© © N O O A W N =

Single-Step Consistent Diffusion Samplers

Anonymous Author(s)
Affiliation
Address

email

Abstract

Sampling from unnormalized target distributions is a fundamental yet challenging
task in machine learning and statistics. Existing sampling algorithms typically
require many iterative steps to produce high-quality samples, leading to high com-
putational costs that limit their practicality in time-sensitive or resource-constrained
settings. In this work, we introduce consistent diffusion samplers, a new class
of samplers designed to generate high-fidelity samples in a single step. We first
propose Consistency-Distilled Diffusion Samplers (CDDS), which demonstrates
that consistency distillation can be accomplished within sampling contexts in the
absence of pre-collected training datasets. To eliminate the need for a pre-trained
sampler, we further propose Self-Consistent Diffusion Samplers (SCDS), which
performs self-distillation during training. SCDS learns to perform diffusion sam-
pling and to skip intermediate steps via a self-consistency loss. Through extensive
experiments on a variety of synthetic and real-world unnormalized distributions,
we show that our approaches yield high-fidelity samples using less than 1% of the
network evaluations required by traditional diffusion samplers.

1 Introduction

Sampling from densities of the form

Ptarget = %a with Z :/ p(X)dX (M
RD

with p evaluable pointwise but Z intractable, is a central problem in machine learning [21} [30]
and statistics [3| [31], and has applications in scientific fields like physics [1, 33} 53], chemistry
[17, 23 [24]], and many other fields involving probabilistic models.

Many established sampling algorithms are inherently iterative, with the accuracy of the final sam-
ples depending heavily on the number of steps. Classical Markov chain Monte Carlo (MCMC)
methods asymptotically converge to the target distribution with an infinite number of steps [27,39].
Nonetheless, the finite number of feasible steps in real-world applications means that MCMC can
only provide an approximation and cannot guarantee an exact solution. As an improvement, more
recent diffusion-samplers 7,150, 155) guarantee convergence in a finite number of steps. However, they
often necessitate hundreds of iterations to yield high-quality samples. Such iterative samplers tend to
suffer from slow mixing, making them still impractical for use in large models and resource-limited
scenarios.

From another perspective, recent work on diffusion generative models [22, 44} 47, 48] has demon-
strated the feasibility of fewer-step sampling. This can be achieved using knowledge distillation
[41, 46] or consistency training [46]], potentially enabling even single-step generation. However,
directly applying the distillation techniques to distillate existing diffusion samplers is challenging,
as it often requires large datasets of samples that are expensive to collect in practice. Moreover, the

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36

37
38
39
40
41
42
43
44
45
46

47
48

49
50
51
52

53
54

55

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82

learning targets of diffusion samplers and consistency training are conflicted in some aspects. These
make reducing the sampling steps of diffusion samplers a challenging problem.

In this paper, we propose consistent diffusion samplers to produce high-quality samples in a single
step. We first show that diffusion-based samplers can be consistently distilled into single-step diffusion
samplers and propose the Consistency-Distilled Diffusion Samplers (CDDS) approach. Instead of
storing a large dataset of fully diffused samples, CDDS exploits incomplete trajectories and noisy
samples encountered during the diffusion process, hence reducing the unnecessary costs. We further
introduce the Self-Consistent Diffusion Sampler (SCDS) method that does not require a pretrained
diffusion sampler. Instead, it fully amortizes exploration by jointly learning both diffusion sampling
and large cut off steps that match the outcome of paths of small steps. This enables single-step
sampling yet retains the option to refine samples through multiple iterations if desired, subsuming
existing diffusion-based approaches. Our contributions can be summarized as follows:

* We show that diffusion-based samplers for unnormalized distributions can be effectively distilled
into single-step consistent samplers without pre-collecting large datasets of samples.

* We introduce a self-consistent diffusion sampler that learns to perform single-step sampling by
jointly training diffusion-based transitions and large shortcut steps via a self-consistency criterion.
This method only trains one neural network and does not require pretrained samplers or high-quality
datasets.

» Through extensive evaluations on synthetic and real unnormalized distributions, we demonstrate
that our method delivers competitive sample quality while drastically reducing sampling steps.

2 Related Work

Monte Carlo-based Samplers. Monte Carlo-based Samplers, such as Markov chain Monte Carlo
(MCMCO), are a classical approach for sampling from unnormalized target densities. The key idea is to
construct a Markov chain whose stationary distribution matches the target distribution [10]. Prominent
examples include the Metropolis-Hastings algorithm [20, 29], Gibbs sampling [19], and Langevin
dynamics [35}40]. By exploiting geometric structure in the target distribution, Hamiltonian Monte
Carlo [10} 112} 114} 27]] often leads to more efficient exploration. To address scalability challenges in
high-dimensional or large-dataset scenarios, stochastic gradient MCMC variants [12,152/156,57] have
been introduced. Although these MCMC methods reduce per-step computational costs or improve
mixing, they remain inherently iterative, requiring many transitions to yield high-quality samples.

Diffusion-based Samplers. An alternative viewpoint frames sampling as an optimal control task
[[7, 137, 138} 155]], where controlled stochastic differential equations transport an initial distribution
to the target via a Schrodinger bridge [42) 43]. This approach has recently motivated numerous
diffusion-based sampling methods [[11} 13} |18} 136}50]. Further improvements have been explored
through Hamiltonian dynamics [8], intermediate resampling strategies [[1 1], and physics-informed
neural networks to evolve densities [49]. Recent methods such as CMCD [51] jointly optimize
forward and backward diffusion dynamics. Additionally, theoretical connections between GFlowNets
[4}15] and diffusion-based sampling have been investigated [6,54]. For an extensive review of relevant
metrics and baseline samplers, see [9]. Current diffusion methods partially amortize sampling costs
in training but still require iterative inference-time generation. In this work, we fully amortize
exploration during training, enabling efficient single-step sampling at inference.

