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Abstract

Most ML datasets today contain biases. When we train models on these datasets,
they often not only learn these biases but can worsen them — a phenomenon
known as bias amplification. Several co-occurrence-based metrics have been
proposed to measure bias amplification in classification datasets. They measure
bias amplification between a protected attribute (e.g., gender) and a task (e.g.,
cooking). These metrics also support fine-grained bias analysis by identifying the
direction in which a model amplifies biases. However, co-occurrence-based metrics
have limitations — some fail to measure bias amplification in balanced datasets,
while others fail to measure negative bias amplification. To solve these issues,
recent work proposed a predictability-based metric called leakage amplification
(LA). However, LA cannot identify the direction in which a model amplifies biases.
We propose Directional Predictability Amplification (DPA), a predictability-based
metric that is (1) directional, (2) works with balanced and unbalanced datasets, and
(3) correctly identifies positive and negative bias amplification. DPA eliminates
the need to evaluate models on multiple metrics to verify these three aspects.
DPA also improves over prior predictability-based metrics like LA: it is less
sensitive to the choice of attacker function (a hyperparameter in predictability-
based metrics), reports scores within a bounded range, and accounts for dataset
bias by measuring relative changes in predictability. Our experiments on well-
known datasets like COMPAS (a tabular dataset), COCO, and ImSitu (image
datasets) show that DPA is the most reliable metric to measure bias amplification
in classification problems. To compare DPA with existing bias amplification
metrics, we released a one-stop library of major bias amplification metrics at
https://github.com/kerner-lab/Bias-Amplification,

1 Introduction

Machine learning models should perform fairly across demographics, genders, and other groups.
However, ensuring fairness is challenging when training datasets are biased, as is the case with many
datasets. For instance, in the ImSitu dataset [[1], 67% of the images labeled “cooking” feature females,
indicating a gender bias that women are more likely to be associated with cooking than men [2].
Given a biased training set, it is not surprising for a model to learn these dataset biases. Surprisingly,
models not only learn dataset biases but can also amplify them [2} 3} 4} 15, 16]. In the example from
ImSitu, where females and cooking co-occurred 67% of the time, bias amplification occurs when
> 67% of the images predicted as cooking feature females.

Several co-occurrence-based metrics (BA_,, Multi_,, BAj;ars) have been proposed to measure
bias amplification in classification datasets. They measure the bias amplification between a protected
attribute (e.g., gender), denoted as A, and a task (e.g., cooking), denoted as 7" [2, 3, 4]]. If A and
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T co-occur more than random in the training dataset, these metrics measure how much more they
co-occur in the model’s predictions. For instance, if the co-occurrence between females (A) and
cooking (T') is 67% in the training dataset and 90% at test time, the bias amplification value is 23%.

Co-occurrence-based metrics help with a fine-grained bias analysis as they can identify the direction in
which a model amplified biases. In the cooking example from ImSitu, metrics like BA_, and M ulti_,
can measure how much a model amplified the bias towards predicting women as cooking (A — T')
and towards predicting cooks as women (7" — A). Such disentanglement of bias amplification is
important, as it helps practitioners come up with targeted bias intervention efforts.

However, co-occurrence-based metrics have a limitation: they cannot measure bias amplification if A
is balanced with T". Metrics like BA_, and BA s 41,5 assume that if attributes and tasks are balanced
in the training dataset, there are no dataset biases to amplify. Previous works have shown that simply
balancing attributes and tasks does not ensure an unbiased dataset. Biases may emerge from parts of
the dataset that are not annotated [7]].

Suppose we balance imSitu such that 50% of the images labeled “cooking” feature females. Now,
assume that cooking objects in ImSitu, like hairnets, are not annotated. If most of the cooking images
with females have hairnets, while most of the cooking images with males do not, the model may
learn a spurious correlation between hairnets, cooking, and females. Hence, the model may more
often predict the presence of a female when cooking images have hairnets in the test set, leading
to bias amplification between females and cooking. However, since gender appears balanced with
respect to the cooking labels, BA_, and BA ;415 would report 0 bias amplification. While other
co-occurrence metrics like Mwulti_, may report non-zero bias amplification for balanced datasets,
these values are often misleading, as M ulti_, cannot capture negative bias amplification scenarios.

To correctly measure bias amplification in balanced datasets (by accounting for biases from unanno-
tated elements), Wang et al. [7] proposed a predictability-based metric called leakage. They defined
dataset leakage (AP), which refers to how well attribute A can be predicted from true task labels 7',
and model leakage (A\M), which refers to how well A can be predicted from a model’s task predictions

T. They defined bias amplification as AM — AP. AP and AM are measured using a separate attacker
function trained to predict A. In this work, we refer to Wang et al.’s method of calculating bias
amplification as leakage amplification (L A). Since LA focuses on predictability, it can measure bias
amplification in balanced and unbalanced datasets. However, it cannot identify the direction in which
a model amplifies biases (A — T and T' — A disentanglement is not possible with L A).

We do not have one metric that can (1) correctly report positive and negative bias amplification
scenarios, (2) accurately measure bias amplification for both balanced and unbalanced datasets, and
(3) identify the direction in which a model amplifies biases. Practitioners need to evaluate their
models on multiple bias amplification metrics to assess these properties, making the process tedious.
We propose Directional Predictability Amplification (D P A), a one-stop predictability-based metric
that addresses all these properties of bias amplification. In addition to being a one-stop metric, DP A
addresses several issues found in earlier predictability-based metrics like LA, including issues such
as reporting unbounded bias amplification values, measuring absolute change in predictability instead
of relative change, and being highly sensitive to attacker function.

Our key contributions: (1) DP A is the only directional metric that can accurately identify positive
and negative bias amplification in both balanced and unbalanced classification datasets. (2) DPA
reports bias amplification values within a bounded range of [—1, 1], enabling easy comparison across
different models (3) D P A accounts for the original bias in the dataset as it measures relative change
in predictability (instead of absolute change). (4) D P A is minimally sensitive to the choice of attacker
function. This eliminates the pain of choosing a suitable attacker to measure bias amplification.

2 Related Work

Co-occurrence for Bias Amplification Men Also Like Shopping (BAnars) [2] proposed the first
metric for bias amplification. The proposed metric measured the co-occurrences between protected
attributes A and tasks 7. For any T — A pairs that showed a positive correlation (i.e., the pair occurred
more frequently than independent events) in the training dataset, it measured how much the positive
correlation increased in model predictions.



Wang and Russakovsky [3] generalized the BAj; 415 metric to also measure negative correlation
(i.e., the pair occurred less frequently than independent events). Further, Wang and Russakovsky [3]
changed how the positive bias is defined by comparing the independent and joint probability of a pair.
But, both BAp; 415 [2] and BA_, [3] could only work for T' — A pairs when T', A were singleton
sets (e.g., {Basketball} & {Male}). Zhao et al. [4] extended the metric proposed by Wang and
Russakovsky [3] to allow T — A pairs when 7', A are non-singleton sets (e.g., {Basketball, Sneakers}
& {African-American, Male}).

Lin et al. [8] proposed a new metric called bias disparity to measure bias amplification in recom-
mender systems. Foulds et al. [9] measured bias amplification using the difference in “differential
fairness”, a measure of the difference in co-occurrences of 1" — A pairs across different values of A.
Seshadri et al. [[LO] measured bias amplification for text-to-image generation using the increase in
percentage bias in generated vs. training samples.

Bias Amplification in Balanced Datasets Wang et al. [7] identified that BA ;415 [2] failed to
measure bias amplification for balanced datasets. They proposed a metric that we refer to as leakage
amplification that could measure bias amplification in balanced datasets. While some of the previously
discussed metrics [9, 10,18, 4] can measure bias amplification in a balanced dataset, these metrics do
not work for continuous variables, because they use co-occurrences to quantify biases.

Leakage amplification quantifies biases in terms of predictability, i.e., how easily a model can predict
the protected attribute A from a task 7'. Attacker functions (f) are trained to predict the attribute (A)
from the ground-truth observations of the task (7") and model predictions of the task (T). The relative
performance of f on T vs. T represents the leakage of information from A to 7.

As the attacker function can be any kind of machine learning model, it can process continuous inputs,
text, and images. This flexibility gives leakage amplification a distinct advantage over co-occurrence-
based bias amplification metrics. Subsequent work used leakage amplification for quantifying bias
amplification in image captioning [[L1].

Capturing Directionality in Bias Amplification While previous metrics, including leakage ampli-
fication [7]], could detect the presence of bias, they could not explain its directionality. Wang and
Russakovsky [3]] was the first to introduce a directional bias amplification metric, BA_,. However,
the metric only works for unbalanced datasets. Zhao et al. [4] proposed a new metric, Multi_, to
measure directional bias amplification for multiple attributes and balanced datasets. Still, the metric
cannot distinguish between positive and negative bias amplification, as shown in section[A] This lack
of sign awareness makes Mwulti_, unsuitable for many use cases.

