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Abstract

Modern machine learning models struggle to maintain performance in dynamic
environments where temporal distribution shifts, i.e., concept drift, are prevalent.
Temporal Domain Generalization (TDG) seeks to enable model generalization
across evolving domains, yet existing approaches typically assume smooth incre-
mental changes, struggling with complex real-world drifts involving both long-term
structure (incremental evolution/periodicity) and local uncertainties. To overcome
these limitations, we introduce FreKoo, which tackles these challenges through a
novel frequency-domain analysis of parameter trajectories. It leverages the Fourier
transform to disentangle parameter evolution into distinct spectral bands. Specif-
ically, the low-frequency components with dominant dynamics are learned and
extrapolated using the Koopman operator, robustly capturing diverse drift patterns
including both incremental and periodic drifts. Simultaneously, potentially disrup-
tive high-frequency variations are smoothed via targeted temporal regularization,
preventing overfitting to transient noise and domain uncertainties. In addition, this
dual-spectral strategy is rigorously grounded through theoretical analysis, providing
stability guarantees for the Koopman prediction, a principled Bayesian justification
for the high-frequency regularization, and culminating in a multiscale generaliza-
tion bound connecting spectral dynamics to improved generalization. Extensive
experiments demonstrate FreKoo’s significant superiority over state-of-the-art TDG
methods, particularly excelling in real-world streaming scenarios with complex
drifts and uncertainties.

1 Introduction

Modern machine learning models face significant challenges in dynamic environments where data
distributions evolve over time [1]. Unlike static settings that assume an IID relationship between
training and test data, real-world scenarios often involve continuously generated data streams (e.g.,
user activity logs, sensor readings, financial transactions) exhibiting temporal dependencies and
non-stationarity due to factors like shifting user behavior, environmental variations, or system
changes [2]. These temporal dynamics lead to distributional shifts over time, known as concept drift,
which invalidates the alignment between historical and future out-of-distribution (OOD) data [3–5].
Consequently, models trained on past data frequently fail to generalize to future instances, leading to
performance degradation and reduced reliability. This has spurred increasing interest in Temporal
Domain Generalization (TDG), which seeks to develop models capable of generalizing robustly
across chronologically ordered source domains to unseen future target distributions [6].
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Figure 1: Illustration of challenges in TDG. Left: Complex drifting situations can involve both
incremental shifts (e.g., D1 → D2 → D3) and long-term periodic returns (e.g., Dt resembling D1

after a cycle). The underlying optimal parameters θt evolve accordingly. Right: Within any domain
Dt, uncertainties or non-IID data concentrated in Areas 1, 2 and 4 compared to data in Area 3 can
lead to local overfitting (solid blue line). Robust generalization requires converging to a smoother
area (red dashed line) that is less sensitive to such localized noise or outliers.

Recent progress in TDG falls into two categories: data-driven [7] and model-centric [8] approaches.
Data-driven methods enhance temporal robustness by simulating future distributions via OOD data
generation [9, 10] or learning temporally invariant features [11]. Model-centric methods often
leverage dynamic modeling, such as time-sensitive regularization or parameter forecasting, to adapt
models to evolving distributions [6, 12]. However, existing methods often implicitly assume that
concept drift is primarily incremental or focus on ensuring local smoothness between adjacent
domains. This overlooks a crucial aspect of many real-world scenarios: 1) Difficulty in Modeling
Long-term Periodic Dynamics: real-world concept drift frequently exhibits long-term periodicity
(e.g., seasonality, weekly/daily user patterns, economic cycles), not just smoothly incremental
changes [13, 14], as shown in the left of Figure 1. Current approaches struggle to capture these
recurring patterns spanning longer time horizons [8]. Their effectiveness often diminishes, particularly
near phase transitions of periodic cycles where the inability to anticipate pattern recurrence hinders
generalization. 2) Vulnerability to Overfitting Domain-Specific Uncertainties: current TDG methods
typically segment continuous data streams into discrete temporal domains. However, the complex
drift patterns inherent in real-world streams make it difficult to guarantee that data within each
domain remains IID, as visualized in Appendix D.1 Figure 5. Consequently, localized uncertainties
and non-IID characteristics within domains can complicate optimization and increase the risk of
overfitting to domain-specific artifacts (illustrated in the right of Figure 1), ultimately undermining
stable cross-temporal generalization [15].

These challenges underscore the necessity for principled frameworks capable of capturing long-
term incremental/periodic dynamics while filtering local uncertainties. Intuitively, the trajectory of
model parameters over time provides a comprehensive reflection of the underlying concept drift,
encapsulating its long-range evolution alongside its unpredictable uncertainties. Thus, we turn to
frequency-domain analysis of the parameter trajectories. Frequency-domain analysis inherently
isolates dominant dynamics by representing them as distinct spectral peaks, facilitating robust
modeling of long-term evolving patterns [16]. Moreover, as analyzed in [17], spectral representations
can reveal dynamic temporal structures often obscured by conventional statistical measures (e.g.,
mean, variance), thereby providing a richer understanding of parameter evolution. Specifically,
transforming trajectories into the frequency domain reveals that dominant evolving trends and
periodic components typically manifest as energy concentrations at low frequencies, whereas transient
uncertainties typically dominate higher frequencies [18, 19]. This spectral separation naturally allows
for targeted dynamic modeling: isolating and modeling the predictable long-term low-frequency
dynamics while permitting robust management of disruptive high-frequency variations. Compared to
purely time-domain approaches, this frequency-domain perspective offers a more robust mechanism
for modeling diverse temporal dynamics in real-world scenarios with complex drifts and uncertainties.

Motivated by this, we propose FreKoo, a Frequency-Koopman Regularized framework that enhances
temporal generalization by integrating spectral decomposition with Koopman operator theory. Specif-
ically, as shown in Figure 2, FreKoo decomposes model parameter trajectories into low-frequency
and high-frequency components via the Fourier transform. Koopman operator theory [20, 21] is
employed to learn a stable linear model for the evolution of low-frequency dynamics, enabling
robust prediction of incremental trends and periodicity. Simultaneously, it introduces a targeted
temporal smooth regularization to the high-frequency components, promoting stable convergence
and preventing overfitting to local uncertainties. Furthermore, we derive a multiscale generalization
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bound that characterizes the interplay between Koopman stability, temporal regularization, and
generalization robustness. This theoretical foundation provides rigorous insight into how FreKoo
improves generalizability in dynamic environments, offering a unified and principled solution to
complex concept drifts in TDG. Our main contributions are summarized as follows:

• We pioneer a spectral analysis perspective on parameter trajectories for TDG. This enables
principled disentanglement of complex and multiscaled temporal dynamics, offering a novel
pathway to address limitations of prior methods in handling long-term periodicity and
domain-specific uncertainties.

• We propose FreKoo, a novel end-to-end framework that materializes this spectral insight. It
synergistically combines Koopman operator extrapolation for stable low-frequency dynamics
with targeted regularization of high-frequency uncertainties, thereby enhancing robustness
against complex drifting situations.

• We establish a rigorous theoretical foundation for FreKoo via a novel multiscale gener-
alization bound. It connects FreKoo’s spectral dominant dynamics and temporal smooth
regularization to stable generalization. Extensive experiments further demonstrate FreKoo’s
significant superiority particularly in real-world scenarios with periodicity and uncertainties.

2 Related Works
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Figure 2: FreKoo Framework. It decomposes model
parameter trajectories into low-frequency and high-
frequency components via the Fourier transform. Then,
the Koopman operator is employed to learn the evolution
of low-frequency dynamics, enabling robust prediction
of incremental trend and periodicity. Also, it introduces
a targeted temporal difference regularization to the high-
frequency components, promoting smooth convergence
and preventing overfitting to local uncertainties.

Temporal Domain Generalization
(TDG). TDG specifically tackles scenar-
ios where data distributions evolve over
time (i.e., concept drift), aiming to train
models on historical data that generalize
to near future domains [6]. This requires
explicitly capturing and leveraging the
dynamics of the distribution shifts over
time. Current TDG research broadly
follows two main directions. Data-driven
approaches seek temporal robustness
by either synthesizing future data via
OOD generation [7, 9, 10], or learning
time-invariant representations [11].
Model-centric methods focus on incorpo-
rating dynamic adaptation mechanisms
directly into the learning process, such
as time-sensitive regularizations that
encourage smooth decision boundaries
over time [6] or forecasting future
parameters based on past evolution [8].
Furthermore, recognizing the continuous
nature of time, Continuous TDG (CTDG)
methods have been proposed, often
treating time as a continuous index for
adaptation [12, 22]. However, despite
progress, effectively modeling long-term
periodic patterns and mitigating sensitiv-
ity to intra-domain uncertainties leading
to local overfitting remain key challenges
across existing TDG methods.