Consistent Generative Models. Recent work in generative modeling has introduced the notion
of consistency. Consistency models [26] 45| 46| learn direct mapping from any intermediate state
to the terminal state. Progressive distillation [28l 41]] incrementally distills a trained diffusion
model into a more efficient version that takes half as many steps. Shortcut models [[16] apply this
distillation principle during training, enabling direct learning of efficient transitions without relying
on a pretrained teacher. We extend this line of work to the setting of sampling from unnormalized
densities, assuming only pointwise access to the target density p, without requiring data samples.

84
85

86

87
88
89

90
91

92
93
94

95
96
97
98
99
100

101
102

103

104

105
106

107

108
109
110

111
112
113

114

115
116
117
118

119
120

3 Preliminaries: Sampling via Controlled Stochastic Processes

Diffusion samplers aim to draw samples from a complex target density parget = p/Z by transporting
them from a simpler prior density ppior. We consider forward and reverse-time stochastic processes
on R? over a time interval [0, T}, each described by the following SDEs:

dXs = (u+ ou)(Xs, s)ds + o(s)dW,, Xg ~, 2)
dXs = (—p+0ov)(Xs, T — s)ds + o(T — s)dW,, Xg~ T, 3)

where u,v € U C C(R? x [0, T], R%) are control functions, 1 € C(R x [0, T],R?) is a linear drift,
o € C([0,T],R) is the diffusion coefficient, and dW, denote forward Brownian increments. We
seek v and v such that (2)) and (3) become time-reversal counterparts.

Let P“™ and P”" be the path measures induced by (2) and (3), respectively. Consider a divergence
D : P xP — Ry. We aim to solve the optimization problem:

u*,v* € argmin D(P*™ | P"7). 4)
u,veU
When the divergence D reaches its minimum of zero in (@), the marginal distribution at terminal time

matches exactly, IP“%’7r = 7. Consequently, by selecting m = pprior and T = Piarget, ONE can generate
samples from the target distribution pgarget through simulating (2) with the optimal control u*.

Nelson’s identity provides a local characterization of optimality conditions [2, [15} [32]]. It states
that the forward path measure P*'™ coincides with the reverse-time measure P”" if and only if
the forward drift can be expressed as the backward drift adjusted by the scale score u(:,s) =
v(+,) + o(s)V1og P (-). In practice, the marginal distributions P*'" s are generally intractable.
Therefore, we typically approximate solutions to (4)) by parameterizing the control u with a neural
network uy. Training these models typically proceeds through the following iterative steps:

1. Simulate a batch of M trajectories {(Xs(i))ogng}, i = 1,..., M, using the generative
process (2).
2. Compute the divergence measure and its gradient with respect to the parameters 6.

3. Update the parameters 6 accordingly, and repeat the process until convergence.

The Kullback-Leibler (KL) [7, 150, 155)] and the log-variance (LV) divergences are common choices
[6} 134} 138]]:

Dicu (P | Q)(X) = B [log Gt () G

HlogZ, Diy(P|Q(X) =V [log £ ()]

The likelihood ratio appearing in (5) is given explicitly by the Radon-Nikodym derivative:

dp* Pprior (Xg)

T B T
log —5+ :/ (u+v)~(ua+u+V~(UU—u))ds+/ (u+v)dWs+log 7o (6)
0 0 ptarget(XT)

dP 2
where X is the trajectory obtained by simulating the forward SDE (2) using the parameterized control
ug. The log normalization constant from the target density disappears upon taking gradients, making
this a practical objective for training. See [7]] and Appendix A.2 of [38]] for detailed derivations.

Once trained, the optimized control ug allows generation of samples from p;,,ge¢ through forward
simulations of (2). In practice, this continuous-time process must be discretized into finite steps
0=t <ty <--- <ty ="17T,introducing a trade-off between computational cost and accuracy.

4 Consistency Distilled Diffusion Samplers

In this section, we present the consistency distilled diffusion sampler (CDDS) method to solve
the problem of single-step sampling from unnormalized densities by distillating from a pretrained
sampler. Concretely, our goal is to learn a consistency function f : (X;,¢) — X, which maps any
intermediate state X; directly to a sample X7 from the target distribution.

A straightforward method is to first appoximate a dataset by simulating the generative SDE in
and producing samples { X%}, and then applying existing consistency distillation or consistency

121
122
123

124
125
126

127
128

129
130

131
132
133
134

135
136
137

138
139
140
141

142

143
144
145
146

147
148
149
150

Algorithm 1 CDDS Training Algorithm 2 SCDS Training
Input: Model parameters 6, a pre-trained control u, Input: Model parameters 6, weights

learning rate 7 As, Asc

0+ 0 0+ 0

repeat repeat
Sample X ~ pprior and n ~ U{1, N — 1} Sample Xy ~ pprior, d, and ¢
Simulate PF ODE of (2) to get X, and thﬂ Simulate (2) to get Xo.r
£(6,8) « ||for (thﬂ rt), fQ(thvtn)HZ Compute target Xt_L_Qd from
0 0—nVeLl(0,0;u) Compute shortgut Xitod frorp ©
0" + stopgrad(6) Compute sampling loss Lg via

until convergence Compute consistency loss Lsc via (1)

0« Vy ()\sﬁs +)\scﬁsc)
0" + stopgrad ¢
until convergence

training methods [46] to learn the function f. However, this approach is expensive as it necessitates
pre-collecting and storing a large dataset. Moreover, the accumulation of numerical errors arises from
the numerical solver , resulting in significant global error.

