.64 0.28 0.31

w/ GPT-4 prior | 0.22 (v0.11)  0.39 (0.06) 19 (v29) 35 0.28 0.10 0.52

Table 9: Performances of CGNN on the Arctic Sea Ice dataset. With and without GPT-4 prior, and uniform random
prior whose number of the edge is the same with GPT-4 prior are investigated.

Method | NHD ({) NHD Ratio (}) SHD (}) #Edges FDR(}) FPR ({) TPR (1)
GPT-4 | 0.14 0.45 18 21 0.47 0.09 0.57
CGNN 0.26 0.84 30 19 0.84 0.15 0.15
w/ random prior | 0.29 (A0.03) 0.84 31 (a1) 23 0.85 (A0.01)  0.20 (A0.05) 0.17 (A0.02)
w/ GPT-4 prior | 0.14 (v0.12) 047 (v0.37)  18(v12) 19 0.47 (v0.37)  0.08 (v0.07) 0.52 (A0.37)

Table 10: Performances of CGNN on the Sachs dataset. With and without GPT-4 prior, and uniform random prior
whose number of the edge is the same with GPT-4 prior are investigated.
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Figure 15: Heatmaps in Arctic Sea Ice dataset by a) GPT-4, b) NOTEARS, and ¢) NOTEARS with GPT-4 prior.
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Figure 16: Heatmaps in Sachs dataset by a) GPT-4, b) NOTEARS, and ¢) NOTEARS with GPT-4 prior, d) DAG-
GNN, and e) DAG-GNN with GPT-4 prior
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Figure 17: Heatmaps in Black-Scholes dataset by a) GPT-4, b) NTS-NOTEARS, c) NTS-NOTEARS with GPT-4
prior. d) DYNOTEARS, and ¢) DYNOTEARS with GPT-4 prior.
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Figure 18: Heatmaps in SEIHR dataset by a) GPT-4, b) NTS-NOTEARS, ¢) NTS-NOTEARS with GPT-4 prior. d)
DYNOTEARS, and e) DYNOTEARS with GPT-4 prior.
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Dataset

Method | NHD NHDRatio SHD No.Edge FDR FPR TPR

GPT-4 | 0.33 0.43 3 5 060 042 1.00

NOTEARS 0.00 0.00 0 2 000 0.00 1.00

NOTEARS (GPT-4 prior) 0.00 0.00 0 2 000 0.00 1.00

3 nodes CGNN | 0.11 0.33 1 1 050 012 1.00
CGNN (GPT-4 prior) | 0.22 0.33 1 4 050 028 1.00

DAG-GNN | 0.00 0.00 0 2 000 0.00 1.00

DAG-GNN (GPT-4 prior) | 0.11 0.20 1 3 033 014 1.00

GPT-4 | 0.16 0.25 4 10 040 021 1.00

NOTEARS 0.08 0.16 2 6 016 0.05 0.83

NOTEARS (GPT-4 prior) | 0.00 0.00 0 6 000 0.00 1.00

5 nodes CGNN | 0.12 0.33 7 3 050 013 1.00
CGNN (GPT-4 prior) | 0.12 0.23 3 7 028 0.10 0.83

DAG-GNN | 0.00 0.00 0 6 000 0.00 1.00

DAG-GNN (GPT-4 prior) | 0.16 0.28 3 8 038 0.15 0383

GPT-4 | 0.12 0.27 6 12033 0.10 0.80

NOTEARS 0.12 0.30 5 10 030 0.07 0.70

NOTEARS (GPT-4 prior) 0.08 0.19 3 10 020 0.05 0.80

7 nodes CGNN | 041 0.41 20 10 1.00 0.26 0.00
CGNN (GPT-4 prior) 0.12 0.30 5 10 030 0.07 0.70

DAG-GNN | 0.10 0.29 5 7 014 0.02 0.60

DAG-GNN (GPT-4 prior) 0.08 0.18 4 12025 0.07 090

Table 11: Performances of causal discovery algorithms on the Physical Knowledge Based Synthetic datasets.

Method \ NHD (/) NHDRatio(|{) SHD(}) #Edges FDR(|) FPR() TPR(?])
Pairwise 0.23 0.42 19 32 0.28 0.09 0.47
LLM-complete 0.33 1.00 30 0 0.00 0.00 0.00
LLM-cumulative | 0.31 0.73 29 13 0.38 0.05 0.16
Arctic Sea Ice LLM-ancestor 0.34 0.92 30 5 0.60 0.03 0.04
GT-complete 0.33 1.00 30 0 0.00 0.00 0.00
GT-cumulative 0.27 0.60 26 18 0.27 0.05 0.27
GT-ancestor 0.31 0.81 28 6 0.17 0.01 0.10
Pairwise 0.14 0.45 18 21 0.47 0.09 0.57
LLM-complete 0.15 1.00 19 0 0.00 0.00 0.00
LLM-cumulative | 0.15 0.82 19 4 0.50 0.01 0.10
Sachs LLM-ancestor 0.16 0.61 19 12 0.50 0.06 0.32
GT-complete 0.14 0.90 18 1 0.00 0.00 0.05
GT-cumulative 0.14 0.80 17 2 0.00 0.00 0.10
GT-ancestor 0.17 0.91 20 3 0.67 0.02 0.05

Table 12: An ablation study to assess overcoming pairwise prompts via providing the information of causal relations
on prompt formats.

SHD FDR TPR
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Figure 19: SHD, FDR, and TPR of NOTEARS and CGNN on the physical knowledge-based synthetic datasets with
and without PLM prior.
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Figure 20: FPR, NHD, NHD Ratio of comparison on the physical knowledge-based synthetic datasets.
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