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Abstract

Diffusion models are one of the most important families of deep generative models. In this
note, we derive a quantitative upper bound on the Wasserstein distance between the data-
generating distribution and the distribution learned by a diffusion model. Unlike previous
works in this field, our result does not make assumptions on the learned score function.
Moreover, our bound holds for arbitrary data-generating distributions on bounded instance
spaces, even those without a density w.r.t. the Lebesgue measure, and the upper bound does
not suffer from exponential dependencies. Our main result builds upon the recent work of
Mbacke et al. (2023) and our proofs are elementary.

1 Introduction

The goal of a generative model is to learn a probability distribution on an instance space, such that samples
from this distribution resemble samples from a given target distribution. Along with generative adversarial
networks (Goodfellow et al., 2014) and variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende
et al., 2014), diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are one of the
most prominent families of deep generative models. They have exhibited impressive empirical performance in
image (Dhariwal & Nichol, 2021; Ho et al., 2022) and audio (Chen et al., 2021; Popov et al., 2021) generation,
as well as other areas (Zhou et al., 2021; Sasaki et al., 2021; Li et al., 2022; Trabucco et al., 2023).

There are two main approaches to diffusion models: denoising diffusion probabilistic models (DDPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) and score-based generative models (Song & Ermon, 2019) (SGMs).
The former kind, DDPMs, progressively transform samples from the target distribution into noise through
a forward process, and learn a backward process that reverses the transformation and is used to generate
new samples. On the other hand, SGMs use score matching techniques (Hyvärinen & Dayan, 2005; Vincent,
2011) to learn an approximation of the score function of the data-generating distribution, then generate new
samples using Langevin dynamics. Since for real-world distributions the score function might not exist, Song
& Ermon (2019) propose adding different noise levels to the training samples to cover the whole instance
space, and train a neural network to simultaneously learn the score function for all noise levels.

Although DDPMs and SGMs might seem like different approaches at first, Ho et al. (2020) showed that
DDPMs implicitly learn an approximation of the score function and the sampling process resembles Langevin
dynamics. Furthermore, Song et al. (2021b) derived a unifying view of both techniques using stochastic
differential equations (SDEs). The SGM of Song & Ermon (2019) can be seen as a discretization of the
Brownian motion, and the DDPM of Ho et al. (2020) as a discretization of an Ornstein–Uhlenbeck process.
Hence, both DDPMs and SGMs are usually referred to as SGMs in the literature. This explains why the
previous works studying the theoretical properties of diffusion models utilize the score-based formulation,
which requires assumptions on the performance of the learned score function. In this work, we take a
different approach and apply techniques developed by Mbacke et al. (2023) for VAEs to DDPMs, which can
be seen as hierarchical VAEs with fixed encoders (Luo, 2022). This approach allows us to derive quantitative
Wasserstein distance upper bounds with no assumptions on the data-generating distribution, no assumptions
on the learned score function, and elementary proofs that do not require the SDE toolbox. Moreover, our
bounds do not suffer from any costly discretization step, such as the one in De Bortoli (2022), since we
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consider the forward and backward processes as being discrete-time from the beginning, instead of seeing
them as discretizations of continuous-time processes.

1.1 Related Works

There has been a growing body of work aiming to establish theoretical results on the convergence of SGMs
(Block et al., 2020; De Bortoli et al., 2021; Song et al., 2021a; Lee et al., 2022; De Bortoli, 2022; Kwon et al.,
2022; Lee et al., 2023; Chen et al., 2023; Li et al., 2023), but these works either rely on strong assumptions
on the data-generating distribution, derive non quantitative upper bounds, or suffer from exponential depen-
dencies on some of the parameters. We manage to avoid all three of these pitfalls. The bounds of Lee et al.
(2022) rely on very strong assumptions on the data-generating distribution such as log-Sobolev inequalities
which are not realistic for real-life data distributions. Furthermore, Song et al. (2021a); Chen et al. (2023);
Lee et al. (2023) establish upper bounds on the Kullback-Leibler (KL) divergence or the total variation
(TV) distance between the data-generating distribution and the distribution learned by the diffusion model,
but, as noted by Pidstrigach (2022) and Chen et al. (2023), unless one makes strong assumptions on the
support of the data-generating distribution, KL and TV reach their maximum values. Such assumptions
likely do not hold for real-life data-generating distributions which are widely believed to satisfy the manifold
hypothesis (Narayanan & Mitter, 2010; Fefferman et al., 2016; Pope et al., 2021). The work of Pidstrigach
(2022) establishes conditions under which the support of the input distribution is equal to the support of the
learned distribution, and generalizes the bound of Song et al. (2021a) to all f -divergences. Assuming L2 ac-
curate score estimation, Chen et al. (2023) and Lee et al. (2023) establish Wasserstein distance upper bounds
under weaker assumptions on the data-generating distribution, but their Wasserstein-based bounds are not
quantitative. De Bortoli (2022) derives quantitative Wasserstein distance upper bounds under the manifold
hypothesis, but their bounds suffer from exponential dependencies on some of the problem parameters.

