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Abstract

Pre-trained Language Models (PLMs) can rea-001
son about causality leveraging vast pre-trained002
knowledge and text descriptions of datasets,003
proving its effectiveness even when data is004
scarce. However, there are crucial limitations in005
the current PLM-based causal reasoning meth-006
ods: i) PLM cannot utilize large datasets in007
prompt due to the limits of context length, and008
ii) the methods are not adept at comprehending009
the whole interconnected causal structures. On010
the other hand, data-driven causal discovery011
can discover the causal structure as a whole,012
although it works well only when the num-013
ber of data observations is large enough. To014
overcome each other’s limitations, we propose015
a new framework that integrates PLMs-based016
causal reasoning into data-driven causal discov-017
ery, which results in more improved and ro-018
bust performance. Furthermore, our framework019
extends to the time-series data and exhibited020
superior performance.021

1 Introduction022

Causal discovery (Spirtes et al., 2000; Glymour023

et al., 2019) attempts to figure out the causal re-024

lations among the variables in a dataset, playing025

a core role in science and various applications026

(De La Fuente et al., 2004; Addo et al., 2021).027

Unfortunately, data are often scarce in real-world,028

thus causal discovery algorithms cannot accurately029

recover underlying causal structures. One ap-030

proach to handle such data scarcity issue is using031

prior domain knowledge (Borboudakis et al., 2011;032

Kalainathan et al., 2018), e.g., by using an appro-033

priate prior graph, the causal discovery algorithms034

can be guided by the prior when determining the035

direction of edges (Borboudakis and Tsamardinos,036

2012; Sinha et al., 2021).037

Recent breakthroughs in PLMs have demon-038

strated their potential for diverse reasoning tasks039

(Wei et al., 2022; OpenAI, 2023; Anil et al., 2023;040

Which of the following causal relationship is correct?
A. Changing {α} can directly change {β}.
B. Changing {β} can directly change {α}.
C. Both A and B are true.
D. None of the above. No direct relationship exists.

Let’s think step-by-step to make sure that we have the
right answer. Then provide your final answer within the
tags, ⟨Answer⟩ A/B/C/D ⟨/Answer⟩

Figure 1: A multiple-choice template used in Kıcıman
et al. (2023), to determine a pairwise causal relation.

Touvron et al., 2023). Given the broad spectrum 041

of text corpora utilized during pre-training, PLMs 042

can address diverse tasks by employing specifically 043

crafted task descriptions, including commonsense 044

and numerical reasoning (Suzgun et al., 2022), 045

code generation (Chen et al., 2021), and dialogue 046

generation (Thoppilan et al., 2022). 047

Kıcıman et al. (2023) initiated reasoning-based 048

causal discovery, harnessing such reasoning ca- 049

pability of PLMs. In particular, the authors de- 050

signed a prompt template (Fig. 1), which queries 051

whether one entity causes another entity, where 052

the entities correspond to the column names of a 053

tabular dataset. By recovering a causal structure 054

via querying a causal relationship for every pair 055

of variables, their method outperformed conven- 056

tional causal discovery algorithms on benchmark 057

datasets. This work showed the potential of uti- 058

lizing the pre-trained knowledge of PLMs, at the 059

same time, bypassing the issue of data scarcity. 060

However, PLM-based causal reasoning methods 061

have inherent limitations compared to data-driven 062

causal discovery. First, they cannot properly uti- 063

lize large tabular data. Despite attempts to make 064

use of tabular data with text, text-table multimodal 065

models are limited to handling only small-scale 066

tabular data (Wang et al., 2022; Dong et al., 2022; 067

Liu et al., 2023; Lei et al., 2023; Li et al., 2023). 068

Second, they mostly predict pairwise causal rela- 069

tions individually and cannot properly comprehend 070
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entire, interconnected causal structures.071

Given that both PLM-based causal reasoning and072

data-driven causal discovery algorithms have their073

own strengths and weaknesses, we propose a novel074

framework that integrates the two approaches. In075

particular, we can harness the pre-trained knowl-076

edge of PLM to address data scarcity and utilize the077

patterns extracted from a dataset through causal dis-078

covery to gain a better understanding of the overall079

causal structure.080

Moreover, we extended the application of PLM-081

based reasoning to our framework for addressing082

time-series datasets, which have numerous practi-083

cal applications across various fields (Ding et al.,084

2006; Runge et al., 2019; Peters et al., 2013) but085

have not yet been addressed. We revealed that time-086

series causal discovery relying solely on PLMs is087

largely influenced by prompt design artifacts. We088

combined (i) the strengths of data-driven causal089

discovery, which is suitable for large datasets and090

capable of understanding the entire causal structure,091

with (ii) the effectiveness of PLM-based causal rea-092

soning, which works well with small data, thereby093

outperforming both approaches.094

Contributions We summarize our contributions.095

First, we demonstrate that PLM-based pairwise096

causal reasoning methods are not suitable for holis-097

tically eliciting a causal structure. Second, we pro-098

pose a framework that integrates PLM-based causal099

reasoning with data-driven causal discovery, which100

compensates for one’s weakness with the other’s101

strength. Third, the proposed framework enhances102

the performance of existing causal discovery algo-103

rithms from static datasets to time-series datasets.104

2 Preliminaries105

In this section, we explain causal discovery algo-106

rithms and PLM-based causal reasoning.107

2.1 Causal Discovery Algorithms108

Causal discovery algorithms figure out a latent109

causal graph from a numeric dataset and are adept110

at effectively utilizing large tabular datasets. To be-111

gin with, we introduce notations. Given d variables112

and a dataset X ∈ Rn×d with n observations, a113

causal graph can be expressed as a structural coeffi-114

cients matrix W ∈ Rd×d under a linear assumption115

where Wi,j represents how much variable j would116

directly change to the change of variable i linearly.117

First, DAG-GNN (Yu et al., 2019), learns a struc-118

tural coefficient matrix through continuous opti-119

mization to approximate the distribution of causal 120

graph of a dataset. Equipped with an encoder- 121

decoder architecture, DAG-GNN is formulated as 122

a variational autoencoder (Kingma and Welling, 123

2013), employing an acyclicity constraint and evi- 124

dence lower bound. Zheng et al. (2018) proposed 125

NOTEARS to solve combinatorial optimization 126

as a continuous optimization, utilizing a DAG 127

constraint. NOTEARS minimizes the following 128

training objective, L(W) := 1
2n∥X − XW∥2F + 129

λ∥W∥1, where the first term, fitting loss, is the 130

Frobenius norm which indicates how well W fits 131

the data, and the second term, sparsity loss, en- 132

courages a smaller number of edges, controlled by 133

hyperparameter λ. NOTEARS minimizes the ob- 134

jective while ensuring the acyclicity of the learned 135

graph (the acyclicity constraint is not shown here). 136

Time-series causal discovery aims to uncover 137

temporal causal relationships, determining how 138

variables influence each other across different time 139

lags. DYNOTEARS (Pamfil et al., 2020) extends 140

NOTEARS for time-series data, modelling time- 141

lagged causal relations with a structural coefficient 142

matrix called intra-slice W, which represents con- 143

temporaneous causal relations, and a matrix called 144

inter-slice A ∈ R(T×d)×d, which represents time- 145

lagged causal relations, where T is the maximum 146

time lag. On the other hand, Sun et al. (2021) de- 147

vised NTS-NOTEARS, which constructs weighted 148

matrices with 1-dimensional CNNs for both intra- 149

slice and inter-slice connections. It does not rely on 150

the linear assumption. For readability, we simply 151

refer the concatenation of W and A as W, if no 152

confusion can arise. 153

2.2 PLM-based Causal Reasoning 154

PLM-based causal reasoning on a static dataset 155

Kıcıman et al. (2023) developed a multiple-choice 156

prompt template (Fig. 1) for extracting pairwise 157

causal relations through PLMs. By inserting the 158

names of the variables into the prompt’s α and β, 159

PLM is guided to reason the existence and direction 160

of causal relation between α and β. This process is 161

repeated for all pairwise combinations of variables 162

to build the causal graph. 163

Expansion to time-series data We expand the 164

application of PLM-based causal reasoning to time- 165

series datasets by proposing a prompt template 166

(Fig. 2), which generalizes the multiple-choice 167

prompt template (Fig. 1, Kıcıman et al. 2023). The 168

prompt template (Fig. 2) inquires both time-lagged 169
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Which of the following causal relationship is correct? For specific time step t,
A. Change {α} of time step t can directly change {β} of time step t+1.
B. Change {β} of time step t can directly change {α} of time step t+1.
C. Both A and B are true.
D. None of the above.
Let’s think step-by-step to make sure that we have the right answer. Then
provide your final answer within the tags, ⟨Answer⟩ A/B/C/D ⟨/Answer⟩

