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Abstract

Sampling from unnormalized target distributions is a fundamental yet challenging1

task in machine learning and statistics. Existing sampling algorithms typically2

require many iterative steps to produce high-quality samples, leading to high com-3

putational costs that limit their practicality in time-sensitive or resource-constrained4

settings. In this work, we introduce consistent diffusion samplers, a new class5

of samplers designed to generate high-fidelity samples in a single step. We first6

propose Consistency-Distilled Diffusion Samplers (CDDS), which demonstrates7

that consistency distillation can be accomplished within sampling contexts in the8

absence of pre-collected training datasets. To eliminate the need for a pre-trained9

sampler, we further propose Self-Consistent Diffusion Samplers (SCDS), which10

performs self-distillation during training. SCDS learns to perform diffusion sam-11

pling and to skip intermediate steps via a self-consistency loss. Through extensive12

experiments on a variety of synthetic and real-world unnormalized distributions,13

we show that our approaches yield high-fidelity samples using less than 1% of the14

network evaluations required by traditional diffusion samplers.15

1 Introduction16

Sampling from densities of the form17

ptarget =
ω

Z
, with Z =

∫

RD

ω(X)dX (1)

with ω evaluable pointwise but Z intractable, is a central problem in machine learning [21, 30]18

and statistics [3, 31], and has applications in scientific fields like physics [1, 33, 53], chemistry19

[17, 23, 24], and many other fields involving probabilistic models.20

Many established sampling algorithms are inherently iterative, with the accuracy of the final sam-21

ples depending heavily on the number of steps. Classical Markov chain Monte Carlo (MCMC)22

methods asymptotically converge to the target distribution with an infinite number of steps [27, 39].23

Nonetheless, the finite number of feasible steps in real-world applications means that MCMC can24

only provide an approximation and cannot guarantee an exact solution. As an improvement, more25

recent diffusion-samplers [7, 50, 55] guarantee convergence in a finite number of steps. However, they26

often necessitate hundreds of iterations to yield high-quality samples. Such iterative samplers tend to27

suffer from slow mixing, making them still impractical for use in large models and resource-limited28

scenarios.29

From another perspective, recent work on diffusion generative models [22, 44, 47, 48] has demon-30

strated the feasibility of fewer-step sampling. This can be achieved using knowledge distillation31

[41, 46] or consistency training [46], potentially enabling even single-step generation. However,32

directly applying the distillation techniques to distillate existing diffusion samplers is challenging,33

as it often requires large datasets of samples that are expensive to collect in practice. Moreover, the34
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learning targets of diffusion samplers and consistency training are conflicted in some aspects. These35

make reducing the sampling steps of diffusion samplers a challenging problem.36

In this paper, we propose consistent diffusion samplers to produce high-quality samples in a single37

step. We first show that diffusion-based samplers can be consistently distilled into single-step diffusion38

samplers and propose the Consistency-Distilled Diffusion Samplers (CDDS) approach. Instead of39

storing a large dataset of fully diffused samples, CDDS exploits incomplete trajectories and noisy40

samples encountered during the diffusion process, hence reducing the unnecessary costs. We further41

introduce the Self-Consistent Diffusion Sampler (SCDS) method that does not require a pretrained42

diffusion sampler. Instead, it fully amortizes exploration by jointly learning both diffusion sampling43

and large cut off steps that match the outcome of paths of small steps. This enables single-step44

sampling yet retains the option to refine samples through multiple iterations if desired, subsuming45

existing diffusion-based approaches. Our contributions can be summarized as follows:46

• We show that diffusion-based samplers for unnormalized distributions can be effectively distilled47

into single-step consistent samplers without pre-collecting large datasets of samples.48

• We introduce a self-consistent diffusion sampler that learns to perform single-step sampling by49

jointly training diffusion-based transitions and large shortcut steps via a self-consistency criterion.50

This method only trains one neural network and does not require pretrained samplers or high-quality51

datasets.52

• Through extensive evaluations on synthetic and real unnormalized distributions, we demonstrate53

that our method delivers competitive sample quality while drastically reducing sampling steps.54

2 Related Work55

Monte Carlo-based Samplers. Monte Carlo-based Samplers, such as Markov chain Monte Carlo56

(MCMC), are a classical approach for sampling from unnormalized target densities. The key idea is to57

construct a Markov chain whose stationary distribution matches the target distribution [10]. Prominent58

examples include the Metropolis-Hastings algorithm [20, 29], Gibbs sampling [19], and Langevin59

dynamics [35, 40]. By exploiting geometric structure in the target distribution, Hamiltonian Monte60

Carlo [10, 12, 14, 27] often leads to more efficient exploration. To address scalability challenges in61

high-dimensional or large-dataset scenarios, stochastic gradient MCMC variants [12, 52, 56, 57] have62

been introduced. Although these MCMC methods reduce per-step computational costs or improve63

mixing, they remain inherently iterative, requiring many transitions to yield high-quality samples.64

Diffusion-based Samplers. An alternative viewpoint frames sampling as an optimal control task65

[7, 37, 38, 55], where controlled stochastic differential equations transport an initial distribution66

to the target via a Schrödinger bridge [42, 43]. This approach has recently motivated numerous67

diffusion-based sampling methods [11, 13, 18, 36, 50]. Further improvements have been explored68

through Hamiltonian dynamics [8], intermediate resampling strategies [11], and physics-informed69

neural networks to evolve densities [49]. Recent methods such as CMCD [51] jointly optimize70

forward and backward diffusion dynamics. Additionally, theoretical connections between GFlowNets71

[4, 5] and diffusion-based sampling have been investigated [6, 54]. For an extensive review of relevant72

metrics and baseline samplers, see [9]. Current diffusion methods partially amortize sampling costs73

in training but still require iterative inference-time generation. In this work, we fully amortize74

exploration during training, enabling efficient single-step sampling at inference.75