In summary, no existing metric can measure the positive and negative directional bias amplification
in a balanced dataset, as shown in Table[T]

Table 1: We compare desirable properties of bias amplification metrics. Only D P A has all three.

Method Balanced Datasets  Directional ~ Negative Amp.
BAymars X X v/
BA, X 4 v
Multi_, v 4 X
LA 4 X 4
DPA (Ours) 4 v v

3 Directional Predictability Amplification

In this section, we explain how our predictability-based metric, D P A, measures directional bias
amplification (A — T and T' — A). We also show how D P A is more robust and easier to interpret
compared to previous predictability-based metrics like L A. We demonstrate the other two properties
of DPA: (1) its ability to quantify both positive and negative bias amplification, and (2) its efficacy
across both balanced and unbalanced classification datasets, through our experiments (Section ).

3.1 Problem Formulation and Proposed Method

Before introducing our proposed metric, we outline the problem setup. Consider a classification
dataset consisting of images I, where each image is annotated with task labels 7" and protected

attributes A. A model M processes the input images I to predict tasks T and attributes A.
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Figure 1: A — T and T' — A bias amplification using our predictability-based metric DP A

To measure bias amplification, we quantified how much A influences 7' (A — T bias) and how much
T influences A (T' — A bias) in both the true labels (dataset bias) and the model M’s predictions
(model bias). While previous directional metrics, such as BA_, [3]] and Multi_, [4], used conditional
probabilities to quantify dataset and model bias, we used the concept of predictability.

To measure dataset bias in A — T (¥LX), we trained an attacker function f% that predicts true task
labels (T") using the true attribute label (A) as an input. f}; is any arbitrary model, such as an SVM,
a decision tree, or a neural network. We measured attacker function performance using a quality
function ). Accuracy and F-1 scores are examples of some popular quality functions. If fg predicts
T from input A with high accuracy, it shows that the true attribute label (A) has high predictability
for true task labels (7), indicating a high dataset bias in A — T

To measure model bias in A — T (¥4T), we trained an attacker function ff that predicts model M’s
task predictions (1) using the true attribute label (A) as an input. If the attacker function f}: predicts
T from input A with high accuracy, it shows that true attribute label (A) has high predictability for
M’s task predictions (D), indicating a high model bias in A — T (refer to Figure

For A — T, we mathematically denote dataset bias (\IJQ ) and model bias (\II% ):

wh = QU5 (4),T) (1) v = QUfA(A),T) @
Similarly, for " — A, we mathematically denote dataset bias (\IIIT) ) and model bias (\IIQM ):
WP = Q(fH(T), A) 3) v = QU (1), A) @

For T — A, fjf‘ represents an attacker function that takes 7" as input and predicts A, while f:,é
represents an attacker function that takes 7" as input and predicts A. We define bias amplification as
the difference between the model bias and dataset bias, normalized by the sum of these biases. Using
equations|T]and [2] and equations[3]and ] we define bias amplification in both directions:

L vy — U

DPAyyp=—"A 4 I T
ADT TGN gl 1 UM L Ob 4.

&) DPAr 4 = (6)

Note, a small value ¢ — 07 is added in the denominator for numerical stability.

When measuring dataset or model bias in either direction, note that the input to the attacker function
is the same (true attribute label A for equations|TJand 2] and true task label 7" for equations [3]and ).
This is because we followed Wang et al.’s [3]] definition of directionality, where bias amplification



(change in biases) should be measured with respect to a fixed prior variable (A or T in this case). We
offer a detailed proof of how DPA follows Wang et al.’s definition of directionality in Section[B]

Note that the model M’s predictions are not 100% accurate and may contain errors. For example,
assume we are measuring bias amplification in A — T, and model M achieves 70% accuracy on

task predictions 7'. Since the true task labels T" are 100% accurate (as they represent ground-truth),
this 30% gap in accuracy could influence bias amplification values. To prevent conflating prediction
errors with bias, we adopt the procedure of Wang et al. [7] to equalize the dataset and model accuracy.
In this case, we randomly flip 30% of the true task labels T so that their accuracy aligns with the
model M’s 70%. As the bias in T" (or A for T' — A) can vary significantly between two iterations of
random flips, we measured bias amplification using confidence intervals across multiple iterations.

3.2 Benefits over existing predictability-based metrics

In addition to directionality, D P A has these benefits over other predictability-based metrics like L A:

Reports bias amplification in a fixed range For any quality function @ (such that its range is [0, o)
or [0, R™]), the range of DPA is restricted to [—1, 1]. Since D P A reports bounded values, it is easy
to compare bias amplification across different models.

Note: While selecting (), users must ensure that 0 represents the worst possible performance by
the attacker (i.e., low predictability or no bias), and the upper bound for @) represents the best
possible performance by the attacker (i.e., high predictability or significant bias). This is true for
most typical choices for quality functions, such as accuracy or F1 score, but not for certain losses like
cross-entropy. For cross-entropy, a lower value would indicate good performance by the attacker (i.e.,
high predictability or significant bias). To use cross-entropy (or similar loss functions) as our (), we
should modify it to (1/cross-entropy) or (1—cross-entropy).

Measures Relative Amplification D P A accounts for dataset bias by measuring the relative change
in bias (or predictability), rather than the absolute change as done by LA. Assume we have an
unbiased dataset D; with a dataset bias of 0, and a highly biased dataset D5 with a dataset bias of
0.9. We train identical models M; and M5 on D; and D-, respectively. Assume the resulting model
biases are 0.05 for M7 and 0.95 for M. If we measure absolute change like LA, both Dy and Dy
show the same increase in bias (0.05), making the two scenarios appear equally problematic. In
practical settings, a model introducing bias in an originally unbiased dataset (D) is more concerning
than one adding the same amount of bias to an already biased dataset (D). If we measure relative
change like DP A, we can distinguish between the two scenarios — the relative increase in bias (or
amplification) for D; is 1, while for Dy it is only about 0.06. To further show how relative change in
D P A accounts for dataset bias, refer to the analysis we conducted in Section

Robust to the choice of attacker function Predictability-based metrics are highly sensitive to the
hyperparameters of the attacker function used, as shown in [12]. Since DPA measures relative
change in predictability, it is more robust to different hyperparameters of the attacker function. In
section D} we performed experiments on the ImSitu dataset and a controlled synthetic dataset to show
how measuring relative change in predictability improves D P A’s robustness to attacker function.

4 Experiments and Results

To show that D P A is the most reliable metric to measure bias amplification in classification datasets,
we conducted experiments on one tabular dataset (COMPAS [13]]) and two image datasets (COCO
[14] and ImSitu [1]). For COCO and ImSitu, we used gender as the protected attribute. In this section,
we describe the experimental details and results for these datasets. For the COMPAS dataset, we used
race as the protected attribute. The experiment setup and results for COMPAS are in Section [E]

4.1 COCO Experiment Setup

COCO [14] is an image dataset where each image has one or more people (male or female) along
with various objects (e.g., ball, book). We performed an experiment similar to Wang et al. [3],
to test whether different bias amplification metrics can correctly identify the direction in which a
model amplifies bias. We gradually increased the 7" — A bias in COCO through image masking and
evaluated which metrics were able to detect this increasing bias.



We used the gender-annotated version of the COCO dataset released by Wang et al. [7]. Each image is
labeled with gender (A) and object (T') annotations. A holds a single value: {Female : 0,Male : 1}.
If the image has multiple people, A corresponds to the gender of the person in the foreground. 7' is a
one-dimensional vector of 78 binary values: [to, {1, ..., t77] (e.g., teddy bear, skateboard). ¢; = 1 if at
least one instance of that 7* object is present in the image, else ¢; = 0. We sampled balanced and
unbalanced sub-datasets from COCO. The balanced dataset is subject to the constraint in Equation

Yy : #(m,y) = #(f,y) @)

Where #(m, y) represents the number of images where a male performs task y and #( f, y) represents
the number of images where a female performs task y. As these constraints are hard to satisfy, only a
subset of 12 objects (or tasks) was used in the balanced sub-dataset. This resulted in 6156 images in
the sub-dataset (3078 male and 3078 female images). We used the same 12 objects for the unbalanced
sub-dataset, but relaxed the constraint from Equation E] as shown in Equation B} This resulted in a
sub-dataset of 15743 images (8885 male and 6588 female images)

vy;§<w<3 @®)

#(f,)

To gradually increase T' — A bias, we created four versions of each sub-dataset: (1) the original
sub-dataset, and three other versions where the person in the image is progressively masked by (2)
partially masking the segment, (3) completely masking the segment, and (4) completely the masking
bounding box. As we progressively mask more of the person, the model loses access to visual gender
cues and is forced to rely heavily on surrounding objects (tasks) to predict gender. This causes the
T — A bias in the model to gradually increase. We evaluated whether bias amplification metrics
report a steady increase in 7' — A scores as the 7" — A model bias increases across the four versions.
Since all models are trained on COCO, the dataset bias remains constant. We can directly compare
changes in amplification scores with changes in model bias.