To solve the problem, we propose to leverage intermediate states of the pretrained model during each
training iteration. Using these multiple and short intervals among intermediate helps keep the overall
global error small.

During model training, we minimize the discrepancy between the outputs of the consistency function
at the consecutive intermediate states of the probability flow ODE [48] associated with (2)):

ﬁCD(ev 9/1 ’LL)(X) = E |:||f9’ (thJrl) tn-‘rl)) f@(th) tn) H2i|) (7)

where the expectation is over discrete time indices n and 6’ = stopgrad(f) indicates gradient
stopping on the target term. Notably, unlike standard consistency generative models, the states X,

and X, are obtained from partial integrations of the probability flow ODE rather than from real
data samples. Consequently, training CDDS incurs computational costs similar to training traditional
diffusion samplers while substantially accelerating inference. The training procedure is summarized
in Algorithm

If the loss (7) is driven to zero, the learned consistency function recovers the true mapping of the
probability flow ODE, implying that CDDS can achieve arbitrarily accurate single-step sampling in
the limit of sufficiently small integration steps. We formally state this in Theorem I}

Theorem 1. Let fo(Xy,t) be a consistency function parameterized by 0, and let f(X,,t;u) denote
the consistency function of the PF ODE defined by the control u. Assume that fy is L—Lipschitz
continuous. Additionally, assume that for each stepn € {1,2,..., N — 1}, the ODE solver called at
t,, has a local error bounded by O((tp 1 — t,)PT1) for some p > 1. If Lcp(0,0';u) = 0, then:

sup [fo(Xt, tn) = f(Xe,, tnsu)|2 = O((AL)P), ®

where At := max,eq12,... N-1} [tni1 — tnl-

A complete proof is provided in the Appendix. This theoretical result shows that consistency
functions can be distilled from diffusion samplers when only an unnormalized density oracle is
available, enabling principled single-step sampling without requiring access to data from the target
distribution.

Remark. While our distillation approach builds upon the core principles of consistency generative
models, it differs in setting and requirements. Instead of relying on having access to a dataset from
Drarget, OUr method extends consistency distillation to sampling from unnormalized distributions,
making it applicable beyond generative modeling tasks.

151

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175

176

177
178
179

181
182

184

185
186

187

188

189

191

192
193

194

195
196

S Self-Consistent Diffusion Samplers

5.1 Overivew

Even though CDDS demonstrates that single-step sampling is feasible, it requires a pretrained
diffusion sampler for distillation. In this section, we further introduce self-consistent diffusion
sampler (SCDS) that achieves single-step sampling without requiring the pre-trained diffusion
sampler. The key idea is to adapt consistency training into the diffusion-based sampler training.
However, the challenge arises from merging two perspectives: diffusion-based samplers learn a
time-dependent control function that steers an SDE from a simple prior distribution to the target
distribution. Typically, the control is trained on a fixed schedule (e.g., /N small increments of length
T/N along a discretized time axis), requiring multiple steps. In contrast, consistency models learn
a direct mapping from any intermediate state on an ODE to the terminal state. In other words, at
time ¢ the model is implicitly taught to jump a large step of length 7' — ¢. Crucially, consistency
training in the original formulation [45] 46| assumes the availability of intermediate states generated
by perturbing real data; in the context of sampling from unnormalized densities, however, we cannot
generate these states directly because we lack data and thus must learn both sampling and self-
distillation simultaneously. Furthermore, as discussed in Section[3] diffusion-based samplers typically
parameterize the control function, whose purpose differs fundamentally from that of the consistency
function used in standard consistency training.

To reconcile these perspectives and overcome this challenge, we propose conditioning the control
function ug (X, t, d) on both the current time ¢ and the desired step size d. By adjusting d, the model
can adapt between short incremental steps (as in standard diffusion samplers) and large jumps (as in
consistency models). This design amortizes the learning of both small and large transitions into one
network and recovers consistency models’ single-step sampling by setting d = T" — ¢ and diffusion
sampling by setting d = T'/N. In doing so, we avoid training with two contrasting learning targets,
hence making it feasible to train a single-step diffusion sampler from scratch.

5.2 Training

Learning the base case d = T/N. In standard generative modeling scenarios (where a dataset is
available), the base case d = T//N can be learned directly from data using deterministic trajectories
[25, [16]. These trajectories provide explicit guidance toward high-density regions of the target
distribution.

However, when working with an unnormalized density, a key challenge is discovering high-probability
regions [[11]. Thus, the process is particularly well-suited for learning the base case as the
Brownian motion helps probe different parts of the space, allowing the model to learn and adapt
itself to the target distribution. By optimizing ug(X;,t,d = T/N) under (3)), we ensure that the
model can generate meaningful transitions from the prior to these regions of interest, forming a strong
foundation for self-consistent learning at larger step sizes.