Consistent Generative Models. Recent work in generative modeling has introduced the notion76

of consistency. Consistency models [26, 45, 46] learn direct mapping from any intermediate state77

to the terminal state. Progressive distillation [28, 41] incrementally distills a trained diffusion78

model into a more efficient version that takes half as many steps. Shortcut models [16] apply this79

distillation principle during training, enabling direct learning of efficient transitions without relying80

on a pretrained teacher. We extend this line of work to the setting of sampling from unnormalized81

densities, assuming only pointwise access to the target density ω, without requiring data samples.82
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3 Preliminaries: Sampling via Controlled Stochastic Processes83

Diffusion samplers aim to draw samples from a complex target density ptarget = ω/Z by transporting84

them from a simpler prior density pprior. We consider forward and reverse-time stochastic processes85

on Rd over a time interval [0, T ], each described by the following SDEs:86

dXs = (µ+ εu)(Xs, s)ds+ ε(s)dWs, X0 → ϑ, (2)
dXs = (↑µ+ εv)(Xs, T ↑ s)ds+ ε(T ↑ s)dWs, X0 → ϖ, (3)

where u, v ↓ U ↔ C(Rd ↗ [0, T ],Rd) are control functions, µ ↓ C(Rd ↗ [0, T ],Rd) is a linear drift,87

ε ↓ C([0, T ],R) is the diffusion coefficient, and dWs denote forward Brownian increments. We88

seek u and v such that (2) and (3) become time-reversal counterparts.89

Let Pu,ω and Pv,ε
be the path measures induced by (2) and (3), respectively. Consider a divergence90

D : P ↗ P ↘ R→0. We aim to solve the optimization problem:91

u
↑
, v

↑ ↓ argmin
u,v↓U

D(Pu,ω | Pv,ε
). (4)

When the divergence D reaches its minimum of zero in (4), the marginal distribution at terminal time92

matches exactly, Pu,ω
T = ϖ . Consequently, by selecting ϑ = pprior and ϖ = ptarget, one can generate93

samples from the target distribution ptarget through simulating (2) with the optimal control u↑.94

Nelson’s identity provides a local characterization of optimality conditions [2, 15, 32]. It states95

that the forward path measure Pu,ω coincides with the reverse-time measure Pv,ε
if and only if96

the forward drift can be expressed as the backward drift adjusted by the scale score u(·, s) =97

v(·, s) + ε(s)≃ logPu,ω
s (·). In practice, the marginal distributions Pu,ω

s are generally intractable.98

Therefore, we typically approximate solutions to (4) by parameterizing the control u with a neural99

network uϑ. Training these models typically proceeds through the following iterative steps:100

1. Simulate a batch of M trajectories {(X(i)
s )0↔s↔T }, i = 1, . . . ,M , using the generative101

process (2).102

2. Compute the divergence measure and its gradient with respect to the parameters ϱ.103

3. Update the parameters ϱ accordingly, and repeat the process until convergence.104

The Kullback-Leibler (KL) [7, 50, 55] and the log-variance (LV) divergences are common choices105

[6, 34, 38]:106

DKL(P | Q)(X) = E
ï
log

dP
dQ (X)

ò
+ logZ, DLV(P | Q)(X) = V

ï
log

dP
dQ (X)

ò
. (5)

The likelihood ratio appearing in (5) is given explicitly by the Radon-Nikodym derivative:107

log
dPu,ω

dPv,ε =

∫ T

0
(u+v) ·

(
uϑ+

v ↑ u

2
+≃ ·(εv↑µ)

)
ds+

∫ T

0
(u+v)dWs+log

pprior(Xϑ
0 )

ptarget(Xϑ
T )

(6)

where Xϑ is the trajectory obtained by simulating the forward SDE (2) using the parameterized control108

uϑ. The log normalization constant from the target density disappears upon taking gradients, making109

this a practical objective for training. See [7] and Appendix A.2 of [38] for detailed derivations.110

Once trained, the optimized control uϑ allows generation of samples from ptarget through forward111

simulations of (2). In practice, this continuous-time process must be discretized into finite steps112

0 = t1 < t2 < · · · < tN = T , introducing a trade-off between computational cost and accuracy.113

4 Consistency Distilled Diffusion Samplers114

In this section, we present the consistency distilled diffusion sampler (CDDS) method to solve115

the problem of single-step sampling from unnormalized densities by distillating from a pretrained116

sampler. Concretely, our goal is to learn a consistency function f : (Xt, t) ⇐↘ XT , which maps any117

intermediate state Xt directly to a sample XT from the target distribution.118

A straightforward method is to first appoximate a dataset by simulating the generative SDE in (2)119

and producing samples {X̂i
T }Mi=1, and then applying existing consistency distillation or consistency120
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Algorithm 1 CDDS Training
Input: Model parameters ϱ, a pre-trained control u,
learning rate ς

ϱ
↗ ⇒ ϱ

repeat
Sample X0 → pprior and n → U{1, N ↑ 1}
Simulate PF ODE of (2) to get X̂tn and X̂tn+1

L(ϱ, ϱ↗) ⇒ ⇑fϑ→(X̂tn+1 , tn+1), fϑ(X̂tn , tn)⇑2
ϱ ⇒ ϱ ↑ ς≃ϑL(ϱ, ϱ↗;u)
ϱ
↗ ⇒ stopgrad(ϱ)

until convergence

Algorithm 2 SCDS Training
Input: Model parameters ϱ, weights
φS,φSC
ϱ
↗ ⇒ ϱ

repeat
Sample X0 → pprior, d, and t

Simulate (2) to get X0:T

Compute target Xt+2d from (10)
Compute shortcut X̂t+2d from (9)
Compute sampling loss LS via (5)
Compute consistency loss LSC via (11)

ϱ ⇒ ≃ϑ (φSLS + φSCLSC)
ϱ
↗ ⇒ stopgrad ϱ

until convergence

training methods [46] to learn the function f . However, this approach is expensive as it necessitates121

pre-collecting and storing a large dataset. Moreover, the accumulation of numerical errors arises from122

the numerical solver , resulting in significant global error.123

To solve the problem, we propose to leverage intermediate states of the pretrained model during each124

training iteration. Using these multiple and short intervals among intermediate helps keep the overall125

global error small.126

During model training, we minimize the discrepancy between the outputs of the consistency function127

at the consecutive intermediate states of the probability flow ODE [48] associated with (2):128