We used the image masking annotations for COCO from [3]. We used two models: ViT_b_16 [15]
and VGG16 [16] (both pretrained on ImageNet-1K [[17]). We replaced the last fully connected layer
of these pre-trained models with a layer of size |T'|. We fine-tuned these models for 12 epochs on 8
dataset versions (4 versions of the balanced and 4 versions of the unbalanced sub-dataset). We used
only two models as fine-tuning a model on 8 datasets is computationally expensive.

We measured bias amplification using co-occurrence-based metrics like BA_,, BAy;ars, Multi_,,
and predictability-based metrics like LA and DP A (ours). For LA and DP A, we used an MLP with
two hidden layers as our attacker function. Additional experiment details are in Section[J}

4.2 COCO Results

To quantify the ' — A model bias in the ViT (or VGG), we computed a feature attribution score
using Gradient Shap [18]]. The attribution score measures the percentage contribution of non-person
pixels in the ViT’s prediction of the person’s gender. A higher attribution score means the ViT is
relying more on the background objects rather than the person to predict gender. In Table 2] we show
the average attribution score for the ViT model, along with bias amplification values from different
metrics. Row 2 reports results on various masked versions of the unbalanced COCO sub-dataset,
while row 3 reports results for the balanced sub-dataset.

In the unbalanced sub-dataset, the attribution score increased with each masked version. This
confirms that as the person was progressively masked, the ViT increasingly used background objects
to predict gender, indicating a rise in 7" — A model bias. Only DP A and BA_, reported increasing
T — A scores, correctly capturing the growing model bias. Since metrics like BAp 415 and LA
lack directionality, they failed to capture the increasing 7" — A model bias. Although Multi_, is
directional, it too failed to capture the increasing 7 — A bias. This is because Multi_, cannot
capture negative bias amplification scenarios (we have clearly demonstrated this using the COMPAS
experiment in Section [E).

In the balanced COCO sub-dataset, labeled background objects (i.e., task objects) are balanced with
gender, so they should not provide predictive signals for gender. However, we observed a rising
attribution score with each masked version. This indicates that the model used background cues that
were not part of the labeled object (or task) set.



Table 2: T' — A bias amplification as the person is progressively masked in the unbalanced and balanced COCO
sub-datasets. Attribution scores indicate the 7' — A model bias in the ViT_b_16 model. For the unbalanced
sub-dataset, DP A and BA_, captured the increasing 7' — A model bias. For the balanced sub-dataset, only
D P A captured the increasing 7' — A model bias. Subscript shows confidence intervals.

Dataset Metric Original Partial Masked Segment Masked Bounding-Box
Split Masked

Image
Attribution Map . . . .
Attribution 0.38270.0026 0.4327¢.0023 0.4461¢.0020 0.5247¢.0022
D P A (ours) —0.0152¢ 0017 0.1365¢.0013 0.6015¢.0006 0.80850.0003
Unbalanced BA_, —0.0227¢.0001 0.0097¢.0002 0.0188p.0003 0.0601¢.0002
Multi_, 0.15060.0002 0.11790.0004 0.36060.0003 0.5607¢.0010
LA 0.03680.0052 0.07150.0011 0.0942¢.0020 0.0265¢0.0008
BAnaLs 0.00010.0000 0.00040.0000 —0.00160.0000 0.00150.0000
Attribution 0.45680.0026 0.4684¢.0026 0.4834¢.0026 0.49330.0025
D P A (ours) 0.02300.0008 0.02800.0003 0.03800.0030 0.10390.0006
Balanced BA_, 0.00000.0000 0.0000¢.0000 0.00000.0000 0.0000¢.0000
Multi_, 0.00080p.0000 0.00100.0000 0.00380.0000 0.00430.0000
LA 0.00060.0002 0.0028¢.0002 0.00200.0005 0.0019¢.0003
BAmars 0.00000.0000 0.00000.0000 0.00000.0000 0.00000.0000

To investigate this further, we visualized attribution maps for an image from the balanced COCO
sub-dataset, as shown in Table[2] As the person was gradually masked, the ViT model increasingly
focused on unlabeled objects, such as skis and ski poles, to predict gender. This shows that even if
datasets are balanced, models can amplify bias from unlabeled objects at test time. This behavior is
captured by DPA as it reports increasing 7" — A scores. While Multi_, showed the same trend as
DPA, it is not reliable as it does not capture negative bias amplification (as mentioned earlier). BA_,
and B A 41 s incorrectly assume that a balanced dataset contains no bias. They failed to capture the
increasing 7' — A model bias and consistently reported zero bias amplification.

While the attribution maps in Table [2 show the ViT’s reliance on unlabeled objects, they may not
fully convince readers that balanced datasets can amplify biases from unlabeled objects. To make this
point clear, we designed a controlled experiment (Section|[F) where we introduced a hidden A — T
bias into the balanced COCO sub-dataset using one-pixel shortcuts (OPS) [19]. This setup mimics
the presence of bias from unlabeled objects. Only D P A was able to detect the bias amplification
caused by this hidden bias. To further convince readers, we conducted another controlled experiment
on hidden biases using the CMNIST dataset in Section [G]

The VGG model showed similar trends to the ViT model on both the unbalanced and balanced COCO
sub-datasets. We showed VGG results in Section[H]

4.3 ImSitu Experiment Setup

ImSitu [1] is an image dataset where a person (male or female) performs an activity (e.g., playing,
eating). We examined which metrics can correctly measure directional bias amplification in ImSitu.
ImSitu did not provide image mask annotations, so we were unable to perform progressive person
masking to verify directionality. Instead, we examined which metrics could detect A — 7" and
T — A bias amplification in the original (unmasked) dataset.

We used the gender-annotated version of the ImSitu dataset released by Wang et al. [7]. Each image
has gender (A) and activity (T) annotations. A holds a single value: {Female : 0,Male : 1}. If the
image has multiple people, A corresponds to the gender of the person performing the activity. 7" is a
one-dimensional vector of 211 activities: [tg, t1, ..., t210] (e.g., repairing, curling). Each image has
only one activity annotation — that activity is assigned 1 and the rest are 0.



We sampled unbalanced and balanced sub-datasets from ImSitu. To sample the balanced sub-dataset,
we used the constraint in Equation |/} This resulted in a sub-dataset of 14600 images (7300 male and
7300 female images). For the unbalanced sub-dataset, we used a modified constrained (Equation ).
This resulted in a sub-dataset of 24301 images (14199 male and 10102 female images). We selected
a subset of 205 activities (tasks) for both sub-datasets.

vy;§<w<3 ©)
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The ImSitu experiment was much less expensive than the COCO masking experiment, as we had to
train each model only on 2 sub-datasets. Along with ViT_b_16 [15] and VGG16 [16] (used in the
COCO setup), we evaluated seven more models — MaxViT [20], [[15], ViT_b_32 [[15], SqueezeNet
[21], Wide ResNet50 [22], Wide ResNet101 [22], MobileNet V2 [23]], and Swin Tiny [24]. For each
of the sub-datasets, we measured bias amplification caused by these models in two directions: bias
amplification caused by gender (A) on activities (7'): A — T, and the bias amplification caused by
activities (T") on gender (A): T — A.

As mentioned in Section@ since all models are trained on the same dataset (in this case, ImSitu),
bias amplification only depends on model bias. We examined which bias amplification metrics
correctly captured A — T and T — A model biases. We used co-occurrence-based metrics like
BA_,, BAyars, Multi_,, and predictability-based metrics like LA and DP A (ours). Similar to
COCO, for LA and DP A, we used an MLP with two hidden layers as our attacker model. Additional
experiment details are in Section[J}

4.4 ImSitu Results

To quantify A — T and 7" — A model bias in ImSitu, we could not use feature attribution scores as
ImSitu lacks person mask annotations. Instead, we used “conceptual sensitivity” scores based on
Concept Activation Vectors (CAVs) [25]]. Sensitivity score (Sen) quantifies how much a model’s
prediction is influenced by a specific concept.