Enforcing self-consistency. To ensure that the step-size-conditioned control function ug (X4, ¢, d)
remains accurate across varying step sizes, we introduce a self-consistency loss. The key idea is that
taking a large step should yield the same result as taking multiple smaller steps. To do so, we impose
a consistency condition on the Euler discretization of the probability flow ODE associated with the
forward process (3)). Specifically, we require that a single large step of size 2d,

Xivoa = X¢ +2d (n+ Loug) (Xy,t,2d),)

yields the same result as two smaller steps of size d. The intermediate state after the first small step is
computed as
Xt+d = Xt +d (/14 + %UUG’) (Xtatvd)v

and the final state after the second small step is
Xiyod = Xt+d+d(ﬂ+ %oue/) (Xtya,t +d,d), (10)

where 8’ = stopgrad(6). The self-consistency objective is a simple least square minimization
problem:

Lsc=E “\thd - Xt+2dH2] ; (11)

197

198
199
200

201
202
203
204

206

207

209

210
211
212
213

214

215
216
217
218
219
220
221

222

223
224
225
226

Pprior Ptarget
t=1, > =T

PF ODE

Figure 1: Graphical illustration of the training procedure for SCDS over the path space. First, the
SDE is simulated (white) to optimize (3). Next, a timestep ¢ and a step size d are randomly
sampled. From X; on the simulated SDE trajectory, we execute two consecutive steps of size d
(red) along the probability flow ODE trajectory (pink) of (2), obtaining the target X;,24. Finally,
the large step of size 2d (orange) predicts Xt+2d directly from X}, and the self-consistency loss

minimizes the squared difference between X, o4 and the two-step target X, o4, ensuring multi-scale
consistency.

where the expectation is taken over time indices and step sizes drawn from the simulated trajectories.

This loss encourages the model to correct for numerical errors when taking large steps, allowing it to
“skip” multiple smaller steps while remaining consistent with the dynamics of the probability flow
ODE.

End-to-end training algorithm. As abovementioned, our training procedure jointly optimizes
two objectives: (i) a sampling loss (3] for the base case d = T'/N, which ensures exploration and
score approximation by simulating the SDE (2), and (ii) the self-consistency loss enforced on
the probability flow ODE of (2) for larger steps, which enforces consistency across multiple time
scales. This end-to-end formulation enables the model to fully amortize the cost of sampling into a
single forward pass at inference time.

To enable the recursive halving of steps, we discretize the time interval [0, T'] into N + 1 points,
where NN is chosen as a power of two. The sampling loss is computed by simulating the forward SDE
along this time grid.

For self-consistency training, we sample step sizes d and times ¢ such that d are powers of two
(multiplied by T'/N) dividing the remaining time 7' — ¢. This ensures that from any time ¢, we can
take exactly & steps of size d to reach the terminal state for some integer k. This way, training focuses
on time sequences that are applicable during inference.

To compute the self-consistency loss, we extract X; from the simulated forward SDE. Using X,
and the sampled step size d, we compute the shortcut step Xt+2d using (9) and the two-step target
trajectory X124 using (I0). We then optimize their squared difference via the objective (11),
ensuring that larger steps remain consistent with fine-grained trajectories. The training procedure
is summarized in Algorithm [2 and illustrated in Figure[I, Compared to standard diffusion-based
samplers, which typically require hundreds of evaluations per iteration during training, our method
introduces only 3 additional function evaluations. Thus, the overhead from SCDS training is marginal,
typically amounting to less than a few percent of the total computational cost per iteration.

5.3 Inference.

Few-step sampling. With a well-trained control ug, sampling can be performed in a single step
by drawing from the prior and applying a single Euler update with step size d = T, as shown
in Algorithm [3. This accelerates generation compared to traditional diffusion-based samplers.
Alternatively, our method provides a flexible tradeoff between computational efficiency and sample

227
228

229
230
231
232
233
234
235

237

238
239

240
241
242
243
244

245
246
247
248
249
250
251

252
253
254

255
256
257

259

261
262
263
264

Algorithm 3 Single-Step Sampling with SCDS Algorithm 4 Multi-Step Sampling with SCDS

Input: Trained model ug

Samp]e XO "~ Pprior

Xr <+ Xo+T (,u + %O"U,.g) (X0,0,7)
Return X7

Input: Trained model ug, number of sampling
steps NV

Sample XO ~~ Pprior

Initialize d «+— T/N and t < 0

fork=1,...,Ndo
Xppg+— X +d (,u + %oua) (X4, t,d)
t—t+d

end for

Return X

quality, allowing for multi-step refinement when needed, thus recovering standard diffusion-based
sampling. This iterative procedure is detailed in Algorithm 4]

Approximating the normalization constant. Beyond sample generation, a common goal in
probabilistic inference is to estimate the normalization constant Z of the target density. Because
SCDS is formulated within the optimal control framework of stochastic sampling [7]], it inherits a
natural estimator of Z through the Radon—Nikodym derivative between forward and backward path
measures. By discretizing the likelihood ratio in (6) along simulated trajectories, SCDS enables
efficient estimation of log Z. In contrast, consistency-based generative models [[16} 46] are trained
using fully supervised losses on labeled data. As a result, they lack a built-in mechanism to estimate
Z or compute likelihood ratios.

6 Experiments

We empirically evaluate the sampling efficiency and effectiveness of the proposed CDDS and SCDS
across diverse standard benchmarks in Bayesian inference and sampling [9].

Specifically, we consider Bayesian posterior inference tasks, such as Ionosphere (35-D) and the
high-dimensional Log-Gaussian Cox Process (LGCP) (1600-D), alongside representative synthetic
targets: a Gaussian Mixture Model (GMM) of nine components in 2-D, a 2-D Many-Well with 32
well-separated modes (MW54), the widely-studied Funnel distribution in ten dimensions, and a 50-D
Many-Well distribution with 32 modes (MW52). Details are provided in Appendix

We report the Sinkhorn distance W2, the Effective Sample Size (ESS), and the absolute estimation
error of the log normalization constant A log Z for tasks with accessible ground-truth samples. For
the real-world Ionosphere and LGCP tasks, we report the evidence lower bound (ELBO). ELBO,
ESS and Alog Z rely on importance weights. With N > 1 we use the discretized RND of (6); for
N =1 the running-cost term vanishes and the weight reduces to the boundary likelihood, which can
potentially inflate ELBO scores. Hence we regard W,% and A log Z as primary quality indicators, and
report ELBO only when ground truth samples are not available.