LCD(ϱ, ϱ
↗;u)(X) := E

[
⇑fϑ→(X̂tn+1 , tn+1), fϑ(X̂tn , tn)⇑2

]
, (7)

where the expectation is over discrete time indices n and ϱ
↗ = stopgrad(ϱ) indicates gradient129

stopping on the target term. Notably, unlike standard consistency generative models, the states X̂tn+1130

and X̂tn are obtained from partial integrations of the probability flow ODE rather than from real131

data samples. Consequently, training CDDS incurs computational costs similar to training traditional132

diffusion samplers while substantially accelerating inference. The training procedure is summarized133

in Algorithm 1.134

If the loss (7) is driven to zero, the learned consistency function recovers the true mapping of the135

probability flow ODE, implying that CDDS can achieve arbitrarily accurate single-step sampling in136

the limit of sufficiently small integration steps. We formally state this in Theorem 1.137

Theorem 1. Let fϑ(Xt, t) be a consistency function parameterized by ϱ, and let f(Xt, t;u) denote138

the consistency function of the PF ODE defined by the control u. Assume that fϑ is L↑Lipschitz139

continuous. Additionally, assume that for each step n ↓ {1, 2, . . . , N ↑ 1}, the ODE solver called at140

tn has a local error bounded by O((tn+1 ↑ tn)p+1) for some p ⇓ 1. If LCD(ϱ, ϱ↗;u) = 0, then:141

sup
n,Xtn

⇑fϑ(Xtn , tn)↑ f(Xtn , tn;u)⇑2 = O((!t)p), (8)

where !t := maxn↓{1,2,...,N↘1} |tn+1 ↑ tn|.142

A complete proof is provided in the Appendix. This theoretical result shows that consistency143

functions can be distilled from diffusion samplers when only an unnormalized density oracle is144

available, enabling principled single-step sampling without requiring access to data from the target145

distribution.146

Remark. While our distillation approach builds upon the core principles of consistency generative147

models, it differs in setting and requirements. Instead of relying on having access to a dataset from148

ptarget, our method extends consistency distillation to sampling from unnormalized distributions,149

making it applicable beyond generative modeling tasks.150
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5 Self–Consistent Diffusion Samplers151

5.1 Overivew152

Even though CDDS demonstrates that single-step sampling is feasible, it requires a pretrained153

diffusion sampler for distillation. In this section, we further introduce self-consistent diffusion154

sampler (SCDS) that achieves single-step sampling without requiring the pre-trained diffusion155

sampler. The key idea is to adapt consistency training into the diffusion-based sampler training.156

However, the challenge arises from merging two perspectives: diffusion-based samplers learn a157

time-dependent control function that steers an SDE from a simple prior distribution to the target158

distribution. Typically, the control is trained on a fixed schedule (e.g., N small increments of length159

T/N along a discretized time axis), requiring multiple steps. In contrast, consistency models learn160

a direct mapping from any intermediate state on an ODE to the terminal state. In other words, at161

time t the model is implicitly taught to jump a large step of length T ↑ t. Crucially, consistency162

training in the original formulation [45, 46] assumes the availability of intermediate states generated163

by perturbing real data; in the context of sampling from unnormalized densities, however, we cannot164

generate these states directly because we lack data and thus must learn both sampling and self-165

distillation simultaneously. Furthermore, as discussed in Section 3, diffusion-based samplers typically166

parameterize the control function, whose purpose differs fundamentally from that of the consistency167

function used in standard consistency training.168

To reconcile these perspectives and overcome this challenge, we propose conditioning the control169

function uϑ(Xt, t, d) on both the current time t and the desired step size d. By adjusting d, the model170

can adapt between short incremental steps (as in standard diffusion samplers) and large jumps (as in171

consistency models). This design amortizes the learning of both small and large transitions into one172

network and recovers consistency models’ single-step sampling by setting d = T ↑ t and diffusion173

sampling by setting d = T/N . In doing so, we avoid training with two contrasting learning targets,174

hence making it feasible to train a single-step diffusion sampler from scratch.175

5.2 Training176

Learning the base case d = T/N. In standard generative modeling scenarios (where a dataset is177

available), the base case d = T/N can be learned directly from data using deterministic trajectories178

[25, 16]. These trajectories provide explicit guidance toward high-density regions of the target179

distribution.180

However, when working with an unnormalized density, a key challenge is discovering high-probability181

regions [11]. Thus, the process (2) is particularly well-suited for learning the base case as the182

Brownian motion helps probe different parts of the space, allowing the model to learn and adapt183

itself to the target distribution. By optimizing uϑ(Xt, t, d = T/N) under (5), we ensure that the184

model can generate meaningful transitions from the prior to these regions of interest, forming a strong185

foundation for self-consistent learning at larger step sizes.186

Enforcing self-consistency. To ensure that the step-size-conditioned control function uϑ(Xt, t, d)187

remains accurate across varying step sizes, we introduce a self-consistency loss. The key idea is that188

taking a large step should yield the same result as taking multiple smaller steps. To do so, we impose189

a consistency condition on the Euler discretization of the probability flow ODE associated with the190

forward process (5). Specifically, we require that a single large step of size 2d,191

X̂t+2d = Xt + 2d
(
µ+ 1

2εuϑ

)
(Xt, t, 2d), (9)

yields the same result as two smaller steps of size d. The intermediate state after the first small step is192

computed as193

Xt+d = Xt + d
(
µ+ 1

2εuϑ→
)
(Xt, t, d),

and the final state after the second small step is194

Xt+2d = Xt+d + d
(
µ+ 1

2εuϑ→
)
(Xt+d, t+ d, d), (10)

where ϱ
↗ = stopgrad(ϱ). The self-consistency objective is a simple least square minimization195

problem:196

LSC = E
î
⇑Xt+2d ↑ X̂t+2d⇑2

ó
, (11)
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Figure 1: Graphical illustration of the training procedure for SCDS over the path space. First, the
SDE (2) is simulated (white) to optimize (5). Next, a timestep t and a step size d are randomly
sampled. From Xt on the simulated SDE trajectory, we execute two consecutive steps of size d