We define Sen 4,7 as the influence of the gender concept (male or female) in the overall task
predictions. We define Seny_, 4 as the contribution of task concepts (activities like playing, eating)
in the overall gender predictions. If Sen 4,7 is high, it means that the concept “male” (or female)
highly influences the model’s task predictions, indicating a strong A — 7" model bias. If Senz_, 4 is
high, it means that the task concepts (e.g., eating) highly influence the model’s attribute predictions,
indicating a strong 7' — A model bias.

In Table 3] we showed the sensitivity and bias amplification scores in the A — T' direction for the
unbalanced sub-dataset. In Table ] we showed corresponding results for the balanced sub-dataset.
For both tables, we ranked all models (from 1 to 9) by their Sen 4,7 scores, from least biased to
most biased. We checked which bias amplification metrics produced rankings closest to this model
bias ranking. This allowed us to see which metrics best captured changes in model bias.

In the unbalanced case (Table[3), DPA’s ranking was very close to the model bias ranking — it
differed by only one position (rank 5 vs. 6). All other metrics showed significant mismatches. In
the balanced case (Table[d), DPA fully matched the Sen 4,7 rankings. Other metrics, like LA and
Multi_,, differed significantly. Metrics like BA_, and BA ;a1 s reported zero bias amplification
because they assume that a balanced dataset has no bias. We observed similar trends for the
unbalanced and balanced sub-datasets in T' — A. The T — A results are shown in Section Il

Our experiments on COMPAS, COCO, and ImSitu show that only DPA reliably captures the three
properties of a bias amplification metric: directionality, accurately measuring both positive and
negative bias amplification, and working with both unbalanced and balanced datasets. No other
metrics satisfy all three properties. Multi_, cannot measure negative bias amplification. BA_, and
BAj;aps always report zero amplification on balanced datasets. L A cannot capture the direction
in which a model amplifies biases. We also ran a controlled experiment on the directional metrics
(DPA, BA_,, Multi_,) in Section [K]to show how BA_, fails to measure bias amplification in
balanced datasets, and how Multi_, fails to capture negative bias amplification scenarios.



Table 3: A — T results for the ImSitu unbalanced sub-dataset. Models are shown in increasing order of model
bias, indicated by their Sen 4_.7 scores. For each metric, the number in brackets shows the rank it assigned to
that model. Rank 1 is the lowest (most negative) bias amplification, and rank 9 is the highest (most positive).
Red numbers show where the metric’s rank differs from the Sen s, rank. D P A is the most reliable metric, as
its model rankings best match the Sen 47 rankings. All values are scaled by 100.

Models Sena_T ‘ DPAAs_.T LA BA_, Multi_, BAnmaLs
MaxViT [20] 0.017 (1) —0.147 (1) 0.130 (4) —0.157 (3) 0.553 (6) 0.211 (6)
ViT_b_32 [135] 0.018 (2) —0.050 (2) 0.209 (6) —0.146 (5) 0.606 (8) 0.248 (8)
ViT_b_16 [15] 0.025 (3) —0.036 (3) 0.195 (5) —0.145 (7) 0.568 (7) 0.228 (7)
SqueezeNet [21] 0.082 (4) —0.022 (4) 0.009 (1) —0.172 (1) 48.40 (9) 25.58 (9)
Wide ResNet101 [22] 0.144 (5) 0.064 (6) 0.281 (9) —0.146 (5) 0.348 (4) 0.109 (4)
MobileNet V2 [23] 0.156 (6) —0.011 (5) 0.087 (3) —0.158 (2) 0.505 (5) 0.193 (5)
Wide ResNet50 [22] 0.190 (7) 0.118 (7) 0.253 (8) —0.141 (8) 0.260 (3) 0.061 (3)
Swin Tiny [24] 0.225 (8) 0.318 (8) 0.064 (2) —0.151 (4) 0.159 (2) —0.074 (1)
VGG16 [16] 0.272 (9) 0.329 (9) 0.210 (7) —0.051 (9) 0.097 (1) —0.045 (2)

Table 4: A — T results for the ImSitu balanced sub-dataset. This table follows the same setup as Table Red
numbers show where the metric’s rank differs from the Sena_.7 rank. D P A is the most reliable metric, as its
model rankings exactly match the Sen 4,7 rankings.

Models Sena_1 ‘ DPAAs_,T LA BA_, Multi_, BAnaLs
SqueezeNet [21] 0.000 (1) 0.003 (1) 0.003 (8) 0.000 (1) 48.47 (9) 0.000 (1)
Wide ResNet50 [22] 0.089 (2) 0.085 (2) 0.002 (7) 0.000 (1) 0.705 (3) 0.000 (1)
Wide ResNet101 [22] 0.098 (3) 0.094 (3) 0.000 (3) 0.000 (1) 0.730(4) 0.000 (1)
MobileNet V2 [23] 0.112 (4) 0.256 (4) 0.007 (9) 0.000 (1) 1.379 (5) 0.000 (1)
Swin Tiny [24] 0.211 (5) 0.282 (5) 0.001 (5) 0.000 (1) 0.038 (1) 0.000 (1)
ViT_b_32 [15] 0.283 (6) 0.285 (6) 0.001 (5) 0.000 (1) 1.510 (6) 0.000 (1)
ViT_b_16 [I15] 0.302 (7) 0.302 (7) 0.000 (2) 0.000 (1) 1.599 (7) 0.000 (1)
MaxViT [20] 0.478 (8) 0.326 (8) —0.002 (1) 0.000 (1) 1.762 (8) 0.000 (1)
VGGI16 [16] 0.497 (9) 0.341 (9) 0.000 (3) 0.000 (1) 0.073 (2) 0.000 (1)

5 Discussion

5.1 Why and when should we use DPA?

Table 5: Example dataset and model prediction tables to demonstrate when we should use BA_, and
DPA. We used the same tables for the hiring scenario and the indoor-outdoor scenario.

(a) Original Dataset (b) Model Predictions
T=0 T=1 T=0 T=1
A= 50 150 A= 15 185
A= 22 78 A= 9 91

In real-world machine learning applications, it is common to train multiple models on the same
dataset to determine which model performs best. Often, these models achieve similar accuracies,
making model selection difficult — a phenomenon known as the Rashomon effect [26| 27]]. In such
cases, metrics like DP A can offer valuable insights into model selection by highlighting which
models preserve, reduce, or worsen existing biases.

Based on our experiments, we found D P A to be the most reliable metric to measure bias amplification.
However, there are cases where other directional metrics like BA_, could be more appropriate. Let
us take two scenarios where we measure A — T bias amplification in DPA and BA_,. Consider a
hiring dataset where 200 men (A = 0) and 100 women (A = 1) apply for a job. Out of these, 50 men
and 22 women are hired (17" = 0), while the rest are rejected (T' = 1) — refer to Table|3_3]r Assume
we train a model (M) on this dataset, which gives predictions as shown in Table [5b]

Accordlng to DPA, the A — T bias amplification is large. This is because for both men and women,
T is much more unbalanced than 7. For men: 7T ratio = 3:1(150/50), 7" ratio = 12.3:1(185/15). For
women: T ratio = 3.5:1(78,/22), T ratio = 10.1:1(91/9). According to BA_,, bias amplification
is small. This is because the ratio of hired men and women is similar in the dataset and in the model’s
predictions. Hired men and women in the dataset: 25% (50/200) and 22% (22/100), respectively.
Hired men and women in the model’s predictions: 7.5% (15/200) and 9% (9/100), respectively. Our
goal is to ensure men and women have a similar acceptance ratio. Since the acceptance ratio between



men and women is similar in the dataset and in the model’s predictions, the small bias amplification
reported by BA_, is appropriate. In scenarios where we desire equal opportunity (e.g., hiring datasets
where men and women should have equal acceptance ratios), using BA_, is better.

In another scenario, consider a dataset of men (A = 0) and women (A = 1), where each person is
either indoors (T = 0) or outdoors (" = 1). Assume the same tables as before (Tables[5a) and [5b).
Here, our goal is to ensure that we have a balanced count of men and women, indoors and outdoors.
We should report high bias amplification as Tis highly unbalanced with respect to 1" (for both men
and women). In this case, the large bias amplification reported by D P A is appropriate. BA_, and
D P A capture different notions of bias, and the right choice of metric depends on the type of bias we
seek to address.

5.2 Limitations and Future Work

Predictability-based metrics like DPA (and LA) rely on training attacker models to estimate bias
amplification. These attackers can be sensitive to training instabilities — such as getting stuck in
local minima. This may lead to inconsistent results. To ensure stable results, we must run the
attacker model multiple times, which increases computational cost. In contrast, co-occurrence-based
metrics like BA_, or Multi_, are cheaper to compute. We have compared the runtime for all bias
amplification metrics in Section|[[]

D P A cannot measure bias amplification at the level of individual A — T pairs — the bias amplification
caused by a specific A (e.g., women) on a specific T" (e.g., cooking), or vice versa. Instead, it measures
overall A — T and T" — A bias amplification, aggregated across all A and T'. Suppose a model
amplifies bias on the cooking task when women are present, but reduces bias on the gardening task
when men are present. D P A would report only the net effect across both A’s and both 7s, masking
these opposing trends.