Which of the following causal relationship is correct? For specific time step,
A. Change {α} of time step can directly change {β} of the same time step.
B. Change {β} of time step can directly change {α} of the same time step.
C. Both A and B are true.
D. None of the above.
Let’s think step-by-step to make sure that we have the right answer. Then provide
your final answer within the tags, ⟨Answer⟩ A/B/C/D ⟨/Answer⟩

Figure 2: A multichoice template for the causal relation
between two variables in time-series data. The upper
prompt is for inter-slice, and the lower is for intra-slice.

and contemporaneous causal relations for pairwise170

variables, {α} and {β}. We compared reasoning171

performance varying time units in the prompts (see172

Appendix B), and chose ‘time step’ as in Fig. 2173

because there was no consistently meaningful dif-174

ference across time unit.175

Utilizing the prompt templates for static and176

time-series datasets, we can aggregate pairwise177

causal relations to construct a causal graph. The178

causal graph obtained by PLM is represented as a179

binary adjacency matrix, K ∈ Rd×d, where Ki,j180

is 1 if i directly causes j and 0, otherwise. Since181

we do not enforce acyclicity, K might contain cy-182

cles. For time-series data, we similarly construct183

K through concatenating two adjacency matrices:184

one for intra-slice and the other for inter-slice.185

3 Why Do We Need Causal Discovery for186

PLM-Based Causal Reasoning187

We explain ablation studies about prompt templates188

to assess whether PLM can recognize the entire189

causal structure and to what extent PLM is affected190

by prompt artifacts when applied to time-series191

datasets. We first examine whether PLM recog-192

nizes the entire causal structure when determining193

pairwise causal relations, as data-driven causal dis-194

covery does by optimizing W. Then, we explore195

how PLM’s causal reasoning is affected by causally196

irrelevant artifacts of prompts, especially when ap-197

plied to time-series datasets.198

Issue: limited capability to comprehend holis-199

tic causal structure To examine PLM’s ability200

in comprehending a causal structure, we borrow201

the idea of Ban et al. (2023), who employed two202

phases of causal reasoning. First, in the reasoning203

phase, PLM predicts causal relations for pairwise204

variables, and then, in the following revision phase,205

Method NHD↓ NHD-R↓ SHD↓ #Edge FDR↓ FPR↓ TPR↑

A
rc

tic GPT-4 0.23 0.42 19 32 0.28 0.09 0.47
Revised 0.27 0.40 23 50 0.42 0.21 0.60

Sa
ch

s GPT-4 0.14 0.45 18 21 0.47 0.09 0.57
Revised 0.16 0.52 20 19 0.52 0.09 0.47

Table 1: Causal graph revision experiment using the
Ban et al. (2023) revision prompt.

Method NHD↓ NHD-R↓ SHD↓ #Edge FDR↓ FPR↓ TPR↑

A
rc

tic
Se

a
Ic

e

Pairwise 0.23 0.42 19 32 0.28 0.09 0.47
LLM-complete 0.33 1.00 30 0 0.00 0.00 0.00
LLM-cumulative 0.31 0.73 29 13 0.38 0.05 0.16
LLM-ancestor 0.34 0.92 30 5 0.60 0.03 0.04
GT-complete 0.33 1.00 30 0 0.00 0.00 0.00
GT-cumulative 0.27 0.60 26 18 0.27 0.05 0.27
GT-ancestor 0.31 0.81 28 6 0.17 0.01 0.10

Table 2: An ablation study to assess the effect of pro-
viding causal relations in prompts. Symbol ↓ indicates
a lower-is-better metric. Full table is in Appendix G.

PLM revises the whole causal relations via a revi- 206

sion prompt, 207

Based on your explanation, check whether the 208
following causal statements are correct, and give 209
the reasons. 210

{α}1 → {β}1, . . . , {α}i → {α}i 211

where the entire causal relations predicted in the 212

reasoning phase are provided to be revised. 213

We investigated the effect of the revision prompt 214

in static dataset (Arctic Sea Ice, Huang et al. 2021, 215

on Earth science) with 10 repetitions and analyzed 216

revised predictions. As depicted in Table 1, we 217

can observe only a marginal effect of revision by 218

prompt engineering.1 219

For in-depth investigations of structure-aware 220

reasoning, we examined the effect of the quantity 221

and quality of information provided. To verify 222

the effect of the amount of information, we ex- 223

perimented with cumulative prompting, bridging 224

Kıcıman et al. (2023) and Ban et al. (2023), which 225

focuses only on pairwise causal relations (Kıcıman 226

et al., 2023) at first and converges to the revision 227

methodology (Ban et al., 2023) as the predicted 228

causal relations accumulate. The result in Table 2 229

shows that PLM only repeats its predictions rather 230

than revising the predictions considering the accu- 231

mulated causal structure. Providing all pairwise 232

1SHD is the hamming distance between the estimated and
true causal graphs (i.e., the number of wrongly predicted
edges). NHD normalizes SHD by the size of adjacency matrix,
and NHD ratio further normalizes NHD by baseline NHD (the
worst case NHD with the same number of predicted edges).
Considering correctly predicted edges as true positives, FDR,
FPR, and TPR are computed. See Appendix C.1 for details.
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Figure 3: F1 of GPT-4 prediction (averaged over 10 rep-
etitions) on time-lagged causal relations in two datasets.
Shades represent 95% confidence interval.

relations at once in the prompt, referred to as com-233

plete prompting, also decreased the performance.234

The full prompts of cumulative prompting and com-235

plete prompting are in Appendix A.236

We investigated that the low performance of the237

previous result was due to the low quality of its238

predictions in the reasoning phase. However, we239

still observed lower performance despite improved240

the quality of information in revision prompts. For241

this, we substituted PLM-predicted relations with242

the ground truth causal relations (rows starting with243

GT (Ground Truth) in Table 2). Similarly, there244

was no notable change in performance despite pro-245

viding the true causal relations.246

Given helpful information for the prediction,247

such as actual ground truth or causal ancestors,248

PLM’s causal reasoning is expected to demonstrate249

better performance than that of vanilla pairwise rea-250

soning. However, the experimental results indicate251

that whether predicted by PLM or known as ground252

truth, providing information on causal structure253

did not fulfill better performance than vanilla pair-254

wise reasoning. This indicates that structure-aware255

PLM-based reasoning is not easily achievable via256

prompt engineering only.257

Issue: prompt artifacts’ influence in time-series258

While extending PLM’s causal reasoning to time259

series, we discovered that the performance varies260

by prompt artifacts. To illustrate this, we experi-261

mented changing the way a one-step time-lagged262

causal relation in the prompt to explore the extent263

to which PLMs are influenced by the word choice264

in prompts rather than semantic meaning represent-265

ing causality. We selected temporal domains where266

the maximum time lag is 1 and set the temporal267

causal relation unchanged, even if the start point is268

changed under the assumption that the causal struc-269

ture remains unchanged over time. For example,270

querying whether αt−1 is the cause of βt and αt271

is the cause of βt+1 should give the same result. 272

The experiment in Fig. 3 demonstrates that GPT- 273

4’s causal reasoning performance fluctuates based 274

on specific numbers of time steps, even when all of 275

them represent a one-step time lag. 276

These two experiments (i.e., on the lack of capa- 277

bility to comprehend causal structures and on being 278

affected by prompt artifacts) suggest that PLM- 279

based causal reasoning does not adhere strictly to 280

the domain knowledge and that prompt engineering 281

alone is insufficient to overcome these limitations. 282

Therefore, it is desired to formally integrate PLM- 283

based causal reasoning into time-series causal dis- 284

covery algorithms, as we will do in the next section. 285

4 Causal Discovery with PLM-derived 286

Priors 287

We now propose a causal discovery framework 288

which incorporates PLM causal reasoning into 289

an optimization-based causal discovery algorithm, 290

by utilizing a prior knowledge K extracted from 291

PLM. The overall framework is depicted in Fig. 4. 292

Given static or time-series datasets as input, our 293

framework performs PLM-based reasoning through 294

specifically designed prompts (Figs. 1 and 2). Then, 295

by aggregating pairwise causal relations, we ac- 296

quire a prior K. The causal discovery algorithm’s 297

optimization process then makes use of the prior K 298

in three ways (not exclusively): The prior can be 299

used as a starting point (Sec. 4.1); A regularization 300

term is added to guide the learned structure reflects 301

the given prior (Sec. 4.2) and; Boundaries are set 302

for the structural coefficients based on the prior 303

(Sec. 4.3). After the algorithm returns an estimated 304

structural coefficient matrix, a threshold is applied 305

to transform the structural coefficient matrix into a 306

binary adjacency matrix (i.e., a directed graph). 307

4.1 Graph Initialization via Prior Knowledge 308

We suggest using K as an initial point for updating 309

the edges. Typically, W is initialized as zero ad- 310

jacency matrices (Zheng et al., 2018) without any 311

prior. However, naively initializing the structural 312

coefficient matrix can be sub-optimal by getting 313

caught in local optima. Therefore, we devised ini- 314

tializing W = λinitK expecting that K of appro- 315

priate quality would help W avoid getting caught 316

in local optima, where the scaling factor λinit is 317

introduced for adjustment of K. 318
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Figure 4: Overview of our framework. Given dataset, PLM-based causal reasoning returns an adjacency matrix as
prior. Utilizing the prior, a causal discovery algorithm takes the dataset and returns a structural coefficient matrix,
which is then mapped to a binary adjacency matrix.

