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Abstract
We analyze the Nyström approximation of a posi-
tive definite kernel associated with a probability
measure. We first prove an improved error bound
for the conventional Nyström approximation with
i.i.d. sampling and singular-value decomposition
in the continuous regime; the proof techniques
are borrowed from statistical learning theory. We
further introduce a refined selection of subspaces
in Nyström approximation with theoretical guar-
antees that is applicable to non-i.i.d. landmark
points. Finally, we discuss their application to
convex kernel quadrature and give novel theoreti-
cal guarantees as well as numerical observations.

1. Introduction
Kernel methods form a prominent part among modern ma-
chine learning tools. However, making kernel methods scal-
able to large datasets is an ongoing challenge. The main bot-
tleneck is that the kernel Gram matrix scales quadratically
in the number of data points. For large scale problems the
number of matrix entries can easily be of the order hundred-
thousands or millions so that even storing the full Gram
matrix can become too costly. Several approaches have been
developed to deal with these, among the most prominent are
the Random Fourier Features and the Nyström method. In
this article, we revisit and generalize the Nyström method
and provide new error estimates. Consequences are theo-
retical guarantees for kernel quadrature and improvements
on the standard Nyström method that go beyond uniform
subsampling of data points.

Nyström Approximation. The main idea of the Nyström
method is to replace the original kernel k by another kernel
kapp that is constructed by random projection of the ele-
ments in the (in general infinite-dimensional) RKHS associ-
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ated with k into a low-dimensional RKHS. A consequence
of this is that the Gram matrix of kapp is a low-rank ap-
proximation of the original Gram matrix. Concretely, let µ
denote a probability measure on a (Hausdorff) space X and
k a kernel on X ; then the standard Nyström approximation
uses the random kernel

kZ(x, y) := k(x, Z)k(Z,Z)+k(Z, y). (1)

where Z = (zi)
ℓ
i=1 is an ℓ-point subset of X usually taken

i.i.d. from µ (Drineas et al., 2005; Kumar et al., 2012).

Further s-rank Approximation. While less common,
the following rank-reduced version is of our interest:

kapp(x, y) = kZs (x, y) := k(x, Z)k(Z,Z)+s k(Z, y), (2)

where k(Z,Z)+s is the Moore–Penrose pseudo-inverse
of the best s-rank approximation of the Gram matrix
k(Z,Z) = (k(zi, zj))

ℓ
i,j=1 with s ≤ ℓ. Note that kZℓ = kZ .

Our motivation for this rank reduction comes from kernel-
based numerical integration. Indeed, if we are given
an s-rank kernel kapp and a probability measure µ, by
Tchakaloff’s theorem there is a discrete probability mea-
sure ν supported over at most s + 1 points satisfying∫
X f dµ =

∫
X f dν for all f ∈ Hkapp

, where Hkapp
is the

finite-dimensional RKHS associated with the kernel kapp.
Such a measure ν works as a kernel quadrature rule if the
kapp well approximates the original kernel k, and the rank s
directly affects the number of (possibly expensive) function
evaluations we need to estimate each integral. The primary
error criterion in this paper is∫

X

√
k(x, x)− kapp(x, x) dµ(x), (3)

which arises from the error estimate in kernel/Bayesian
quadrature (Hayakawa et al., 2022; Adachi et al., 2022).

Contribution. Our first theoretical result is that the expec-
tation of (3) is of the order O

(√∑
i>s σi + polylog(ℓ)/ℓ

)
when the eigenvalues (σi)

∞
i=1 of the kernel integral op-

erator induced by (k, µ) enjoy exponential convergence
(the expectation is taken over the empirical sample Z).
Key to the proof of this bound is the use of concepts
from statistical learning theory; in particular, the (local)
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Table 1: Main quantitative results. Individual bounds are available in Remark 1, Theorem 2, and Proposition 4. For the
explanation on each kernel, see at the end of Contribution section. Here are remarks on the notation. (a) σi is the i-th
eigenvalue of the integral operator K : L2(µ) → L2(µ); g 7→

∫
X k(·, x)g(x) dµ(x). (b) µX denotes the equally weighted

empirical measure 1
N

∑N
i=1 δxi given by X = (xi)

N
i=1. (c) µ(·) and µX(·) denote the integrals over the diagonal. See (4).

Quantity Bound Assumption

E[µ(
√
k − kZs )]

E[µ(k − kZs )]
O

(√∑
i>s

σi +
(log ℓ)2d+1

ℓ

) {
Z ∼iid µ, k: bounded
σi ≲ exp(−βi1/d)(

µ(
√
kZ − kZs,µ)

2 ≤
)
µ(kZ − kZs,µ)(

E[µX(
√
kZ − kZs,X)]2 ≤

)
E[µX(kZ − kZs,X)]

∑
i>s

σi

Z: fixed

Z: fixed, X ∼iid µ

Rademacher complexity. This error estimate is far better
than the bound O

(
spectral term + s1/2/ℓ1/4

)
that follows

from the existing high-probability estimate
∫
X (k(x, x) −

kZs (x, x)) dµ(x) = O(sσs+
∑

i>s σi+s/
√
ℓ) (Hayakawa

et al., 2022, Corollary 4). By combining our new bound
with known kernel quadrature estimates this explains the
strong empirical performance of the random kernel quadra-
ture, see Hayakawa et al. (2022); previously the theoretical
bounds were not even better than Monte-Carlo in terms of ℓ.

Our second contribution is the use of other kapp than kZs
with better bounds of (3), for a general class of landmark
points Z rather than just an i.i.d. sample from µ. This gen-
eralization allows to use other sets Z in (2) to achieve better
overall performance; e.g. sampling Z from determinantal
point processes (DPPs) on X is known to be advantageous
in applications. To construct and provide theoretical guar-
antees for such improved Nyström constructions we revisit
and generalize a method that was proposed in Santin &
Schaback (2016) and give further theoretical guarantees
applicable to kernel quadrature rules.

The following is the list of low-rank approximations pre-
sented in the paper:

• kZ and kZs : Usual Nyström approximations using land-
mark points Z. See (1) and (2).

• kZs,µ: The s-rank truncated Mercer decomposition of
the kernel kZ with respect to the measure µ. See (11).

• kZs,X : A version of kZs,µ with µ given by the empirical
measure 1

N

∑N
i=1 δxi

of the set X = (xi)
N
i=1. This

actually coincides with kZs when X = Z; see (6).

See Table 1 for a summary of our quantitative results.

Outline. Section 2 discusses the existing literature and
introduces some notation. Section 3 contains our first main
result, namely the analysis of kZs for an i.i.d. Z; Appendix A
provides the necessary background from statistical learning

theory. In Section 4, we then treat a general Z to give
refined low-rank approximations together with theoretical
guarantees, rather than the conventional kZs . In Section 5,
we discuss how our bounds yields new theories and methods
for the recent random kernel quadrature construction, which
enables us to explain the empirical performance as well
as to build some strong candidates whose performance is
assessed by numerical experiments. All the omitted proofs
are given in Appendix B.

2. Related Literature and Notation
To simplify the notation, we denote

ν(f) :=

∫
X
f(x) dν(x), ν(h) :=

∫
X
h(x, x) dν(x) (4)

for any functions f : X → R, h : X × X → R and a
(probability) measure ν on X , whenever the integrals are
well-defined. In this notation, the aim of this paper is to
bound µ(

√
k − kapp) or µ(k−kapp) for a class of low-rank

approximation kapp. Also, A+ denotes the Moore–Penrose
pseudo-inverse of a matrix A.