(red) along the probability flow ODE trajectory (pink) of (2), obtaining the target Xt+2d. Finally,
the large step of size 2d (orange) predicts X̂t+2d directly from Xt, and the self-consistency loss (11)
minimizes the squared difference between X̂t+2d and the two-step target Xt+2d, ensuring multi-scale
consistency.

where the expectation is taken over time indices and step sizes drawn from the simulated trajectories.197

This loss encourages the model to correct for numerical errors when taking large steps, allowing it to198

“skip” multiple smaller steps while remaining consistent with the dynamics of the probability flow199

ODE.200

End-to-end training algorithm. As abovementioned, our training procedure jointly optimizes201

two objectives: (i) a sampling loss (5) for the base case d = T/N , which ensures exploration and202

score approximation by simulating the SDE (2), and (ii) the self-consistency loss (11) enforced on203

the probability flow ODE of (2) for larger steps, which enforces consistency across multiple time204

scales. This end-to-end formulation enables the model to fully amortize the cost of sampling into a205

single forward pass at inference time.206

To enable the recursive halving of steps, we discretize the time interval [0, T ] into N + 1 points,207

where N is chosen as a power of two. The sampling loss is computed by simulating the forward SDE208

along this time grid.209

For self-consistency training, we sample step sizes d and times t such that d are powers of two210

(multiplied by T/N ) dividing the remaining time T ↑ t. This ensures that from any time t, we can211

take exactly k steps of size d to reach the terminal state for some integer k. This way, training focuses212

on time sequences that are applicable during inference.213

To compute the self-consistency loss, we extract Xt from the simulated forward SDE. Using Xt214

and the sampled step size d, we compute the shortcut step X̂t+2d using (9) and the two-step target215

trajectory Xt+2d using (10). We then optimize their squared difference via the objective (11),216

ensuring that larger steps remain consistent with fine-grained trajectories. The training procedure217

is summarized in Algorithm 2 and illustrated in Figure 1. Compared to standard diffusion-based218

samplers, which typically require hundreds of evaluations per iteration during training, our method219

introduces only 3 additional function evaluations. Thus, the overhead from SCDS training is marginal,220

typically amounting to less than a few percent of the total computational cost per iteration.221

5.3 Inference.222

Few-step sampling. With a well-trained control uϑ, sampling can be performed in a single step223

by drawing from the prior and applying a single Euler update with step size d = T , as shown224

in Algorithm 3. This accelerates generation compared to traditional diffusion-based samplers.225

Alternatively, our method provides a flexible tradeoff between computational efficiency and sample226
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Algorithm 3 Single-Step Sampling with SCDS
Input: Trained model uϑ

Sample X0 → pprior

XT ⇒ X0 + T
(
µ+ 1

2εuϑ

)
(X0, 0, T )

Return XT

Algorithm 4 Multi-Step Sampling with SCDS
Input: Trained model uϑ, number of sampling
steps N
Sample X0 → pprior

Initialize d ⇒ T/N and t ⇒ 0
for k = 1, . . . , N do
Xt+d ⇒ Xt + d

(
µ+ 1

2εuϑ

)
(Xt, t, d)

t ⇒ t+ d

end for
Return XT

quality, allowing for multi-step refinement when needed, thus recovering standard diffusion-based227

sampling. This iterative procedure is detailed in Algorithm 4.228

Approximating the normalization constant. Beyond sample generation, a common goal in229

probabilistic inference is to estimate the normalization constant Z of the target density. Because230

SCDS is formulated within the optimal control framework of stochastic sampling [7], it inherits a231

natural estimator of Z through the Radon–Nikodym derivative between forward and backward path232

measures. By discretizing the likelihood ratio in (6) along simulated trajectories, SCDS enables233

efficient estimation of logZ. In contrast, consistency-based generative models [16, 46] are trained234

using fully supervised losses on labeled data. As a result, they lack a built-in mechanism to estimate235

Z or compute likelihood ratios.236

6 Experiments237

We empirically evaluate the sampling efficiency and effectiveness of the proposed CDDS and SCDS238

across diverse standard benchmarks in Bayesian inference and sampling [9].239

Specifically, we consider Bayesian posterior inference tasks, such as Ionosphere (35-D) and the240

high-dimensional Log-Gaussian Cox Process (LGCP) (1600-D), alongside representative synthetic241

targets: a Gaussian Mixture Model (GMM) of nine components in 2-D, a 2-D Many-Well with 32242

well-separated modes (MW54), the widely-studied Funnel distribution in ten dimensions, and a 50-D243

Many-Well distribution with 32 modes (MW52). Details are provided in Appendix244

We report the Sinkhorn distance W2
ϖ , the Effective Sample Size (ESS), and the absolute estimation245

error of the log normalization constant ! logZ for tasks with accessible ground-truth samples. For246

the real-world Ionosphere and LGCP tasks, we report the evidence lower bound (ELBO). ELBO,247

ESS and !logZ rely on importance weights. With N > 1 we use the discretized RND of (6); for248

N = 1 the running-cost term vanishes and the weight reduces to the boundary likelihood, which can249

potentially inflate ELBO scores. Hence we regard W2
ϖ and ! logZ as primary quality indicators, and250

report ELBO only when ground truth samples are not available.251

We benchmark our methods against established diffusion-based samplers: the Path Integral Sampler252

(PIS) [55], the Denoising Diffusion Sampler (DDS) [50], both trained with the KL divergence, and253

the Time-Reversed Diffusion Sampler (DIS) [7] trained with log-variance divergence.254

Throughout our experiments, we use a pre-trained DIS as the teacher model for CDDS. Furthermore,255

since the optimization problem (4) may admit infinitely many solutions, we fix the noising process (3)256

in SCDS to ensure uniqueness of the learned solution, following the same approach as in DIS.257