Concept Drift. Concept drift signifies a change in the underlying data distribution over time,
i.e., Pt+1(X, y) ̸= Pt(X, y), fundamentally challenges model reliability by requiring dynamic
adaptation [3]. Concept drift manifests in various forms, including sudden, gradual, incremental,
and recurring (periodic) patterns. Much prior research treats it as unpredictable and often employs
detect-then-adapt strategies [23–25]. In contrast, TDG aims to leverage continuous or predictable
evolutionary dynamics for proactive generalization [8]. However, existing TDG methods primarily
model smooth incremental changes, consequently struggling to capture complex, long-range structures
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like periodicity which are common in real-world streams and demand modeling approaches beyond
simple monotonic progression assumptions.

Frequency Learning. Frequency learning has emerged as a promising paradigm for modeling non-
stationary temporal dynamics in machine learning [26, 27]. By transforming time-domain signals
into the spectral space, frequency-aware methods effectively capture periodic patterns and multi-scale
trends that remain obscured in raw signals. For instance, prior works [28–30] leverage spectral
decomposition to identify periodic structures in temporal data. FAN [19] further demonstrates that
frequency-domain representations can reveal dynamic features—including long-term trends and
seasonal variations—that traditional statistical measures (e.g., mean, variance) fail to characterize.
These insights provide a foundational basis for our work, as we extend frequency learning to a novel
perspective, modeling parameter trajectories under concept drift.

3 Methodology

3.1 Preliminary

Temporal Domain Generalization. Given a sequence of T temporal source domains {Dt}Tt=1,
each domain at timestamp t is defined as Dt = {(x(i)

t , y
(i)
t )}Nt

i=1, where (x
(i)
t , y

(i)
t ) ∈ Xt × Yt is a

sample-label pair, Nt is the number of samples ofDt, and Xt and Yt denote the input and label spaces
at timestamp t. We assume that each source domain Dt is drawn from a time-dependent distribution
Pt(X,Y ), and the sequence {Pt}Tt=1 exhibits concept drift, which may include incremental or
long-term periodic trends. The objective of TDG is to build a model g(·; θt) : Xt → Yt using
historical source domains {Dt}Tt=1 that generalizes effectively to an OOD future target domain
DT+1 ∼ PT+1(X,Y ), without access to DT+1 during training [6].

Challenges. Prevailing TDG methods, typically constrained by assumptions of incremental change or
local smoothness, struggle to handle complex concept drifts. This manifests in two primary challenges.
First, they fail to capture long-range periodic dynamics (Challenge 1), where the data distribution
periodically recurs after L steps, i.e., ∃, L ∈ Z+ s.t. Pt(X,Y ) ≈ Pt+kL(X,Y ) for all k ∈ Z+,
despite undergoing short-term shifts Pt(X,Y ) ̸= Pt+1(X,Y ). Second, they are ill-equipped to filter
out transient noise and domain-specific uncertainties (Challenge 2), a phenomenon we visualize in
Appendix D.1 Figure 5. Ultimately, these limitations prevent them from effectively balancing the
stability and adaptability required in real-world scenarios.

3.2 Proposed Method: FreKoo

To address these challenges, we model the evolution of parameters {θ1, θ2, . . . , θT } and extrapolate
to predict θT+1, thereby enabling robust inference on future unseen domain DT+1 with g(·; θT+1) :
XT+1 → YT+1. We establish a dynamic system perspective for Temporal Domain Generalization
(TDG) by modeling parameter evolution under complex drifting situations [31]. Let θt ∈ RD denote
the parameter of the model gt : Xt → Yt at time t, the evolution over time can be described by a
potentially nonlinear stochastic difference form:

θt+1 = Φ(θt) + ϵt, (1)

where Φ : RD → RD captures deterministic transitions induced by concept drift, and ϵt represents
stochastic perturbations. This formulation explicitly addresses concept drift by treating TDG as a
parameter trajectory prediction problem governed by a stochastic nonlinear dynamical system.

Directly modeling the complex dynamics of the parameter trajectory is difficult, as it intertwines
potentially different drifts and uncertainties in the real world. To overcome this, we introduce a
frequency-aware perspective as a powerful inductive bias. We hypothesize that different frequency
components within the parameter trajectory Θ correspond to distinct aspects of the concept drift: the
low-frequency component captures the slowly-varying trends and the long-term periodic patterns
(Challenge 1). The high-frequency component primarily reflects transient dynamics and domain-
specific spurious noise (Challenge 2). By disentangling these frequency regimes, we can robustly
model and extrapolate the stable structured low-frequency dynamics while suppressing the volatile,
potentially misleading high-frequency variations. This insight motivates the core of our proposed
FreKoo framework.
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3.2.1 Spectral Decomposition

Given a time-varying parameter trajectory Θ = [θ1, θ2, . . . , θT ]
⊤ ∈ RT×D with T timesteps and

D parameter dimensions, we utilize Fourier analysis to disentangle dominant dynamics from high-
frequency fluctuations [16, 32]. Specifically, we first transfer it to frequency space via Discrete
Fourier Transform (DFT) along the temporal axis, yielding a spectral representation Θf via:

Θf = F(Θ), Θf [f, d] =

T∑
t=1

Θ[t, d] · e−j2πft/T , (2)

where F : RT×D → CNfreq×D denotes the DFT operator and Nfreq = ⌊T/2⌋+ 1 represents the
number of frequency components. f serves as the frequency bin index while d indicates the parameter
dimension index.

To identify dominant frequencies, we compute the average spectral magnitude across parameter
dimensions as an energy proxy:

Mf =
1

D

D∑
d=1

|Θ̂[f, d]|, ∀f ∈ {0, . . . , Nfreq − 1}, (3)

where Mf ∈ R+ represents the normalized energy contribution of frequency f . The magnitude vector
M = [M0,M1, . . . ,MNfreq−1] ∈ RNfreq

+ aggregates these values across all frequencies, serving as a
dimension-agnostic measure of frequency importance. This averaging operation inherently suppresses
parameter-wise variations in oscillation patterns, ensuring robustness to localized noise in individual
dimensions. For a specified energy preservation ratio τ ∈ [0, 1], we select the top-Q frequency
indices Qtop = {f1, f2, . . . , fQ} where Q = ⌈τNfreq⌉ and Mf1 ≥ Mf2 ≥ · · · ≥ MfNfreq

,
ensuring Qtop contains the Q largest magnitudes. Then, we construct a frequency-domain binary
mask B ∈ {0, 1}Nfreq×D that preserves selected frequencies:

B[f, d] =

{
1 if f ∈ Qtop,

0 otherwise,
for all d = 1, . . . , D. (4)

Finally, Θ can be decomposed into a component Θlow (dominant frequencies) and a component
Θhigh (high-frequency fluctuations) as follows:

Θf
low = Θf ⊙B, Θf

high = Θf ⊙ (1−B),

Θlow = F−1(Θf
low), Θhigh = F−1(Θf

high),
(5)

where ⊙ denotes element-wise multiplication, 1 represents a matrix of ones, and F−1 is the corre-
sponding inverse DFT. By the linearity of F−1, it holds that Θ = Θlow +Θhigh. This decomposition
enables separate analysis of dominant dynamics Θlow and high-frequency fluctuations Θhigh.

Therefore, the spectral decomposition enables targeted handling of distinct components, and Eq. (1)
can be further expressed as: Φ(θt) = Φlow(θt,low)+Rhigh(θt,high), where Φlow and Rhigh govern
distinct spectral regimes. This decomposition enables: 1) Explicit modeling of dominant evolving
patterns through Φlow, which exploits the long-term periodic and increment evolving patterns, i.e.,
targeting for Challenge 1; 2) Targeted regularization of uncertainties via Rhigh, i.e., targeting for
Challenge 2. By jointly handling these regimes, the method enhances prediction stability against
overfitting to domain-specific uncertainties while maintaining fidelity to long-term trends.