Approximation of the Gram Matrix. The standard use
of the Nyström method in ML is to replace the Gram
matrix k(X,X) for a set X = (xi)

N
i=1 by the low-rank

matrix kZ(X,X) where kZ is defined as in (1). A well-
developed literature studies the case when Z = (zi)

ℓ
i=1 is

uniformly and independently sampled from X , see Drineas
et al. (2005); Kumar et al. (2012); Yang et al. (2012); Jin et al.
(2013); Li et al. (2015). Further, the cases of leverage-based
sampling (Gittens & Mahoney, 2016), DPPs (Li et al., 2016),
and kernel K-means samples (Oglic & Gärtner, 2017) have
received attention. Moreover, two variants of the standard
Nyström method have been studied: the first replaces the
Moore-Penrose inverse of k(Z,Z) in (1) with the pseudo-
inverse of the best s-rank approximation of k(Z,Z) as in
(2) via SVD (Drineas et al., 2005; Kumar et al., 2012; Li
et al., 2015); the second uses the best s-rank approximation
of kZ(X,X), see (Tropp et al., 2017; Wang et al., 2019).
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For a brief overview in this regard, see Wang et al. (2019,
Remark 1).

Approximation of the Integral Operator. The matrix
k(X,X) can be regarded as a finite-dimensional representa-
tion of the linear (integral) operator

K : L2(µ) → L2(µ), (Kf)(x) =

∫
X
k(x, y)f(y) dµ(y).

We denote with (σi, ei)
∞
i=1 the eigenpairs of the operator

K, and assume the eigenvalues are ordered σ1 ≥ σ2 ≥
· · · ≥ 0. The Mercer decomposition exists under mild
assumptions (for example, suppµ = X , k is continuous
and

∫
X k(x, x) dµ(x) < ∞ (Steinwart & Scovel, 2012) are

sufficient) and gives the representation

k(x, y) =

∞∑
i=1

σiei(x)ei(y), (5)

where ∥ei∥L2(µ) = 1, and (
√
σiei)

∞
i=1 is an orthonor-

mal basis of the RKHS Hk of k. Hence, a natural ap-
proach is to just truncate this expansions after s terms,
kapp =

∑s
i=1 σiei(x)ei(y), to get a finite-dimensional ap-

proximation of the kernel k. This approach is natural since
the approximation quality of the operator K determines the
resulting error estimates. Unfortunately, it is often rendered
useless since the Mercer decomposition depends on the
tuple (k, µ) and while explicit expression are known for spe-
cial choices, in general it is unlikely to have a closed-form
representation of the eigenpairs (σi, ei)

∞
i=1.

Other Approximations. A compromise which is relevant
to our work is proposed in Santin & Schaback (2016). In-
stead of using the Mercer decomposition of K one uses the
Mercer decomposition of (1). Our main result allows to
generalize this approach and to provide theoretical guaran-
tees missing in the reference. Related is the article Gau-
thier (2021) that studies the interactions of several Hilbert-
Schmidt spaces of (integral) operators given by a Nyström
approximation/projection of a kernel-measure pair as in the
present paper; further, Chatalic et al. (2022) considers a low-
rank approximation of an empirical kernel mean embedding
by using a Nyström-based projection. The leverage-based
sampling studied in Gittens & Mahoney (2016) has con-
tinuous counterparts. One with a slight modification is in
the kernel literature (Bach, 2017), while the exact counter-
part can be found in a context from approximation theory
(Cohen & Migliorati, 2017) under the name of optimally-
weighted sampling, which essentially proposes sampling
from s−1

∑s
i=1 e

2
i (x) dµ(x).

The Power Function. Finally, the square root of the di-
agonal term

√
k(x, x)− kZ(x, x) or its generalization is

known as the power function in the literature on kernel-
based interpolation (De Marchi, 2003; Santin & Haasdonk,
2017; Karvonen et al., 2021). There the primary interest
is its L∞ (uniform) norm, rather than the L1(µ) norm,
µ(
√
k − kapp), or the L2(µ) norm, µ(k − kapp), that ap-

pear in kernel quadrature estimates and error estimates of
the Nyström/Mercer type decompositions.

Kernel Quadrature. The literature on kernel quadra-
ture includes herding (Chen et al., 2010; Bach et al.,
2012; Huszár & Duvenaud, 2012; Tsuji et al., 2022),
weighted/correlated sampling (Bach, 2017; Belhadji et al.,
2019; 2020; Belhadji, 2021), a subsampling method
called thinning (Dwivedi & Mackey, 2021; 2022; Shetty
et al., 2022) and a positively weighted kernel quadrature
(Hayakawa et al., 2022) that motivated our work. We refer
to Hayakawa et al. (2022, Table 1) for comparison of exist-
ing algorithms in terms of their convergence guarantees and
computational complexities.

3. Analyzing kZ
s for i.i.d. Z via Statistical

Learning Theory
Let Z = (zi)

ℓ
i=1 ⊂ X and kZs be the s-dimensional ker-

nel given by kZs (x, y) = k(x, Z)k(Z,Z)+s k(Z, y) as in the
usual Nyström approximation. Throughout the paper, sup-
pose we are provided the singular value decomposition of
the matrix k(Z,Z) = U diag(λ1, . . . , λℓ)U

⊤ with an or-
thogonal matrix U = [u1, . . . , uℓ] and λ1 ≥ · · · ≥ λℓ ≥ 0.
Note that

kZs (x, y) =

s∑
i=1

1{λi>0}
1

λ i
(u⊤

i k(Z, x))(u
⊤
i k(Z, y)) (6)

is actually a truncated Mercer decomposition of kZ with
regard to the measure µZ = 1

ℓ

∑ℓ
i=1 δzi , since〈

u⊤
i k(Z, ·), u⊤

j k(Z, ·)
〉
L2(µZ)

=
1

ℓ
u⊤
i k(Z,Z)k(Z,Z)uj =

λiλj

ℓ
δij .

This fact is at the heart of our analysis: kZs is ‘optimal’ s-
rank approximation for the measure µZ , and the statistical
learning theory connects estimates in empirical measure and
the original measure.

Let us denote by PZ,s : Hk → Hk the linear operator given
by k(·, x) 7→ kZs (·, x) for all x ∈ X . We shall also simply
write PZ = PZ,ℓ.

Lemma 1. PZ,s is an orthogonal projection in H.

This projection is related the quantity of interest, in that
kZs (x, x) = ⟨k(·, x), PZ,sk(·, x)⟩Hk

= ∥PZ,sk(·, x)∥2Hk
.

Thus, we have k(x, x) − kZs (x, x) = ∥P⊥
Z,sk(·, x)∥2Hk

by
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using P⊥
Z,s, the orthogonal complement of PZ,s. So we are

now interested in estimating the integral µ(
√
k − kZs ) =∫

X ∥P⊥
Z,sk(·, x)∥Hk

dµ(x) from the viewpoint of the pro-
jection operator. We first estimate its empirical counter-
part µZ(

√
k − kZs ) = 1

ℓ

∑ℓ
i=1∥P⊥

Z,sk(·, zi)∥Hk
, where

µZ = 1
ℓ

∑ℓ
i=1 δzi is the empirical measure. Indeed, we

have the following identity regarding µZ(k − kZs ):

Lemma 2. For any ℓ-point sample Z ⊂ X , we have

µZ(
√
k − kZs )

2 ≤ µZ(k − kZs ) =
1

ℓ

ℓ∑
i=s+1

λi

where λ1 ≥ · · · ≥ λℓ are eigenvalues of k(Z,Z).

When Z is given by an i.i.d. sampling, the decay of eigenval-
ues λi enjoys the rapid decay given by σi in the following
sense:

Lemma 3. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent

sample from µ. Then, for the eigenvalues λ1 ≥ · · · ≥ λℓ of
k(Z,Z), we have

E

[
1

ℓ

ℓ∑
i=s+1

λi

]
≤
∑
i>s

σi.

For a general random orthogonal projection operator, we can
prove the following bound by using arguments in statistical
learning theory (Section A):

Theorem 1. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent

sample from µ and P be a random orthogonal projection in
Hk possibly depending on Z. For any integer m ≥ 1, we
have the following bound:

E
[∫

X
∥Pk(·, x)∥Hk

dµ(x)

]
≤ E

[
2

ℓ

ℓ∑
i=1

∥Pk(·, zi)∥Hk

]

+ 4

√∑
i>m

σi +

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
,

where the expectation is taken regarding the draws of Z.