As part of future work, we aim to disaggregate bias amplification into individual A — T pairs. We can
use techniques like feature attribution to find out the influence of a specific attribute A = A; (e.g.,
male), in predicting a specific task 7' = T} (e.g., cooking). This attribution value can be used as a
weak proxy to measure dataset or model bias between A;, T;. Causal attacker models or interpretable
attackers are other potential approaches to disaggregate bias amplification into individual A — T pairs.
This finer-grained view can support targeted bias intervention strategies.

5.3 Conclusion

In this work, we introduced D P A, a one-stop predictability-based metric to measure bias amplifica-
tion in classification problems. D P A is the only metric that can (1) accurately identify positive and
negative bias amplification scenarios, offering valuable insights into model selection by highlighting
which models preserve, worsen, or reduce data bias, (2) identify the source of bias amplification as
the metric is directional (3) measure bias amplification for both unbalanced and balanced datasets.
D P A eliminates the need to evaluate models on multiple bias amplification metrics to verify each of
the three aspects of bias amplification. D P A is also more robust and easier to interpret than current
predictability-based metrics like LA. While DP A is generally the most reliable metric to measure
bias amplification, there are bias scenarios (e.g., hiring datasets where rejections are almost always
more than acceptances) where other metrics like BA_, may be more suitable. Before using DP A,
we must have an accurate understanding of the type of bias we want to address.
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Justification: Our claims are aligned with the contributions and overall scope of the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation of our metric (inability to disaggregate biases) is discussed in
Section
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
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Answer: [Yes]

Justification: We provided proofs for theorems whenever we introduced a new concept. We
also referenced existing proofs wherever necessary.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information to reproduce our results are available in the Experiment Setup
and Supplementary Sections.
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» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our code repositories, with sufficient instructions to
reproduce the main experimental results. We do not introduce a new dataset. However, links
to the datasets we used can be found in the paper and our code repository.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Training and test details are mentioned in the Supplementary.
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» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We reported error bars for all bias amplification metrics.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources
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the experiments?
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Justification: As our work introduces a metric, information about compute resources does
not add much value to our work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and followed the Code of Ethics set by NeurIPS.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Since we introduce a metric, there is no societal impact of our work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not relevant for our work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited all original owners of the code and assets we used by
referencing their work in our paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not relevant for our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not relevant for our work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used for developing our core methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Multi_, explanation

To understand why Multi_, cannot differentiate between positive bias amplification and negative
bias amplification (i.e., bias reduction), let us take a look at its formulation.

Multio, = X, Var(Agm)

DD Yom [Agul + (1= ygm) [~ Agnl (10)
|Q| |M‘ geG meM
where,
ygmzl[P(mzl,gzl)>P(g:1)P(m:1)]
and,

P(g=1m=1)—P(g=1m=1)

if measuring M — G 1
Pin=1lg=1)— P(m=1|g = 1) an
if measuring G — M

Agm =

Following [4], M represents the attribute groups, and G represents the task groups.
From Equation[T0} we get
\QHM|ZZ‘% | lJ| ‘ ']| y‘] | (]‘

gegG meM

geG meM

Hence, we see from Equations [T1] and [I2] that Multi_, simply measures the average absolute
differences for the conditional probabilities. Due to the absolute term, Multi_, cannot capture
negative bias amplification.

B Explaining Directionality

To prove that DPA follows Wang et al.’s definition of directionality [3]], let us see how DPA
measures bias amplification in A — T'. As per equation to calculate dataset bias (%), the attacker

function f7 tries to model the relationship of P(7T'|A). For ) function of accuracy, we can rewrite
the equation [T]as:

= Q(fA(A),T) = > P(A)P(Tni| As) (13)

A;eA
where T,; is such that P(T,,,;|A) > P(Ty|A;)Vk

Similarly, we can rewrite equation [2]as:

WA = QU (A),T) = 37 P(A)P(Tn|A) (14)

A;eA
Then DPA 4_,r can be defined as:

DPAs =Y P(A)(P(TmilAi) — P(Tmi| A4;)) (15)
A;eA

Similarly, for 7' — A direction we can say:

DPAr_a = Y P(T)(P(AnilT;) = P(Ai|T)) (16)
T;eT



Let us compare this to Wang et al.’s definition of directionality [3]]. They defined their metric BA_,
in the following manner:

1
BA—> = W Z yatAat + (1 - yat)(iAat) (17)
acAteT
where,
Yar = 1[P(Ae =1,T; =1) > P(A, = 1)P(Ty = 1)] (18)
P(Tt = 1|Aa = 1) — P(Tt = 1|Aa - 1)
A, — if measuring A — T' (19)

P(Ay = 1T, =1) — P(A4, = 1|T, = 1)
if measuring 7' — A

For T — A, BA_, measures the change in P(A|T) with respect to P(A|T), i.e., change in the
conditional probability of A vs. A with respect to a fixed prior 7. Similarly, for A — T, BA_,
measures change in the conditional probability of T;,,; vs. T;,,; with respect to a fixed prior A;.

Thus, we see both BA_, and D P A are proportional to the similar changes in conditional probabilities
with fixed priors. Therefore, D P A follows the same concept of directionality as BA_,.

C Relative vs. Absolute Change in Predictability

To further show how relative change in D P A accounts for dataset bias, we plotted the relationship
between LA and model bias (A\*) in Figure , and between D P A and model bias (¥'*) in Figure
, across three values of dataset bias — 0.1, 1, and 2 (dataset bias is denoted with U2 for DPA
and AP for LA ). We observed that the slope of the LA vs. AM curve remains constant regardless
of the dataset bias (A”). In contrast, the DP A vs. model bias (¥') curve shows steeper slopes for
smaller dataset biases (U'") and flatter slopes for higher dataset biases. This means that for nearly
unbiased datasets, D P A reports high amplification even for small increases in model bias, whereas
for highly biased datasets, it reports lower amplification for a similar increase in bias. This shows
that, unlike absolute change, relative change (used in D P A) accounts for dataset bias.
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Figure 2: The graphs show trends between (a) LA vs model bias (AM), and between (b) DPA vs
model bias (¥M), at different values of dataset bias (A" for LA and WP for DPA). For the same
model bias, D P A reported much higher bias amplification values (compared to L. A) when the dataset
bias is small.

D Attacker Robustness

To show how measuring relative change in predictability improves D P A’s robustness to attacker
function, we conduct an experiment using a controlled synthetic dataset and a real-world dataset like
ImSitu [1].

D.1 Synthetic Experiment

We define A : N'(3,2). We define 7" and T in the following manner:
T = poly(A + (a1 x€), p) (20)



T = poly(A+ (az * €),p) 1)

Here poly(z, p) represents any p'"* degree polynomial of 2 and € : A'(0, 1). To demonstrate positive
bias amplification, we want 7" to be a better predictor of A, compared to 7. Hence, we set as < a;.

As the attacker is generally a simple polynomial function, we used a simple Fully Connected Network
as the attacker. We parameterized the depths (d) and width (w) of the attacker function. This
parameterization helped us create a large variety of attacker functions (each with a different depth
and width). The parameters of the experiment are shown in Table[3] For each attacker, we used a
combination of TanH and ReLU activations.

We created two versions of DPA — (1) DP A with absolute change in bias (or predictability), to
mimic the behavior of current metrics like L A, (2) D P A with relative change in bias, which is our
formulation. For both versions, we used the inverse of RMSE loss as the quality function (Q).
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Figure 3: For different attacker functions, we show the bias amplification reported by DP A with
absolute change (blue line) and D P A with relative change (red line) on the synthetic dataset.

For different attacker functions, we compared the values reported D P A with absolute change (blue
line) and by DP A with relative change (red line) in Figure[3] DP A with absolute change shows
unstable bias amplification scores with high variance across attackers. D P A with relative change
shows a stable bias amplification score with minimal variance across attackers. This shows that DP A
with relative change is more robust to attacker function hyperparameters.

Table 6: Experiment Parameters

Parameter p a7 ao w d
Value 2 1 2 [20,500] [2,6]

D.2 ImSitu Experiment

We show that measuring relative change in predictability (as done in D P A) is robust to attacker
hyperparameters on a real-world dataset like ImSitu. We used the same setup as the ImSitu experiment
in section[4.3] We trained a ViT_b_16 model on the unbalanced ImSitu sub-dataset. We measured
bias amplification using attackers with different hyperparameters.