4.2 Regularization with Prior Knowledge319

We introduce a regularization term in the learn-320

ing objective so that W reflects K throughout the321

optimization process, where the term is defined as322

Lsim(W) :=
∑

i,j |(σ(Wi,j)−Ki,j)|,323

which can be viewed as ℓ1-regularization between324

K and the transformed, intermediate adjacency ma-325

trix W. When regularizing Wi,j with binary Ki,j326

we applied a clamping function σ, which maps327

Wi,j between [0, 1], to prevent large gradient flow328

from the regularization loss into Wi,j . Then, our329

goal is to find an optimal matrix W∗ which satisfies330

W∗ = argmin
W

L(W) + λsimLsim(W),331

where λsim is the hyperparameter for scaling the332

regularization loss.333

4.3 Setting Boundaries for Optimization334

We now consider applying prior knowledge in set-335

ting each structural coefficient’s boundary B as336

Blower ≤ Wi,j ≤ Bupper, where Blower,Bupper ∈337

R, to be utilized during the optimization process.338

Sun et al. (2021) set Blower larger than or equal to339

the threshold if edge (i, j) exists in the prior, and340

set Blower = Bupper = 0 for Wi,j if prior knowl-341

edge indicates the absence of edge (i, j).342

In our setting, the prior knowledge K is343

imperfect—we need to mitigate the risk of hal-344

lucination in prior knowledge. Therefore, we345

set a lower bound larger than 0 but smaller than346

the threshold for Wi,j if the corresponding edge347

presents in the prior, i.e., Ki,j = 1. If there is348

no edge in the prior, i.e., Ki,j = 0, we only set349

Blower = 0. This modification prevents data-driven350

causal discovery from just following the predic- 351

tion of K because the algorithm can now learn a 352

structural coefficient Wi,j whose absolute value is 353

smaller than the threshold. We implemented such 354

boundary conditions for algorithms that employ 355

L-BFGS (Byrd et al., 1995) (e.g., NOTEARS, and 356

DYNOTEARS), replacing L-BFGS with L-BFGS- 357

B (Zhu et al., 1997). Note that, when applying 358

boundaries, we directly optimized the elements 359

of the structural coefficient matrix Wi,j within 360

[Blower,Bupper], without clamping, to ensure Wi,j 361

within boundaries. 362

5 Experiments 363

We evaluate our proposed framework across the 364

static and time-series datasets with various metrics. 365

5.1 Experimental Setup 366

We primarily investigated GPT-4 as our choice of 367

PLM (OpenAI, 2023) since it outperformed other 368

evaluated PLMs (detailed in Appendix D). We con- 369

trolled the stochasticity of PLM by setting its tem- 370

perature to 0.7 based on our experimental results 371

over various temperature values. The prior knowl- 372

edge K was determined based on the majority vote 373

from 10 results (see Appendix C.2). 374

We employed NOTEARS, DAG-GNN, and 375

CGNN for static datasets. For time-series, we em- 376

ployed a linear model, DYNOTEARS, and a non- 377

linear model, NTS-NOTEARS. The regularization 378

method was not applied to NTS-NOTEARS since 379

it is not straightforward to apply regularization over 380

its architecture, i.e., convolution layers. The details 381

on hyperparameters are in Appendix C.2, and the 382

background and results of CGNN are illustrated in 383

Appendices F and G.1. 384
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Method NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)
A

rc
tic

Se
a

Ic
e

GPT-4 0.23 0.42 19 32 0.28 0.09 0.47

NOTEARS 0.31 0.63 26 23 0.43 0.10 0.27
w/ random prior 0.44 (▲0.13) 0.60 (▼0.03) 37 (▲11) 56 0.63 (▲0.20) 0.37 (▲0.27) 0.43 (▲0.16)
w/ GPT-4 prior 0.22 (▼0.09) 0.40 (▼0.23) 18 (▼8) 33 0.27 (▼0.16) 0.09 (▼0.01) 0.50 (▲0.23)

DAG-GNN 0.31 0.76 27 12 0.41 0.05 0.14
w/ random prior 0.41 (▲0.10) 0.64 (▼0.12) 37 (▲10) 44 0.62 (▲0.21) 0.29 (▲0.24) 0.33 (▲0.19)
w/ GPT-4 prior 0.22 (▼0.09) 0.40 (▼0.36) 17 (▼10) 33 0.27 (▼0.14) 0.09 (▲0.04) 0.50 (▲0.36)

CMA 0.25 0.46 - 36 0.33* 0.13* 0.50*

Sa
ch

s

GPT-4 0.14 0.45 18 21 0.47 0.09 0.57

NOTEARS 0.22 0.65 22 22 0.68 0.14 0.36
w/ random prior 0.27 (▲0.05) 0.82 (▲0.17) 28 (▲6) 21 0.83 (▲0.15) 0.17 (▲0.03) 0.18 (▼0.18)
w/ GPT-4 prior 0.10 (▼0.12) 0.41 (▼0.24) 13 (▼9) 12 0.25 (▼0.43) 0.02 (▼0.12) 0.47 (▲0.11)

DAG-GNN 0.18 0.68 19 13 0.61 0.07 0.26
w/ random prior 0.27 (▲0.09) 0.81 (▲0.13) 29 (▲10) 21 0.83 (▲0.22) 0.17 (▲0.10) 0.20 (▼0.06)
w/ GPT-4 prior 0.12 (▼0.06) 0.36 (▼0.32) 15 (▼4) 22 0.40 (▼0.21) 0.08 (▲0.01) 0.68 (▲0.42)

Table 3: Performances of NOTEARS and DAG-GNN on Arctic Sea Ice and Sachs datasets are indicated by red
(improved) and blue (declined) arrows against the vanilla algorithm. For each algorithm, with and without GPT-4
prior, and random prior whose number of edges is the same with GPT-4 prior are investigated. ∗ indicates metrics
that can be calculated via the true positive, precision, and recall reported in the CMA paper (Abdulaal et al., 2024).

5.2 Causal Discovery in Static Dataset385

We report experimental results on two real-world386

datasets, Arctic Sea Ice (Huang et al., 2021) and387

Sachs (Sachs et al., 2005). Additional experi-388

ments on a physical-commonsense-based synthetic389

dataset are reported in Appendices E.1.3 and G.2.390

Arctic Sea Ice Arctic Sea Ice dataset comprises391

12 Earth science-related variables and only 486392

observations, which is relatively small. Its causal393

graph, constructed by a meta-analysis of literature394

referred to in (Huang et al., 2021), contains 48395

edges and includes cycles. This dataset presents396

two challenges for conventional causal discovery397

algorithms due to 1) a small sample size and 2)398

possible discrepancies between the causal relation-399

ships in the underlying data and the ground truth.400

We present the performance in Table 3.401

GPT-4 shows better performance than data-402

driven causal discovery algorithms across metrics403

with big margins, in contrast, NOTEARS and DAG-404

GNN record NHD near 0.33, which is equivalent to405

NHD of an empty graph. The higher performance406

of PLM-based causal reasoning than data-driven407

causal discovery algorithms can be explained with408

the pre-train knowledge of the metadata. As PLM-409

based causal reasoning leverages the names of vari-410

ables and related prior knowledge obtained in pre-411

training, it is not affected by the size of the dataset.412

Because the evaluation graph of Arctic Sea Ice413

dataset is constructed based on a meta-analysis of414

the literature, GPT-4 could have lots of chances to 415

learn related prior knowledge. 416

Our proposed framework induces overall perfor- 417

mance improvement with a big margin compared to 418

causal discovery algorithms and even better or the 419

same than GPT-4 across all metrics. Our frame- 420

work also outperformed a recent work, Causal 421

Modelling Agents (CMA) (Abdulaal et al., 2024), 422

which likewise combines PLM and causal discov- 423

ery, across all metrics except for TPR. Interest- 424

ingly, when prior knowledge is incorporated, FDR 425

decreases with little expense of FPR. This improve- 426

ment is attributable to a well-constructed graph by 427

PLM, and the revision by data-driven causal dis- 428

covery with the support of data. 429

To better understand the effect of integration, 430

we visualized the structural coefficients matrices 431

as heatmaps (Figs. 5a to 5c). White circles de- 432

note false positives, and blue circles denote false 433

negatives. The darker shades indicate the higher 434

structural coefficients for the edges. In Fig. 5, our 435

framework with DAG-GNN (Fig. 5c) resolves false 436

positives and negatives by learning from the data 437

compared to GPT-4 (Fig. 5a). We also observed 438

that our model created edges where necessary, un- 439

like the vanilla algorithm (Fig. 5b). Other heatmaps 440

are in Appendix G. The effect of varying threshold 441

values is depicted in Fig. 5d. We observed FDR 442

and FPR of vanilla DAG-GNN and our framework 443

with DAG-GNN, as increasing the threshold. 444

In addition, to investigate the effect of the quality 445
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(b) DAG-GNN (no prior)
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(c) DAG-GNN (GPT-4 prior)
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Figure 5: Predictions in Arctic Sea Ice of GPT-4, DAG-GNN, and DAG-GNN with GPT-4 prior. Dark circles
are false negatives and white circles are false positives. A threshold is annotated as a line in a colorbar. (d) False
prediction of DAG-GNN.