Recall that µ(
√
k − kZs ) =

∫
X ∥P⊥

Z,sk(·, x)∥Hk
dµ(x). By

combining this theorem when P = P⊥
Z,s and Lemma 2 & 3,

we can obtain the following:

Corollary 1. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent

sample from µ. Then, for any integer m ≥ 1, we have

E
[
µ(
√
k − kZs )

]
≤ 2

√∑
i>s

σi + 4

√∑
i>m

σi

+

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
.

Remark 1. When σj ≲ e−βi1/d with a constant β > 0
and a positive integer d (typical for d-dimensional Gaussian
kernel, see, e.g., Adachi et al., 2022, Section A.2), by taking
m ∼ (log ℓ)d, we have a bound

E
[
µ(
√
k − kZs )

]
= O

√∑
i>s

σi +
(log ℓ)2d+1

ℓ


for ℓ ≥ 3; see Appendix B.6 for the proof. Since
k − kZs ≤

√
kmax

√
k − kZs , the same estimate applies

to E[µ(
√

k − kZs )]. These also lead to an (s + 1)-point
randomized convex kernel quadrature Qs+1 with the same
order of E[wce(Qs+1)]. See Section 5 for details.

4. A Refined Low-rank Approximation with
General Z

The process of obtaining a good approximation kapp of k
using kZ can be decomposed into two parts:

k − kapp = k − kZ︸ ︷︷ ︸
A

+ kZ − kapp︸ ︷︷ ︸
B

.

In the previous section, we have analyzed the case Z is
i.i.d. and kapp = kZs . However, we can consider more
general Z, and indeed we actually have a better way to
select a subspace (i.e., kapp) from the finite-rank kernel kZ

rather than just using kZs .

4.1. Part A: Estimating the Error of kZ for General Z

This part is relatively well-studied. Indeed, µ(k − kZ) =∫
X (k(x, x)− kZ(x, x)) dµ(x) for some non-i.i.d. Z can be

bounded by using the results of weighted kernel quadrature.
For example, Belhadji et al. (2019) consider the worst-case
error for the weighted integral

µ(fg) =

∫
X
f(x)g(x) dµ(x) ≈

ℓ∑
i=1

wif(zi) (7)

for any ∥f∥Hk
≤ 1 and a fixed g ∈ L2(µ) with Z = (zi)

ℓ
i=1

following a certain DPP. Now consider the optimal worst-
case error in the above approximation for the fixed point
configuration Z:

inf
wi

sup
∥f∥Hk

≤1

∣∣∣∣∣µ(fg)−
ℓ∑

i=1

wif(zi)

∣∣∣∣∣
= sup

∥f∥≤1

∣∣∣∣∣∣
〈
f,

∫
X
k(·, x)g(x) dµ(x)−

ℓ∑
i=1

wik(·, zi)

〉
Hk

∣∣∣∣∣∣
= inf

wi

∥∥∥∥∥Kg −
ℓ∑

i=1

wik(·, zi)

∥∥∥∥∥
Hk

= ∥P⊥
Z Kg∥Hk

. (8)

By using this, we can prove the following estimate:
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Proposition 1. For any finite subset Z ⊂ X and any integer
m ≥ 0, we have

µ(k − kZ) =

∞∑
i=1

∥P⊥
Z Kei∥2Hk

≤
m∑
i=1

∥P⊥
Z Kei∥2Hk

+
∑
i>m

σi

where (σi, ei)
∞
i=1 are the eigenpairs of K.

The papers Belhadji et al. (2019; 2020); Belhadji (2021)
give bounds on the worst-case error of the weighted kernel
quadrature (8) when Z is given by some correlated sampling,
whereas Bach (2017) gives another bound when Z is given
by an optimized weighted sampling rather than sampling
from µ. By using (8) and Proposition 1, we can import their
bounds on weighted kernel quadrature with non-i.i.d. Z
to the estimate of µ(k − kZ) =

∫
X
∥P⊥

Z k(·, x)∥2Hk
dµ(x).

Here, we just give one such example:

Corollary 2. Let Z = (zi)
ℓ
i=1 be taken from a DPP

given by the projection kernel p(x, y) =
∑ℓ

i=1 ei(x)ei(y)
with a reference measure µ, i.e., P(Z ∈ A) =
1
ℓ!

∫
A
det p(Z,Z) dµ⊗ℓ(Z) for any Borel set A ⊂ X d.

Then, for any integer m ≥ 0, we have

E
[
µ(k − kZ)

]
≤
∑
i>m

σi + 4m
∑
i>ℓ

σi,

where the expectation is taken regarding the draws of Z.

In any case, by using those non-i.i.d. points, we can obtain
a better Z in the sense that

∫
X (k(x, x) − kZ(x, x)) dµ(x)

attains a sharper upper bound than the bound given in the
previous section for an ℓ-point i.i.d. sample from µ. How-
ever, for a general Z, it is not necessary sensible to execute
the SVD of k(Z,Z) and get kZs accordingly, as a SVD of
k(Z,Z) corresponds to approximating µ by the empirical
measure 1

ℓ

∑ℓ
i=1 δzi (indeed, this observation is the key to

the results in the previous section). Thus, for points Z not
given by i.i.d. sampling, there should exist a better choice
of kapp than kZs . We discuss this in the following section.

4.2. Part B: Mercer Decomposition of kZ

Instead of using kZs , we propose to compute the Mercer
decomposition of kZ with respect to µ and truncate it to get
kZs,µ, which is defined in the following. This is doable if
we have knowledge of hµ(x, y) :=

∫
X k(x, t)k(t, y) dµ(t),

since kZ is a finite-dimensional kernel. We can prove the
following:

Lemma 4. We have hµ(x, y) =
∑∞

i=1 σ
2
i ei(x)ei(y).

We now discuss how hµ can be used to derive the Mercer
decomposition of kZ . Note that this can be regarded as a
generalization of Santin & Schaback (2016, Section 6). Let
KZ : L2(µ) → L2(µ) be the integral operator given by
g 7→

∫
X kZ(·, x)g(x) dµ(x).

For functions of the form f = a⊤k(Z, ·) and g = b⊤k(Z, ·)
with a, b ∈ Rℓ, we have

⟨f, g⟩L2(µ) =

∫
X
a⊤k(Z, x)k(x, Z)bdµ(x)

= a⊤hµ(Z,Z)b. (9)

So, if we write hµ(Z,Z) = H⊤H by using an H ∈ Rℓ×ℓ

(since hµ(Z,Z) is positive semi-definite), an element f =
a⊤k(Z, ·) ∈ L2(µ) is non-zero if and only if Ha ̸= 0.
Furthermore, we have

KZf =

∫
X
k(·, Z)k(Z,Z)+k(Z, x)k(x, Z)a dµ(x)

= k(·, Z)k(Z,Z)+hµ(Z,Z)a

=
[
k(Z,Z)+hµ(Z,Z)a

]⊤
k(Z, ·). (10)

Thus, f is a nontrivial eigenfunction of KZ , if Ha ̸= 0 and
a is an eigenvector of k(Z,Z)+hµ(Z,Z). It is equivalent
to c = Ha being an eigenvector of Hk(Z,Z)+H⊤.

Let us decompose this matrix by SVD as Hk(Z,Z)+H⊤ =
V diag(κ1, . . . , κℓ)V

⊤, where the V = [v1, . . . , vℓ] ∈
Rℓ×ℓ is an orthogonal matrix and κ1 ≥ · · · ≥ κℓ ≥ 0.
Then, we have

Hk(Z,Z)+H⊤ =

ℓ∑
i=1

κiviv
⊤
i .

Let us consider fi = (H+vi)
⊤k(Z, ·) = v⊤i (H

+)⊤k(Z, ·)
for i = 1, . . . , ℓ as candidates of eigenfunctions of KZ . We
can actually prove the following:

Lemma 5. The set {fi | i ≥ 1, κi > 0} forms an or-
thornomal subset of L2(µ) whose elements are eigenfunc-
tions of KZ .