3.2.2 Robust Frequency Dynamics Learning

Koopman Operator for Dominant Dynamics. To model the dominant and temporally stable
dynamics underlying the evolution of model parameters, we employ Koopman operator theory,
which provides a linear surrogate for nonlinear dynamical systems by mapping them into a higher-
dimensional functional space [20, 21]. Specifically, it assumes that the state can be mapped into a
higher-dimensional Hilbert space via a measurement function φ, where the evolution is governed
by an infinite-dimensional linear operator K, such that: K ◦ φ(xt) = φ(Φx(xt)) = φ(xt+1),
where Φ is the unknown nonlinear transition function that governs the temporal evolution of the
system [16]. Formally, let {θ1,low, ..., θT,low} denote the low-frequency components of model
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parameters extracted via spectral decomposition. These components capture incremental and periodic
variations that evolve gradually over time. We posit that this sequence admits a near-linear evolution
in a latent space under a Koopman operator. Specifically, we seek an encoder ϕ : RD → Rm and a
decoder ϕ−1 : Rm → RD, such that the temporal evolution can be expressed as:

zt,low = ϕ(θt,low), ẑt+1,low = Kzt,low, θ̂t+1,low = ϕ−1(ẑt+1,low), (6)

where K ∈ Rm×m is a learnable linear transformation that approximates the finite-dimensional
Koopman operator. To enforce temporal consistency in the predicted low-frequency dynamics, we
define a reconstruction loss:

Lkoop =

T−1∑
t=1

∥zt+1,low − ẑt+1,low∥22, (7)

which encourages accurate modeling of long-range parameter trends and mitigates error accumulation
over time. This structure allows the model to forecast stable dynamics while preserving interpretability
through linear temporal progression in the latent space.

Algorithm 1 FreKoo End-to-End Learning Procedure

Require: Source domain datasets D = {D1, ..., DT };
Hyperparameters α, β, γ, τ ; Koopman dimension m;
Number of Epochs Nepochs.

Ensure: Trained FreKoo model components
(Θ, ϕlow, ϕhigh, ϕ

−1,K) and target parameters
θ̂T+1.

1: Initialize base model g(·), Encoders ϕlow, ϕhigh, De-
coder ϕ−1, Koopman operator K ∈ Rm×m.

2: for epoch = 1 to Nepochs do
3: for t = 1 to T do
4: Build base model g(·; θt) : Xt → Yt ← {Dt}.
5: end for
6: Obtain parameters trajectory Θ = [θ1, ..., θT ]

T .
7: Compute DFT: Θf = F(Θ) via Eq. (2).
8: Compute spectral magnitudes Mf via Eq. (3).
9: Determine Qtop based on τ .

10: Construct mask B via Eq. (4).
11: Compute IDFT Θlow; Θhigh via Eq. (5).
12: for t = 1 to T − 1 do
13: zt,low ← ϕlow(θt,low),
14: ẑt+1,low ← Kzt,low,
15: θ̂t+1,low ← ϕ−1(ẑt+1,low),
16: zt,high ← ϕhigh(θt,high),
17: θ̂t+1 ← ϕ−1(Kϕlow(θt,low) + ϕhigh(θt,high))

via Eq. (9).
18: end for
19: end for
20: Perform final spectral decomposition on learned Θ to

get θT,low, θT,high.
21: ẑT+1,low ← Kϕlow(θT,low),
22: zT,high ← ϕhigh(θT,high),
23: θ̂T+1 ← ϕ−1(ẑT+1,low + zT,high).

Regularization for High-Frequency
Components. While the low-frequency
components capture dominant trends suit-
able for extrapolation via Koopman dy-
namics, the high-frequency components
Θhigh = {θ1,high, ..., θT,high} often rep-
resent transient noise or domain-specific
uncertainties. Explicitly extrapolating
these components could amplify noise
and hinder generalization [15]. There-
fore, instead of modeling forward dynam-
ics for the high-frequency part, we focus
on regularizing its behavior and incorpo-
rating its current state into the prediction.
We use an encoder ϕhigh : RD → Rm to
map the high-frequency component into
the latent space: zt,high = ϕ(θt,high),
which captures the high-frequency infor-
mation at time t. To mitigate overfitting
to these potentially noisy high-frequency
signals and encourage temporal smooth-
ness in the underlying parameter trajec-
tory, we impose the regularization on the
sequence Θhigh:

Rhigh =

T−1∑
t=1

∥zt+1,high − zt,high∥22.

(8)
This regularization encourages the high-
frequency components to vary smoothly
over time, implicitly suppressing sharp,
transient changes that are less likely to
generalize.

Parameter Prediction and Joint Opti-
mization. To distinguish between high
and low frequencies, we use separate en-
coders (ϕlow, ϕhigh) for each frequency component, while sharing the same decoder (ϕ−1) to ensure
consistency in the fusion of different components. To predict the parameters for the next timestamp,
θ̂t+1, we combine the extrapolated low-frequency latent with the regularized high-frequency latent
and get the reconstructed result through the shared decoder:

θ̂t+1 = ϕ−1(Kϕlow(θt,low) + ϕhigh(θt,high)). (9)
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This mechanism leverages the stability of the predicted low-frequency dynamics while incorporating
the immediate context from the high-frequency component at time t. To ensure the overall predicted
parameters align with the actual sequence, we further introduce a reconstruction error term:

Lrec =

T−1∑
t=1

∥θt+1 − θ̂t+1∥22. (10)

Therefore, the final objective function integrates the task loss Ltask =
∑T

t=1 ℓ(g(Xt; θt), Yt), the
Koopman dynamics loss for low frequencies, the high-frequency smoothness regularization, and the
overall parameter reconstruction loss:

Ltotal = Ltask + αLrec + βLkoop + γRhigh, (11)

where α, β, and γ are hyperparameters controlling the relative contributions. This joint optimization
framework encourages the model to learn a parameter trajectory Θ that not only performs well on
historical tasks but also exhibits predictable low-frequency dynamics and smooth high-frequency
variations, facilitating robust extrapolation to θT+1 for the unseen future domain. The whole learning
process is detailed in Algorithm 1.

3.3 Theoretical Insights

FreKoo’s frequency-aware approach to TDG separates parameter dynamics into low-frequency
(Θlow) for Koopman extrapolation and high-frequency (Θhigh) for regularized smoothing. This
strategy is theoretically grounded to enhance generalization to unseen future domains. We outline a
generalization bound for the expected error on the target domain DT+1. Let θ̂T+1 be FreKoo’s pre-
dicted parameter for DT+1 (derived from Eq. (9)), and let θ⋆T+1 = argminθ EPT+1

[
ℓ(g(X; θ), Y )

]
be the optimal parameter under the target distribution PT+1. Assume the loss ℓ is Lℓ-Lipschitz
in its first argument, the base model g(X; θ) is Lg-Lipschitz w.r.t. θ, and our encoders/decoder
satisfy Lipschitz conditions (Assumption 1 in Appendix B.1). Further, assume the hypothesis class
G = {X 7→ g(X;ϕ−1(z))} has Rademacher complexity bounded by C/

√
n (Assumption 2 in

Appendix B.1), where n is the target domain sample size.

Theorem 1 (Multiscale Generalization Bound) Under the stated assumptions, with probability at
least 1− δ > 0, the expected excess risk on the target domain satisfies:

ET+1 := EPT+1

[
ℓ(g(X; θ̂T+1), Y )

]
− EPT+1

[
ℓ(g(X; θ⋆T+1), Y )

]
≤ LℓLgLdec(Elow + Ehigh) +O(LℓLg(

C√
n
+

√
log(1/δ)

n
)),

(12)

where Elow and Ehigh are errors in the predicted low and high-frequency latent components.

Discussion. Theorem 1 decomposes the excess risk into two primary factors:

1) Parameter Prediction Error: For the first term LℓLgLdec(Elow + Ehigh), the low-frequency error
Elow is bounded by Koopman stability (Lemma 1), while the high-frequency error Ehigh is regulated
via temporal smoothness (Lemma 2).

Lemma 1 (Koopman Stability) For any initial low-frequency error et0 and horizon h = T +1− t0,
∥Khet0∥ ≤ CK(1+h)q−1∥et0∥, where q is the size of the largest Jordan block of K and CK = κ(V )
for the Jordan basis V . If K’s spectral radius ρ(K) < 1, the bound sharpens to CKρ(K)h|et0 |.