of a prior, we conducted an ablation analysis of our446

framework with a randomly sampled DAG of 43447

edges as a prior where 43 is the number of edges448

predicted by GPT-4. Based on 20 repeated trials,449

the experimental results show that the performance450

improvement is not achieved by inadequate priors.451

Sachs Sachs dataset (Sachs et al., 2005) is about452

protein signaling pathways and comprises 11 vari-453

ables with 7,466 observations. Its causal graph454

consists of 19 edges and is acyclic (Ramsey and455

Andrews, 2018). Sachs dataset, in contrast to Arc-456

tic Sea Ice, is a wealth of data and exhibits strong457

alignment with the causal graph. For PLM prompt-458

ing, we used full names instead of the abbreviations459

in the original data. We report experimental results460

in Table 3 where causal discovery algorithms ex-461

hibited different performance trends.462

For DAG-GNN, we observed overall improve-463

ments except for the FPR. The reason vanilla DAG-464

GNN recorded a lower FPR without the PLM prior465

is that it predicted causal relations at roughly half466

the number of our framework. On the other hand,467

by increasing edge accurate predictions, our model468

improved performance except for FPR. Moreover,469

DAG-GNN with prior outperformed GPT-4 across470

all metrics. For NOTEARS, it gets even more con-471

sistent benefits than DAG-GNN, indicating that472

applying our framework improves performance473

across all metrics over vanilla NOTEARS. When474

compared to GPT-4, NOTEARS with prior outper-475

form all metrics except for TPR, especially by big476

margins for FDR and FPR.477

These results highlight the effectiveness of our478

framework. The overall improvement in FDR and479

FPR in every algorithm, compared to TPR, resulted480

in an overall increase in performance, as evidenced481

by NHD and SHD.482

5.3 Causal Discovery in Time-series Datasets 483

For time-series, we simulated synthetic datasets 484

regarding the well-known Partial Differential Equa- 485

tions (PDEs) with a maximum time lag of 1 where 486

we adopted Black-Scholes (MacBeth and Merville, 487

1979) model in the finance domain and SEIHR 488

(Niu et al., 2020) model in the epidemic domain. 489

The reason why we used those synthetic datasets is 490

that the conventional time-series dataset for causal 491

discovery lacks the actual relationships among the 492

variables for utilizing the pre-train knowledge of 493

PLMs. The synthetic datasets via PDEs can offer 494

rich, real-world semantic meanings annotated by 495

domain experts, which provide PLMs enriched op- 496

portunities to learn necessary prior knowledge for 497

causal reasoning at the same time while providing 498

scalability in dataset size. Further detailed reasons 499

for this selection are explained in Appendix E.2. 500

The overall process for creating these datasets in- 501

volves 1) selecting a mathematical model with trust- 502

worthy, universally acceptable names and relation- 503

ships, 2) generating time-series synthetic datasets, 504

and 3) utilizing the models. 505

Black-Scholes Black-Scholes model is a proba- 506

bilistic method to predict future stock prices, de- 507

termining the current value of options (MacBeth 508

and Merville, 1979). The PDEs of the model repre- 509

sents dynamics of future stock price, which acts as 510

dependent variable. Based on the PDEs, we anno- 511

tated the evaluation graph with 3 nodes and 5 edges. 512

For each time step, we sampled observations with 513

added noise. 514

Firstly, the overall performance of our frame- 515

work with NTS-NOTEARS demonstrated a marked 516

improvement compared to the vanilla NTS- 517

NOTEARS and GPT-4 as detailed in Table 4. The 518

prediction by our framework inferred the presence, 519

absence, and direction of edges more accurately, 520
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Method NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)
B

la
ck

-S
ch

ol
es

GPT-4 0.11 0.40 4 5 0.40 0.06 0.60

NTS-NOTEARS 0.22 0.67 8 7 0.71 0.16 0.40
w/ random prior 0.22 0.80(▲0.13) 8 5 0.80(▲0.09) 0.13(▼0.03) 0.20(▼0.20)
w/ GPT-4 prior 0.06(▼0.16) 0.20(▼0.47) 2(▼6) 5 0.20(▼0.51) 0.03(▼0.13) 0.80(▲0.40)

DYNOTEARS 0.22 0.67 8 7 0.71 0.16 0.40
w/ random prior 0.22 1.00(▲0.33) 8 3 1.00(▲0.29) 0.10(▼0.06) 0.00(▼0.40)
w/ GPT-4 prior 0.08(▼0.14) 0.33(▼0.34) 3(▼5) 4 0.25(▼0.46) 0.03(▼0.13) 0.60(▲0.20)

SE
IH

R

GPT-4 0.09 0.33 9 14 0.36 0.06 0.69
NTS-NOTEARS 0.11 0.44 11 12 0.42 0.06 0.54

w/ random prior 0.16(▲0.05) 0.67(▲0.23) 16(▲5) 11 0.64(▲0.22) 0.08(▲0.02) 0.31(▼0.23)
w/ GPT-4 prior 0.07(▼0.04) 0.30(▼0.14) 7(▼4) 10 0.20(▼0.22) 0.02(▼0.04) 0.62(▲0.08)

DYNOTEARS 0.12 0.67 12 5 0.40 0.02 0.23
w/ random prior 0.14(▲0.02) 0.70(▲0.03) 14(▲2) 7 0.57(▲0.17) 0.05(▲0.03) 0.23
w/ GPT-4 prior 0.08(▼0.04) 0.33(▼0.34) 8(▼4) 11 0.27(▼0.13) 0.03(▲0.01) 0.62(▲0.39)

Table 4: Performances of NTS-NOTEARS, DYNOTEARS on Black-Scholes and SEIHR datasets are indicated
by red (improved) and blue (declined) arrows against the vanilla algorithm. For each algorithm, with and without
GPT-4 prior, and random prior whose number of edges is the same with GPT-4 prior are investigated.

which was evident across all metrics. Compared to521

GPT-4, our framework with NTS-NOTEARS also522

outperformed GPT-4 in all the metrics.523

Overall performance of our framework with524

DYNOTEARS also was improved across all met-525

rics than the vanilla model and GPT-4. Our model526

outperformed the vanilla DYNOTEARS across all527

metrics. Compared to GPT-4, our model showed528

significant improvement in overall metrics, espe-529

cially FPR and FDR. Although the number of pre-530

dicted edges is decreased, the reduction in FPR and531

FDR led to more accurate predictions, thus low-532

ering SHD and NHD. This trend was consistently533

observed across different algorithms and datasets.534

SEIHR SEIHR model estimates the transmission535

rate of an infectious disease (Niu et al., 2020). The536

dynamics of SEIHR is modeled using PDEs with 5537

nodes and 13 edges.538

In SEIHR dataset, we also found a consistent539

improvement in performance with our framework540

compared to the vanilla algorithms and GPT-4. In541

the case of NTS-NOTEARS, the integration of pri-542

ors contributed to an overall performance increase,543

as seen in Table 4. SHD decreased by 4, and the per-544

formance enhancement in FPR and FDR was par-545

ticularly notable compared to other metrics. When546

compared to GPT-4, there was an improvement in547

all metrics except TPR.548

In DYNOTEARS, the overall performance im-549

provement was significant, even with an increase550

in the number of predicted edges, compared to the551

vanilla algorithm. While the increase of 6 edges552

led to a slight rise in FPR, TPR saw a substan-553

tial increase, leading to an overall improvement 554

compared to the vanilla DYNOTEARS. In contrast, 555

when compared to GPT-4, there was no correspond- 556

ing overall performance enhancement. We conjec- 557

ture that the discrepancy may arise from the nonlin- 558

earity of the data, violating the linearity assumption 559

of DYNOTEARS. Nonetheless, the ability of this 560

approach to increase the number of edges while 561

simultaneously enhancing precision, as opposed to 562

vanilla DYNOTEARS, highlights the potential of 563

our framework. 564

6 Conclusion 565

We proposed a novel framework that incorporates 566

the prior knowledge extracted from PLMs into 567

score-based causal discovery algorithms for both 568

static and time-series datasets. The integration 569

is achieved through graph initialization, regular- 570

ization, and setting boundaries of structural coef- 571

ficients, all leveraging the prior. This approach 572

combines the strengths of both worlds: reducing 573

the potential for false predictions of PLMs by ap- 574

plying data-driven structural learning and enhanc- 575

ing causal discovery performance by incorporating 576

prior knowledge extracted from PLMs. We also 577

demonstrated that solely relying on prompt engi- 578

neering might diminish performance even when 579

information is introduced to aid causal reason- 580

ing. This highlights the importance of combin- 581

ing data-driven causal discovery algorithms with 582

PLM-based causal reasoning. We expect that our 583

framework will open up new avenues for research 584

and exploration in causal discovery. 585
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7 Limitations586