Let us define kZµ (x, y) :=
∑ℓ

i=1 κifi(x)fi(y); note that this
is computable. From the above lemma, this expression is a
natural candidate for “Mercer decomposition” of kZ . We
can prove that it actually coincides with kZ(x, y) µ-almost
everywhere, and so the decomposition is independent of the
choice of H up to µ-null sets:

Proposition 2. There exists a measurable set A ⊂ X de-
pending on Z with µ(A) = 1 such that kZ(x, y) = kZµ (x, y)
holds for all x, y ∈ A. Moreover, we can take A = X if
kerhµ(Z,Z) ⊂ ker k(Z,Z).

Now we just define kZs,µ for s ≤ ℓ as follows:

kZs,µ(x, y) :=

s∑
i=1

κifi(x)fi(y). (11)

Theorem 2. We have µ(kZµ − kZs,µ) ≤
∑ℓ

i=s+1 σi for any
Z = (zi)

ℓ
i=1 ⊂ X .
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Proof. The left-hand side is equal to
∑ℓ

i=s+1 κi from
Lemma 5 and the definition of the kernels. Thus, it suf-
fices to prove κi ≤ σi for each i. It directly follows from
the min-max principle (or Weyl’s inequality) as k − kZµ
is positive definite on an A ⊂ X with µ(A) = 1 from
Proposition 2.

Remark 2. The choice of the matrix H with H⊤H =
hµ(Z,Z) does not affect the theory but might affect the
numerical errors. We have used the matrix square-root
hµ(Z,Z)1/2, i.e., the symmetric and positive semi-definite
matrix H with H2 = hµ(Z,Z), throughout the experiments
in Section 5, so that we just need to take the pseudo-inverse
of positive semi-definite matrices.

Approximate Mercer Decomposition. When we have
no access to the function hµ, we can just approximate it
by using an empirical measure. For a X = (xj)

M
j=1 ⊂ X ,

denote by hX the function given by replacing µ in hµ with
the empirical measure with points X:

hX(x, y) =
1

M

M∑
j=1

k(x, xj)k(xj , y) =
1

M
k(x,X)k(X, y).

We can actually replace every hµ by hX in the above con-
struction to define kZX and kZs,X . This approximation is
already mentioned by Santin & Schaback (2016) without
theoretical guarantee. Another remark is that, when re-
stricted on the set X , it is equivalent to the best s-rank ap-
proximation of kZ(X,X) in the Gram-matrix case (Tropp
et al., 2017; Wang et al., 2019), since the L2-norm for the
uniform measure on X just corresponds to the ℓ2-norm in
R|X|.

Note that we have kZX(X,X) = kZ(X,X) from Proposi-
tion 2 in the discrete case. As we have kerhX(Z,Z) =
ker k(Z,X)k(X,Z) = ker k(X,Z), we additionally ob-
tain the following sufficient condition from Proposition 2.

Proposition 3. kZX(x, y) = kZ(x, y) holds for all x, y ∈
X . Moreover, if ker k(X,Z) ⊂ ker k(Z,Z), then we have
kZX = kZ over the whole X .

In particular, we have kZX = kZ whenever Z ⊂ X . These
(at least µ-a.s.) equalities given in Proposition 2 & 3 are
necessary for the applications to kernel quadrature, since
we need k − kapp to be positive definite for exploiting the
existing guarantees such as Theorem 3 in the next section.

Although checking kZX = kZ is not an easy task, from
the first part of Proposition 3, kZs,X satisfies the following
estimate in terms of the empirical measure µX .

Proposition 4. Let Z ⊂ X be a fixed subset and X be an
M -point independent sample from µ. Then, we have

E
[
µX(kZ − kZs,X)

]
= E

[
µX(kZX − kZs,X)

]
≤
∑
i>s

σi,

where the expectation is taken regarding the draws of X .

We can also give a bound of the resulting error µ(kZ−kZs,X)
again by using the arguments from learning theory, but
under an additional assumption as stated in the following.
Nevertheless, Proposition 4 is already sufficient for our
application in kernel quadrature; see Theorem 4.
Proposition 5. Under the same setting as in Proposition 4,
if ker k(X,Z) ⊂ ker k(Z,Z) holds almost surely for the
draws of X , we have

E
[
µ(
√
kZ − kZs,X)

]
≤ 2

√∑
i>M

σi + 4

√∑
i>m

σi

+

√
kmax

M

(
80m2 log(1 + 2M)

9
+ 69

)
.

for any integer m ≥ 1.
Remark 3. The assumption ker k(X,Z) ⊂ ker k(Z,Z)
seems to be very hard to check in practice. An example
with this property is (X , k, µ) such that X = RD with
D,M > ℓ, the kernel k is just the Euclidean inner product
on RD, and µ is given by a Gaussian distribution with a
nonsingular covariance matrix.

This said, we have some ways to avoid this issue in practice.
One way is to use X ∪ Z instead of X so that the condition
automatically holds. Then, the above order of estimate
should still hold when ℓ ≪ M , though it complicates the
analysis. Another way is effective when we use kZX for
constructing a kernel quadrature from an empirical measure
given by X itself; see the next section for details.

5. Application to Kernel Quadrature
Let us give error bounds for kernel quadrature as a conse-
quence of the previous sections. We are mainly concerned
with the kernel quadrature of the form (7) without weight,
i.e., the case when g = 1 for efficiently discretizing the
probability measure µ.

Given an n-point quadrature rule Qn : f 7→
∑n

i=1 wif(xi)
with weights wi ∈ R and points xi ∈ X , the worst-case
error of Qn with respect to the RKHS Hk and the target
measure µ is defined as

wce(Qn;Hk, µ) := sup
∥f∥Hk

≤1

|Qn(f)− µ(f)|.

Note that it is equal to MMDk(Qn, µ), the maximum mean
discrepancy (with k) between Qn regarded as a (signed)
measure and µ (Gretton et al., 2006). We call Qn convex if
it is a probability measure, i.e., wi ≥ 0 and

∑n
i=1 wi = 1.

Suppose we are given an s-rank kernel approximation
kapp(x, y) =

∑s
i=1 ciφi(x)φi(y) with ci ≥ 0 and k−kapp

being positive definite (µ-almost surely). The following is
taken from Hayakawa et al. (2022, Theorem 6 & 8).
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Theorem 3. If an n-point convex quadrature Qn satisfies
Qn(φi) = µ(φi) for 1 ≤ i ≤ s and Qn(

√
k − kapp) ≤

µ(
√
k − kapp), then we have

wce(Qn;Hk, µ) ≤ 2µ(
√
k − kapp).

Moreover, such a quadrature Qn exists with n = s+ 1.

Although there is a randomized algorithm for constructing
the Qn stated in the above theorem (Hayakawa et al., 2022,
Algorithm 2 with modification), it has two issues; it requires
exact values of µ(φi) (and µ(

√
k − kapp)) and its computa-

tional complexity has no useful upper bound unless we have
additional assumptions such as well-behaved moments of
test functions φi (Hayakawa et al., 2023a) or structure like
a product kernel with a product measure (Hayakawa et al.,
2023b). This said, we can deduce updated convergence
results for outputs of the algorithm as in Remark 1.

5.1. Kernel Recombination

Instead of considering an “exact” quadrature, what we do in
practice in this low-rank approach is matching the integrals
against a large empirical measure (see also Adachi et al.,
2022, Section 6), say µY = 1

N

∑N
i=1 δyi

with Y = (yi)
N
i=1.

If we have{
Qn(φi) = µY (φi), 1 ≤ i ≤ s,

Qn(
√

k − kapp) ≤ µY (
√
k − kapp),

(12)

then, from Theorem 3 with a target measure µY and the
triangle inequality of MMD, we have

wce(Qn;Hk, µ) ≤ MMDk(Qn, µY ) +MMDk(µY , µ)

≤ 2µY (
√
k − kapp) +MMDk(µY , µ). (13)

Indeed, such a quadrature Qn with n = s + 1 and points
given by a subset of Y can be constructed via an algorithm
called recombination (Litterer & Lyons, 2012; Tcherny-
chova, 2016; Cosentino et al., 2020; Hayakawa et al., 2022).