Lemma 2 (High-Frequency Smoothness Bias) Minimizing Rhigh is equivalent to maximum-a-
posteriori estimation the Gaussian random-walk prior zt+1,high = zt,high + ξt, ξt ∼ N (0, σ2I),
with precision λ = 1/(2σ2).

2) Estimation Error: The O(·) term is a standard learning-theoretic bound related to hypothesis class
complexity (C) and finite samples (n). Thus, FreKoo’s distinct mechanisms, i.e., stable Koopman
extrapolation for Elow and regularized smoothing for Ehigh, directly address identifiable components
of the generalization bound, promoting robust performance in evolving environments. A more precise
statement and proof are provided in Appendix B.
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4 Experiments

4.1 Experiment Settings

Datasets. Following [8], we evaluate FreKoo on seven datasets with various drift types. In classifi-
cation, the synthetic Rotated-Moons and Rot-MNIST benchmarks create incremental drift through
steadily increasing rotation angles, whereas the real-world streams ONP, Shuttle, and Elec2 exhibit
incremental, periodic or unknown drifts, respectively. For regression, HousePrices and ApplianceEn-
ergy also reflect a real-world non-stationary. These diverse datasets, featuring various drifts and
real-world uncertainties, form a comprehensive test bed (details in Appendix C.1).

Baselines. We compare our method against four groups of baselines. 1) Time-Agnostic baselines:
Offline, LastDomain and IncFinetune. 2) Continuous Domain Adaptation (CDA): CDOT [33],
CIDA [22]. 3) TDG: GI [6], LSSAE [34], DDA [9], DRAIN [8]; 4) Continuous TDG: EvoS [35],
Koodos [12]. Details can be found in Appendix C.2. All results were averaged over 5 independent
runs, and we report the mean and standard deviation. The details of model implementations and hyper-
parameters are detailed in Appendix C.3. The code is available at https://github.com/isenyu/FreKoo.

Table 1: Performance comparisons in terms of misclassification error (%) for classification and mean
absolute error (MAE) for regression (both smaller the better).

Methods
Classification Regression

2-Moons Rot-MNIST ONP Shuttle Elec2 House Appliance

Offline 22.4 ± 4.6 18.6 ± 4.0 33.8 ± 0.6 0.77 ± 0.10 23.0 ± 3.1 11.0 ± 0.36 10.2±1.1
LastDomain 14.9 ± 0.9 17.2 ± 3.1 36.0 ± 0.2 0.91 ± 0.18 25.8 ± 0.6 10.3 ± 0.16 9.1 ± 0.7
IncFinetune 16.7 ± 3.4 10.1 ± 0.8 34.0 ± 0.3 0.83 ± 0.07 27.3 ± 4.2 9.7 ± 0.01 8.9 ± 0.5
CDOT [33] 9.3 ± 1.0 14.2 ± 1.0 34.1 ± 0.0 0.94 ± 0.17 17.8 ± 0.6 - -
CIDA [22] 10.8 ± 1.6 9.3 ± 0.7 34.7 ± 0.6 - 14.1 ± 0.2 9.7 ± 0.06 8.7 ± 0.2
GI [6] 3.5 ± 1.4 7.7 ± 1.3 36.4 ± 0.8 0.29 ± 0.05 16.9 ± 0.7 9.6 ± 0.02 8.2 ± 0.6
LSSAE [34] 9.9 ± 1.1 9.8 ± 3.6 38.8 ± 1.1 0.22 ± 0.01 16.1 ± 1.4 - -
DDA [9] 9.7 ± 1.5 7.6 ± 0.7 34.0 ± 0.3 0.21 ± 0.02 12.8 ± 1.1 9.5 ± 0.12 6.1 ± 0.1
DRAIN [8] 3.2 ± 1.2 7.5 ± 1.1 38.3 ± 1.2 0.26 ± 0.05 12.7 ± 0.8 9.3 ± 0.14 6.4 ± 0.4
EvoS [35] 3.0 ± 0.4 7.3 ± 0.6 35.4 ± 0.2 0.23 ± 0.01 11.8 ± 0.5 9.8 ± 0.10 7.2 ± 0.1
Koodos [12] 1.3 ± 0.4 7.0 ± 0.3 33.5 ± 0.4 0.24 ± 0.04 - 8.8 ± 0.19 4.8 ± 0.3

FreKoo (ours) 1.0 ± 0.3 6.9 ± 0.7 32.3 ± 0.3 0.20 ± 0.02 9.2 ± 0.7 9.0 ± 0.11 4.0 ± 0.1

4.2 Results and Analysis

As shown in Table 1, our proposed FreKoo achieves state-of-the-art performance on six out of seven
TDG benchmarks, significantly surpassing prior methods across both classification and regression
tasks. FreKoo shows notable improvements on datasets characterized by synthetic incremental
drifts, such as 2-Moons and Rot-MNIST, where it attains the lowest error rates. Crucially, it excels
particularly on benchmarks involving periodic drifts, like Elec2 and Appliance, achieving marked
effectiveness with error rates of 9.2% and 4.0 MAE, respectively. This highlights the strength of
our frequency-domain approach in capturing and leveraging underlying periodic dynamics, solv-
ing Challenge 1. Furthermore, FreKoo’s consistent leading performance across diverse real-world
datasets (e.g., ONP, Elec2, Shuttle, Appliance) underscores its robustness against overfitting to
domain-specific artifacts or local noise. This resilience stems from its dual mechanism: employing
the Koopman operator to model stable low-frequency dynamics (trends/periodicity) while simultane-
ously regularizing high-frequency components to mitigate noise and prevent adaptation to transient,
domain-specific characteristics, solving Challenge 2. Therefore, these results validate the efficacy of
FreKoo’s frequency-Koopman design for robustly handling complex concept drifts, while maintaining
generalization capability in real-world dynamic environments. We also provide the visualization of
the decision boundary and analysis compared with SOTA methods in Appendix D.2.

4.3 Ablation Study

As shown in Table 2, our ablation study on diverse drift types (e.g., incremental drift on Rotated
Moons, periodic drift on Elec2 and Appliance) systematically evaluates FreKoo’s core components.
Removing the Koopman operator (w/o Koop.) severely degrades performance, underscoring its
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criticality for modeling parameter dynamics. Similarly, omitting frequency decomposition (w/o
Freq.) significantly harms performance on periodic datasets (Elec2, Appliance), confirming spectral
analysis is vital for disentangling stable low-frequency trends from high-frequency noise, especially
for complex periodic patterns.

Table 2: Ablation study. Comparison between FreKoo
and its variants across two datasets for classification and
one dataset for regression.

Variants 2-Moons Elec2 Appliance

w/o Koop. 15.3 ± 1.7 28.9 ± 2.4 9.4 ± 0.7
w/o Freq. 2.6 ± 0.8 14.2 ± 1.9 5.2 ± 0.4

w/o Lrec 9.1 ± 1.7 12.2 ± 1.0 4.3 ± 0.4
w/o Lkoop 6.7 ± 0.9 10.0 ± 0.8 4.2 ± 0.6
w/oRhigh 2.3 ± 0.6 10.5 ± 1.7 4.2 ± 0.3

FreKoo 1.0 ± 0.3 9.2 ± 0.7 4.0 ± 0.1

In addition, we further analyze the train-
ing objectives (Eq. (11)) by removing in-
dividual loss terms to highlight the impor-
tance of each component. Removing the
overall parameter reconstruction loss (w/o
Lrec, Eq. (10)) decouples the learned latent
dynamics from the final parameter predic-
tion task and thus hurts fidelity. Excluding
the Koopman latent consistency loss (w/o
Lkoop, Eq. (7)) weakens the learned linear
dynamics (K), impairing the reliable ex-
trapolation of stable trends. Disabling the
high-frequency smoothing regularization
(w/o Rhigh, Eq. (8)) increases sensitivity
to domain-specific noise and transient artifacts by allowing unfiltered high-frequency fluctuations
(zt,high) into the prediction (Eq. (9)). These results collectively affirm that FreKoo’s spectral decom-
position, Koopman modeling, high-frequency regularization, and associated losses are all essential
for robust temporal domain generalization.