We used a Fully Connected Network as our attacker function. We parameterized the width w (in
the range of [5, 40] neurons) of the attacker function. This parameterization helped us create a
large variety of attacker functions (each with a different width). For each attacker, we used ReLLU
activations. We used the Adam Optimizer with a learning rate of 5 x 1073,



We created two versions of DPA — (1) DP A with absolute change in bias (or predictability), to
mimic the behavior of current metrics like L A, (2) D P A with relative change in bias, which is our
formulation. For both versions, we used the inverse of categorical cross-entropy loss as the quality
function (Q).

For different attacker functions, we compared the values reported D P A with absolute change (blue
line) and by DP A with relative change (red line) in Figure[d DP A with absolute change shows
unstable bias amplification scores with high variance across attackers. D P A with relative change
shows a stable bias amplification score with minimal variance across attackers. This shows that even
in real-world datasets like ImSitu, DP A with relative change is more robust to attacker function
hyperparameters.
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Figure 4: For different attacker functions, we show the bias amplification reported by D P A with
absolute change (blue line) and D P A with relative change (red line) on the ImSitu dataset.

E COMPAS experiment

E.1 Experiment Setup

COMPAS is a tabular dataset containing information about individuals who have been previously
arrested. Each entry is associated with 52 features. We used five features: age, juv_fel_count,
juv_misd_count, juv_other_count, priors_count.

We limited the dataset to 2 races (Caucasian or African-American), which we used as the
protected attribute (A). The task (7T") was recidivism (i.e., if the person was arrested again for a
crime in the next 2 years). Hence, A = {Caucasian : 0,African-American : 1} and T =
{No Recidivism:0,Recidivism: 1}.

We created balanced and unbalanced versions of the COMPAS dataset. For the unbalanced dataset,
we sampled all available COMPAS instances (attributes, race labels, and recidivism labels) for each
of the four A and T pairs. For the balanced dataset, we sampled an equal number of instances across
the four A and T pairs. The counts for the A and T pairs in the unbalanced dataset are shown in the
top-left quadrant of Table|7a) and for the balanced dataset, in the top-left quadrant of Table

We trained a decision tree model on the unbalanced and the balanced COMPAS datasets. Each model
predicts a person’s race (A) and recidivism (T) based on the 5 selected features. We measured the
bias amplification caused by each model in two directions: bias amplification caused by race (A) on
recidivism (T), referred to as A — T, and the bias amplification caused by recidivism (7") on race
(A), referred to as T' — A. In this experiment we only evaluated directional metrics — D P A (ours),
BA_, and Multi_,.



The problem of mapping a binary variable (A) to another binary variable (") for the A — T direction
and vice-versa is trivial and can be done using a contingency matrix as well. Thus, we use two
variations of DPA. For DPA (ANN), we used a 3-layer dense neural network (with a hidden
layer of size 4 and sigmoid activations) as the attacker function. For DPA (MAT), we calculate
the probabilities based on a contingency matrix instead of an attacker function. Note that quality
equalization is still applied as a preprocessing step.

E.2 Results

While interpreting COMPAS results, note that a co-occurrence-based metric like BA_, and a
predictability-based metric like D P A capture different notions of bias.

BA_, classifies each A — T pair in the dataset as a majority or minority pair using equation [I8] It
only measures if the counts of the majority pair increased (positive bias amplification) or decreased
(negative bias amplification) in the model predictions or vice versa.

DPA does not select a majority or a minority A — T pair. It measures the change in the task
distribution given the attribute (and vice versa). For instance, if A and T are binary, D P A measures
if the absolute difference in counts between 7' = 0 and 7" = 1 increased (positive bias amplification)
or decreased (negative bias amplification) in the model predictions. Both BA_, and DPA offer
different yet valuable insights into bias amplification.

Table 7: COMPAS Dataset: Counts of the protected attribute (race) and task (recidivism) in the dataset
(represented as A and T") and in the model predictions (represented as A and T for the balanced and unbal-
anced COMPAS set. Here: A = {Caucasian : 0,African-American : 1} and T' = {No Recidivism :
0,Recidivism: 1)}.

A=0 A=1| A=0 A=1 A=0 A=1| A=0 A=1
T=0 1229 1402 1056 1575 T=0 874 874 1083 665
T=1 874 1773 1115 1532 T=1 874 874 896 852
T=0 1165 1546 - - T=0 1145 948 — -
T=1 938 1629 — — T=1 603 800 — —

(a) Unbalanced COMPAS Set (b) Balanced COMPAS Set

Table 8: COMPAS Results: The first two columns depict the bias amplification values for the unbalanced

COMPAS set.(Table[7b). Subscript shows confidence intervals.

COMPAS set (Table[%]), while the last two columns depict the bias amplification values for the balanced

Method Unbalanced Balanced
T— A A—>T T— A A—>T
BA_, —0.0780.031 —0.0380.001 0.0000.000 0.0000.000
Multi_, 0.0780.026 0.0380.001 0.0660.007 0.0990.006
DPA (ANN) 0.0630.005 —0.0400.002 0.0610.00s 0.1000.004
DP A (MAT) 0.022¢ 00s —0.0360.001 0.0660.004 0.0980.006

E.2.1 Unbalanced COMPAS dataset

The bias amplification scores for the unbalanced case are shown in the first two columns of Table 8]

T — A: For BA_,, when T' = 0, the count of the majority class A = 0 decreased from 1229 in
the dataset to 1056 in the model predictions. Similarly, when T" = 1, the count of the majority class
A =1 decreased from 1773 in the dataset to 1532 in the model predictions. Since the count of the

majority classes decreased in the model predictions, BA_, reported a negative bias amplification in
T— A

For DPA, when T' = 0, the difference in counts between A 0 and A = 1 increased from
173 (1402 — 1229 = 173) in the dataset to 519 (1575 — 1056 = 519) in the model predictions.
However, when T' = 1, the difference in counts between A = 0 and A = 1 decreased from 899
(1773 — 874 = 899) in the dataset to 417 (1532 — 1115 = 417) in the model predictions. Since the
decrease in bias when 7" = 1 is larger than the increase in bias when 7' = 0 (899 — 417 > 519 —173),
we might naively assume a negative bias amplification in T — A.



This naive assumption overlooks the conflation of model errors and model biases (discussed in
Section . Here, the decision tree model has a low accuracy when predicting A (approx. 69%);
hence, 31% of instances in A are randomly flipped to match the model’s accuracy. As a result, the
biases in the perturbed A are less than A, indicating a positive bias amplification. The positive score
reported by D P A is not an incorrect result. It is the low model accuracy that misleadingly suggests a
negative bias amplification. Mwulti_, reports positive bias amplification as it cannot capture negative
bias amplification scenarios (discussed in Section [A).

A — T: For BA_,, when A = 0, the count of the majority class 7" = 0 decreased from 1229 in
the dataset to 1165 in the model predictions. Similarly, when A = 1, the count of the majority class
T = 1 decreased from 1773 in the dataset to 1546 in the model predictions. Since the count of the
majority classes decreased in the model predictions, BA_, reported negative bias amplification in
A—T.

For DPA, when A = 0, the difference in counts between 7" = 0 and T' = 1 decreased from
355 (1229 — 874 = 355) in the dataset to 227 (1165 — 938 = 227) in the model predictions.
Similarly, when A = 1, the difference in counts between 7' = 0 and 7' = 1 decreased from 371
(1773 — 1402 = 371) in the dataset to 83 (1629 — 1546 = 83) in the model predictions. Since the
overall count difference decreased in the model predictions, D P A reported negative bias amplification
inA—T.

Multi_, reported positive bias amplification as it cannot capture negative bias amplification. It only
measures the magnitude of bias amplification but not its sign.

E.2.2 Balanced COMPAS Dataset

The bias amplification scores for the balanced case are shown in the last two columns of Table[8]

T — A: Since BA_, assumes a balanced dataset is unbiased, BA_, reported zero bias amplification
inT — A. For DPA, when T = 0, the count difference between A = 0 and A = 1 increased from
0 (874 — 874 = 0) in the dataset to 418 (1083 — 665 = 418) in the model predictions. Similarly,
when T' = 1, the difference in counts between A = 0 and A = 1 increased from 0 (874 — 874 = 0)
in the dataset to 44 (896 — 852 = 44) in the model predictions. Since the overall difference increased
in the model predictions, D P A reported positive bias amplification in 7" — A.

A — T Since the dataset is balanced, BA_, reported zero bias amplification in A — 7. For DPA,
when A = 0, the difference in counts between 1" = 0 and T = 1 increased from 0 (874 — 874 = 0)
in the dataset to 542 (1145 — 603 = 542) in the model predictions. Similarly, when A = 1, the
difference in counts between 7' = 0 and T' = 1 increased from 0 (874 — 874 = 0) in the dataset to
148 (948 — 800 = 148) in the model predictions. Since the overall count difference increased in the
model predictions, D P A reported positive bias amplification in A — 7.