This paper has a few limitations. First, our assump-587

tion for time-series causal discovery is based on588

the premise that the latent causal structure does not589

change; therefore, performance may vary in cases590

where the causal structure changes. Second, the591

number of variables in our dataset was not large592

enough. Especially for time-series causal discov-593

ery, where variable names need to exist and have594

realistic relationships, we could not experiment595

with datasets that have an arbitrarily large number596

of variables.597

8 Ethics Statement598

We outline our ethics statement of the work as599

follows. (1) Our framework, based on a causal600

discovery algorithm, has less potential risks. We601

revealed our hyperparameters and other experimen-602

tal settings in Sec. 5.1 and appendix C, and our603

experiments are based on repeated experiments.604

Moreover, while hallucinations within PLMs can605

lead to erroneous decision-making, the integration606

of causal discovery algorithms significantly mini-607

mizes such negative effects. Thereby, we propose608

that our work is robust to potential risks. (2) The609

static data used in the experiments are all open-610

source datasets and the time series datasets are611

newly created numeric data based on PDEs by us.612

Arctic Sea Ice and Sachs datasets are licensed un-613

der the Creative Commons Attribution-Share Alike614

License. Furthermore, we ensured that there is no615

data capable of identifying individuals. (3) The616

physical synthetic dataset in Appendix E.1.3, was617

annotated by human annotators using PIQA data618

(Bisk et al., 2019) to create ground truth graphs. We619

recruited student annotators with payment above620

the country’s legal minimum wage. We announced621

to the annotators that the curated dataset and the622

annotations would be used for research purposes.623
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A Prompt Templates for Revision808

Here, we describe the full text of the cumulative809

prompting Fig. 6 and complete prompting (Fig. 7).810

In both types of prompts, information about a811

causal structure is specified within ⟨Found Causal812

Relation⟩ . . . ⟨/Found Causal Relation⟩. In cumu-813

lative prompting, PLM performs causal reasoning814

over entire pairwise variables just once, and the815

predicted causal relations are accumulated. On816

the other hand, in complete prompting, PLM first817

performs causal reasoning over entire pairwise818

variables to draft an intermediate causal structure.819

Then, PLM repeats the causal reasoning again820

over the entire pairwise variables given the inter-821

mediate causal structure between ⟨Found Causal822

Relation⟩ . . . ⟨/Found Causal Relation⟩.823

Here are previously found causal relations.
⟨Found Causal Relation⟩
Changing {α} can directly change {β}.
Changing {γ} can directly change {α}.
Changing {α} and changing {δ} have no direct causal relation.
⟨/Found Causal Relation⟩
Not only considering provided causal relationships but also incorporating your
reasoning about the following question,
Which of the following causal relationship is correct?
A. Changing {α} can directly change {ϵ}.
B. Changing {ϵ} can directly change {α}.
C. Both A and B are true.
D. None of the above. No direct relationship exists.

Let’s think step-by-step to make sure that we have the right answer. Then
provide your final answer within the tags, ⟨Answer⟩ A/B/C/D ⟨/Answer⟩

Figure 6: A modified prompts from (Kıcıman et al.,
2023) named “cumulative prompt” that uses cumula-
tively found relations from the previous prompts or
ground-truth relationships.

B Prompt Engineering for Time-series824

Datasets825

This section explains the ablation studies conducted826

to design prompts for time-series datasets. We con-827

ducted the ablation study where specific time units828

such as hour, day, month, and year were given in-829

stead of referring to it as a ‘time step’, as shown in830

Table 5. This approach somewhat yielded perfor-831

mance improvements in certain instances, though832

the effectiveness varied across different datasets. In833

Here are previously found causal relations.
⟨Found Causal Relation⟩
Changing {α} can directly change {β}.
Changing {α} and changing {γ} have no direct causal relation.
...
(relation between {α} and {ϵ} is not provided)
...
Changing {δ} can directly change {α}.
⟨/Found Causal Relation⟩
Not only considering provided causal relationships but also incorporating your
reasoning about the following question,
Which of the following causal relationship is correct?
A. Changing {α} can directly change {ϵ}.
B. Changing {ϵ} can directly change {α}.
C. Both A and B are true.
D. None of the above. No direct relationship exists.

Let’s think step-by-step to make sure that we have the right answer. Then
provide your final answer within the tags, ⟨Answer⟩ A/B/C/D ⟨/Answer⟩

Figure 7: A modified prompt from (Kıcıman et al., 2023)
named “complete prompt” that uses all causal relations
(except the relation to be queried) found from previous
reasoning attempt or ground-truth relationships.

detail, for SEIHR model, using “day” and “hour” as 834

the time unit yielded effective results, while in the 835

case of Black-Scholes model, characterizing the in- 836

terval as a ‘time step’ was more effective. Although 837

the specific training corpora of PLM (GPT-4) is un- 838

known, we guess that there were likely many pre- 839

dictions about the day-to-day variation in patient 840

numbers since SEIHR model is based on COVID- 841

19. For Black-Scholes model, the term “time step 842

t” is frequently used in economics, supporting this 843

assumption. 844

C Experimental Details 845

In this section, we illustrated the definitions of the 846

metrics and the experimental setup for reproducibil- 847

ity. 848

C.1 Metrics 849

We introduce metrics employed in the experiments. 850

Structural Hamming Distance (SHD) is the sum 851

of the number of missing edges (false negative), 852

extra edges (false positive), and reversed edges 853

(Tsamardinos et al., 2006). Normalized Hamming 854

Distance (NHD) is a metric that normalizes Ham- 855

ming distance by dividing the distance by its ma- 856

trix size. This yields values between 0 and 1, with 857

lower values indicating greater similarity to the 858

causal graph. NHD ratio is an NHD divided by the 859

baseline NHD, which is the worst case NHD for 860

the same number of edges. With NHD ratio, we 861

can figure out how much the estimated adjacency 862

matrix is improved compared to the worst case. 863

False Discovery Rate (FDR), False Positive Rate 864

(FPR), and True Positive Rate (TPR) are derived 865
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Time Unit Naming NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)

B
la

ck
-S

ch
ol

es Time-step 0.11 0.40 4 5 0.40 0.06 0.60
Hours 0.14 0.56 5 4 0.50 0.06 0.40
Day 0.14 0.56 5 4 0.50 0.06 0.40
Month 0.14 0.56 5 4 0.50 0.06 0.40
Year 0.14 0.56 5 4 0.50 0.06 0.40

SE
IH

R

Time-step 0.09 0.33 9 14 0.36 0.06 0.69
Hours 0.07 0.26 7 14 0.29 0.05 0.77
Day 0.07 0.26 7 14 0.29 0.05 0.77
Month 0.11 0.38 11 16 0.44 0.08 0.69
Year 0.11 0.35 11 18 0.44 0.09 0.77

Table 5: Ablation study for time-series datasets varying time unit specified in prompt, all with GPT-4.