1.2 Our contributions

In this work, we avoid strong assumptions on the data-generating distribution, and establish quantitative
Wasserstein distance upper bounds without exponential dependencies. Moreover, a common thread in the
works cited above is that their bounds depend on the error of the score estimator. According to Chen
et al. (2023), “Providing precise guarantees for estimation of the score function is difficult, as it requires an
understanding of the non-convex training dynamics of neural network optimization that is currently out of
reach.” Hence, we derive upper bounds without assumptions on the learned score function. Instead, our
bound depends on a reconstruction loss computed on a finite i.i.d. sample. Intuitively, we define a loss
function ℓθ(xT , x0) (see equation 6), which measures the average Euclidean distance between a sample x0
from the data-generating distribution, and the reconstruction x̂0 obtained by sampling noise xT ∼ q(xT |x0)
and passing it through the backward process. This approach is motivated by the work of Mbacke et al.
(2023) on VAEs.

There are many advantages to this approach: simultaneously no assumptions on the data-generating dis-
tribution, no exponential dependencies and a quantitative upper bound based on the Wasserstein distance.
Moreover, our approach has the benefit of utilizing very simple and elementary proofs.

2 Preliminaries

Throughout the paper, we use lower-case letters to denote both probability measures and their densities
w.r.t. the Lebesgue measure, and we add variables in parentheses to improve readability (e.g. q(xt|xt−1) to
indicate a time-dependent conditional distribution). We consider an instance space X which is a subset of
RD with the Euclidean distance as underlying metric, and a data-generating distribution µ ∈ M1

+(X ). Note
that we do not assume µ has a density w.r.t. the Lebesgue measure. Moreover, ∥·∥ denotes the Euclidean
(L2) norm and we write Ep(x) as a shorthand for Ex∼p(x). Given probability measures p, q ∈ M1

+(X ) and a
real number k > 1, the Wasserstein distance of order k is defined as (Villani, 2009):

Wk(p, q) =
(

inf
π∈Γ(p,q)

∫
X

∥x − y∥k
dπ(x, y)

)1/k

,
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Figure 1: Denoising diffusion model

where Γ(p, q) denotes the set of couplings of p and q, meaning the set of joint distributions on X × X with
respective marginals p and q. We refer to the product measure p ⊗ q as the trivial coupling between p and
q, and the Wasserstein distance of order 1 simply as the Wasserstein distance.

2.1 Denoising Diffusion Models

Instead of using the SDE arsenal, we approach diffusion models using the DDPM formulation with discrete-
time processes. A diffusion model comprises two discrete-time stochastic processes: a forward process and
a backward process. Both processes are indexed by time 0 ≤ t ≤ T , where the number of time-steps T is a
pre-set choice. See Figure 1 for an illustration.

The forward process. The forward process transforms a datapoint x0 ∼ µ into a noise distribution
q(xT |x0), via a sequence of conditional distributions q(xt|xt−1) for 1 ≤ t ≤ T . It is assumed that the forward
process is defined so that for large enough T , the distribution q(xT |x0) is close to a simple noise distribution
referred to as the prior distribution p(xT ). For instance, Ho et al. (2020) chose p(xT ) = N (xT ; 0, I), the
standard normal distribution.