Existing approaches of this kernel recombination have then
been using an approximation kapp typically given by kZs
whose randomness is independent from the sample Y , but it
is not a necessary requirement as long as we can expect an
efficient bound of µY (

√
k − kapp) in some sense. Another

small but novel observation is that k − kapp being positive
definite is only required on the sample Y in deriving the
estimate (13); not over the support of µ in contrast to Theo-
rem 3. These observations circumvent the issues mentioned
in Remark 3 when using kapp = kZY (kZs,X with X = Y ).

Let us now denote the kernel recombination in a form of
function as Qn = KQuad(kapp, Y ), where the output Qn

is an n-point convex quadrature satisfying n = s + 1 and
(12); note that the constraint is slightly different from what

is given in Hayakawa et al. (2022, Algorithm 1), but we can
achieve (12) by replacing k1,diag with

√
k1,diag in the cited

algorithm.

We can now prove the performance of low-rank approxima-
tions given in the previous section. Indeed, kZs,Y and kZs,µ
have the following same estimate.
Theorem 4. Let Z ⊂ X be a fixed subset and Y be an N -
point independent sample from µ. Then, a random convex
quadrature Qn = KQuad(kZs,Y , Y ) satisfies

E[wce(Qn;Hk, µ)]

≤ 2µ(
√
k − kZ) + 2

√∑
i>s

σi +

√
ck,µ
N

, (14)

where ck,µ := µ(k)−
∫∫

X×X k(x, y) dµ(x) dµ(y) and the
expectation is taken regarding the draws of Y . The estimate
(14) holds also for Qn = KQuad(kZs,µ, Y ).

5.2. Numerical Examples

In this section, we compare the numerical performance of
kZs,Y and kZs,µ for kernel quadrature with the conventional
Nyström approximation for a non-i.i.d. Z in the setting that
we can explicitly compute the worst-case error.

Periodic Sobolev Spaces. The class of RKHS we use is
called periodic Sobolev spaces of functions on X = [0, 1]
(a.k.a. Korobov spaces), and given by the following kernel
for a positive integer r:

kr(x, y) = 1 +
(−1)r−1(2π)2r

(2r)!
B2r(|x− y|),

where B2r is the 2r-th Bernoulli polynomial (Wahba, 1990;
Bach, 2017). We consider the case µ being the uniform
measure, where the eigenfunctions of the integral operator
K are known to be 1,

√
2 cos(2πm ·),

√
2 sin(2πm ·) with

eigenvalues respectively 1,m−2r,m−2r for each positive
integer m. This RKHS is commonly used for measuring
the performance of kernel quadrature methods (Kanagawa
et al., 2016; Bach, 2017; Belhadji et al., 2019; Hayakawa
et al., 2022). We also consider its products: k⊗d

r (x,y) =∏d
i=1 kr(xi, yi) and µ being the uniform measure on the

hypercube X = [0, 1]d.

By considering the eigenvalues, we can see that hµ = k⊗d
2r

for each kernel k⊗d
r from Remark 4.

Experiments. In the experiments for the kernel k⊗d
r , we

compared the worst-case error of n-point kernel quadra-
ture rules given by Qn = KQuad(kapp, Y ) with kapp =
kHs , kZs , k

Z
s,Y , k

Z
s,µ (s = n− 1) under the following setting:

• Y is an N -point independent sample from µ with N =
n2 (Figure 1) or N = n3 (Figure 2).
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• H is the uniform grid {i/n | i = 1, . . . , n} (d = 1) or
the Halton sequence with Owen scrambling (Halton,
1960; Owen, 2017) (d ≥ 2).

• Z is the union of H and another 20n-point indepen-
dent sample from ν⊗d, where ν is the 1-dimensional
(2, 5)-Beta distribution, whose density is proportional
to x(1− x)4 for x ∈ [0, 1].

We additionally compared ‘Monte Carlo’: uniform weights
1/n with i.i.d. sample (xi)

n
i=1 from µ, ‘Uniform Grid’

(d = 1): points in H with uniform weights 1/n (known to
be optimal for each n), and ‘Halton’ (d ≥ 2): points in an
independent copy of H with uniform weights 1/n.

The aim of this experiment was to see if the proposed meth-
ods (kZs,Y and kZs,µ) can actually recover a ‘good’ subspace
of the RKHS given by kZ with Z not summarizing µ. To do
so, we mixed H (a ‘good’ summary of µ) and an i.i.d. sam-
ple from ν to determine Z.

Figure 1 shows the results for (d, r) = (1, 1), (2, 1), (3, 3)
with N = n2 and n = 4, 8, 16, 32, 64, 128. From Fig-
ure 1(a, b), we can see that our methods indeed recover (and
perform slightly better than) the rate of kH from a contami-
nated sample Z. In Figure 1(c), the four low-rank methods
all perform equally well, and it seems that the dominating
error is given by the term caused by MMDk(µY , µ).

Figure 2 shows the results for (d, r) = (1, 2) with N = n2

or N = n3 and n = 4, 8, 16, 32, 64. In this case, we can see
that kZs,Y or kZs,µ eventually suffers from the numerical insta-
bility, which is also reported by Santin & Schaback (2016).
Since their error inflation is not completely hidden even in
the case N = n2 unlike the previous experiments, one possi-
ble reason for the instability is that taking the pseudo-inverse
of k(Z,Z) or hµ(Z,Z)1/2 in the algorithm becomes highly
unstable when the spectral decay is fast. Although they have
preferable guarantees in theory, its numerical error seems
to harm the overall efficiency, and this issue needs to be
addressed e.g. by circumventing the use of pseudo-inverse
in future work.

Remark 4. Unlike the kernel quadrature with kZs,µ or kZs,Y ,
that with kZs does not suffer from a similar numerical insta-
bility despite the use of k(Z,Z)+s . This phenomenon can be
explained by the nature of Hayakawa et al. (2022, Algorithm
1); it only requires (stable) test functions φi = u⊤

i k(Z, ·)
(i = 1, . . . , s) for its equality constraints, where ui is the
i-th eigenvector of k(Z,Z), while the (possibly unstable)
diagonal term kZs (x, x) appears in the inequality constraint,
which can empirically be omitted (Hayakawa et al., 2022,
Section E.2).

Computational Complexity. By letting ℓ,N (larger than
s) respectively be the cardinality of Z and Y , we can express
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Figure 1: Experiments in periodic Sobolev spaces with re-
producing kernel k⊗d

r . Average of log10(wce(Qn;Hk, µ)
2)

over 20 samples plotted with their standard deviation.
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Figure 2: Experiments in k2 with N = n2, n3 for recom-
bination algorithms. Average of log10(wce(Qn;Hk, µ)

2)
over 20 samples plotted with their standard deviation.

the computational steps of KQuad(kapp, Y ) with kapp =
kZs , k

Z
s,Y , k

Z
s,µ as follows:

• Using kZs takes O
(
sℓN + sℓ2 + s3 log(N/s)

)
, but it

can be reduced to O
(
ℓN + sℓ2 + s3 log(N/s)

)
by

omitting the (empirically unnecessary) inequality con-
straint (Hayakawa et al., 2022, Remark 2).

• Using kZs,Y takes O
(
ℓ3 + ℓ2N + s3 log(N/s)

)
, where

O
(
ℓ3
)

and O
(
ℓ2N

)
respectively come from comput-

ing k(Z,Z)+ and hY (Z,Z).

• Using kZs,µ takes O
(
ℓ3 + sℓN + s3 log(N/s)

)
(if hµ

available), where O
(
ℓ3
)

is from computing k(Z,Z)+.