4.4 Periodicity Modeling Performance

To rigorously evaluate long-term periodicity handling, we extended the 10-domain rotating 2-Moons
benchmark (0-9 domains, 18° increments) into a 37-domain sequence. This sequence embeds
recurring cycles following the conceptual pattern {0→9→0→9→0}. Training on the first 36 domains
and testing on the 37th forces models to exploit long-range pattern recurrence. We compare FreKoo
against GI [6], DRAIN [8], and Koodos [12]. As shown in Figure 3a, FreKoo significantly outperforms
these methods on this periodic benchmark. This superior result demonstrates FreKoo’s specific ability
to capture and utilize the explicitly embedded long-term evolutions, validating its robustness and
enhanced generalization capabilities in real-world data streams with complex drifts.
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Figure 3: Periodicity modeling performance on P-Moons dataset.

In addition, Figure 3b
qualitatively illustrates
FreKoo’s parameter evo-
lution: the low-frequency
component (Θlow) ef-
fectively captures the
underlying periodic trend
of the raw parameters (Θ),
while the high-frequency
component (Θhigh) isolates
transient variations. The
reconstructed parameter
(Θ̂) tracks these long-term evolutions smoothly. Such targeted spectral separation and dual modeling
enable FreKoo to learn more stable parameter evolutions, mitigating overfitting to transient details and
fostering improved generalization. A more extensive qualitative analysis is shown in Appendix D.3.

4.5 Sensitivity Analysis

We analyzed sensitivity to the spectral energy preservation ratio τ and loss weights α, β, γ on 2-
Moons with synthesized incremental drift and Appliance with real-world periodicity and uncertainties.
As shown in Figure 4a, higher τ benefits 2-Moons, while an intermediate τ is optimal for Appliance.
This underscores τ ’s crucial role in balancing the preservation of essential low-frequency dynamics
against filtering disruptive high-frequency noise, particularly for complex noisy real-world data. For
α, β, γ, grid search over [0.01, 0.1, 1, 10, 100] (Figure 4b- 4d) confirmed that optimal performance
hinges on balancing reconstruction accuracy, Koopman stability, and high-frequency smoothing.
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Figure 4: Parameters sensitivity on 2-Moons and Appliance datasets.

5 Conclusion and Limitations

This paper tackled key challenges of TDG, i.e., modeling long-term periodicity and achieving
robustness against domain-specific uncertainties. Our proposed FreKoo introduces a novel frequency-
aware perspective. It analyzes parameter trajectories in the frequency domain, disentangling low-
frequency dynamics modeled via the Koopman operator from high-frequency noise smoothed via
targeted regularization. Both theoretical analysis and extensive experiments validate FreKoo’s
effectiveness, demonstrating its significant generalization capabilities and robustness under complex
concept drifts.

A limitation of our work is the reliance on a pre-defined heuristic for frequency separation, rather than
an adaptive mechanism that learns the optimal threshold from data. Furthermore, the current FreKoo
framework is not designed for fully online or continuous settings. This restricts its applicability in
real-world deployment scenarios that require continuous model adaptation to dynamic data streams.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contributions are also detailed in Section 1. And see Section 3.3,
Section 4 and Appendix B for more theoretical and experimental evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5 for limitations and future works.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We detailed the assumptions and proof of theoretical insights in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We use publicly-accessable datasets [8] and have offered the pseudo code in
Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use publicly-accessable datasets [8], and we have offered an anonymous
link of our codes in Section 4.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 4.1 and Appendix C for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To ensure robustness and quantify variability, all experiments were conducted
over 5 independent runs. We report the mean and standard deviation in Table 1, providing
error bars that support our main claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information of type of compute workers CPU or GPU in
Appendix C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work only focuses on academic and publicly-available datasets, and thus it
is not related to any private or personal data, and there’s no explicit negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credited them in appropriate ways and necessary links about the used
datasets are provided in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: The LLM is used only for proofreading and formatting purposes in our work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Additional Related Works

Domain Adaptation/Generalization. Domain Adaptation (DA) requires access to both source
and target domain data during training, employing methods like domain-invariant learning, domain
mapping , and ensemble approaches to minimize domain discrepancy [36–38]. Domain Generaliza-
tion (DG) aims to train a model on multiple source domains to generalize to unseen target domains
without access to target data, using techniques such as data augmentation, representation learning, and
meta-learning [39, 40]. Both DG and DA frameworks, by treating domains as independent entities,
often fail to account for the smooth evolutionary patterns present in time-ordered domain sequences.

Real-world Concept Drift. Concept drift signifies a change in the underlying data distribution over
time, formally occurring between time t and t+ 1 if the joint distribution Pt+1(X, y) ̸= Pt(X, y).
This non-stationarity poses a fundamental challenge, requiring models to adapt dynamically to
maintain predictive performance and reliability [3, 13, 23]. While concept drift manifests in various
forms, including sudden, gradual, incremental, and recurring (periodic) patterns, much prior research
treats it as unpredictable, often employing detect-then-adapt strategies [24, 25, 41]. In contrast, the
Temporal Domain Generalization (TDG) setting frequently focuses on leveraging more predictable
evolutionary dynamics for proactive generalization [8]. However, existing TDG methods often
oversimplify these dynamics, primarily modeling smooth, incremental drifts while struggling to
capture complex, long-range temporal structures like periodicity (a key limitation, Challenge 1)
which are prevalent in many real-world data streams yet demand different modeling approaches than
simple monotonic progression.

Furthermore, a common methodology within TDG involves segmenting the continuous data stream
into discrete temporal domains {D1, D2, . . . , DT }, assuming concept drift occurs primarily between
these sequential domains [6]. This discretization, while simplifying the problem, often struggles to
perfectly align with real-world data streams, potentially violating the implicit assumption that data
within each domain Dt is Independent and Identically Distributed (IID). Consequently, individual
domains may harbor internal non-IID structures or localized noise patterns [42]. The presence
of intra-domain complexities leads to sensitivity to domain-specific noise and artifacts, hindering
robust generalization (a second key limitation, Challenge 2), particularly for TDG models designed
predominantly to address shifts occurring only at the domain boundaries. Effectively handling both
the diverse inter-domain evolutionary dynamics (including periodicity) and these intra-domain data
characteristics is therefore crucial for robust temporal generalization.

Dynamics Learning via Koopman Theory. Koopman operator theory [20] offers a powerful
framework for analyzing nonlinear dynamical systems via linear operators acting on observables in
an infinite-dimensional function space. In practice, machine learning methods approximate this by
learning transformations (often using autoencoders) into a latent Koopman space where the system’s
dynamics can be linearly propagated [43, 16]. This learned linear structure facilitates efficient
long-term prediction and control [44]. While Koopman-based approaches have seen increasing use
in time series forecasting [31], they typically focus on modeling the dynamics within a given data
stream (data-centric). Our work diverges by applying Koopman theory to model the evolution of
model parameters, interpreting parameter changes under concept drift. Furthermore, we uniquely
integrate this parameter-centric Koopman modeling with frequency-domain analysis for disentangling
dynamics, which towards stable and robust generalization in complex drifting scenarios.

B Theoretical Analysis Details

This section provides supplementary details for the theoretical analysis presented in Section 3.3,
including formal assumptions, detailed statements of the theorem and lemmas, and proofs.

B.1 Assumptions

Assumption 1 (Encoder/Decoder Lipschitz) The encoders ϕlow : RD → Rm and ϕhigh : RD →
Rm are Lϕ-Lipschitz:

∀θ, θ′ ∈ RD, ∥ϕ(θ)− ϕ(θ′)∥ ≤ Lϕ ∥θ − θ′∥ , for ϕ ∈ {ϕlow, ϕhigh}. (13)
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The shared decoder ϕ−1 : Rm → RD is Ldec-Lipschitz:

∀z, z′ ∈ Rm,
∥∥ϕ−1(z)− ϕ−1(z′)

∥∥ ≤ Ldec ∥z − z′∥ . (14)

This implies that small changes in the parameter space lead to bounded changes in the latent space,
and vice-versa, ensuring stability of the transformations.

Assumption 2 (Model-class Capacity) The composite hypothesis class G = {x 7→ g(x;ϕ−1(z)) |
z ∈ Rm}, where g is the base model and ϕ−1 is the decoder, has an empirical Rademacher complexity
Rn(G) on any sequence of n samples drawn from a target domain DT+1 (which is β-mixing [45, 46])
bounded as:

Rn(G) ≤
C√
n
, (15)

For constant C > 0, this assumption bounds the complexity of the function class our model can
represent, crucial for generalization guarantees.