The backward process. The backward process is a Markov process with parametric transition kernels.
The goal of the backward process is to implement the reverse action of the forward process: transforming
noise samples into (approximate) samples from distribution µ. Following Ho et al. (2020), we assume the
backward process to be defined by Gaussian distributions pθ(xt−1|xt) defined for 2 ≤ t ≤ T as

pθ(xt−1|xt) = N
(
xt−1; gt

θ(xt), σ2
t I
)

, (1)

and
pθ(x0|x1) = g1

θ(x1), (2)

where the variance parameters σt ∈ R≥0 are defined by a fixed schedule, the mean functions gt
θ : RD → RD

are learned using a neural network for 2 ≤ t ≤ T , and g1
θ : RD → X is a separate function dependent on

σ1. In practice, Ho et al. (2020) used the same network for the functions gt
θ for 2 ≤ t ≤ T , and a separate

discrete decoder for g1
θ .

Generating new samples from a trained diffusion model is done by sampling xt−1 ∼ pθ(xt−1|xt) for 1 ≤ t ≤ T ,
starting from a noise vector xT ∼ p(xT ) sampled from the prior p(xT ).

We make the following assumption on the backward process.
Assumption 1. We assume for each 1 ≤ t ≤ T there exists a constant Kt

θ > 0 such that for every x1, x2 ∈ X ,∥∥gt
θ(x1) − gt

θ(x2)
∥∥ ≤ Kt

θ ∥x1 − x2∥ .

In other words, gt
θ is Kt

θ-Lipschitz continuous. We discuss this assumption in Remark 3.2.

2.2 Additional Definitions

We define the distribution πθ(·|x0) as

πθ(·|x0) = q(xT |x0)pθ(xT −1|xT )pθ(xT −2|xT −1) . . . pθ(x1|x2)pθ(·|x1). (3)
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Intuitively, for each x0 ∈ X , πθ(·|x0) denotes the distribution on X obtained by reconstructing samples from
q(xT |x0) through the backward process. Another way of seeing this distribution is that for any function
f : X → R, the following equation holds:1

E
πθ(x̂0|x0)

f(x̂0) = E
q(xT |x0)

E
pθ(xT −1|xT )

. . . E
pθ(x1|x2)

E
pθ(x̂0|x1)

f(x̂0). (4)

Given a finite set S = {x1
0, . . . , xn

0 } iid∼ µ, we define the regenerated distribution as the following mixture of
measures:

µn
θ = 1

n

n∑
i=1

πθ(·|xi
0). (5)

This definition is analogous to the empirical regenerated distribution defined by Mbacke et al. (2023) for
VAEs. The distribution on X learned by the diffusion model is denoted πθ(·) and defined as

πθ(·) = p(xT )pθ(xT −1|xT )pθ(xT −2|xT −1) . . . pθ(x1|x2)pθ(·|x1).

In other words, for any function f : X → R, the expectation of f w.r.t. πθ(·) is

E
πθ(x̂0)

f(x̂0) = E
p(xT )

E
pθ(xT −1|xT )

. . . E
pθ(x1|x2)

E
pθ(x̂0|x1)

f(x̂0).

Hence, both πθ(·) and πθ(·|x0) are defined using the backward process, with the difference that πθ(·) starts
with the prior p(xT ) = N (xT ; 0, I) while πθ(·|x0) starts with the noise distribution q(xT |x0).

Finally, we define the loss function ℓθ : X × X → R as

ℓθ(xT , x0) = E
pθ(xT −1|xT )

E
pθ(xT −2|xT −1)

. . . E
pθ(x1|x2)

E
pθ(x̂0|x1)

∥x0 − x̂0∥ . (6)

Hence, given a noise vector xT and a sample x0, the loss ℓθ(xT , x0) denotes the average Euclidean distance
between x0 and any sample obtained by passing xT through the backward process.

2.3 Our Approach

The goal is to upper-bound the distance W1(µ, πθ(·)). Since the triangle inequality implies

W1(µ, πθ(·)) ≤ W1(µ, µn
θ ) + W1(µn

θ , πθ(·)), (7)

we can upper-bound the distance W1(µ, πθ(·)) by upper-bounding the two expressions on the right-hand side
of equation 7 separately. The upper bound on W1(µ, µn

θ ) is obtained using a straightforward adaptation of a
proof by Mbacke et al. (2023). First, W1(µ, µn

θ ) is upper-bounded using the expectation of the loss function
ℓθ, then the resulting expression is upper-bounded using a PAC-Bayesian-style expression dependent on the
empirical risk and the prior-matching term.