We benchmark our methods against established diffusion-based samplers: the Path Integral Sampler
(PIS) [55]], the Denoising Diffusion Sampler (DDS) [50], both trained with the KL divergence, and
the Time-Reversed Diffusion Sampler (DIS) [7] trained with log-variance divergence.

Throughout our experiments, we use a pre-trained DIS as the teacher model for CDDS. Furthermore,
since the optimization problem (4) may admit infinitely many solutions, we fix the noising process
in SCDS to ensure uniqueness of the learned solution, following the same approach as in DIS.
Detailed implementation and hyperparameters are provided in Appendix The code is available
at this repository.

6.1 Results

Single-step sampling. Rows shaded in in Tables|1H2|compare one—step CDDS and SCDS with fully-
discretized (128-256 step) baselines. Several consistent patterns emerge. On the low—dimensional
GMM and MW54 targets, CDDS attains Sinkhorn values with a factor less then double the DIS
baseline. ESS is also two or three orders of magnitude larger than DIS with a single step, illustrating

https://anonymous.4open.science/r/scds-neurips-4051/

265
266
267
268

269
270
271

272
273
274
275
276
277
278
279
280
281
282
283

that distillation corrects most of the degeneracy of naive single-step DIS. The ELBO of CDDS on
Ionosphere and LGCP even exceeds that of every 256-step baseline; we attribute this to the discretized
estimator of the Radon-Nikodym derivative (RND) (6), which for single-step sampling collapses to
the boundary likelihood and can therefore over-estimate evidence.

Without access to a teacher, SCDS learns its own control and offers a trade-off: In one step SCDS
delivers usable samples (e.g. GMM, Funnel) but is generally less accurate than CDDS because it has
to discover the score field from scratch.

Table 1: Synthetic-benchmark results. Each task block reports the Sinkhorn distance (W?/ 1), the
effective sample size (ESS 1), and absolute log-normalization error (|Alog Z| |).

PIS DDS DIS DIS CDDS (ours) SCDS (ours)
NFE | 128 128 128 1 1 1
GMM (2D)

W?/ 1.7946 0.0898 0.0203 0.0559 0.0313 0.0478

ESS 1x10~° 0.0065 0.8054 0.00057 0.3395 0.0504

|[Alog Z| 2.1806 1.6819 0.0899 14.7669 1.5717 1.0743
MW54 (5D)

W?/ 0.1377 0.1366 0.1230 6.2804 0.2815 0.3913

ESS 0.0664 0.0051 0.2677 1.7x107° 0.0442 2.1x107°

|Alog Z| 1.9974 2.4154 1.2056 6766.2891 1.0966 11.2524
Funnel (10D)

W?/ 6.0731 5.8600 5.1755 10.5224 8.8849 5.4922

ESS 1x107® 0.0582 0.1305 4.9x107° 5.1x107° 0.00014

|Alog Z| 0.4381 0.5641 0.6407 00 1.3316 10.3557
MWS52 (50D)

W?/ 6.8035 6.7830 6.8808 31.2532 6.1764 7.1110

ESS 1x107° 04412 0.0028 1x107° 5.7x107° 1x107°

|Alog Z| 424502 424245 39.7814 9116.0713 63.7244 87.7095

Table 2: ELBO () on two real-world benchmarks. Shaded columns denote single—step inference.

PIS DDS DIS SCDS DIS CDDS (ours) SCDS (ours)
NFE | 256 256 256 256 1 1 1
Ionosphere (35D) —39.3 —1510.3 —77.4 —73.7 —3252.7 —27.5 —567.3
LGCP (1600D) 397.5 314.8 365.6 103.9 —3.09x10° 1118.0 —4579.7

Cost-benefit analysis of single-step inference. Figure|2 reports the total number (training plus
inference) of network-function evaluations (NFEs) for SCDS versus PIS, DDS, and DIS, that use
the same N-step discretization during training. SCDS adds only three NFEs per training iteration
but replaces the entire N-step Euler integration with a single forward pass at test time. With batch
size B and I training iterations, the extra training cost is 3/ B NFEs, while every sample produced
at inference saves N — 1 NFEs; hence the break-even point is Spresx = 3IB/(N — 1). For the
2-D GMM experiment (N = 128, B = 512, I = 10,000) this yields Spreax ~ 1.2 x 10%. We
generated five million test samples to obtain Table (1] thereby saving about 620 million NFEs relative
to the baselines. In the 1600-D LGCP task the model is trained longer but with smaller batches
(N = 256, B = 64, I = 50,000), giving Spreak = 3.7 X 10%, and generating one million samples
saves over half a billion NFEs. Training cost is thus a fixed, modest overhead that is quickly amortised
in realistic simulations.

284
285
286
287
288

289
290
291
292

294

295

296

297

298
299
300
301

303
304

1e9 GMM (2D)

1.2
- 1.01
© 0.8
(%]
& 0.6
2

g 0.4

Ab:
\

0.2 -
0.01

~
T

o

o

L 40

N
o
Rel. Saving (%)

D s
103 104 10°
Generated Samples

10°

107

Abs. NFE Saved

1e9

LGCP (1600D)

x

~
T

[=)]

o

ey
o
Rel. Saving (%)

N
o

T
o

1 == =N =
T T

10°

104 10° 10°
Generated Samples

107

Figure 2: Absolute (yellow) and relative (red, dashed) network-function evaluations (NFE) savings
of SCDS over the baseline diffusion samplers PIS, DDS, and DIS as a function of the number of
generated samples (log scale). Left: 2-D GMM training regime; Right: 1600-D LGCP regime.