B.2 Detailed Lemma 1 and Proof

Lemma 3 (Restatement of Lemma 1 - Koopman Stability) For any initial low-frequency latent
error et0,low = zt0,low − ẑt0,low at an initial time t0, and a prediction horizon h = (T + 1) − t0,
the propagated error et0+h,low = zt0+h,low − ẑt0+h,low under the learned Koopman operator
K ∈ Rm×m is bounded. Specifically,∥∥Khet0,low

∥∥ ≤ CK(1 + h)q−1 ∥et0,low∥ , (16)

where q is the size of the largest Jordan block of K, and CK = κ(V ) = ∥V ∥
∥∥V −1

∥∥ is the condition
number of the matrix V from the Jordan decomposition K = V JV −1. If K is diagonalizable (i.e.,
q = 1) and its spectral radius ρ(K) = maxi |λi(K)| < 1, the bound sharpens to:∥∥Khet0,low

∥∥ ≤ κ(V )ρ(K)h ∥et0,low∥ . (17)

Proof 1 (Proof of Lemma 3) Jordan Canonical Form: Any square matrix K ∈ Rm×m admits a
Jordan decomposition K = V JV −1, where J = diag(J1, J2, . . . , Js) is a block diagonal matrix.
Each Ji is a Jordan block corresponding to an eigenvalue λi of K. V is the matrix whose columns
are the eigenvectors and generalized eigenvectors of K. Let q be the size of the largest Jordan block.

Power of a Matrix via Jordan Form: The h-th power of K is Kh = (V JV −1)h = V JhV −1.
Consequently, Jh = diag(Jh

1 , J
h
2 , . . . , J

h
s ).

Bound on the Norm of Jh
i : For a Jordan block Ji of size qi with eigenvalue λi, and assuming

|λi| ≤ 1 for stability, a standard result [47] states that there exists a constant C ′
qi such that for h ≥ 0,

we have, ∥∥Jh
i

∥∥ ≤ C ′
qi(1 + h)qi−1 |λi|h−(qi−1) ≤ C ′

qi(1 + h)qi−1 (if |λi| ≤ 1). (18)

Thus, for the overall Jordan form matrix J , if q = maxi qi:∥∥Jh
∥∥ ≤ C ′′(1 + h)q−1, (19)

for some constant C ′′ that depends on the constants C ′
qi and the number of blocks.

Error Propagation Bound: The propagated error is Khet0,low. Its norm is:∥∥Khet0,low
∥∥ =

∥∥V JhV −1et0,low
∥∥ (20)

≤ ∥V ∥
∥∥Jh

∥∥∥∥V −1
∥∥ ∥et0,low∥ (21)

≤ κ(V )C ′′(1 + h)q−1 ∥et0,low∥ , (22)

where κ(V ) = ∥V ∥
∥∥V −1

∥∥ is the condition number of V . We define CK = κ(V )C ′′ (or absorb C ′′

into the definition presented in the lemma statement). This shows polynomial growth if q > 1.

Diagonalizable Case: If K is diagonalizable, then J is a diagonal matrix of eigenvalues, J = Λ =
diag(λ1, . . . , λm). Then Jh = diag(λh

1 , . . . , λ
h
m).∥∥Jh

∥∥ = max
i

∣∣λh
i

∣∣ = (max
i
|λi|)h = ρ(K)h. (23)

21



In this case, the error bound becomes:∥∥Khet0,low
∥∥ ≤ κ(V )ρ(K)h ∥et0,low∥ . (24)

If ρ(K) < 1, this implies exponential decay of the error, which is highly desirable for the stability of
low-frequency dynamics. The loss term Lkoop encourages learning such a stable K.

Discussion. We focus on the propagation of the low-frequency latent error et,low = ẑt,low − z∗t,low.
By recursively analyzing the single-step error recurrence et+1,low = Ket,low + et,low, where
et,low = Kz∗t,low − z∗t+1,low is the single-step error, we can express it after an l-step prediction

as: et0+l,low = Klet0,low +
∑l−1

i=0 K
iet0+l−1−i,low. Taking the norm, we get the multi-step error

bound: ∥et0+l,low∥ ≤ ∥Kl∥ · ∥et0,low∥+
∑l−1

i=0 ∥Ki∥ · ∥et0+l−1−i,low∥. This reveals that the final
error is not only dependent on the initial error (et0,low), but also on the sum of all previous errors
(et,low) accumulated along the entire prediction path. This provides a stronger justification for our
full-trajectory optimization approach. The stability of K bounds ∥Ki∥ and controls the propagation
of intermediate errors. The objective function minimizes losses across all domains, directly works to
reduce the magnitude of each single-step error ∥et,low∥.

B.3 Detailed Lemma 2 and Proof

Lemma 4 (Restatement of Lemma 2 - High-Frequency Smoothness Bias) Minimizing the high-
frequency regularization term Rhigh =

∑T−1
t=1 ∥zt+1,high − zt,high∥22 is equivalent to per-

forming Maximum A Posteriori (MAP) estimation for the latent high-frequency sequence
Zhigh = {z1,high, . . . , zT,high} under a Gaussian random-walk prior p(zt+1,high|zt,high) =
N (zt+1,high|zt,high, σ2I). The precision of this prior is λprior = 1/(2σ2).

Proof 2 (Proof of Lemma 4) Gaussian Random-Walk Prior: Assume the high-frequency latent
states zt,high evolve according to a first-order Markov process:

zt+1,high = zt,high + ξt, where ξt ∼ N (0, σ2I), (25)

and ξt are Gaussian noise vectors. The conditional probability (prior) is:

p(zt+1,high|zt,high) =
1

(2πσ2)m/2
exp

(
− 1

2σ2
∥zt+1,high − zt,high∥22

)
, (26)

Log-Likelihood of the Sequence under Prior: For a sequence Zhigh = {z1,high, . . . , zT,high}, the
joint probability under this prior model is p(Zhigh) = p(z1,high)

∏T−1
t=1 p(zt+1,high|zt,high). The

log-probability is:

log p(Zhigh) = log p(z1,high) +

T−1∑
t=1

log p(zt+1,high|zt,high) (27)

= log p(z1,high) +

T−1∑
t=1

[
−m

2
log(2πσ2)− 1

2σ2
∥zt+1,high − zt,high∥22

]
. (28)

Maximum A Posteriori (MAP) Estimation: MAP estimation seeks to find Zhigh that maximizes
p(Zhigh). This is equivalent to maximizing log p(Zhigh), or equivalently, minimizing− log p(Zhigh):

ẐMAP
high = arg min

Zhigh

[
− log p(z1,high) +

T−1∑
t=1

(
m

2
log(2πσ2) +

1

2σ2
∥zt+1,high − zt,high∥22

)]
.

(29)
The terms − log p(z1,high) and m

2 log(2πσ2) are constant with respect to the sum of squared differ-
ences. Thus, the optimization simplifies to:

ẐMAP
high = arg min

Zhigh

T−1∑
t=1

1

2σ2
∥zt+1,high − zt,high∥22 . (30)
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Equivalence toRhigh: The regularization term isRhigh =
∑T−1

t=1 ∥zt+1,high − zt,high∥22. Minimiz-
ingRhigh is equivalent to minimizing 1

2σ2Rhigh, since 1
2σ2 is a positive constant. This shows that

minimizingRhigh is equivalent to MAP estimation under the specified Gaussian random-walk prior
with precision λprior = 1/(2σ2). This encourages smoothness in the trajectory of high-frequency
components.