The upper bound on the second term W1(µn
θ , πθ(·)) uses the definition of µn

θ . Intuitively, the difference
between πθ(·|xi

0) and πθ(·) is determined by the corresponding initial distributions: q(xT |xi
0) for πθ(·|xi

0),
and p(xT ) for πθ(·). Hence, if the two initial distributions are close and if the steps of the backward process
are smooth (see Assumption 1), then πθ(·|xi

0) and πθ(·) are close to each other.

3 Main Result

3.1 Theorem Statement

We are now ready to state our main result: a quantitative upper bound on the Wasserstein distance between
the data-generating distribution µ and the learned distribution πθ(·).

1More formally, we give a definition of πθ(·|x0) via expectations of test functions by requiring that equation 4 holds for every
function f in some appropriate measure-determining function class.
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Theorem 3.1. Assume the instance space X has finite diameter ∆ = supx,x′∈X ∥x − x′∥ < ∞, and let λ > 0
and δ ∈ (0, 1) be real numbers. Using the definitions and assumptions of the previous section, the following
inequality holds with probability at least 1 − δ over the random draw of S = {x1

0, . . . , xn
0 } iid∼ µ:

W1(µ, πθ(·)) ≤ 1
n

n∑
i=1

{
E

q(xT |xi
0)

ℓθ(xT , xi
0)
}

+ 1
λ

[
n∑

i=1
KL(q(xT |xi

0) || p(xT )) + log 1
δ

]
+ λ∆2

8n
+(

T∏
t=1

Kt
θ

)
1
n

n∑
i=1

{
E

q(xT |xi
0)

E
p(yT )

∥xT − yT ∥
}

+
(

T∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
∥ϵ − ϵ′∥ ,

(8)

where ϵ, ϵ′ ∼ N (0, I).
Remark 3.1. Before presenting the proof, let us discuss Theorem 3.1.

• Because the right-hand side of equation 8 depends on a quantity computed using a finite i.i.d. sample
S, the bound holds with high probability w.r.t. the randomness of S. This is the price we pay for
having quantitative upper bounds with no exponential dependencies and no assumptions on the
data-generating distribution µ.

• The first term on the right-hand side of equation 8 is the average reconstruction loss computed on
S = {x1

0, . . . , xn
0 }. Note that for each 1 ≤ i ≤ n, the expectation of ℓθ(xT |xi

0) is only computed
w.r.t. the noise distribution q(xT |xi

0) defined by xi
0 itself. Hence, this term measures how well a

noise vector xT ∼ q(xT |xi
0) recovers the original sample xi

0 using the backward process and averages
over S = {x1

0, . . . , xn
0 }.

• If the Lipschitz constants satisfy Kt
θ < 1 for 1 ≤ t ≤ T , then the larger T is, the smaller the upper

bound gets because the product of Kt
θ’s converges to 0. In Remark 3.2, we show that the assumption

that Kt
θ < 1 for all t is a quite reasonable one.

• The hyperparameter λ controls the trade-off between the prior-matching term and the diameter
term ∆2

8n . If Kt
θ < 1 for all 1 ≤ t ≤ T and T → ∞, then the convergence of the bound largely

depends on the choice of λ. In that case, λ ∝ n2 leads to a faster convergence, while λ ∝ n leads to
a slower convergence to a smaller quantity.

3.2 Proof of the main theorem

The following result is an adaptation of a result by Mbacke et al. (2023).
Lemma 3.2. Let λ > 0 and δ ∈ (0, 1) be real numbers. With probability at least 1 − δ over the randomness
of S = {x1

0, . . . , xn
0 } iid∼ µ, the following holds

W1(µ, µn
θ ) ≤ 1

n

n∑
i=1

{
E

q(xT |xi
0)

ℓθ(xT , xi
0)
}

+ 1
λ

[
n∑

i=1
KL(q(xT |xi

0) || p(xT )) + log 1
δ

]
+ λ∆2

8n
. (9)

The proof of this result is a straightforward adaptation of Mbacke et al. (2023, Lemma D.1). We provide
the proof in the supplementary material (Section A.1) for completeness.