For example, in the case of Figure 1(c) with n = 128, the
average time per one trial was respectively 26.5, 226, 216
seconds for kZs , k

Z
s,Y , k

Z
s,µ, while it was 52.6, 57.8, 41.2

seconds for the case of Figure 2(b) with n = 64.1

6. Concluding Remarks
In this paper, we have studied the performance of several
Nyström-type approximations kapp of a positive definite
kernel k associated with a probability measure µ, in terms
of the error µ(

√
k − kapp). We first improved the bounds

for kZs , the conventional Nyström approximation based on
an i.i.d. Z and the use of SVD, by leveraging results in statis-
tical learning theory. We then went beyond the i.i.d. setting
and considered general Z including DPPs; we further in-
troduced two competitors of kZs , i.e., kZs,µ and kZs,X , which
are given by directly computing the Mercer decomposition
of the finite-rank kernel kZ against the measure µ and the
empirical measure µX , respectively. Finally, we used our re-
sults to improve the theoretical guarantees for convex kernel
quadrature Hayakawa et al. (2022), and provided numerical
results to illustrate the difference between the conventional
kZs and the newly proposed kZs,µ and kZs,X .

Despite its nice theoretical properties, a limitation of our sec-
ond contribution, i.e., the proposed kernel approximations,
is that they involve the computation of a pseudo-inverse,
which can be numerically unstable when there is a rapid
spectral decay. This point should be addressed in future
work, but one promising approach in the context of ker-
nel quadrature is to conceptually learn from the stability of
kZs mentioned in Remark 4; if we see the construction of
the low-rank kernel as optimization of the vectors ui for
which functions u⊤

i k(Z, ·) well approximate HkZ in terms
of L2(µ) metric, we can possibly leverage the stability of
convex optimization for instance.
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A. Tools from statistical learning theory
In this section, F always denotes a class of functions from X to R, i.e., F ⊂ RX . Let us define the Rademacher complexity
of F with respect to the sample Z = (zi)

ℓ
i=1 ⊂ X as follows (e.g., Mohri et al., 2018, Definition 3.1):

RZ(F) := E

sup
f∈F

1

ℓ

ℓ∑
j=1

sjf(zj)

∣∣∣∣∣∣Z


where the conditional expectation is taken with regard to the Rademacher variables, i.e., i.i.d. variables sj uniform in {±1}.

The following is a version of the uniform law of large numbers, though we only use the one side of the inequality.

Proposition 6 (Mohri et al., 2018, Theorem 3.3). Let Z be an ℓ-point independent sample from µ. If there is a B > 0 such
that ∥f∥∞ ≤ B for every f ∈ F , then with probability at least 1− δ, we have

sup
f∈F

(µ(f)− µZ(f)) ≤ 2E[RZ(F)] +

√
2B2

ℓ
log

1

δ
.

For a pseudo metric d on F , we denote the ε-convering number of F by N (F , d; ε). Namely, N (F , d; ε) is the infimum of
positive integers N such that there exist f1, . . . , fN ∈ F satisfying min1≤i≤N d(fi, g) ≤ ε for all g ∈ F .

Let us define a pseudo-metric dZ(f, g) :=
√

1
ℓ

∑ℓ
j=1(f(zi)− g(zi))2. The following assertion is a version of Dudley’s

integral entropy bound (Srebro et al., 2010, Lemma A.3; see Srebro & Sridharan (2010) for a correction of the constant).

Proposition 7 (Dudley integral). For any ℓ-point sample Z = (zi)
ℓ
i=1 ⊂ X , we have

RZ(F) ≤ 12√
ℓ

∫ ∞

0

√
logN (F , dZ ; ε) dε.

The following is a straightforward modification of Schmidt-Hieber (2020, Lemma 4) tailored to our setting. It originates
from an analysis of empirical risk minimizers, and this kind of technique has also been known in earlier work under the
name of local Rademacher complexities (Györfi et al., 2006; Koltchinskii, 2006; Giné & Koltchinskii, 2006).

Proposition 8. Let F ⊂ L∞(µ) be a set of functions with f ≥ 0 and ∥f∥L∞(µ) ≤ F for all f ∈ F , where F > 0 is a
constant. If f̂ is a random function in F possibly depending on Z, then, for every ε > 0, we have

E
[
µ(f̂)

]
≤ 2E

[
µZ(f̂)

]
+

F

ℓ

(
80

9
logN + 64

)
+ 5ε,

where N := max{3,N (F , ∥·∥L1(µ); ε)}.

Proof. The proof here essentially follows the original proof, where we re-compute the constants as the condition is slightly
different; see also Hayakawa & Suzuki (2020, Theorem 2.6) and its remark.

Let Z ′ = (z′1, . . . z
′
ℓ) be an independent copy of Z. Let Fε be an ε-covering of F in L1(µ) with the cardinality N and f∗ be

a random element of Fε such that µ(|f̂ − f∗|) ≤ ε. Then, we have

∣∣∣E[µZ(f̂)
]
− E

[
µ(f̂)

]∣∣∣ = ∣∣∣∣∣E
[
1

ℓ

ℓ∑
i=1

(f̂(zi)− f̂(z′i))

]∣∣∣∣∣ ≤ E

[∣∣∣∣∣ 1n
ℓ∑

i=1

(f∗(zi)− f∗(z′i))

∣∣∣∣∣
]
+ 2ε (15)

Define T := maxf∈Fε

∑ℓ
i=1(f(zi) − f(z′i))/r(f), where we let r(f) := max{c

√
ℓ−1 logN,

√
µ(f)} for each f ∈ Fε

with a constant c > 0 fixed afterwards. Thus, we obtain

E

[∣∣∣∣∣ 1n
ℓ∑

i=1

(f∗(zi)− f∗(z′i))

∣∣∣∣∣
]
≤ E

[
r(f∗)T

ℓ

]
≤ 1

2
E
[
r(f∗)2

]
+

1

2ℓ2
E
[
T 2
]
. (16)

12



Sampling-based Nyström Approximation and Kernel Quadrature

The first term can evaluated as

E
[
r(f∗)2

]
≤ c2

logN

ℓ
+ E[µ(f∗)] ≤ c2

logN

ℓ
+ E[µ(f̂)] + ε. (17)

For the second term, we first have

ℓ∑
i=1

E

[(
f(zi)− f(z′i)

r(f)

)2
]
≤

ℓ∑
i=1

E
[
f(zi)

2 + f(z′i)
2

r(f)2

]
≤ 2Fℓ, f ∈ Fε.

Since we have |f(zi)− f(z′i)|/r(f) ≤ 2F/r(f) ≤ 2F
√
ℓ

c
√
logN

uniformly for f ∈ Fε, Bernstein’s inequality combined with
the union bound yields

P
(
T 2 ≥ t

)
= P

(
T ≥

√
t
)
≤ 2N exp

− t

4F (ℓ+
√
ℓt

3c
√
logN

)

 ≤ 2N exp

(
−3c

√
logN

8F
√
ℓ

√
t

)
for t ≥ 9c2ℓ logN . Therefore, we have

E
[
T 2
]
=

∫ ∞

0

P
(
T 2 ≥ t

)
dt ≤ 9c2ℓ logN +

∫ ∞

9c2ℓ logN

2N exp

(
−3c

√
logN

8F
√
ℓ

√
t

)
dt

= 9c2ℓ logN + 4N

(
8Fℓ+

64F 2ℓ

9c2 logN

)
exp

(
−9c2 logN

8F

)
Let us now set c =

√
8F/9 so that 9c2 = 8F . Then, we obtain E

[
T 2
]
≤ 8Fℓ logN + 64Fℓ since N ≥ 3 by assumption.

By combining it with (15)–(17), we finally obtain∣∣∣E[µZ(f̂)
]
− E

[
µ(f̂)

]∣∣∣ ≤ 1

2
E
[
µ(f̂)

]
+

( 409 F logN + 32F )

ℓ
+

5

2
ε,

from which the desired inequality readily follows.

B. Proofs
B.1. Properties of the pseudo-inverse

For a matrix A ∈ Rm×n, its Moore–Penrose pseudo-inverse A+ (Penrose, 1955) is defined as the unique matrix X ∈ Rn×m

that satisfies
AXA = A, XAX = X, (AX)⊤ = AX, (XA)⊤ = XA.