Detailed implementation and hyperparameters are provided in Appendix A.1. The code is available258

at this repository.259

6.1 Results260

Single-step sampling. Rows shaded in in Tables 1–2 compare one–step CDDS and SCDS with fully-261

discretized (128–256 step) baselines. Several consistent patterns emerge. On the low–dimensional262

GMM and MW54 targets, CDDS attains Sinkhorn values with a factor less then double the DIS263

baseline. ESS is also two or three orders of magnitude larger than DIS with a single step, illustrating264
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that distillation corrects most of the degeneracy of naive single-step DIS. The ELBO of CDDS on265

Ionosphere and LGCP even exceeds that of every 256-step baseline; we attribute this to the discretized266

estimator of the Radon–Nikodym derivative (RND) (6), which for single-step sampling collapses to267

the boundary likelihood and can therefore over-estimate evidence.268

Without access to a teacher, SCDS learns its own control and offers a trade-off: In one step SCDS269

delivers usable samples (e.g. GMM, Funnel) but is generally less accurate than CDDS because it has270

to discover the score field from scratch.271

Table 1: Synthetic-benchmark results. Each task block reports the Sinkhorn distance (W2
ϖ ⇔), the

effective sample size (ESS ↖), and absolute log-normalization error (|!logZ| ⇔).

PIS DDS DIS DIS CDDS (ours) SCDS (ours)

NFE ⇔ 128 128 128 1 1 1

GMM (2D)
W2

ϖ 1.7946 0.0898 0.0203 0.0559 0.0313 0.0478
ESS 1↗10↘5 0.0065 0.8054 0.00057 0.3395 0.0504
|! logZ| 2.1806 1.6819 0.0899 14.7669 1.5717 1.0743

MW54 (5D)
W2

ϖ 0.1377 0.1366 0.1230 6.2804 0.2815 0.3913
ESS 0.0664 0.0051 0.2677 1.7↗10↘5 0.0442 2.1↗10↘5

|! logZ| 1.9974 2.4154 1.2056 6766.2891 1.0966 11.2524

Funnel (10D)
W2

ϖ 6.0731 5.8600 5.1755 10.5224 8.8849 5.4922
ESS 1↗10↘5 0.0582 0.1305 4.9↗10↘5 5.1↗10↘5 0.00014
|! logZ| 0.4381 0.5641 0.6407 ↙ 1.3316 10.3557

MW52 (50D)
W2

ϖ 6.8035 6.7830 6.8808 31.2532 6.1764 7.1110
ESS 1↗10↘5 0.4412 0.0028 1↗10↘5 5.7↗10↘5 1↗10↘5

|! logZ| 42.4502 42.4245 39.7814 9116.0713 63.7244 87.7095

Table 2: ELBO (↖) on two real-world benchmarks. Shaded columns denote single–step inference.

PIS DDS DIS SCDS DIS CDDS (ours) SCDS (ours)

NFE → 256 256 256 256 1 1 1

Ionosphere (35D) ↑39.3 ↑1510.3 ↑77.4 ↑73.7 ↑3252.7 ↑27.5 ↑567.3

LGCP (1600D) 397.5 314.8 365.6 103.9 ↑3.09↓106 1118.0 ↑4579.7

Cost-benefit analysis of single-step inference. Figure 2 reports the total number (training plus272

inference) of network-function evaluations (NFEs) for SCDS versus PIS, DDS, and DIS, that use273

the same N-step discretization during training. SCDS adds only three NFEs per training iteration274

but replaces the entire N -step Euler integration with a single forward pass at test time. With batch275

size B and I training iterations, the extra training cost is 3IB NFEs, while every sample produced276

at inference saves N ↑ 1 NFEs; hence the break-even point is Sbreak = 3IB/(N ↑ 1). For the277

2-D GMM experiment (N = 128, B = 512, I = 10,000) this yields Sbreak ∝ 1.2 ↗ 104. We278

generated five million test samples to obtain Table 1, thereby saving about 620 million NFEs relative279

to the baselines. In the 1600-D LGCP task the model is trained longer but with smaller batches280

(N = 256, B = 64, I = 50,000), giving Sbreak ∝ 3.7 ↗ 104, and generating one million samples281

saves over half a billion NFEs. Training cost is thus a fixed, modest overhead that is quickly amortised282

in realistic simulations.283
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Figure 2: Absolute (yellow) and relative (red, dashed) network-function evaluations (NFE) savings
of SCDS over the baseline diffusion samplers PIS, DDS, and DIS as a function of the number of
generated samples (log scale). Left: 2-D GMM training regime; Right: 1600-D LGCP regime.

Figure 3: Sinkhorn distance as a function of the number of diffusion steps for SCDS, illustrating the
flexible trade-off between computational cost and sample quality. Horizontal dashed lines represent
baseline diffusion samplers with 128 steps.

Practically, we recommend using CDDS when a reliable pretrained sampler is available and the goal284

is single-step generation, as CDDS training is cheaper than SCDS yet could achieve comparable285

single-step quality. If no pretrained sampler exists, SCDS provides a more economical and flexible286

solution, as it learns directly from the unnormalized target and allows adjusting the number of287

inference steps to trade computational resources for improved sample quality.288

Trade compute for sample quality. Figure 3 shows how the Sinkhorn distance decays as we289

allocate more network-function evaluations (NFEs) to SCDS at inference time. On the 2-D GMM290

and the 5-D Many-Well tasks the curve is strictly monotone: with only 4–8 Euler updates SCDS291

already matches the accuracy of DDS, and at 32–64 steps it recovers the DIS reference obtained with292

128 steps. The same trend is visible on the 10-D Funnel, but with a mild “bump” at 32 steps. SCDS293

allows practitioners to flexibly adjust the computational budget, progressively improving sample294

quality until it matches the accuracy of traditional multi-step diffusion samplers.295

Additional results, comparisons with other baselines, and ablations are provided in Appendix A.3.296