Multi_, reported positive bias amplification as it only looks at the magnitude of amplification scores.

F Simulating Biases in a Balanced COCO Dataset

Table 9: Bias Amplification scores for various metrics at different values of L in the COCO dataset

Test Accuracy Test Accuracy L BA_, Multi_, DPA BAnALs LA

(wl/o shortcuts) (shortcuts) (ours)
55.34% 71.20% 0.05 0.00000.0000 0.25690.0000 0.0829¢.0007 0.25860.0000 0.00000.0000
55.34% 72.58% 0.10 0.00000.0000 0.27070.0000 0.09930.0014 0.0032¢.0000 0.00000.0000
54.66% 74.31% 0.15 0.0000¢.0000 0.2879¢.0000 0.1098¢.0009 0.17930.0000 0.0000¢.0000
54.50% 75.01% 0.20 0.0000¢.0000 0.3017¢.0000 0.13800.0010 0.2448¢.0000 0.0000¢.0000

In this controlled experiment, we show that even if attributes and tasks are balanced in a dataset,
models can pick up biases from unlabeled elements and amplify them at test time. We chose 2 out of
the 12 task objects from the COCO balanced dataset used in Section A = {Female : 0,Male : 1}
and T = {Sink : 0,Not Sink: 1}. Here, “Not Sink” refers to COCO images that do not have a sink.
Our balanced dataset has 288 images for each A and T pair.



We created biases in our balanced dataset using one-pixel shortcuts (OPS) [19]. In OPS, a fixed pixel
with position (z;, y;) is assigned the same value in all images of a class. This makes it easier for a
model to predict a class, as it only needs to learn that all images in that class share the same pixel. By
applying OPS, we simulated how an unlabeled element (here, the shortcut pixel) could create biases
in a balanced dataset.

We used two parameters, 51 and [z, where 0 < (51, B2 < 100 and 81 > s, to control how many
shortcuts were added. For “sink” images, we applied OPS to 5% images with males and 5%
images with females. For “not sink” images, we swapped the parameters, applying OPS to 82%
images with males and 3, % images with females.

Since 31 > (2, “sink” images with males had more shortcuts than those with females, while “not
sink” images with females had more shortcuts than those with males. Although the dataset is balanced
in terms of attributes and tasks, a model trained on this dataset is more likely to predict males for
“sink” images and females for “not sink” images at test time. In essence, we introduced an A — T'
bias to simulate unlabeled bias elements in the balanced COCO dataset.

Similar to our experiment in Section[4.1] we trained a VGG16 model on this balanced COCO dataset.
We trained the model for 15 epochs with a batch size of 32. We used the SGD optimizer, with a
learning rate of 0.01 and momentum of 0.5. We used the binary cross-entropy loss for training.

Similar to the training dataset, we used 288 instances for each A and 7" pair in our test set. To verify
if OPS introduced an A — T bias in the trained VGG16 model, we created two versions of our
test set. In version 1, we did not introduce any shortcuts. In version 2, we applied shortcuts using
parameters 31 and (5 as described above.

If the accuracy of VGG16 in version 2 of the test set (where shortcuts are applied) is greater than
version 1 (where no shortcuts exist), we can confirm that the model has learned an A — T bias. This
is because if the VGG16 model has learned the shortcuts (or biases) we introduced during training, it
will give a higher accuracy on the test set where these shortcuts are available.

We show our results on four different configurations of 3; and 3, values in Table[9] For simplicity,
we introduce a new term L = 31 — 32, where is L is always greater than 0. We see that for all values
of L, the accuracy of the test set with shortcuts is greater than the test set without shortcuts, which
confirms the presence of an A — T bias.

As L increases, the A — T model bias increases (as the number of shortcuts increases with L). Only
D P A reports increasing A — T scores as L increases. All other metrics fail to report increasing
bias amplification scores. This shows that only D P A correctly captures the amplification of hidden
biases (similar to bias amplification from unlabeled objects) in balanced datasets.

G Simulating Biases in a Balanced CMNIST Dataset

In this controlled experiment, we use the CMNIST dataset to show that even if attributes (color)
and tasks (digit) are balanced in a dataset, models can pick up biases from unlabeled elements and
amplify them at test time.

In the CMNIST dataset, we used images of handwritten digits from the original MNIST [29] dataset
and added color to them by replacing white pixels with colored pixels. Each image is assigned a
single color. The images are the features X, digit labels are the task 7', and color is the protected
attribute A. Each label (i.e., a digit from 0 - 9) is correlated with a particular color (i.e., 0 - red, 1 -
blue, 2 - green and so on). The magnitude of this correlation is controlled using o.. If o« = 0.7, 70%
image examples of 0 are assigned red, and the remaining 30% images are randomly assigned any of
the remaining 9 colors. « allows us to control the bias in the dataset.

Table 10: CMNIST controlled experiment.
B =0.10 B =020 B =030 B =0.40

DPAjs_T 0.063 £0.006  0.085+0.006 0.098 +£0.008 0.119 &+ 0.006
BAs_T 0.000 £ 0.000  0.000 £ 0.000  0.000 £ 0.000  0.000 + 0.000
LA 0.043 £0.009 0.060+£0.014 0.075+0.015 0.071 £ 0.017




We trained a simple CNN model (with depth = 2) on this dataset. We used the trained model to get
predictions, and post-processed the predictions using a parameter 3. 3 defines the percentage of
predicted labels that are overwritten based on the color in the input image. If 5 = 0.1, we randomly
select 10% of the predicted labels. These labels are replaced based on the color in the image. This
allows us to increase the A — T bias in the model predictions. For a fixed value of «, 5 allows us to
control the model bias. We used accuracy as our () function.

We started with a balanced CMNIST dataset (o = 0.1). We then varied the 3 parameter from 0.1 to
0.4 to gradually increase the model bias. We showed the bias amplification captured by different
metrics in Table

As we can see in Table[I0} BA_, shows a constant value for varying values of 5. Meanwhile, LA is
unable to show a clear trend due to the large confidence intervals. Only D P A shows a monotonic
increase in reported bias amplification as 3 value increases. This indicates that only D P A is able to
accurately capture the bias amplification in our controlled experiment.

H COCO Masking experiment on VGG-16

Table 11: T' — A bias amplification as the person is progressively masked in the unbalanced and balanced
COCO sub-datasets. Attribution scores indicate the 7" — A model bias in the VGG16 model. For the unbalanced
sub-dataset, DP A and BA_, correctly capture the increasing 7' — A model bias. For the balanced sub-dataset,
only DPA correctly captures the increasing T — A model bias. Subscript shows confidence intervals.

Dataset Metric Original Partial Masked Segment Masked Bounding-Box
Split Masked

= A . E 4 . = A . . .

Image

Attribution Map

Attribution 0.6202¢.0026 0.67770.0027 0.7321¢.0020 0.79730.0020

DPA (OLII‘S) 0~00340.0006 0.01950.0007 0.02140,0010 0.02420.0004

Unbalanced BA_, 0.0029¢.0002 0.0072¢.0005 0.0108¢.0007 0.01400.0007
Multi_, 0.00570.0003 0.0091¢.0005 0.01090.0005 0.0219¢.0011

LA 0.00050.0000 0.00680.0009 0.0032¢.0004 0.0011¢.0012

Attribution 0.6292¢.0027 0.6992¢.0024 0.73670.0019 0.80650.0183

DPA (OLII‘S) 0.00190,0002 0.00240.0004 0.00680,0009 0.01000.0011

Balanced BAH 0.00000(0000 0‘00000‘0000 0.00000‘0000 0.00000_0000
Multi_> 0.00350_0002 0.00560_0004 0.00600_0003 0.00990_0010

LA 0.0012¢.0002 0.00550.0016 0.00260.0005 0.00650.0011

We recreated our COCO masking experiment from section[d.I|with a VGG16 [16] model. The results
are shown in Table [l

For the unbalanced COCO sub-dataset (row 2 of Table[IT)), DPA and BA_, report increasing 7' — A
scores across versions, correctly capturing the growing model bias (indicated by the growing model
attribution scores). While Multi_, shows the same trend as these metrics, it is not a reliable metric
as it cannot capture negative bias amplification (discussed in Section [E)).

For the balanced sub-dataset, we observe growing model attribution scores indicating a rising " — A
model bias. DPA correctly captures this trend by reporting increasing 7' — A scores. While
Multi_, shows the same trend as DP A, as discussed earlier, Multi_, is not a reliable metric. LA
fails to capture the growing model bias as it is not directional. BA_, assumes that a balanced dataset
is unbiased. Hence, it fails to capture the growing model bias and constantly reports zero bias
amplification.