from the four outcomes of a confusion matrix:866

False Positive, False Negative, True Positive, and867

True Negative and these metrics collectively evalu-868

ate the errors in classification:869

FDR =
FP

FP + TP
, FPR =

FP

FP + TN
, TPR =

TP

TP + FN
.870

C.2 Setup871

The experimental setup, such as hyperparameter872

and model architecture, is as follows: First, GPT-4873

prior is selected from start time t and time lag 1 and874

determined by majority voting over 10 repetitions.875

To leverage PLMs as causal reasoning agents, we876

should consider their randomness, which is usually877

controlled by temperature or top-p values in nu-878

cleus sampling. However, we found that just pick-879

ing a deterministic result by setting the temperature880

near zero does not give the best performance. To881

handle the randomness of PLMs in causal reason-882

ing and, at the same time, choose the best among883

diverse reasoning results, we collected 10 indepen-884

dent causal reasoning results for each dataset with885

varying temperatures. Given the result in Table 6,886

we chose temperature 0.7.887

Second, in the experiment by Ban et al. (2023),888

further refining the Ban 2023 revision prompt, we889

utilized a modified version to revise a GPT-4 prior890

graph that we got from pairwise prompting. After891

10 repetitions, we obtained a revised graph through892

majority voting and measured the performance by893

comparing the resulting revised graph with both894

the ground truth graph and the GPT-4 prior graph.895

Third, we detail the hyperparameter of896

NOTEARS and DYNOTEARS—t, λsim, thresh-897

olds in Table 7. λinit is the scaling factor for graph898

initialization and λsim is that for prior similarity899

regularization. As we mentioned in the Experi-900

mental setup of Sec. 5, hyperparameters of base-901

line were tuned to reproduce baseline experiments,902

and that of our experiments were selected by fine- 903

tuning. For NTS-NOTEARS and DYNOTEARS, 904

we experimented with two boundary settings for 905

L-BFGS-B optimization, which is specified in the 906

parentheses. The specific boundary setting is as 907

follows. (NTS-NOTEARS, BS) : (0.4, 3.0), (NTS- 908

NOTEARS, SEIHR) : (1.05, 3.0), (DYNOTEARS, 909

BS) : (0.5, 3.0), (DYNOTEARS, SEIHR) : (0.8, 910

3.0). 911

Fourth, the model architecture and other setups 912

are as follows. For DAG-GNN, we used the Adam 913

optimizer and two layers each for the encoder and 914

the decoder. We allocated 64 hidden nodes in each 915

layer for Arctic Sea Ice model and 128 hidden 916

nodes in each layer for Sachs model, with a uniform 917

batch size set at 100 for DAG-GNN. For CGNN, 918

we employed an average of K instead of using 919

vanilla K to prevent CGNN being captured in a 920

local minimum originated from the discrete value 921

of W. Moreover, CGNN does not use prior regular- 922

ization in contrast to NOTEARS and DAG-GNN. 923

The reason is that CGNN does not use explicit mod- 924

eling of the structural coefficient matrix, which is 925

essential in prior regularization. 926

Though the experiments are feasible on CPUs, 927

our experiments were primarily conducted using 928

NVIDIA RTX A6000 and Tesla V100-SXM2- 929

32GB GPUs. Without repetition, individual train- 930

ing of algorithms can be conducted within an hour. 931

All the baseline algorithms including DAG-GNN, 932

NOTEARS, NTS-NOTEARS, DYNOTEARS have 933

trainable parameters fewer than 10k. The base- 934

line code was referenced from (Kalainathan and 935

Goudet, 2020; Yu et al., 2019), CausalNex2. 936

2https://github.com/quantumblacklabs/causalnex
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Temp. NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)

A
rc

tic
Se

a
Ic

e 0.01 0.27 0.43 23 41 0.39 0.15 0.52
0.05 0.28 0.48 24 36 0.39 0.15 0.46
0.10 0.26 0.44 24 37 0.35 0.14 0.50
0.50 0.24 0.44 19 30 0.27 0.08 0.46
0.70 0.23 0.42 19 32 0.28 0.09 0.47
1.00 0.29 0.57 26 26 0.38 0.10 0.33

Sa
ch

s

0.01 0.20 0.57 22 23 0.61 0.14 0.47
0.05 0.18 0.52 22 23 0.57 0.13 0.53
0.10 0.17 0.54 21 20 0.55 0.11 0.47
0.50 0.17 0.51 20 22 0.55 0.12 0.53
0.70 0.17 0.50 20 21 0.52 0.11 0.53
1.00 0.18 0.58 21 19 0.58 0.11 0.42

Table 6: Performances of GPT-4 under varing temperatures on Arctic Sea Ice and Sachs dataset.

Method Prior λinit λsim Threshold

A
rc

tic
Se

a
Ic

e NOTEARS GPT-4 0.55 0.6 0.2
CGNN GPT-4 1 - 0.99
DAG-GNN GPT-4 0.5 0.9 0.3
NOTEARS None - - 0.1
CGNN None - - -
DAG-GNN None - - 0.3

Sa
ch

s

NOTEARS GPT-4 0.3 0.4 0.2
CGNN GPT-4 1 - 0.65
DAG-GNN GPT-4 0.5 0.7 0.3
NOTEARS None - - 0.09
CGNN None - - -
DAG-GNN None - - 0.3

Table 7: Hyperparameters of Arctic Sea Ice and Sachs

D Comparison of Causal Reasoning937

Performance across PLMs938

We chose GPT-4 as the baseline PLM for causal939

reasoning in our framework, based on compara-940

tive experiments conducted with recent PLMs on941

static datasets, detailed in Table 8. We tested GPT4,942

GPT4 turbo (OpenAI, 2023), PaLM 2 (Anil et al.,943

2023), Claude3, and Gemini Pro (Team et al., 2023).944

GPT-4 and GPT-4 turbo recorded the best perfor-945

mance on both datasets, except for PaLM 2’s ex-946

ceptionally low FDR and FPR due to merely fewer947

edge predictions. Despite fluctuations in perfor-948

mance between GPT-4 and GPT-4 turbo, GPT-949

4 generally outperformed GPT-4 turbo on both950

dataset.951

E Datasets952

We explain the details of the datasets. For static953

datasets, we describe the characteristics of each954

dataset, the ground truth graphs, and the generation955

process of the physical commonsense-based static956

3https://www.anthropic.com/product
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Figure 8: Arctic Sea Ice ground truth graph

dataset. For time-series datasets, we illustrate the 957

reason why we used the datasets based on PDEs in- 958

stead of existing datasets, descriptions of the PDEs 959

for each model, and the generation process based 960

on PDEs. 961

E.1 Static Datasets 962

E.1.1 Arctic Sea Ice 963

Arctic Sea Ice dataset (Huang et al., 2021) consists 964

of 12 Earth science-related variables and only 486 965

instances. Its causal graph (Fig. 8), constructed by 966

a meta-analysis of literature referred to in (Huang 967

et al., 2021), contains 48 edges without acyclicity. 968

This dataset presents two challenges for conven- 969

tional causal discovery algorithms due to 1) a small 970

sample size and 2) possible discrepancies between 971

the causal relationships in the underlying data and 972

the ground truth because the causal graph of Arctic 973

Sea Ice is annotated based on a literature review, 974

without a comprehensive examination of alignment 975

among the sources. 976

We infer that PLMs are not affected since each 977

causal relation in the ground truth is based on pub- 978

lished papers. Thus, PLMs could have learned 979

13

https://www.anthropic.com/product


Method NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)

Arctic Sea Ice

GPT4 0.23 0.42 19 32 0.28 0.09 0.47
GPT4 turbo 0.26 0.34 26 62 0.41 0.27 0.75
PaLM 2 0.27 0.71 22 8 0.00 0.00 0.16
*Claude 0.40 0.41 38 92 0.55 0.53 0.85
Gemini Pro 0.27 0.37 24 57 0.42 0.25 0.68

Sachs

GPT4 0.14 0.45 18 21 0.47 0.09 0.57
GPT4 turbo 0.15 0.54 19 16 0.50 0.07 0.42
PaLM 2 0.19 1.00 22 5 1.00 0.04 0.00
*Claude 0.33 0.54 33 55 0.69 0.37 0.89
Gemini Pro 0.35 0.64 35 48 0.75 0.35 0.63

Table 8: Performances of GPT-4, GPT-4 turbo,PaLM 2, Claude and Gemini Pro priors on the Arctic Sea Ice and
Sachs dataset. Priors are determined by majority voting over 10 repetitions.(* only 1 time for Claude)
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Figure 9: Sachs ground truth graph