7 Conclusion297

We introduced two novel approaches for efficient sampling from unnormalized target distributions:298

consistency-distilled diffusion samplers (CDDS) and the self-consistent diffusion sampler (SCDS).299

CDDS uses consistency distillation without generating a large dataset of samples. SCDS requires no300

pre-trained samplers and simultaneously learns to sample high-density regions and to take large steps301

across the path space. Our empirical results across a range of benchmarks demonstrated that both302

methods achieve competitive accuracy with as few as one or two steps. These findings highlighted303

the potential of consistency-based methods for sampling from unnormalized densities.304
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NeurIPS Paper Checklist434

The checklist is designed to encourage best practices for responsible machine learning research,435

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove436

the checklist: The papers not including the checklist will be desk rejected. The checklist should437

follow the references and follow the (optional) supplemental material. The checklist does NOT count438

towards the page limit.439

Please read the checklist guidelines carefully for information on how to answer these questions. For440

each question in the checklist:441

• You should answer [Yes] , [No] , or [NA] .442

• [NA] means either that the question is Not Applicable for that particular paper or the443

relevant information is Not Available.444

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).445

The checklist answers are an integral part of your paper submission. They are visible to the446

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it447

(after eventual revisions) with the final version of your paper, and its final version will be published448

with the paper.449

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.450

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a451

proper justification is given (e.g., "error bars are not reported because it would be too computationally452

expensive" or "we were unable to find the license for the dataset we used"). In general, answering453

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we454

acknowledge that the true answer is often more nuanced, so please just use your best judgment and455

write a justification to elaborate. All supporting evidence can appear either in the main paper or the456

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification457

please point to the section(s) where related material for the question can be found.458

IMPORTANT, please:459

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",460

• Keep the checklist subsection headings, questions/answers and guidelines below.461

• Do not modify the questions and only use the provided macros for your answers.462

1. Claims463

Question: Do the main claims made in the abstract and introduction accurately reflect the464

paper’s contributions and scope?465

Answer: [Yes]466

Justification: Contributions are detailed in Sec. 4 and 5, supported by experiment results in467

Sec. 6.468

Guidelines:469

• The answer NA means that the abstract and introduction do not include the claims470

made in the paper.471

• The abstract and/or introduction should clearly state the claims made, including the472

contributions made in the paper and important assumptions and limitations. A No or473

NA answer to this question will not be perceived well by the reviewers.474

• The claims made should match theoretical and experimental results, and reflect how475

much the results can be expected to generalize to other settings.476

• It is fine to include aspirational goals as motivation as long as it is clear that these goals477

are not attained by the paper.478

2. Limitations479

Question: Does the paper discuss the limitations of the work performed by the authors?480

Answer: [Yes]481
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Justification: Sec. 4 explicitly discusses the dependency of CDDS on a pre-trained control,482

and Sec. 5 clearly acknowledges that our approach introduces a modest increase in training483

time relative to baseline methods. We also included a Limitation section in Appendix A.5.484

Guidelines:485

• The answer NA means that the paper has no limitation while the answer No means that486

the paper has limitations, but those are not discussed in the paper.487

• The authors are encouraged to create a separate "Limitations" section in their paper.488

• The paper should point out any strong assumptions and how robust the results are to489

violations of these assumptions (e.g., independence assumptions, noiseless settings,490

model well-specification, asymptotic approximations only holding locally). The authors491

should reflect on how these assumptions might be violated in practice and what the492

implications would be.493

• The authors should reflect on the scope of the claims made, e.g., if the approach was494

only tested on a few datasets or with a few runs. In general, empirical results often495

depend on implicit assumptions, which should be articulated.496

• The authors should reflect on the factors that influence the performance of the approach.497

For example, a facial recognition algorithm may perform poorly when image resolution498

is low or images are taken in low lighting. Or a speech-to-text system might not be499

used reliably to provide closed captions for online lectures because it fails to handle500

technical jargon.501

• The authors should discuss the computational efficiency of the proposed algorithms502

and how they scale with dataset size.503

• If applicable, the authors should discuss possible limitations of their approach to504

address problems of privacy and fairness.505

• While the authors might fear that complete honesty about limitations might be used by506

reviewers as grounds for rejection, a worse outcome might be that reviewers discover507

limitations that aren’t acknowledged in the paper. The authors should use their best508

judgment and recognize that individual actions in favor of transparency play an impor-509

tant role in developing norms that preserve the integrity of the community. Reviewers510

will be specifically instructed to not penalize honesty concerning limitations.511

3. Theory assumptions and proofs512

Question: For each theoretical result, does the paper provide the full set of assumptions and513

a complete (and correct) proof?514

Answer: [Yes]515

Justification: See Appendix A.4 for proofs.516

Guidelines:517

• The answer NA means that the paper does not include theoretical results.518

• All the theorems, formulas, and proofs in the paper should be numbered and cross-519

referenced.520

• All assumptions should be clearly stated or referenced in the statement of any theorems.521

• The proofs can either appear in the main paper or the supplemental material, but if522

they appear in the supplemental material, the authors are encouraged to provide a short523

proof sketch to provide intuition.524

• Inversely, any informal proof provided in the core of the paper should be complemented525

by formal proofs provided in appendix or supplemental material.526

• Theorems and Lemmas that the proof relies upon should be properly referenced.527

4. Experimental result reproducibility528

Question: Does the paper fully disclose all the information needed to reproduce the main ex-529

perimental results of the paper to the extent that it affects the main claims and/or conclusions530

of the paper (regardless of whether the code and data are provided or not)?531

Answer: [Yes]532

Justification: The paper clearly specifies model architectures, training procedures, hyper-533

parameters, and evaluation metrics required to reproduce the main experimental results534

(Sections 4, 5, and Appendix A.1, A.2). The code is available at this repository.535
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Guidelines:536

• The answer NA means that the paper does not include experiments.537

• If the paper includes experiments, a No answer to this question will not be perceived538

well by the reviewers: Making the paper reproducible is important, regardless of539

whether the code and data are provided or not.540

• If the contribution is a dataset and/or model, the authors should describe the steps taken541

to make their results reproducible or verifiable.542

• Depending on the contribution, reproducibility can be accomplished in various ways.543