We also show additional examples for attribution maps for the VGG16 model on images from our
balanced COCO sub-dataset in Figure[5] We observe in these images that as we increase masking on



the person, i.e., attribution examples from left to right, the attribution shifts from the person to either
the background or unlabeled task objects. This shows that in balanced datasets, as masking increases,
the model relies more on unlabeled background objects to determine the gender of the person.

Original Image No Masking Partial Masking Segment Masking Box Masking

2
g8
/

Figure 5: VGG-16 model attributions for images from the balanced COCO sub-dataset. For all cases,
as the person in the image is progressively masked, the VGG-16 often relies on unlabeled background
objects to predict gender.

I ImSitu Experiment: 7" — A results

In Table[I2] we showed the sensitivity and bias amplification scores in the 7" — A direction for the
unbalanced sub-dataset. In Table[T3] we showed corresponding results for the balanced sub-dataset.
For both tables, we ranked all models (from 1 to 9) by their Seny_, 4 scores, from least biased to
most biased. We checked which bias amplification metrics produced rankings closest to this model
bias ranking. This allowed us to see which metrics best captured changes in model bias.

In the unbalanced case (Table[T2), D P A’s ranking is closest to the model bias ranking — it differs
by only three positions. All other metrics show significant mismatches.



In the balanced case (Table[I3), D P A’s ranking is closest to the model bias ranking — it again differs
by only three positions. Other metrics, like LA and Mwulti_,, differ significantly. Metrics like BA_,
and B A 41 s report zero bias amplification because they assume that a balanced dataset has no bias.

Table 12: T' — A results for the ImSitu unbalanced sub-dataset. Models are shown in increasing order of model
bias, based on their Sent_, 4 scores. For each metric, the number in parentheses shows the rank it assigned to
that model — where rank 1 means the lowest (most negative) bias amplification and rank 9 means the highest
(most positive). Red numbers highlight where the metric’s rank differs from the model bias rank assigned by
Senr_ 4. DPA is the most reliable metric here, as its model rankings closely match the Senr_, 4 rankings.
All values are scaled by 100.

Models Senr_ A ‘ DPAT_, LA BAT A MultiT_ A BAwyALs
SqueezeNet [21] 0.000 (1) | —0.013 (3) 0.009 (1) —18.26 (1)  18.90 (9) 25.59 (9)
ViT_b_32 [15] 0.033 (2) —0.025 (1) 0.209 (6) —6.891 (6) 7.252 (5) 0.248 (8)
Wide ResNet50 [22] 0.036 (3) —0.020 (2) 0.253 (8) —4.494 (7) 5.289 (3) 0.061 (4)
Wide ResNet101 [22]] 0.098 (4) —0.012 (4) 0.281 (9) —3.612(8) 4.790 (2) 0.109 (3)
MaxViT [20] 0.188 (5) 0.000 (5) 0.130 (4) —8.143(4)  17.61(8) 0.212 (6)
ViT_b_16 [I5] 0.190 (6) 0.001 (6) 0.195 (5) —7.214(5)  7.719 (4) 0.229 (7)
MobileNet V2 [23] 0.566 (7) 0.009 (7) 0.087 (3) —9.085 (3) 9.761 (7) 0.193 (5)
Swin Tiny [24] 2.800 (8) 0.012 (8) 0.064 (2) —9.782 (2) 10.86 (6) —0.082 (1)
VGG16 [16] 2.938 (9) 0.013 (9) 0.210 (7) —1.620 (9) 3.979 (1) —0.045 (2)

Table 13: T' — A results for the ImSitu balanced sub-dataset. This table follows the same setup as Table
Red numbers highlight where the metric’s rank differs from the model bias rank assigned by Senr—, 4. DPA is
the most reliable metric here, as its model rankings exactly match the model bias ranking given by Senr_ 4.
All values are scaled by 100.

Models Sent_, A ‘ DPAT 4 LA BAT , A Multip_, A BAnALs
SqueezeNet [21] 0.000 (1) 0.019 (3) 0.003 (8) 0.000 (1) 0.208 (2) 0.000 (1)
Wide ResNet50 [22] 0.107 (2) 0.016 (1) 0.002 (7) 0.000 (1) 3.580 (8) 0.000 (1)
Wide ResNet101 [22] 0.122 (3) 0.018 (2) 0.000 (3) 0.000 (1) 1.815 (3) 0.000 (1)
MaxViT [20] 0.261 (4) 0.021 (4) —0.002 (1) 0.000 (1) 0.022 (1) 0.000 (1)
MobileNet V2 23] 0.297 (5) 0.021 (5) 0.007 (9) 0.000 (1) 1.975 (4) 0.000 (1)
ViT_b_16 [15] 0.310 (6) 0.021 (6) 0.000 (2) 0.000 (1) 2.174 (5) 0.000 (1)
Swin Tiny [24] 0.345 (7) 0.022 (7) 0.001 (5) 0.000 (1) 2.628 (7) 0.000 (1)
VGG16 [16] 0.497 (9) 0.047 (8) 0.000 (3) 0.000 (1) 5.638 (9) 0.000 (1)
ViT_b_32 [15] 0.626 (9) 0.174 (6) 0.001 (5) 0.000 (1) 2.584 (6) 0.000 (1)

J Additional Experiment Details

Given below are additional details about the hyperparameters used for DPA and LA metrics in
different experiments mentioned in the paper. Since BAj; a5, BA_,, and Mwulti_, do not train an
attacker function, no such hyperparameters are required for them. For all experiments, we used (1/
cross-entropy) as our quality function (Q).

Table 14: COCO Masking additional parameters
Parameter Optimizer Attacker Depth Learning Rate Num. epochs Batch size

DPA Adam 2 0.001 100 64
LA Adam 2 0.001 100 64

Table 15: ImSitu additional parameters

Parameter Optimizer Attacker Depth Learning Rate Num. epochs Batch size

DPA Adam 2 0.001 100 128
LA Adam 2 0.001 100 128

Table 16: COMPAS additional parameters
Parameter Optimizer Attacker Depth Learning Rate Num. epochs Batch size

DPA Adam 2 0.005 50 512
LA Adam 2 0.005 50 512
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K Behavior of different directional metrics
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Figure 6: Bias amplification heatmap for different configurations of the dataset (X-axis) and model
predictions (Y-axis). aq creates different configurations of the dataset, while «,, creates different
configurations of the model predictions. BA_, and D P A show similar behavior (except when the
dataset is balanced). However, Multi_, always reports positive bias amplification.

To analyze the behavior of directional metrics, we simulated a dataset with a protected attribute A
(A=0,1)and task T' (T' = 0, 1). Initially, each A and T pair had an equal probability of 0.25. To
introduce bias in the dataset, we modified the probabilities by adding a term « to the group {A = 0,
T = 0} and subtracting ag from {A = 1, T = 1}. Here, a4 ranges from —0.25 to 0.25 in steps of
0.005. The dataset is balanced only when o« = 0 but becomes increasingly unbalanced as o4 deviates
from 0. In the same manner, we use ., to introduce bias in the model predictions.

With a4 and o, ranging from —0.25 to 0.25, we create 100 different versions of the dataset and
model predictions, respectively. For each metric, we plot a 100 x 100 heatmap of the reported bias
amplification scores. Each pixel in the heatmap represents the bias amplification score for a specific
{dataset, model} pair.

Figure[6]shows the heatmaps for all metrics. Figures[6aland[6b]display the bias amplification heatmaps
for BA_, and DP A, respectively, with similar patterns. However, BA_, (Figure[6a) shows a distinct
vertical green line in the center, indicating that when the dataset is balanced (ag = 0 on the X-axis),
bias amplification remains at 0, regardless of changes in model’s bias (varying o, values on the
Y-axis). In contrast, DP A (Figure [6b) accurately detects non-zero bias amplification whenever there
is a shift in bias in either the dataset or model predictions, making it a more reliable metric. Multi_,
(as shown in Figure reports positive bias amplification in all scenarios, making it unreliable.

L. Runtime Comparison

In Table[T7] we compared the time taken by different metrics to compute bias amplification on the
COCO dataset. This computation was performed over an Intel Core 17 165H processor without any
GPU acceleration. Note that bias (or bias amplification) analysis is usually conducted offline (and not
in real time). While D P A is several magnitudes more time-consuming than the other methods, an
execution time of two minutes is acceptable for most offline applications.

Table 17: Runtime comparison for different bias amplification metrics on the COCO dataset.
BAyars BA.,, Mutli, LA DPA

Time (ms) 97.57 150.16  453.11  1.90 x 105 1.20 x 10°
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