related knowledge. This implies that the annotated980

causal graph could be misaligned with the ground981

truth in the data generation process in nature (e.g.,982

cyclic). The two challenges mentioned previously983

contribute to the difficulties faced by traditional984

causal discovery algorithms in producing accurate985

predictions.986

E.1.2 Sachs987

Sachs dataset (Sachs et al., 2005) consists of pro-988

tein signaling pathways and comprises 11 vari-989

ables with 7,466 observations. Its associated causal990

graph (Fig. 9) has a DAG structure with 19 edges991

(Ramsey and Andrews, 2018). Sachs dataset, in992

contrast to Arctic Sea Ice dataset, is a wealth of993

data and exhibits strong alignment with the causal994

graph. We replaced abbreviations of Sachs’ origi-995

nal names of the variables with their full names for996

making the prior graph by PLMs.997

E.1.3 Physical Commonsense-Based Synthetic998

Dataset999

In this section, we explain why we created a physi-1000

cal commonsense-based synthetic dataset and how1001

to construct it for evaluating causal discovery algo-1002

rithms and the causal reasoning ability of PLM. 1003

Reason for constructing physical commonsense- 1004

based synthetic dataset To evaluate the reason- 1005

ing ability of PLM, we chose to construct a knowl- 1006

edge base within a specific domain. Because causal 1007

reasoning focuses on logical relations between vari- 1008

ables, the annotated content based on the selected 1009

domain should contain clear ground truth. For this 1010

reason, domains where consensus on the ground 1011

truth is challenging, such as social or cultural do- 1012

mains, are unsuitable, so we decided to construct 1013

knowledge based on physics. 1014

We utilized PIQA (Bisk et al., 2019) which is the 1015

QA dataset of physical commonsense to select the 1016

proper physical event that has indisputable causal 1017

relationships. We removed text that is ambiguous 1018

or described too specifically from our knowledge 1019

base. We selectively annotated entities that de- 1020

scribe phase transition which refers to phenomena 1021

where a matter’s phase, such as solid, liquid, or gas, 1022

transit to another phase. For example, the increase 1023

in ‘surface air temperature’ causes a change in the 1024

evaporation rate of water, transferring the object 1025

from the liquid phase to the gas phase. 1026

Using this strategy to annotate PIQA dataset, 1027

we gathered the nodes of a causal graph whose 1028

nodes are entities involved in the phase transition. 1029

Then, human annotators evaluated the causal re- 1030

lationships among the nodes, to construct causal 1031

graph in Fig. 10. 1032

Generation process of physical commonsense- 1033

based synthetic dataset To generate a synthetic 1034

dataset based on a physical commonsense-based 1035

causal graph, we selected seven nodes that repre- 1036

sent the evaporation of water such that collected 1037

nodes and edges satisfy the DAG constraint. Given 1038

the causal graph, we added subgraphs of five and 1039
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Figure 10: Physical knowledge-based synthetic graph
with size 7. The components of the graph are Rainfall
(RNFL), Total Solar Irradiance (TSI), Surface Air Tem-
perature (SAT), Wind Speed (WS), Evaporation Rate
(ER), Moisture Content of object (MC), and Weight of
object (Wgt).

three nodes from the predefined graph by ensur-1040

ing that causal relations were preserved even when1041

nodes were removed. Removing nodes, we add1042

additional edges from ancestor to descendant when-1043

ever the removed node connects the ancestor and1044

descendant so that the chain relation holds. Using1045

the constructed 3, 5, and 7 nodes graphs, we as-1046

sumed a linear Structural Equation Model between1047

variables and Gaussian noise of ϵ ∼ N (0, 0.5)1048

within a given causal graph and generate 5000 data1049

points.1050

E.2 Time-series Datasets1051

Numerous studies prefer synthetic datasets for time-1052

series causal discovery due to scalability in dataset1053

size and error-free evaluation. However, purely1054

synthetic data lacks the semantic meaning found in1055

written text, preventing using PLMs’ causal reason-1056

ing. On the other hand, the synthetic datasets via1057

PDE can offer real-world semantic meanings anno-1058

tated by domain experts, which provide PLMs en-1059

riched opportunities to learn necessary prior knowl-1060

edge for causal reasoning.1061

Our framework necessitates specific dataset con-1062

ditions to effectively utilize Pre-trained Language1063

Models (PLM). 1) The variable should be aligned1064

with the consensus in the domain so that a solid1065

ground truth holds; 2) The text descriptions based1066

on the consensus are represented in various web-1067

based sources so that PLMs can learn prior knowl-1068

edge during the pre-training. However, several1069

well-known datasets used in time-series causal dis-1070

covery fail to fulfill both criteria, usually meeting1071

only one of these conditions. Real datasets often1072

come with meaningful variable names but lack a1073

universally agreed-upon ground truth. For example,1074

figuring out a consensus on the ground truth for the1075

S&P 100 dataset is challenging hindering PLMs1076

from learning the actual relationships. 1077

E.2.1 Black-Scholes 1078

Black-Scholes model is a probabilistic model of 1079

predicting future stock prices, determining the cur- 1080

rent value of options (MacBeth and Merville, 1979). 1081

This model accounts for various factors, including 1082

the price of the call options (C), the price of the put 1083

options (P ), the current stock price (S), the strike 1084

price (K) of the option contract, the time remaining 1085

until the option’s maturity (T ), the prevailing risk- 1086

free interest rate (r), and the expected stock price 1087

volatility (σ). Normal distribution of d1 and d2 rep- 1088

resent the sensitivity of the option price to changes 1089

in the price of the underlying asset and the prob- 1090

ability when the underlying asset’s price exceeds 1091

the strike price at maturity, i.e., the probability that 1092

a European call option will be exercised. 1093

C = SN(d1)−Ke−r(T−t)N(d2) (1) 1094

P = Ke−r(T−t)N(−d2)− SN(−d1) 1095

d1 =
ln( S

K ) + (r + σ2

2 )(T − t)

σ
√
(T − t)

1096

d2 =
ln( S

K ) + (r − σ2

2 )(T − t)

σ
√
(T − t)

. 1097

This equation estimates the expected option value 1098

of the stocks based on the stochastic path of the 1099

stock price (Eq. (1)). 1100

We synthetically generated data for C, P , and S 1101

as the same as the equation assuming a hypothetical 1102

company’s stock price as the basis for S. The as- 1103

sumption about S is grounded in the core principle 1104

of the model, that logS follows a normal distribu- 1105

tion. K and T are constant values, while S has 1106

been modified to mimic realistic stock price fluctu- 1107

ations by adding Gaussian noise of ϵ ∼ N (0, 0.05). 1108

We set the random number at 1, the interest rate 1109

at 0.05, and the initial values for S and K at 100, 1110

with σ established at 0.3. The data was generated 1111

for a total of 100 steps. 1112

Subsequently, for each time point with the added 1113

noise, we applied these values of S, to the model 1114

equation, generating values for C and P as shown 1115

in Fig. 11. Fig. 12 is the ground truth graph of 1116

Black-Scholes model. 1117

E.2.2 SEIHR 1118

SEIHR model estimates the transmission rate dur- 1119

ing the spread of an infectious disease (Niu et al., 1120

2020) as follows: 1121

Ṡ = −(ηE + αI)S/N 1122
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Figure 11: Data sampled from Black-Scholes model.
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Figure 12: Black-Scholes model as a window causal
graph.

Ė = (ηE + αI)S/N − (β + ωE)E1123

İ = βE − (γ + ωI)I1124

Ḣ = γI − ωHH1125

Ṙ = ωEE + ωII + ωHH,1126

where variables are susceptible individuals (S),1127

those exposed to the disease (E), infected individ-1128

uals (I), individuals receiving treatment (H), and1129

individuals who have recovered (R). Other con-1130

stants are as follows: η represents the transmission1131

rate of individuals who have been exposed to the1132

disease. α signifies the transmission rate, primarily1133

applicable to infected individuals showing symp-1134

toms. β stands as the reciprocal of the mean latent1135

period. γ represents the rate at which infected in-1136

dividuals require hospitalization. ωE , ωI , and ωH1137

are all denoting recovery rates. Specifically, ωE1138

stands for the rate at which non-hospitalized ex-1139

posed individuals recover, while ωI represents the1140

recovery rate for non-hospitalized infected individ-1141

uals. Lastly, ωH corresponds to the rate at which1142

hospitalized individuals recover.1143

We used the Italian region model in Niu et al.1144

(2020). The reason for choosing the Italian region1145

is that it presented a case where transmission dy-1146

namics were observable, offering a believable con-1147

text for transmission events. The Italian region pa-1148

rameters assume a total population of 60,461,828,1149

with an initial infected count of 1, and hyperparam-1150

eters set as η at 0.35, α at 0.46, β at 0.14 and all1151

ω at 0.1 over 180 days. Fig. 13 shows the result of1152
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Figure 13: Data sampled from SEIHR model.

S(t-1) E(t-1) I(t-1) H(t-1) R(t-1)

S(t) E(t) I(t) H(t) R(t)

Figure 14: Ground truth graph of SEIHR model as a
window causal graph.

the setting and Fig. 14 is a ground truth graph of 1153

SEIHR model. 1154

F Preliminary of CGNN 1155

CGNN is a differentiable generative model for 1156

score-based causal discovery (Goudet et al., 2018). 1157

We selected CGNN as a representative method to 1158

show the effectiveness of graph initialization be- 1159

cause CGNN optimizes a skeleton graph derived 1160

from either the data or a prior graph. A skeleton 1161

graph is refined via a greedy procedure by revers- 1162

ing, adding, or removing edges. 1163

G Additional Experimental Results of 1164

Section 5 1165

We also conducted other experimental results and 1166

figures. Regardless of the choice of algorithm 1167

or dataset, we observed that our method reduced 1168

false positives and false negatives, resulting in a 1169

higher performance. Fig. 15 illustrates heatmaps 1170

for NOTEARS in Arctic Sea Ice dataset and Fig. 16 1171

depicts heatmaps for NOTEARS and DAG-GNN 1172

for Sachs dataset. Figs. 17 and 18 are heatmaps for 1173

NTS-NOTEARS and DYNOTEARS representing 1174

both inter-slice and intra slice on Black-Scholes 1175

and SEIHR dataset. Table 9 and Table 10 details 1176

the result of CGNN on Arctic Sea Ice and Sachs 1177

dataset. Fig. 19 and Fig. 20 each shows SHD, FDR, 1178

TPR and FPR, NHD, NHD ratio of NOTEARS 1179

and CGNN on physical knowledge-based synthetic 1180
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datasets whose sizes are 3, 5, and 7 nodes.1181