For example, if the contribution is a novel architecture, describing the architecture fully544

might suffice, or if the contribution is a specific model and empirical evaluation, it may545

be necessary to either make it possible for others to replicate the model with the same546

dataset, or provide access to the model. In general. releasing code and data is often547

one good way to accomplish this, but reproducibility can also be provided via detailed548

instructions for how to replicate the results, access to a hosted model (e.g., in the case549

of a large language model), releasing of a model checkpoint, or other means that are550

appropriate to the research performed.551

• While NeurIPS does not require releasing code, the conference does require all submis-552

sions to provide some reasonable avenue for reproducibility, which may depend on the553

nature of the contribution. For example554

(a) If the contribution is primarily a new algorithm, the paper should make it clear how555

to reproduce that algorithm.556

(b) If the contribution is primarily a new model architecture, the paper should describe557

the architecture clearly and fully.558

(c) If the contribution is a new model (e.g., a large language model), then there should559

either be a way to access this model for reproducing the results or a way to reproduce560

the model (e.g., with an open-source dataset or instructions for how to construct561

the dataset).562

(d) We recognize that reproducibility may be tricky in some cases, in which case563

authors are welcome to describe the particular way they provide for reproducibility.564

In the case of closed-source models, it may be that access to the model is limited in565

some way (e.g., to registered users), but it should be possible for other researchers566

to have some path to reproducing or verifying the results.567

5. Open access to data and code568

Question: Does the paper provide open access to the data and code, with sufficient instruc-569

tions to faithfully reproduce the main experimental results, as described in supplemental570

material?571

Answer: [Yes]572

Justification: The code is available at this repository.573

Guidelines:574

• The answer NA means that paper does not include experiments requiring code.575

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/576

public/guides/CodeSubmissionPolicy) for more details.577

• While we encourage the release of code and data, we understand that this might not be578

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not579

including code, unless this is central to the contribution (e.g., for a new open-source580

benchmark).581

• The instructions should contain the exact command and environment needed to run to582

reproduce the results. See the NeurIPS code and data submission guidelines (https:583

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.584

• The authors should provide instructions on data access and preparation, including how585

to access the raw data, preprocessed data, intermediate data, and generated data, etc.586

• The authors should provide scripts to reproduce all experimental results for the new587

proposed method and baselines. If only a subset of experiments are reproducible, they588

should state which ones are omitted from the script and why.589
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• At submission time, to preserve anonymity, the authors should release anonymized590

versions (if applicable).591

• Providing as much information as possible in supplemental material (appended to the592

paper) is recommended, but including URLs to data and code is permitted.593

6. Experimental setting/details594

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-595

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the596

results?597

Answer: [Yes]598

Justification: Experiments and hyper-parameters are detailed in Appendix A.2.599

Guidelines:600

• The answer NA means that the paper does not include experiments.601

• The experimental setting should be presented in the core of the paper to a level of detail602

that is necessary to appreciate the results and make sense of them.603

• The full details can be provided either with the code, in appendix, or as supplemental604

material.605

7. Experiment statistical significance606

Question: Does the paper report error bars suitably and correctly defined or other appropriate607

information about the statistical significance of the experiments?608

Answer: [Yes]609

Justification: We conducted multiple independent simulation runs for all experiments and610

found standard deviations consistently negligible relative to the reported means. To maintain611

readability, these small standard deviations are omitted from the main tables but are reported612

in Appendix A.3.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The authors should answer "Yes" if the results are accompanied by error bars, confi-616

dence intervals, or statistical significance tests, at least for the experiments that support617

the main claims of the paper.618

• The factors of variability that the error bars are capturing should be clearly stated (for619

example, train/test split, initialization, random drawing of some parameter, or overall620

run with given experimental conditions).621

• The method for calculating the error bars should be explained (closed form formula,622

call to a library function, bootstrap, etc.)623

• The assumptions made should be given (e.g., Normally distributed errors).624

• It should be clear whether the error bar is the standard deviation or the standard error625

of the mean.626

• It is OK to report 1-sigma error bars, but one should state it. The authors should627

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis628

of Normality of errors is not verified.629

• For asymmetric distributions, the authors should be careful not to show in tables or630

figures symmetric error bars that would yield results that are out of range (e.g. negative631

error rates).632

• If error bars are reported in tables or plots, The authors should explain in the text how633

they were calculated and reference the corresponding figures or tables in the text.634

8. Experiments compute resources635

Question: For each experiment, does the paper provide sufficient information on the com-636

puter resources (type of compute workers, memory, time of execution) needed to reproduce637

the experiments?638

Answer: [Yes]639
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Justification: We specify the neural network architecture and explicitly report the number640

of network function evaluations for each task, a standard measure to estimate computa-641

tional cost. Additional details regarding the compute infrastructure and hardware used for642

experiments are provided in Appendix A.2.643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,646

or cloud provider, including relevant memory and storage.647

• The paper should provide the amount of compute required for each of the individual648

experimental runs as well as estimate the total compute.649

• The paper should disclose whether the full research project required more compute650

than the experiments reported in the paper (e.g., preliminary or failed experiments that651

didn’t make it into the paper).652

9. Code of ethics653

Question: Does the research conducted in the paper conform, in every respect, with the654

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?655

Answer: [Yes]656

Justification: This paper focuses on accelerating diffusion samplers without any practices657

that directly violate NeurIPS Code of Ethics.658

Guidelines:659

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.660

• If the authors answer No, they should explain the special circumstances that require a661

deviation from the Code of Ethics.662

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-663

eration due to laws or regulations in their jurisdiction).664

10. Broader impacts665

Question: Does the paper discuss both potential positive societal impacts and negative666

societal impacts of the work performed?667

Answer: [Yes]668

Justification: See Appendix A.6.669

Guidelines:670

• The answer NA means that there is no societal impact of the work performed.671

• If the authors answer NA or No, they should explain why their work has no societal672

impact or why the paper does not address societal impact.673

• Examples of negative societal impacts include potential malicious or unintended uses674