MWwW54 Funnel

] 0.40
0.09 —8— SCDS

0.08 -
0.07 A
0.06 -
0.05 A
0.04 A

0.351
0.301

~
% 0.25

0.201

PIS (128)
——- DDS (128)
—-—- DIS (128)

0.03 1 0.151

0.02 - :

Figure 3: Sinkhorn distance as a function of the number of diffusion steps for SCDS, illustrating the
flexible trade-off between computational cost and sample quality. Horizontal dashed lines represent
baseline diffusion samplers with 128 steps.

Practically, we recommend using CDDS when a reliable pretrained sampler is available and the goal
is single-step generation, as CDDS training is cheaper than SCDS yet could achieve comparable
single-step quality. If no pretrained sampler exists, SCDS provides a more economical and flexible
solution, as it learns directly from the unnormalized target and allows adjusting the number of
inference steps to trade computational resources for improved sample quality.

Trade compute for sample quality. Figure [3 shows how the Sinkhorn distance decays as we
allocate more network-function evaluations (NFEs) to SCDS at inference time. On the 2-D GMM
and the 5-D Many-Well tasks the curve is strictly monotone: with only 4-8 Euler updates SCDS
already matches the accuracy of DDS, and at 32-64 steps it recovers the DIS reference obtained with
128 steps. The same trend is visible on the 10-D Funnel, but with a mild “bump” at 32 steps. SCDS
allows practitioners to flexibly adjust the computational budget, progressively improving sample
quality until it matches the accuracy of traditional multi-step diffusion samplers.

Additional results, comparisons with other baselines, and ablations are provided in Appendix

7 Conclusion

We introduced two novel approaches for efficient sampling from unnormalized target distributions:
consistency-distilled diffusion samplers (CDDS) and the self-consistent diffusion sampler (SCDS).
CDDS uses consistency distillation without generating a large dataset of samples. SCDS requires no
pre-trained samplers and simultaneously learns to sample high-density regions and to take large steps
across the path space. Our empirical results across a range of benchmarks demonstrated that both
methods achieve competitive accuracy with as few as one or two steps. These findings highlighted
the potential of consistency-based methods for sampling from unnormalized densities.

305

306
307

308
309

310
311

312
313
314

315
316

317
318
319

320
321

322
323

324
325
326

327
328

329
330
331

332
333

334
335

336
337

338
339

340
341

342
343

344

346
347
348

349
350

References

[1] M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based Generative Models for Markov
chain Monte Carlo in Lattice Field Theory. Physical Review D, 100(3):034515, 2019.

[2] B. D. O. Anderson. Reverse-time Diffusion Equation Models. Stochastic Processes and their
Applications, 12:313-326, 1982.

[3] C. Andrieu, N. de Freitas, A. Doucet, and M. 1. Jordan. An Introduction to MCMC for Machine
Learning. Machine Learning, 50(1-2):5-43, 2003.

[4] E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio. Flow Network based Generative
Models for Non-Iterative Diverse Candidate Generation. In Advances in Neural Information
Processing Systems, 2021.

[5] Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio. GFlowNet Foundations.
Journal of Machine Learning Research, 24(210):1-55, 2023.

[6] J. Berner, L. Richter, M. Sendera, J. Rector-Brooks, and N. Malkin. From Discrete-Time
Policies to Continuous-Time Diffusion Samplers: Asymptotic Equivalences and Faster Training.
arXiv preprint arXiv:2501.06148, 2025.

[7] J. Berner, L. Richter, and K. Ullrich. An Optimal Control Perspective on Diffusion-based
Generative Modeling. Transactions on Machine Learning Research, 2024.

[8] D. Blessing, J. Berner, L. Richter, and G. Neumann. Underdamped Diffusion Bridges with
Applications to Sampling. In International Conference on Learning Representations, 2025.

[9] D. Blessing, X. Jia, J. Esslinger, F. Vargas, and G. Neumann. Beyond ELBOs: A Large-Scale
Evaluation of Variational Methods for Sampling. In International Conference on Machine
Learning, 2024.

[10] S.P. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng. Handbook of Markov Chain Monte
Carlo: Hardcover. CHANCE, 25:53-55, 2012.

[11] J. Chen, L. Richter, J. Berner, D. Blessing, G. Neumann, and A. Anandkumar. Sequential
Controlled Langevin Diffusions. In International Conference on Learning Representations,
2025.

[12] T. Chen, E. Fox, and C. Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In International
Conference on Machine Learning, 2014.

[13] A. Doucet, W. Grathwohl, A. G. Matthews, and H. Strathmann. Score-based Diffusion Meets
Annealed Importance Sampling. In Advances in Neural Information Processing Systems, 2022.

[14] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters B,
195(2):216-222, 1987.

[15] H. Follmer. Time Reversal on Wiener Space. In Stochastic Processes—Mathematics and
Physics, pages 119-129. Springer, 1986.

[16] K. Frans, D. Hafner, S. Levine, and P. Abbeel. One Step Diffusion via Shortcut Models. In
International Conference on Learning Representations. ICLR, 2025.

[17] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Applications.
Academic Press, Amsterdam, The Netherlands, 2002.

[18] T. Geffner and J. Domke. Langevin Diffusion Variational Inference. In International Conference
on Artificial Intelligence and Statistics, 2023.

[19] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(6):721-741, 1984.

[20] W. K. Hastings. Monte Carlo Sampling Methods using Markov Chains and their Applications.
Biometrika, 57(1):97-109, 1970.