G.1 Experimental Results of CGNN1182

CGNN showed a notable performance improve-1183

ment by solely using graph initialization.1184

CGNN exhibited higher performance compared1185

to random prior and GPT-4 in Arctic Sea Ice dataset.1186

Vanilla CGNN failed to make any predictions, but1187

with GPT-4 prior, it produced more accurate pre-1188

dictions than GPT-4 as detailed in Table 9. Using1189

a random prior resulted in worse predictions than1190

making no predictions at all, showing a decline1191

in performance. However, it still slightly outper-1192

formed GPT-4.1193

In Sachs dataset, it also outperformed vanilla1194

CGNN and performed similarly to GPT-4. The1195

performance improved across all metrics compared1196

to vanilla CGNN and to CGNN with a random prior,1197

but there was no significant difference compared to1198

GPT-4 as detailed in Table 10.1199

G.2 Experimental Results on Physical1200

Synthetic Dataset1201

We report all results about the physical synthetic1202

dataset in Table 11. Overall, we observed that the1203

integration of PLM prior improves performance1204

when the number of nodes is larger than three (ex-1205

cept for TPR of CGNN on five node dataset). When1206

the number of nodes is three, the causal graph of1207

the dataset is too simple for NOTEARS so that it1208

exactly predicted causal graphs of the dataset, re-1209

sulting in no difference whether integrating PLM1210

prior or not. If the number of nodes is larger than1211

three, vanilla NOTEARS did not predict any edges,1212

and integration of PLM prior brings out consistent1213

performance enhancement over all metrics.1214

Similarly to NOTEARS, when the node size is1215

smallest, CGNN showed no difference following1216

the integration of PLM prior. However, except for1217

TPR, CGNN performance is improved with a huge1218

difference, more than that of NOTEARS. From the1219

insights of (Goudet et al., 2018), which indicate1220

that utilizing priors closer to the ground truth graph1221

enhances the performance of CGNN, we interpret1222

that PLM priors provide promising skeleton graphs.1223

Generally, the bigger the number of nodes gets,1224

the harder the combinatorial problems are so SHD1225

and TPR are getting worse as we can observe in1226

Figs. 19 and 20. In contrast, our framework miti-1227

gated the decline in performance than conventional1228

causal discovery algorithms and GPT-4. For the1229

five and seven nodes datasets, NOTEARS shows1230

enhancement of all the metrics concretely when 1231

integrated with PLM prior. 1232

G.3 Full Results of Revision Prompt 1233

In Table 12, we provide a full table including the 1234

results of Sachs Dataset. Similar to the result of 1235

the Arctic Sea Ice dataset, the simplest pairwise 1236

causal reasoning prompt recorded the best perfor- 1237

mance across all metrics, proving that mere prompt 1238

engineering is not effective in utilizing additional 1239

information of causal structure. 1240
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Method NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)

GPT-4 0.23 0.42 19 32 0.28 0.09 0.47

CGNN(*) 0.33 0.33 48 0 - - -
w/ random prior 0.42 (▲0.09) 0.66 (▲0.33) 39 (▼9) 43 0.64 0.28 0.31
w/ GPT-4 prior 0.22 (▼0.11) 0.39 (▲0.06) 19 (▼29) 35 0.28 0.10 0.52

Table 9: Performances of CGNN on the Arctic Sea Ice dataset. With and without GPT-4 prior, and uniform random
prior whose number of the edge is the same with GPT-4 prior are investigated.

Method NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)

GPT-4 0.14 0.45 18 21 0.47 0.09 0.57

CGNN 0.26 0.84 30 19 0.84 0.15 0.15
w/ random prior 0.29 (▲0.03) 0.84 31 (▲1) 23 0.85 (▲0.01) 0.20 (▲0.05) 0.17 (▲0.02)
w/ GPT-4 prior 0.14 (▼0.12) 0.47 (▼0.37) 18 (▼12) 19 0.47 (▼0.37) 0.08 (▼0.07) 0.52 (▲0.37)

Table 10: Performances of CGNN on the Sachs dataset. With and without GPT-4 prior, and uniform random prior
whose number of the edge is the same with GPT-4 prior are investigated.
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Figure 15: Heatmaps in Arctic Sea Ice dataset by a) GPT-4, b) NOTEARS, and c) NOTEARS with GPT-4 prior.
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(d) NOTEARS (no prior)
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Figure 16: Heatmaps in Sachs dataset by a) GPT-4, b) NOTEARS, and c) NOTEARS with GPT-4 prior, d) DAG-
GNN, and e) DAG-GNN with GPT-4 prior
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(a)

(a)

(b)

(b)

(d) (e)

(e)(d)

(c)

(c)

Figure 17: Heatmaps in Black-Scholes dataset by a) GPT-4, b) NTS-NOTEARS, c) NTS-NOTEARS with GPT-4
prior. d) DYNOTEARS, and e) DYNOTEARS with GPT-4 prior.
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Figure 18: Heatmaps in SEIHR dataset by a) GPT-4, b) NTS-NOTEARS, c) NTS-NOTEARS with GPT-4 prior. d)
DYNOTEARS, and e) DYNOTEARS with GPT-4 prior.
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Dataset Method NHD NHD Ratio SHD No. Edge FDR FPR TPR

3 nodes

GPT-4 0.33 0.43 3 5 0.60 0.42 1.00
NOTEARS 0.00 0.00 0 2 0.00 0.00 1.00

NOTEARS (GPT-4 prior) 0.00 0.00 0 2 0.00 0.00 1.00
CGNN 0.11 0.33 1 1 0.50 0.12 1.00

CGNN (GPT-4 prior) 0.22 0.33 1 4 0.50 0.28 1.00
DAG-GNN 0.00 0.00 0 2 0.00 0.00 1.00

DAG-GNN (GPT-4 prior) 0.11 0.20 1 3 0.33 0.14 1.00

5 nodes

GPT-4 0.16 0.25 4 10 0.40 0.21 1.00
NOTEARS 0.08 0.16 2 6 0.16 0.05 0.83

NOTEARS (GPT-4 prior) 0.00 0.00 0 6 0.00 0.00 1.00
CGNN 0.12 0.33 7 3 0.50 0.13 1.00

CGNN (GPT-4 prior) 0.12 0.23 3 7 0.28 0.10 0.83
DAG-GNN 0.00 0.00 0 6 0.00 0.00 1.00

DAG-GNN (GPT-4 prior) 0.16 0.28 3 8 0.38 0.15 0.83

7 nodes

GPT-4 0.12 0.27 6 12 0.33 0.10 0.80
NOTEARS 0.12 0.30 5 10 0.30 0.07 0.70

NOTEARS (GPT-4 prior) 0.08 0.19 3 10 0.20 0.05 0.80
CGNN 0.41 0.41 20 10 1.00 0.26 0.00

CGNN (GPT-4 prior) 0.12 0.30 5 10 0.30 0.07 0.70
DAG-GNN 0.10 0.29 5 7 0.14 0.02 0.60

DAG-GNN (GPT-4 prior) 0.08 0.18 4 12 0.25 0.07 0.90

Table 11: Performances of causal discovery algorithms on the Physical Knowledge Based Synthetic datasets.

Method NHD (↓) NHD Ratio (↓) SHD (↓) # Edges FDR (↓) FPR (↓) TPR (↑)

Arctic Sea Ice

Pairwise 0.23 0.42 19 32 0.28 0.09 0.47
LLM-complete 0.33 1.00 30 0 0.00 0.00 0.00
LLM-cumulative 0.31 0.73 29 13 0.38 0.05 0.16
LLM-ancestor 0.34 0.92 30 5 0.60 0.03 0.04
GT-complete 0.33 1.00 30 0 0.00 0.00 0.00
GT-cumulative 0.27 0.60 26 18 0.27 0.05 0.27
GT-ancestor 0.31 0.81 28 6 0.17 0.01 0.10

Sachs

Pairwise 0.14 0.45 18 21 0.47 0.09 0.57
LLM-complete 0.15 1.00 19 0 0.00 0.00 0.00
LLM-cumulative 0.15 0.82 19 4 0.50 0.01 0.10
LLM-ancestor 0.16 0.61 19 12 0.50 0.06 0.32
GT-complete 0.14 0.90 18 1 0.00 0.00 0.05
GT-cumulative 0.14 0.80 17 2 0.00 0.00 0.10
GT-ancestor 0.17 0.91 20 3 0.67 0.02 0.05

Table 12: An ablation study to assess overcoming pairwise prompts via providing the information of causal relations
on prompt formats.
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Figure 19: SHD, FDR, and TPR of NOTEARS and CGNN on the physical knowledge-based synthetic datasets with
and without PLM prior.
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Figure 20: FPR, NHD, NHD Ratio of comparison on the physical knowledge-based synthetic datasets.
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