Now, let us focus our attention on the second term of the right-hand side of equation 7, namely W1(µn
θ , πθ(·)).

This part is trickier than for VAEs, for which the generative model’s distribution is simply a pushforward
measure. Here, we have a non-deterministic sampling process with T steps.

Assumption 1 leads to the following lemma on the backward process.
Lemma 3.3. For any given x1, y1 ∈ X we have

E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥ ≤ K1 ∥x1 − y1∥ .
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Moreover, if 2 ≤ t ≤ T , then for any given xt, yt ∈ X we have

E
pθ(xt−1|xt)

E
pθ(yt−1|yt)

∥xt−1 − yt−1∥ ≤ Kt
θ ∥xt − yt∥ + σt E

ϵ,ϵ′
∥ϵ − ϵ′∥ ,

where ϵ, ϵ′ ∼ N (0, I), meaning Eϵ,ϵ′ is a shorthand for Eϵ,ϵ′∼N (0,I).

Proof. For the first part, let x1, y1 ∈ X . Since according to equation 2 pθ(x0|x1) = δg1
θ

(x1)(x0) and
pθ(y0|y1) = δg1

θ
(y1)(y0), we have

E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥ =
∥∥g1

θ(x1) − g1
θ(y1)

∥∥ ≤ K1 ∥x1 − y1∥ .

For the second part, let 2 ≤ t ≤ T and xt, yt ∈ X . Since pθ(xt−1|xt) = N
(
xt−1; gt

θ(xt), σ2
t I
)

the reparame-
terization trick (Kingma & Welling, 2014) implies that sampling

xt−1 ∼ pθ(xt−1|xt)

is equivalent to setting
xt−1 = gt

θ(xt) + σtϵt, with ϵt ∼ N (0, I) . (10)

Using equation 10, the triangle inequality, and Assumption 1, we obtain

E
pθ(xt−1|xt)

E
pθ(yt−1|yt)

∥xt−1 − yt−1∥ = E
ϵt

E
ϵ′

t

∥∥gt
θ(xt) + σtϵt − gt

θ(yt) − σtϵ
′
t

∥∥
≤ E

ϵt

E
ϵ′

t

∥∥gt
θ(xt) − gt

θ(yt)
∥∥+ σt E

ϵt

E
ϵ′

t

∥ϵt − ϵ′
t∥

=
∥∥gt

θ(xt) − gt
θ(yt)

∥∥+ σt E
ϵt

E
ϵ′

t

∥ϵt − ϵ′
t∥

≤ Kt
θ ∥xt − yt∥ + σt E

ϵ
E
ϵ′

∥ϵ − ϵ′∥ ,

where ϵ, ϵ′ ∼ N (0, I).

Next, we can use the inequalities of Lemma 3.3, to prove the following result.
Lemma 3.4. Let T ≥ 1. The following inequality holds.

E
pθ(xT −1|xT )

E
pθ(yT −1|yT )

E
pθ(xT −2|xT −1)

E
pθ(yT −2|yT −1)

. . . E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥ ≤(
T∏

t=1
Kt

θ

)
∥xT − yT ∥ +

(
T∑

t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥] ,

where ϵ, ϵ′ ∼ N (0, I).

Proof Idea. Lemma 3.4 is proven by induction using Lemma 3.3 in the induction step. The details are in
the supplementary material (Section A.2).

Using the two previous lemmas, we obtain the following upper bound on W1(µn
θ , πθ(·)).

Lemma 3.5. The following inequality holds

W1(µn
θ , πθ(·)) ≤

(
T∏

t=1
Kt

θ

)
1
n

n∑
i=1

{
E

q(xT |xi
0)

E
p(yT )

∥xT − yT ∥
}

+
(

T∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
∥ϵ − ϵ′∥ ,

where ϵ, ϵ′ ∼ N (0, I).
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Proof. Using the definition of W1, the trivial coupling, the definitions of µn
θ and πθ(·), and Lemma 3.4, we

get

W1(µn
θ , πθ(·)) = inf

π∈Γ(µn
θ

,πθ(·))

∫
d(x, y) dπ(x, y)

≤ E
x∼µn

θ

E
y∼πθ(y)

[∥x − y∥]