10

351
352

353
354

355
356
357

358
359

360
361

362
363

364
365

366
367
368

369
370
371

372

373

374
375

376
377

378
379
380

382

383
384

385
386

387
388

389
390

391
392

393
394

[21] J. M. Hernandez-Lobato and R. Adams. Probabilistic Backpropagation for Scalable Learning
of Bayesian Neural Networks. In International Conference on Machine Learning, 2015.

[22] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems, 2020.

[23] L. Holdijk, Y. Du, F. Hooft, P. Jaini, B. Ensing, and M. Welling. Stochastic Optimal Control
for Collective Variable Free Sampling of Molecular Transition Paths. Advances in Neural
Information Processing Systems, 2024.

[24] S. A. Hollingsworth and R. O. Dror. Molecular Dynamics Simulation for All. Neuron,
99(6):1129-1143, 2018.

[25] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow Matching for Generative
Modeling. In International Conference on Learning Representations, 2023.

[26] C.Lu and Y. Song. Simplifying, Stabilizing and Scaling Continuous-time Consistency Models.
In International Conference on Learning Representations, 2025.

[27] D.J. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University
Press, 2003.

[28] C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, and T. Salimans. On Distillation
of Guided Diffusion Models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

[29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of
State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6):1087—
1092, 1953.

[30] R. M. Neal. Bayesian Learning for Neural Networks. 1995.
[31] R. M. Neal. Annealed Importance Sampling. Statistics and Computing, 11:125-139, 2001.

[32] E. Nelson. Dynamical Theories of Brownian Motion. Princeton University Press, Princeton, NJ,
1967.

[33] F. Noé, J. Kohler, and H. Wu. Boltzmann Generators — Sampling Equilibrium States of
Many-Body Systems with Deep Learning. Science, 365, 2019.

[34] N. Niisken and L. Richter. Solving high-dimensional Hamilton—Jacobi—Bellman PDEs using
neural networks: perspectives from the theory of controlled diffusions and measures on path
space. Partial Differential Equations and Applications, 2(4):48, 2021.

[35] G. Parisi. Correlation Functions and Computer Simulations. Nuclear Physics B, 180(3):378-384,
1981.

[36] A. Phillips, H.-D. Dau, M. J. Hutchinson, V. D. Bortoli, G. Deligiannidis, and A. Doucet.
Particle Denoising Diffusion Sampler. In International Conference on Machine Learning, 2024.

[37] L. Richter. Solving high-dimensional PDEs, approximation of path space measures and
importance sampling of diffusions. Doctoral dissertation, BTU Cottbus-Senftenberg, 2021.

[38] L. Richter and J. Berner. Improved Sampling via Learned Diffusions. In International Confer-
ence on Learning Representations, 2024.

[39] C. P. Robert. Convergence Control Methods for Markov Chain Monte Carlo Algorithms.
Statistical Science, 10(3):231-253, 1995.

[40] P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian Dynamics as Smart Monte Carlo
Simulation. The Journal of Chemical Physics, 69(10):4628-4633, 11 1978.

[41] T. Salimans and J. Ho. Progressive Distillation for Fast Sampling of Diffusion Models. In
International Conference on Learning Representations, 2022.

11

395
396
397

398
399

400
401
402

403
404

405

407
408

409
410
411

412
413
414

415
416

417
418
419

420
421

422
423

424
425
426

427
428

429
430
431

432
433

[42] E. Schrodinger. Uber die Umkehrung der Naturgesetze. Sitzungsberichte der Preussischen
Akademie der Wissenschaften Berlin, Physikalisch-Mathematische Klasse, pages 144—-153,
1931.

[43] E. Schrddinger. Sur la Théorie Relativiste de 1'Electron et I’ Interprétation de la Mécanique
Quantique. Annales de I’Institut Henri Poincaré, 2:269-310, 1932.

[44] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep Unsupervised Learning
Using Nonequilibrium Thermodynamics. In International Conference on Machine Learning,
2015.

[45] Y. Song and P. Dhariwal. Improved Techniques for Training Consistency Models. In Interna-
tional Conference on Learning Representations, 2024.

[46] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency Models. In International
Conference on Machine Learning, 2023.

[47] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
Advances in Neural Information Processing Systems, 2019.

[48] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based
Generative Modeling through Stochastic Differential Equations. In International Conference on
Learning Representations, 2021.

[49] J. Sun, J. Berner, L. Richter, M. Zeinhofer, J. Miiller, K. Azizzadenesheli, and A. Anandku-
mar. Dynamical Measure Transport and Neural PDE Solvers for Sampling. arXiv preprint
arXiv:2407.07873, 2024.

[50] F. Vargas, W. S. Grathwohl, and A. Doucet. Denoising Diffusion Samplers. In International
Conference on Learning Representations, 2023.

[51] F. Vargas, S. Padhy, D. Blessing, and N. Niisken. Transport Meets Variational Inference:
Controlled Monte Carlo Diffusions. In International Conference on Learning Representations,
2024.

[52] M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
International Conference on Machine Learning, 2011.

[53] D. Wu, L. Wang, and P. Zhang. Solving Statistical Mechanics using Variational Autoregressive
Networks. Physical Review Letters, 122(8):080602, 2019.

[54] D. Zhang, R. T. Q. Chen, C.-H. Liu, A. Courville, and Y. Bengio. Diffusion Generative Flow
Samplers: Improving Learning Signals through Partial Trajectory Optimization. In International
Conference on Learning Representations, 2024.

[55] Q. Zhang and Y. Chen. Path Integral Sampler: A Stochastic Control Approach For Sampling.
In International Conference on Learning Representations, 2022.