It also satisfies that A+A is the orthogonal projection onto the orthogonal complement of kerA (the range of A⊤), while
AA+ is the orthogonal projection onto the range of A (Penrose, 1955; Shinozaki et al., 1972). We use these general
properties of A+ throughout Section B. See e.g. Drineas et al. (2005) for the concrete construction of such a matrix.

B.2. Proof of Lemma 1

Proof. Recall that we have the SVD k(Z,Z) = U diag(λ1, . . . , λℓ)U
⊤ with an orthogonal matrix U = [u1, . . . , uℓ]. and

λ1 ≥ · · · ≥ λℓ ≥ 0. By using this notation, we have

kZs (x, y) =
∑

1≤j≤s
λj>0

1

λ j
(u⊤

j k(Z, x))(u
⊤
j k(Z, y)). (18)

If we denote by Qj : Hk → Hk the projection onto span{u⊤
j k(Z, ·)}, we have

(u⊤
j k(Z, x))(u

⊤
j k(Z, y)) =

〈
u⊤
j k(Z, ·), k(·, x)

〉
Hk

〈
u⊤
j k(Z, ·), k(·, y)

〉
Hk

= ∥u⊤
j k(Z, ·)∥2Hk

⟨Qjk(·, x), Qjk(·, y)⟩Hk

= λj ⟨Qjk(·, x), Qjk(·, y)⟩Hk
, (19)
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where the last inequality follows from
〈
u⊤
i k(Z, ·), u⊤

j k(Z, ·)
〉
Hk

= u⊤
i k(Z,Z)uj = δijλj . Now let P̃Z,s be the orthogonal

projection onto span{u⊤
j k(Z, ·)}sj=1 in Hk. We prove P̃Z,s = PZ,s. From the orthogonality of {u⊤

j k(Z, ·)}sj=1 we have
P̃Z,s =

∑s
j=1 Qj and

〈
k(·, x), kZs (·, y)

〉
Hk

= kZs (x, y) =

s∑
j=1

⟨Qjk(·, x), Qjk(·, y)⟩Hk

=
〈
P̃Z,sk(·, x), P̃Z,sk(·, y)

〉
Hk

=
〈
k(·, x), P̃Z,sk(·, y)

〉
Hk

for all x, y ∈ X . In particular, kZs (·, y) = P̃Z,sk(·, y), so we have P̃Z,s = PZ,s.

B.3. Proof of Lemma 2

Proof. The inequality follows from Cauchy–Schwarz. Let us prove the equality.

We use the notation Qj from the proof of Lemma 1. We first obtain PZk(·, zi) = k(·, zi) for i = 1, . . . , ℓ, since PZ is a
projection onto span{k(·, zi)}ℓi=1. Thus, we have P⊥

Z,sk(·, zi) = (PZ − PZ,s)k(·, zi) = (Qs+1 + · · ·+Qℓ)k(·, zi), and so

1

ℓ

ℓ∑
i=1

∥P⊥
Z,sk(·, zi)∥2Hk

=
1

ℓ

ℓ∑
i=1

∑
s+1≤j≤ℓ

λj>0

1

λj
(u⊤

j k(Z, zi))
2

by using (19). Since k(Z,Z) = U diag(λ1, . . . , λℓ)U
⊤ =

∑ℓ
i=1 λiuiu

⊤
i , we can explicitly calculate

u⊤
j k(Z, zi) = u⊤

j

ℓ∑
i=1

λiuiu
⊤
i 1j = λju

⊤
i 1j ,

where 1j ∈ Rℓ is the vector with 1 in the j-th coordinate and 0 in the other coordinates. As U is an ℓ× ℓ orthogonal matrix,
we actually have

∑ℓ
i=1(u

⊤
i 1j)

2 = 1 for each j = 1, . . . , ℓ.

1

ℓ

ℓ∑
i=1

∑
s+1≤j≤ℓ

λj>0

1

λj
(u⊤

j k(Z, zi))
2 =

1

ℓ

ℓ∑
i=1

ℓ∑
j=s+1

λj(u
⊤
i 1j)

2 =
1

ℓ

ℓ∑
j=s+1

λj , (20)

and the proof is complete.

B.4. Proof of Lemma 3

Proof. From the min-max principle, we have

λj = min
Vj−1⊂Rℓ

dimVj−1≤j−1

max
xj∈V ⊥

j−1, ∥xj∥2=1
x⊤
j k(Z,Z)xj , (21)

where Vj−1 is a linear subspace of Rℓ. Recall the Mercer expansion k(x, y) =
∑∞

i=1 σiei(x)ei(y). By letting ej(Z) =
(ej(z1), . . . , ej(zℓ))

⊤ ∈ Rℓ, we can write k(Z,Z) =
∑∞

i=1 σiei(Z)ei(Z)⊤. We assume that this equality holds in the
following. We especially write the remainder term as ks+1(Z,Z) := k(Z,Z)−

∑s
i=1 σiei(Z)ei(Z)⊤

Consider taking Vs = span{e1(Z), . . . , es(Z)} and

xj ∈ argmax
x∈V ⊥

j−1, ∥x∥2=1

x⊤k(Z,Z)x, Vj = span(Vj−1 ∪ {xj})

for j = s+ 1, . . . , ℓ in (21). Then, λ′
j := x⊤

j k(Z,Z)x satisfies λj ≤ λ′
j , and so we have

ℓ∑
j=s+1

λj ≤
ℓ∑

j=s+1

λ′
k =

ℓ∑
j=s+1

x⊤
j k(Z,Z)xj =

ℓ∑
j=s+1

x⊤
j ks+1(Z,Z)xj ,
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where we have used that x⊤
j ei(Z) = 0 for any i ≤ s < j in the last inequality. By taking some {x1, . . . , xs} ⊂ Rℓ, we can

make {x1, . . . , xℓ} a orthonormal basis of Rℓ, so we obtain

ℓ∑
j=s+1

λj ≤
ℓ∑

j=s+1

x⊤
j ks+1(Z,Z)xj ≤

ℓ∑
j=1

x⊤
j ks+1(Z,Z)xj = tr ks+1(Z,Z).

Therefore, we have
1

ℓ

ℓ∑
j=s+1

λj ≤
1

ℓ
tr ks+1(Z,Z) =

1

ℓ

ℓ∑
i=1

ks+1(zi, zi),

and we obtain the desired inequality in expectation since E[ks+1(zi, zi)] =
∑∞

j=s+1 σj .

B.5. Proof of Theorem 1

We first prove the following generic proposition by exploiting the ingredients given in Section A.
Proposition 9. Let Q be an arbitrary deterministic m-dimensional orthogonal projection in Hk. Then, for any random
orthogonal projection P possibly depending on Z, we have

µ(∥PQk(·, x)∥Hk
) ≤ µZ(∥PQk(·, x)∥Hk

) +

√
kmax

ℓ

(
36m+

√
2 log

1

δ

)
(22)

with probability at least 1− δ.

Furthermore, with regard to the expectation, we also have

E[µ(∥PQk(·, x)∥Hk
)] ≤ 2E[µZ(∥PQk(·, x)∥Hk

)] +

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
. (23)

Proof. Let {v1, . . . , vm} be an orthonormal basis of QHk. Let also {ui}i∈I and {ui}i∈J be respectively an orthonormal
basis of PHk and (PHk)

⊥, so {ui}i∈I∪J is an orthonormal basis of Hk.