= 1
n

n∑
i=1

{
E

q(xT |xi
0)

E
p(yT )

E
pθ(xT −1|xT )

E
pθ(yT −1|yT )

. . . E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥
}

≤ 1
n

n∑
i=1

 E
q(xT |xi

0)
E

p(yT )

( T∏
t=1

Kt
θ

)
∥xT − yT ∥ +

 T∑
t=2

t−1∏
j=1

Kj

σt

 E
ϵ,ϵ′

[∥ϵ − ϵ′∥]


=
(

T∏
t=1

Kt
θ

)
1
n

n∑
i=1

{
E

q(xT |xi
0)

E
p(yT )

∥xT − yT ∥
}

+
(

T∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
∥ϵ − ϵ′∥

Combining Lemmas 3.2 and 3.5 with equation 7 yields Theorem 3.1 .

3.3 Special case using the forward process of Ho et al. (2020)

Note that the general theorem holds for any forward process, as long as the backward process satisfies
Assumption 1. Now, we give the statement of the theorem in the special case of the forward process defined
by Ho et al. (2020).

Let X ⊆ RD. In Ho et al. (2020), the forward process is a Gauss-Markov process defined as

q(xt|xt−1) = N (xt;
√

αtxt, (1 − αt)I) ,

where α1, . . . , αT is a fixed noise schedule such that 0 < αt < 1 for all t. This definition implies that for each
1 ≤ t ≤ T ,

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱtI)

)
, with ᾱt =

t∏
i=1

αi.

Now, we discuss Assumption 1 under these definitions.
Remark 3.2. We can get a glimpse at the range of Kt

θ for a trained DDPM by looking at the distribution
q(xt−1|xt, x0), since pθ(xt−1|xt) is optimized to be as close as possible to q(xt−1|xt, x0). Ho et al. (2020)
showed that

q(xt−1|xt, x0) = N
(
xt−1; µt

q(xt, x0), σ2
t I
)

,

where
µt

q(xt, x0) =
√

αt(1 − ᾱt−1)
1 − ᾱt

xt +
√

ᾱt−1(1 − αt)
1 − ᾱt

x0. (11)

For a given x0 ∼ µ, let us take a look at the Lipschitz norm of x 7→ µt
q(x, x0). Using equation 11, we have

µt
q(xt, x0) − µt

q(yt, x0) =
√

αt(1 − ᾱt−1)
1 − ᾱt

(xt − yt).

Hence, x 7→ µt
q(x, x0) is K ′

t-Lipschitz continuous with

K ′
t =

√
αt(1 − ᾱt−1)

1 − ᾱt
.

Now, if for all 1 ≤ t ≤ T , αt < 1, then we have 1 − ᾱt > 1 − ᾱt−1 which implies K ′
t < 1 for all 1 ≤ t ≤ T .

7
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The prior-matching term. With the definitions of this section, the prior matching term
KL(q(xT |x0) || p(xT )) has the following closed form:

KL(q(xT |x0) || p(xT )) = 1
2

[
−D log(1 − ᾱT ) − DᾱT + ᾱT ∥x0∥2

]
.

Upper-bounds on the average distance between Gaussian vectors. If ϵ, ϵ′ are D-dimensional
vectors sampled from N (0, I), then

E
ϵ,ϵ′

∥ϵ − ϵ′∥ ≤
√

2D.

Moreover, since q(xT |xi
0) = N

(
xT ; ᾱT xi

0, (1 − ᾱT )I
)

and the prior p(yT ) = N (yT ; 0, I),

E
q(xT |xi

0)
E

p(yT )
∥xT − yT ∥ ≤

√
ᾱT

∥∥xi
0
∥∥2 + (2 − ᾱT )D.

Special case of the main theorem. With the definitions of this section, the inequality of Theorem 3.1
implies that with probability at least 1 − δ over the randomness of {x1

0, . . . , xn
0 } iid∼ µ:

W1(µ, πθ(·)) ≤ 1
n

n∑
i=1

{
E

q(xT |xi
0)

ℓθ(xT , xi
0)
}

+ 1
λ

[
1
2

n∑
i=1

[
−D log(1 − ᾱT ) − DᾱT + ᾱT

∥∥xi
0
∥∥2]+ log 1

δ

]
+

λ∆2

8n
+
(

T∏
t=1

Kt
θ

)
1
n

n∑
i=1

√
ᾱT

∥∥xi
0
∥∥2 + (2 − ᾱT )D +

√
2D

(
T∑

t=2

(
t−1∏
i=1

Ki

)
σt

)
.