B.4 Detailed Proof of Theorem 1

Theorem 2 (Restatement of Theorem 1 - Multiscale Generalization Bound) Let θ̂T+1 be the
predicted parameter for the target domain DT+1 obtained via Eq. (9), and let θ∗T+1 =
argminθ EPT+1

[ℓ(g(X; θ), Y )] be the optimal parameter for the target distribution PT+1. The
loss function ℓ(u, y) is Lℓ-Lipschitz in its first argument u. The base model g(x; θ) is Lg-
Lipschitz with respect to its parameters θ. Under Assumptions 1 (Lipschitz encoders/decoder)
and 2 (bounded Rademacher complexity C), the expected target-domain excess risk Erisk :=

EPT+1
[ℓ(g(X; θ̂T+1), Y )]− EPT+1

[ℓ(g(X; θ∗T+1), Y )] satisfies with probability at least 1− δ > 0:

Erisk ≤ LℓLgLdec(Elow + Ehigh) + 2LℓLg
C√
n
+ LℓLg

√
B2 log(1/δ)

2n
, (31)

where Elow =
∥∥∥ẑT+1,low − z∗T+1,low

∥∥∥ is the error in the predicted low-frequency latent component

(bounded by Lemma 3), Ehigh =
∥∥∥ẑT+1,high − z∗T+1,high

∥∥∥ is the error in the high-frequency latent
component (regularized byRhigh as per Lemma 4), nT is the number of samples in the target domain,
and B is an upper bound on LgLdec ∥z − z′∥.

Proof 3 (Proof of Theorem 2) The proof involves combining bounds on parameter prediction error
with standard generalization theory.

Bounding Excess Risk by Parameter Error: The excess risk can be related to the difference in
parameters using Lipschitz properties:

Erisk = EPT+1
[ℓ(g(X; θ̂T+1), Y )− ℓ(g(X; θ∗T+1), Y )]

≤ EPT+1
[Lℓ

∣∣∣g(X; θ̂T+1)− g(X; θ∗T+1)
∣∣∣] (by Lℓ-Lipschitz of ℓ)

≤ LℓEPT+1
[Lg

∥∥∥θ̂T+1 − θ∗T+1

∥∥∥] (by Lg-Lipschitz of g)

= LℓLg

∥∥∥θ̂T+1 − θ∗T+1

∥∥∥ .
(32)

Since θ̂T+1 = ϕ−1(ẑT+1) and θ∗T+1 = ϕ−1(z∗T+1) by Ldec-Lipschitz of ϕ−1 (Assumption 1), we
have: ∥∥∥θ̂T+1 − θ∗T+1

∥∥∥ ≤ Ldec

∥∥ẑT+1 − z∗T+1

∥∥ . (33)

The latent state z = zlow + zhigh. So, ẑT+1 = ẑT+1,low + ẑT+1,high.∥∥ẑT+1 − z∗T+1

∥∥ =
∥∥(ẑT+1,low − z∗T+1,low) + (ẑT+1,high − z∗T+1,high)

∥∥
≤

∥∥ẑT+1,low − z∗T+1,low

∥∥+
∥∥ẑT+1,high − z∗T+1,high

∥∥
= Elow + Ehigh.

(34)

Therefore, the first term of the risk bound related to parameter prediction error is:

PredictionErrorTerm ≤ LℓLgLdec(Elow + Ehigh). (35)

Elow is bounded by Lemma 3 and Ehigh is controlled by the regularization from Lemma 4.

Standard Generalization Error Bound (Estimation Error): The previous term relates the risk of our
predictor θ̂T+1 to the risk of the optimal θ∗T+1, assuming θ∗T+1 is within our hypothesis class. We
also need to account for the generalization error from the empirical risk minimizer (over the unseen
target domain DT+1) to the true risk. Let L(θ) = ℓ(g(X; θ), Y ). The composite function X 7→ L(θ)
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is LL-Lipschitz where LL ≈ LlLg . Using a standard Rademacher complexity-based generalization
bound [45]: With probability at least 1− δ over the draw of n samples for DT+1:

sup
θ∈HΘ

(EPT+1
[L(θ)]− En[L(θ)]) ≤ 2LlLgRn(GΘ) + LlLg

√
B2

Θ log(1/δ)

2n
, (36)

where HΘ is the space of parameters, GΘ is the function class induced by g(X; θ), Rn(GΘ) is its
Rademacher complexity (here using RnT

(G) ≤ C/
√
n from Assumption 2 where G is the class

g(X;ϕ−1(z))), and BΘ is a bound on g(X; θ). More directly, the generalization gap for our specific
predictor θ̂T+1 (derived from z ∈ Rm) is:

EPT+1
[ℓ(g(X; θ̂T+1), Y )] ≤ En[ℓ(g(X; θ̂T+1), Y )] + 2LℓLg

C√
n
+ LℓLg

√
B2 log(1/δ)

2n
, (37)

where B bounds Ldec ∥z∥. This term essentially bounds how much the true risk of θ̂T+1 can deviate
from its (unobserved) empirical risk on DT+1. The excess risk definition compares true risks. The
parameter error term in Eq. (35) captures the suboptimality of θ̂T+1 relative to θ∗T+1. The estimation
error term often appears when bounding EP [l(θ̂ERM )]−EP [l(θ

∗)]. The provided bound in Eq. (31)
represents a structure where the first term is the approximation error (how far our best hypothesis
θ̂T+1 is from θ∗T+1 in terms of risk, scaled by Lipschitz constants) and the second and third terms
represent the estimation error (how well one can estimate the risk of any hypothesis in the class G
from n samples).

Combining Terms: The bound structure in our method: Erisk ≤ PredictionErrorTerm +
EstimationError. The Prediction Error is LlLgLdec(Elow + Ehigh). The Estimation Er-
ror, using Assumption 2 and standard results for Lipschitz losses, can be written as
2LℓLgRn(G) + ConfidenceTerm. Substituting Rn(G) ≤ C/

√
n: EstimationError ≈ 2LℓLg

C√
n
+

LℓLg

√
B2 log(1/δ)

2n . Combining these yields Eq. (31).

C Experiment Settings

C.1 Datasets

Rotated 2 Moons. This benchmark adapts the 2-Moons dataset to model concept drift via rotation. It
contains 1,800 2-dimensional samples across two classes, divided into 10 sequential domains. Each
domain is rotated 18° counter-clockwise relative to the previous one. We train on domains 0-8 and
test on domain 9, where the drift is caused by the incremental rotation.

Rotated MNIST. We randomly sampled 1000 instances from the MNIST dataset and constructed
a total of five domains by successively rotating them counter-clockwise by 15°, analogous to the
Rotated 2 Moons setup. The first four rotated domains are used for training, while the fifth domain
serves as the test set, creating incremental drift induced by progressive rotation transformations.

Online News Popularity (ONP)2. This dataset aggregates heterogeneous features of articles pub-
lished by Mashable over two years, aiming to predict social media shares (popularity). It comprises
39,797 samples with 58 features, where concept drift is characterized by temporal shifts in popularity
patterns. We partition the data into 6 time-ordered domains, using the first five for training and the
last for testing. The dataset undergoes slight real-world concept drift over the observed time period.

Shuttle3. The Shuttle dataset contains 58,000 instances of multi-class flight status classification under
severe class imbalance. It is partitioned into 8 time-stamped domains using a chronological split:
domains spanning timestamps 30-70 serve as training data, while the most recent period (70–80) is
reserved for testing. The dataset also has real-world concept drifts over the observed time period.

Electrical Demand4. This dataset records electricity demand in a province, addressing a binary
classification task to predict whether 30-minute demand exceeds or falls below the daily average for

2https://archive.ics.uci.edu/dataset/332/online+news+popularity
3https://archive.ics.uci.edu/dataset/148/statlog+shuttle
4https://web.archive.org/web/20191121102533/http://www.inescporto.pt/j̃gama/ales/ales_5.html
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that time period. After removing instances with missing values, it contains 28,222 samples with 8
features. It is partitioned into 30 two-week chronological domains, with the first 29 used for training
and the 30th for testing. Seasonal variations in demand induce concept drift, making this a real-world
benchmark capturing both periodic and incremental drift patterns.

House Prices5. This dataset comprises housing price records from 2013 to 2019 for the regression
task to predict property prices based on feature values. We treat each calendar year as a distinct
domain, using 2013–2018 data for training and the final (2019) domain for testing. Concept drift
emerges naturally from temporal economic shifts and market fluctuations over the years.

Appliances Energy Prediction6. This dataset addresses regression modeling for predicting appliance
energy consumption in a low-energy building. Comprising 10-minute sensor readings over 4.5
months in 2016, it is partitioned into 9 chronological domains. We train on the first eight domains
and evaluate on the final (most recent) ninth domain, with concept drift arising from temporal shifts
in energy usage patterns across the observation period.

C.2 Baselines

Time-agnostic methods. These methods do not consider the temporal drift, including Offline train
on all source domains, train on the last source domain (LastDomain) and incrementally train on each
source domain (IncFinetune).