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations675

(e.g., deployment of technologies that could make decisions that unfairly impact specific676

groups), privacy considerations, and security considerations.677

• The conference expects that many papers will be foundational research and not tied678

to particular applications, let alone deployments. However, if there is a direct path to679

any negative applications, the authors should point it out. For example, it is legitimate680

to point out that an improvement in the quality of generative models could be used to681

generate deepfakes for disinformation. On the other hand, it is not needed to point out682

that a generic algorithm for optimizing neural networks could enable people to train683

models that generate Deepfakes faster.684

• The authors should consider possible harms that could arise when the technology is685

being used as intended and functioning correctly, harms that could arise when the686

technology is being used as intended but gives incorrect results, and harms following687

from (intentional or unintentional) misuse of the technology.688

• If there are negative societal impacts, the authors could also discuss possible mitigation689

strategies (e.g., gated release of models, providing defenses in addition to attacks,690

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from691

feedback over time, improving the efficiency and accessibility of ML).692
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11. Safeguards693

Question: Does the paper describe safeguards that have been put in place for responsible694

release of data or models that have a high risk for misuse (e.g., pretrained language models,695

image generators, or scraped datasets)?696

Answer: [NA]697

Justification: No new dataset or pretrained model is released.698

Guidelines:699

• The answer NA means that the paper poses no such risks.700

• Released models that have a high risk for misuse or dual-use should be released with701

necessary safeguards to allow for controlled use of the model, for example by requiring702

that users adhere to usage guidelines or restrictions to access the model or implementing703

safety filters.704

• Datasets that have been scraped from the Internet could pose safety risks. The authors705

should describe how they avoided releasing unsafe images.706

• We recognize that providing effective safeguards is challenging, and many papers do707

not require this, but we encourage authors to take this into account and make a best708

faith effort.709

12. Licenses for existing assets710

Question: Are the creators or original owners of assets (e.g., code, data, models), used in711

the paper, properly credited and are the license and terms of use explicitly mentioned and712

properly respected?713

Answer: [Yes]714

Justification: This paper reuses some datasets and codes from previous work, and they have715

been cited in the paper. The license and terms of use are also properly respected.716

Guidelines:717

• The answer NA means that the paper does not use existing assets.718

• The authors should cite the original paper that produced the code package or dataset.719

• The authors should state which version of the asset is used and, if possible, include a720

URL.721

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.722

• For scraped data from a particular source (e.g., website), the copyright and terms of723

service of that source should be provided.724

• If assets are released, the license, copyright information, and terms of use in the725

package should be provided. For popular datasets, paperswithcode.com/datasets726

has curated licenses for some datasets. Their licensing guide can help determine the727

license of a dataset.728

• For existing datasets that are re-packaged, both the original license and the license of729

the derived asset (if it has changed) should be provided.730

• If this information is not available online, the authors are encouraged to reach out to731

the asset’s creators.732

13. New assets733

Question: Are new assets introduced in the paper well documented and is the documentation734

provided alongside the assets?735

Answer: [NA]736

Justification: This paper does not release new assets.737

Guidelines:738

• The answer NA means that the paper does not release new assets.739

• Researchers should communicate the details of the dataset/code/model as part of their740

submissions via structured templates. This includes details about training, license,741

limitations, etc.742
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• The paper should discuss whether and how consent was obtained from people whose743

asset is used.744

• At submission time, remember to anonymize your assets (if applicable). You can either745

create an anonymized URL or include an anonymized zip file.746

14. Crowdsourcing and research with human subjects747

Question: For crowdsourcing experiments and research with human subjects, does the paper748

include the full text of instructions given to participants and screenshots, if applicable, as749

well as details about compensation (if any)?750

Answer: [NA]751

Justification: The paper does not involve crowdsourcing nor research with human subjects.752

Guidelines:753

• The answer NA means that the paper does not involve crowdsourcing nor research with754

human subjects.755

• Including this information in the supplemental material is fine, but if the main contribu-756

tion of the paper involves human subjects, then as much detail as possible should be757

included in the main paper.758

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,759

or other labor should be paid at least the minimum wage in the country of the data760

collector.761

15. Institutional review board (IRB) approvals or equivalent for research with human762

subjects763

Question: Does the paper describe potential risks incurred by study participants, whether764

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)765

approvals (or an equivalent approval/review based on the requirements of your country or766

institution) were obtained?767

Answer: [NA]768

Justification: The paper does not involve crowdsourcing nor research with human subjects.769

Guidelines:770

• The answer NA means that the paper does not involve crowdsourcing nor research with771

human subjects.772

• Depending on the country in which research is conducted, IRB approval (or equivalent)773

may be required for any human subjects research. If you obtained IRB approval, you774

should clearly state this in the paper.775

• We recognize that the procedures for this may vary significantly between institutions776

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the777

guidelines for their institution.778

• For initial submissions, do not include any information that would break anonymity (if779

applicable), such as the institution conducting the review.780

16. Declaration of LLM usage781

Question: Does the paper describe the usage of LLMs if it is an important, original, or782

non-standard component of the core methods in this research? Note that if the LLM is used783

only for writing, editing, or formatting purposes and does not impact the core methodology,784

scientific rigorousness, or originality of the research, declaration is not required.785

Answer: [NA]786

Justification: The core method development in this research does not involve LLMs as any787

important, original, or non-standard components.788

Guidelines:789

• The answer NA means that the core method development in this research does not790

involve LLMs as any important, original, or non-standard components.791

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)792

for what should or should not be described.793

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries: Sampling via Controlled Stochastic Processes
	Consistency Distilled Diffusion Samplers
	Self–Consistent Diffusion Samplers
	Overivew
	Training
	Inference.

	Experiments
	Results

	Conclusion
	Appendix
	Implementation Details
	Experiment Details
	Additional Results
	Proofs
	Limitations
	Broader Impact