4 Conclusion

This note presents a novel upper bound on the Wasserstein distance between the data-generating distribution
and the distribution learned by a diffusion model. Unlike previous works in the field, our main result
simultaneously avoids strong assumptions on the data-generating distribution, assumptions on the learned
score function, and exponential dependencies, while still providing a quantitative upper bound. However,
our bound holds with high probability on the randomness of a finite i.i.d. sample, on which a loss function is
computed. Since the loss is a chain of expectations w.r.t. Gaussian distributions, it can either be estimated
with high precision or upper bounded using the properties of Gaussian distributions.

References
Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-encoders

and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
Estimating gradients for waveform generation. In International Conference on Learning Representations,
2021.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as learning
the score: theory for diffusion models with minimal data assumptions. In The Eleventh International
Conference on Learning Representations, 2023.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. Transactions
on Machine Learning Research, 2022. ISSN 2835-8856.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with
applications to score-based generative modeling. Advances in Neural Information Processing Systems, 34:
17695–17709, 2021.

8



Under review as submission to TMLR

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. Journal of
the American Mathematical Society, 29(4):983–1049, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, volume 27, 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. The Journal of Machine Learning Research,
23(1):2249–2281, 2022.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Diederik P. Kingma and M. Welling. Auto-encoding variational Bayes. CoRR, abs/1312.6114, 2014.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes the
wasserstein distance. Advances in Neural Information Processing Systems, 35:20205–20217, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with polynomial
complexity. Advances in Neural Information Processing Systems, 35:22870–22882, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for general data
distributions. In International Conference on Algorithmic Learning Theory, pp. 946–985. PMLR, 2023.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards faster non-asymptotic convergence for diffusion-
based generative models. arXiv preprint arXiv:2306.09251, 2023.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff:
Single image super-resolution with diffusion probabilistic models. Neurocomputing, 479:47–59, 2022.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970, 2022.

Sokhna Diarra Mbacke, Florence Clerc, and Pascal Germain. Statistical guarantees for variational au-
toencoders using PAC-bayesian theory. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis. Advances
in neural information processing systems, 23, 2010.

Jakiw Pidstrigach. Score-based generative models detect manifolds. Advances in Neural Information Pro-
cessing Systems, 35:35852–35865, 2022.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension
of images and its impact on learning. In International Conference on Learning Representations, 2021.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A
diffusion probabilistic model for text-to-speech. In International Conference on Machine Learning, pp.
8599–8608. PMLR, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

9



Under review as submission to TMLR

Hiroshi Sasaki, Chris G Willcocks, and Toby P Breckon. Unit-ddpm: Unpaired image translation with
denoising diffusion probabilistic models. arXiv preprint arXiv:2104.05358, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265.
PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. Advances in Neural Information Processing Systems, 34:1415–1428, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021b.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmentation
with diffusion models. arXiv preprint arXiv:2302.07944, 2023.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23
(7):1661–1674, 2011.

Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel diffusion.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5826–5835, 2021.

A Omitted Proofs

A.1 Proof of Lemma 3.2

Recall Lemma 3.2 states that the following inequality holds with probability 1 − δ:

W1(µ, µn
θ ) ≤ 1

n

n∑
i=1

{
E

q(xT |xi
0)

ℓθ(xT , xi
0)
}

+ 1
λ

[
n∑

i=1
KL(q(xT |xi

0) || p(xT )) + log 1
δ

]
+ λ∆2

8n
.