Continuous Domain Adaptation (CDA). CDOT [33] predicts the future by transporting labelled
samples of the last observed domain to an estimated target distribution via optimal transport, then
retrains the classifier on those transported points. CIDA [22] leverages adversarial alignment with
a probabilistic domain discriminator to model continuous domain shifts, while its probabilistic
extension (PCIDA) enforces higher-order moment matching via Gaussian parameter prediction.

Temporal Domain Generalization (TDG). GI [6] regularizes temporal complexity by supervising
the first-order Taylor expansion of a time-sensitive model, enabling smooth adaptation to distribution
shifts via adversarial selection of temporal perturbations. LSSAE [34] addresses evolving domain
generalization by employing a latent structure-aware sequential autoencoder to model dynamic shifts
in both data sample space (covariate shift) and category space (concept shift). It leverages variational
inference and temporal smoothness constraints to capture continuous domain drift, enhancing gen-
eralization to unseen target domains. DDA [9] leverages an attention-based domain transformer to
capture directional domain shifts and simulate future unseen domains through bi-level optimization
with meta-learning. DRAIN [8] assumes that model parameters vary over time within a fixed network
architecture and employs a recurrent neural network to autoregressively predict domain-optimal
parameters for future timesteps through temporal dependency modeling.

Continuous Temporal Domain Generalization (CTDG). EvoS [35] proposes a multi-scale atten-
tion module (MSAM) to model evolving feature distribution patterns across sequential domains,
dynamically standardizing features using predicted statistics to mitigate distribution shifts while
employing adversarial training to maintain a shared feature space and prevent catastrophic forgetting.
Koodos [12] models data and model dynamics as a continuous-time system via Koopman operator
theory. It integrates prior knowledge and multi-objective optimization to synchronize model evolution
with data drift.

All baseline results presented in Table 1 were directly sourced from their respective original publica-
tions to ensure accurate and fair comparison.

C.3 Implementation Details

The architecture and implementation of backbones and prediction models for all datasets align with
DRAIN [8]. Specially, both the encoders and decoder employ a 4-layer MLP architecture with layer
dimensions [1024, 512, 128,m], where m = 32 denotes the dimension of the Koopman operator. All
experiments were conducted on a server with 187GB of memory, an Intel(R) Xeon(R) Gold 6226R
CPU@2.90GHz, and two A100 GPUs.

5https://www.kaggle.com/datasets/htagholdings/property-sales
6https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
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We adopt the Adam optimizer across all datasets, with distinct learning rates for the prediction
module lrpre, encoder-decoder module lrco, and Koopman module lrko. For the 2-Moons dataset,
the coder and Koopman learning rates are set to lrco = 1 × 10−3 and prediction learning rate
lrpre = 1 × 10−2, regulated by τ = 0.9, α = 10, β = γ = 1. The Rot-MNIST configuration
retains lrpre = lrco = lrko = 1 × 10−3 and τ = 0.9, α = 0.1, β = γ = 1. For ONP, we use
lrco = 1× 10−2 for coder/Koopman and lrpre = 1× 10−3 for prediction, combined with τ = 0.8,
α = 0.1, β = 1, γ = 0.01. The Shuttle dataset employs a uniform learning rate 1 × 10−3 for all
modules, and τ = 0.9, α = β = γ = 1 . For Elec2, lrpre = 1 × 10−2, lrco = 1 × 10−4 and
lrko = 1 × 10−3 governed by τ = 0.1, α = 10, β = 0.1, γ = 1. The House dataset shares the
coder/Koopman learning rate 1× 10−3 with prediction rate 1× 10−2 with τ = 0.3, α = 0.1, β = 10,
γ = 1. Finally, Appliance maintains a uniform learning rate 1 × 10−3 across all modules with
τ = 0.8, α = 1, β = 1, γ = 100.

D Supplementary Experiments

D.1 Visualization of Real-world Uncertainties
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Figure 5: Visualization of domain-specific uncertainties on
real-world datasets.

To illustrate the challenge of domain-
specific uncertainties, Figure 5 vi-
sualizes t-SNE embeddings of the
first domain (D1) from two real-
world datasets, Elec2 and Appliance,
with overlaid Kernel Density Esti-
mates (KDE) highlighting distribu-
tional structures. On both real-world
datasets, the data are not uniformly
distributed; instead, they form mul-
tiple distinct high-density regions
alongside sparser, peripheral points.
These peripheral points, identified as
Uncertainties/Noise, typically reside
at the fringes of core data concentra-
tions. Such observed heterogeneity
within a single temporal domain un-
derscores the frequent violation of
the IID assumption. The co-existence of these localized concentrations and scattered uncertainties
implies that models attempting to uniformly fit all data within a domain risk overfitting to these
domain-specific uncertainties, hereby impairing its ability to generalize to subsequent evolving
domains. This vulnerability is precisely what FreKoo aims to mitigate through its targeted handling
of different spectral components.

D.2 Qualitative Analysis of Decision Boundary

To provide a qualitative assessment of generalization capabilities, we visualize decision boundaries on
the 2-Moons target domain, comparing FreKoo against representative TDG (DRAIN [8]) and CTDG
(Koodos [12]) methods. As illustrated in Figure 6a, the DRAIN method exhibits a decision boundary
that, while attempting to separate the classes, appears somewhat convoluted and potentially overfitted
to the specific distribution of the training domains. This can lead to suboptimal generalization on
the unseen target domain. Figure 6b shows the boundary learned by Koodos. While demonstrating
a degree of adaptation, the boundary still shows some irregularities and does not perfectly capture
the underlying structure of the target distribution. In contrast, FreKoo (Figure 6c) learns a notably
smoother and more globally consistent boundary that effectively captures the target 2-Moons structure
with less sensitivity to local variations. This smoother boundary is indicative of a more robust
generalization, suggesting that FreKoo’s frequency-domain parameter analysis and dual modeling
strategy successfully disentangle stable underlying dynamics from transient fluctuations, leading to a
more principled adaptation to the concept drift. This qualitative evidence aligns with the quantitative
results, highlighting FreKoo’s superior ability to generalize in temporally evolving environments.
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Figure 6: Visualization of decision boundaries on the 2-Moons dataset. Blue dots and red stars
represent different data classes.

D.3 Qualitative Analysis of Frequency Analysis

Figure 7 visualizes the evolution of model parameters (averaged across dimensions) on P-2-Moons
under varying spectral energy preservation ratios τ . FreKoo decomposes the ‘Raw Parameter’
trajectory into a ‘Low-Freq Component,’ which captures the smoother, dominant underlying trends,
and a ‘High-Freq Component,’ which encapsulates more rapid, transient fluctuations often indicative
of domain-specific noise or artifacts. As shown, the ‘Low-Freq Component’ (dashed magenta) isolates
the core dynamic structure. The ‘Reconstructed Parameter’ (dashed green), derived from extrapolating
the low-frequency dynamics and incorporating regularized high-frequency information, exhibits
significantly enhanced smoothness compared to the raw trajectory. This targeted spectral separation
and dual modeling strategy allows FreKoo to learn a more stable parameter evolution, mitigating
overfitting to transient domain-specific details and thereby fostering improved generalization to future
temporal domains. The choice of τ modulates the trade-off between fidelity to the core dynamics and
robustness to high-frequency noise.
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(c) τ = 0.9

Figure 7: Visualization of parameter evolution for different components on the P-2-Moons dataset.

D.4 Running Time Analysis

Table 3: Comparison of training time (seconds) between our
method and two baselines across two datasets for classifica-
tion tasks and one datasets for regression tasks.

Datasets 2-Moons ONP Elec2 Appliance
DRAIN 17.28 34.45 23.30 20.23
FreKoo 14.26 34.83 17.19 20.42

We conducted running time tests
on three classification datasets and
one regression dataset, comparing
against DRAIN, the most classic TDG
method. We used the same batch size
and number of training epochs for
both methods to ensure a controlled
comparison. As shown in Table 3,
FreKoo’s training time is competitive
and comparable to that of DRAIN. This demonstrates that the additional components in our frame-
work, such as the spectral decomposition and Koopman operator, do not introduce a significant
computational overhead. Crucially, while maintaining similar efficiency, FreKoo consistently out-
performs DRAIN in terms of generalization performance. This highlights that our method provides
superior performance without sacrificing practical feasibility.
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