[56] R. Zhang, A. F. Cooper, and C. De Sa. AMAGOLD: Amortized Metropolis Adjustment for
Efficient Stochastic Gradient MCMC. In International Conference on Artificial Intelligence
and Statistics, 2020.

[57] R. Zhang, C. Li, J. Zhang, C. Chen, and A. G. Wilson. Cyclical Stochastic Gradient MCMC for
Bayesian Deep Learning. In International Conference on Learning Representations, 2020.

12

434

435
436
437
438

440
441

442

443
444

445

446
447
448
449

450
451
452
453
454

456
457
458

459

460

461

462

463

467
468

469
470
471

472
473
474

475
476

477
478

479

480

481

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions are detailed in Sec. [d]and[5] supported by experiment results in
Sec. [6l

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

13

482
483
484

485
486
487
488

490
491
492
493
494

496
497
498
499
500

502
503

504
505

507
508
509
510
511
512

513
514

517

518
519
520
521
522
523
524
525
526
527

528

533
534
535

Justification: Sec. 4|explicitly discusses the dependency of CDDS on a pre-trained control,
and Sec. [5 clearly acknowledges that our approach introduces a modest increase in training
time relative to baseline methods. We also included a Limitation section in Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See Appendix [A.4]for proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly specifies model architectures, training procedures, hyper-
parameters, and evaluation metrics required to reproduce the main experimental results
(Sections 4] [and Appendix [A.2). The code is available at|this repository.

14

https://anonymous.4open.science/r/scds-neurips-4051/

536

537

538
539
540
541
542
543
544
545

547
548
549
550
551
552
553
554
555
556
557
558

559
560

562

563
564
565
566
567

568

569

571

572

573

574

575

576
577

578

580
581

582
583

585
586

588
589

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is available at this repository.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

15

https://anonymous.4open.science/r/scds-neurips-4051/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

590 * At submission time, to preserve anonymity, the authors should release anonymized
591 versions (if applicable).

592 * Providing as much information as possible in supplemental material (appended to the
593 paper) is recommended, but including URLSs to data and code is permitted.

594 6. Experimental setting/details

595 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
596 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
597 results?

598 Answer: [Yes]

599 Justification: Experiments and hyper-parameters are detailed in Appendix

600 Guidelines:

601 * The answer NA means that the paper does not include experiments.

602 * The experimental setting should be presented in the core of the paper to a level of detail
603 that is necessary to appreciate the results and make sense of them.

604 * The full details can be provided either with the code, in appendix, or as supplemental
605 material.

606 7. Experiment statistical significance

607 Question: Does the paper report error bars suitably and correctly defined or other appropriate
608 information about the statistical significance of the experiments?

609 Answer: [Yes]

610 Justification: We conducted multiple independent simulation runs for all experiments and
611 found standard deviations consistently negligible relative to the reported means. To maintain
612 readability, these small standard deviations are omitted from the main tables but are reported
613 in Appendix [A.3]

614 Guidelines:

615 * The answer NA means that the paper does not include experiments.

616 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
617 dence intervals, or statistical significance tests, at least for the experiments that support
618 the main claims of the paper.

619 * The factors of variability that the error bars are capturing should be clearly stated (for
620 example, train/test split, initialization, random drawing of some parameter, or overall
621 run with given experimental conditions).

622 * The method for calculating the error bars should be explained (closed form formula,
623 call to a library function, bootstrap, etc.)

624 * The assumptions made should be given (e.g., Normally distributed errors).

625 ¢ It should be clear whether the error bar is the standard deviation or the standard error
626 of the mean.

627 e It is OK to report 1-sigma error bars, but one should state it. The authors should
628 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
629 of Normality of errors is not verified.

630 * For asymmetric distributions, the authors should be careful not to show in tables or
631 figures symmetric error bars that would yield results that are out of range (e.g. negative
632 error rates).

633 * If error bars are reported in tables or plots, The authors should explain in the text how
634 they were calculated and reference the corresponding figures or tables in the text.

635 8. Experiments compute resources

636 Question: For each experiment, does the paper provide sufficient information on the com-
637 puter resources (type of compute workers, memory, time of execution) needed to reproduce
638 the experiments?

639 Answer: [Yes]

16

640
641
642
643

644

645

647
648

650
651
652

653

654
655

656

657
658

659

660
661
662
663
664

665

666
667

668

669

670

671

672
673

674
675
676
677
678
679
680
681
682
683
684

685
686
687
688
689
690
691
692

10.

Justification: We specify the neural network architecture and explicitly report the number
of network function evaluations for each task, a standard measure to estimate computa-
tional cost. Additional details regarding the compute infrastructure and hardware used for
experiments are provided in Appendix [A.2]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This paper focuses on accelerating diffusion samplers without any practices
that directly violate NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix [A.6]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

17

https://neurips.cc/public/EthicsGuidelines

693

694
695
696

697

698

699

700

704

710

71
712
713

714

715
716

717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

733

734
735

739

740
741
742

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new dataset or pretrained model is released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper reuses some datasets and codes from previous work, and they have
been cited in the paper. The license and terms of use are also properly respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

18

paperswithcode.com/datasets

743
744
745
746

747

764

768

769

770

771

772

773
774
775
776
777
778
779
780

781

782
783
784
785

786

787
788

789

790
791
792
793

14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries: Sampling via Controlled Stochastic Processes
	Consistency Distilled Diffusion Samplers
	Self–Consistent Diffusion Samplers
	Overivew
	Training
	Inference.

	Experiments
	Results

	Conclusion
	Appendix
	Implementation Details
	Experiment Details
	Additional Results
	Proofs
	Limitations
	Broader Impact