Proof of Lemma 3.2. Using the trivial coupling (product of marginals), the definition of µn
θ (equation 5),

and the definition of the loss function ℓθ, we get

W1(µ, µn
θ ) = inf

π∈Γ(µ,µn
θ

)

∫
X ×X

∥x − y∥ dπ(x, y)

≤
∫

X

∫
X

∥x − y∥ dµ(x) dµn
θ (y)

= E
x∼µ

E
y∼µn

θ

∥x − y∥

= E
x∼µ

[
1
n

n∑
i=1

(
E

q(xT |xi
0)

E
pθ(xT −1|xT )

. . . E
pθ(x1|x2)

E
pθ(y|x1)

∥x − y∥
)]

= E
x∼µ

[
1
n

n∑
i=1

E
q(xT |xi

0)
ℓθ(xT , x)

]
.
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Using Mbacke et al. (2023, Lemma B.1), the following inequality holds with probability 1 − δ:

W1(µ, µn
θ ) ≤ 1

n

n∑
i=1

{
E

q(xT |xi
0)

ℓθ(xT , xi
0)
}

+ 1
λ

[
n∑

i=1
KL(q(xT |xi

0) || p(xT )) + log 1
δ

+

n log E
x0∼µ⊗n

E
xT ∼p(xT )

eλ(Ey0∼µ[ℓθ(xT ,y0)]− 1
n

∑n

i=1
ℓθ(xT ,x0))

]
.

(12)

Now, it remains to upper-bound the exponential moment of equation 9. If supx,x′∈X ∥x − x′∥ = ∆ < ∞,
and λ > 0 is a real number, then the definition of the loss function ℓθ and Hoeffding’s lemma yield

n log E
x0∼µ

E
xT ∼p(xT )

eλ(Ex′∼µ[ℓθ(xT ,x′)]− 1
n

∑n

i=1
ℓθ(xT ,x0)) ≤ n log exp

[
λ2∆2

8n2

]
= λ2∆2

8n
.

A.2 Proof of Lemma 3.4

Recall Lemma 3.4 states that the following inequality holds:

E
pθ(xT −1|xT )

E
pθ(yT −1|yT )

E
pθ(xT −2|xT −1)

E
pθ(yT −2|yT −1)

. . . E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥ ≤(
T∏

t=1
Kt

θ

)
∥xT − yT ∥ +

(
T∑

t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥] ,

Proof of Lemma 3.4. Let’s do a proof by induction on T .

• Base case. T = 1. The inequality becomes

E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥ ≤ K1 ∥x1 − y1∥ (13)

which holds by the first part of Lemma 3.3.

• Induction step. Assume T > 1. The induction hypothesis is

E
pθ(xT −2|xT −1)

E
pθ(yT −2|yT −1)

. . . E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥ ≤(
T −1∏
t=1

Kt
θ

)
∥xT −1 − yT −1∥ +

(
T −1∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥] .

(14)

11



Under review as submission to TMLR

Using the induction hypothesis, the linearity of the expectation, Lemma 3.3 with t := T ,

E
pθ(xT −1|xT )

E
pθ(yT −1|yT )

. . . E
pθ(x0|x1)

E
pθ(y0|y1)

∥x0 − y0∥

≤ E
pθ(xT −1|xT )

E
pθ(yT −1|yT )

[(
T −1∏
t=1

Kt
θ

)
∥xT −1 − yT −1∥ +

(
T −1∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥]

]

=
(

T −1∏
t=1

Kt
θ

)
E

pθ(xT −1|xT )
E

pθ(yT −1|yT )
[∥xT −1 − yT −1∥] +

(
T −1∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥]

≤

(
T −1∏
t=1

Kt
θ

)[
Kt

θ ∥xT − yT ∥ + σT E
ϵ,ϵ′

∥ϵ − ϵ′∥
]

+
(

T −1∑
t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥]

=
(

T∏
t=1

Kt
θ

)
∥xT − yT ∥ +

[(
T −1∏
t=1

Kt
θ

)
σT +

T −1∑
t=2

(
t−1∏
i=1

Ki

)
σt

]
E

ϵ,ϵ′
[∥ϵ − ϵ′∥]

=
(

T∏
t=1

Kt
θ

)
∥xT − yT ∥ +

[(
T −1∏
i=1

Ki

)
σT +

T −1∑
t=2

(
t−1∏
i=1

Ki

)
σt

]
E

ϵ,ϵ′
[∥ϵ − ϵ′∥]

=
(

T∏
t=1

Kt
θ

)
∥xT − yT ∥ +

(
T∑

t=2

(
t−1∏
i=1

Ki

)
σt

)
E

ϵ,ϵ′
[∥ϵ − ϵ′∥] .
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