Let us compute ∥PQk(·, x)∥2Hk
. Since we have

PQk(·, x) = P

 m∑
j=1

⟨vj , k(·, x)⟩Hk
vj

 =

m∑
j=1

vj(x)Pvj =
∑
i∈I

m∑
j=1

vj(x) ⟨ui, vj⟩Hk
ui

(where we can exchange the summation as they converge in Hk), we obtain

∥PQk(·, x)∥2Hk
=
∑
i∈I

 m∑
j=1

vj(x) ⟨ui, vj⟩Hk

2

= ∥AP,Qvx∥2ℓ2(I) = v⊤
x A

∗
P,QAP,Qvx,

where vx = (v1(x), . . . , vm(x))⊤ ∈ Rm and AP,Q is a linear operator Rm → ℓ2(I) given by a = (a1, . . . , am)⊤ 7→
(
∑m

j=1 ⟨ui, vj⟩Hk
aj)i∈I , and A∗

P,Q : ℓ2(I) → Rm is its dual (defined by the property
〈
a,A∗

P,Qb
〉
Rm

= ⟨AP,Qa, b⟩ℓ2(I)),
which can be understood as the “transpose” of AP,Q. Note that A∗

P,QAP,Q can be regarded as an m×m matrix and we have

(A∗
P,QAP,Q)j,h =

∑
i∈I

⟨ui, vj⟩Hk
⟨ui, vh⟩Hk

= ⟨Pvj , Pvh⟩Hk
.

We can also define BP,Q = AP⊥,Q by replacing P with P⊥. Then we have

(A∗
P,QAP,Q)j,h + (B∗

P,QBP,Q)j,h = ⟨Pvj , Pvh⟩Hk
+
〈
P⊥vj , P

⊥vh
〉
Hk

= ⟨vj , vh⟩Hk
= δjh,

so A⊤
P,QAP,Q is an m×m positive semi-definite matrix with A⊤

P,QAP,Q ≤ Im.

It thus suffices to consider a uniform estimate of µ(
√

v⊤
x Svx)−µZ(

√
v⊤
x Svx) with a positive semi-definite matrix S ≤ Im.

This S can be written as S = U⊤U by using a U ∈ Rm×m with ∥U∥2 ≤ 1, so we shall solve the following problem:

15



Sampling-based Nyström Approximation and Kernel Quadrature

Find a uniform upper bound of µ(∥Uvx∥2)− µZ(∥Uvx∥2) for any matrix U ∈ Rm×m with ∥U∥2 ≤ 1.

Now we can reduce our problem to a routine work of bounding the covering number of the function class F := {fU :=
x 7→ ∥Uvx∥2 | U ∈ U}, where U := {U ∈ Rm×m | ∥U∥2 ≤ 1}.

For any x ∈ X , we have

∥vx∥22 =

ℓ∑
j=1

vj(x)
2 = ∥Qk(·, x)∥2Hk

≤ ∥k(·, x)∥2Hk
= k(x, x).

If Uδ is a δ-covering of U , then {fU}U∈Uδ
gives a δ

√
kmax-covering. Indeed, for any U, V ∈ U with ∥U − V ∥2 ≤ δ, we

have

dZ(fU , fV )
2 =

1

ℓ

ℓ∑
i=1

(∥Uvzi∥2 − ∥V vzi∥2)2 ≤ 1

ℓ

ℓ∑
i=1

∥(U − V )vzi∥22 ≤ δ2
1

ℓ

ℓ∑
i=1

∥vzi∥22 ≤ δ2kmax.

Here, we have the covering number bound logN (U , ∥·∥2; δ) ≤ m2 log
(
1 + 2

δ

)
for δ ≤ 1 (and 0 for δ ≥ 1) as U can be seen

as a unit ball of Rm2

in a certain norm (Wainwright, 2019, Example 5.8), so logN (F , dZ ; ε) ≤ m2 log(1 + 2
√
kmax/ε)

for ε ≤
√
kmax.

Therefore, from Proposition 7, we have

RZ(F) ≤ 12√
ℓ

∫ √
kmax

0

√
m2 log

(
1 +

2
√
kmax

ε

)
dε

=
12m

√
kmax√
ℓ

∫ 1

0

√
log

(
1 +

2

t

)
dt ≤ 18m

√
kmax√
ℓ

,

where we have used the estimate∫ 1

0

√
log

(
1 +

2

t

)
dt ≤

∫ 1

0

1

2

(
1 + log

(
1 +

2

t

))
dt =

1

2
+

1

2
log

27

4
≤ 3

2
.

Since we also have a bound ∥fU∥∞ ≤ ∥U∥2
√
kmax, we can use Proposition 6 to obtain

µ(∥PQk(·, x)∥Hk
)− µZ(∥PQk(·, x)∥Hk

) ≤ sup
f∈F

(µZ(f)− µ(f)) ≤
√

kmax

ℓ

(
36m+

√
2 log

1

δ

)

with probability at least 1− δ. So we have proven (22).

We next prove (23) by using Proposition 8. We have the same bound for logN (F , ∥·∥L1(µ); ε) from the same argument as
above, and so we especially get

logN

(
F , ∥·∥L1(µ);

√
kmax

ℓ

)
≤ m2 log(1 + 2ℓ).

As ∥f∥L∞(µ) ≤
√
kmax =: F holds for all f ∈ F , we can now apply Proposition 8 with ε = F/ℓ to obtain the desired

conclusion.

We next prove the following proposition that includes the desired assertion by using Proposition 9.

Proposition 10. Let Z = (zi)
ℓ
i=1 be an ℓ-point independent sample from µ. Let P be a random orthogonal projection in

Hk possibly depending on Z. For any integer m ≥ 1, with probability at least 1− δ, we have∫
X
∥Pk(·, x)∥Hk

dµ(x) ≤ 1

ℓ

ℓ∑
i=1

∥Pk(·, zi)∥Hk
+

√
kmax

ℓ

(
36m+

√
9

2
log

2

δ

)
+ 3

√∑
j>m

σj .
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Furthermore, in expectation, we have the following bound:

E
[∫

X
∥Pk(·, x)∥Hk

dµ(x)

]
≤ E

[
2

ℓ

ℓ∑
i=1

∥Pk(·, zi)∥Hk

]

+

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
+ 4

√∑
j>m

σj . (24)

Proof. Note that we use the fact that for any projection operator P ∥Pf∥ ≤ ∥f∥ frequently within the proof. For an ℓ-point
sample Z = (z1, . . . , zℓ) ⊂ X , let us denote µZ be the mapping f 7→ 1

ℓ

∑ℓ
i=1 f(zi). If we have f−, f ∈ L1(µ) with

f− ≤ f , we can generally obtain

µ(f)− µZ(f) = (µ(f)− µ(f−)) + (µ(f−)− µZ(f−)) + (µZ(f−)− µZ(f))

≤ µ(f − f−) + (µ(f−)− µZ(f−)). (25)

We here use f(x) = ∥Pk(·, x)∥Hk
and f−(x) = ∥PPmk(·, x)∥Hk

−∥PP⊥
mk(·, x)∥Hk

for an m, where Pm is the projection
operator onto span{e1, . . . , em} in Hk and P⊥

m is its orthogonal complement. In this case, µ(f−f−) can easily be estimated
by Cauchy–Schwarz as follows:

µ(f − f−) ≤ µ(2∥PP⊥
mk(·, x)∥Hk

) ≤ 2µ(∥P⊥
mk(·, x)∥Hk

)

≤ 2
√

µ(∥P⊥
mk(·, x)∥2Hk

) = 2

√∑
j>m

σj , (26)

where we have used the fact

∥P⊥
mk(·, x)∥2Hk

= ∥k(·, x)∥2Hk
− ∥Pmk(·, x)∥2Hk

= k(x, x)−
m∑
i=1

σiei(x)
2 =

∞∑
i=m+1

σiei(x)
2.

We also bound µ(f−)− µZ(f−) by

µ(f−)− µZ(f−) ≤ µ(∥PPmk(·, x)∥Hk
)− µZ(∥PPmk(·, x)∥Hk

) + µZ(∥P⊥
mk(·, x)∥Hk

), (27)

where we have used the second inequality in (26) for µZ . The last term µZ(∥P⊥
mk(·, x)∥Hk

) above is estimated either in
expectation or in high probability as follows:

E
[
µZ(∥P⊥

mk(·, x)∥Hk
)
]
≤
√∑

j>m

σj .

µZ(∥P⊥
mk(·, x)∥Hk

) ≤
√∑

j>m

σj +

√
kmax

2ℓ
log

1

δ
with probability at least 1− δ.

(28)

The latter follows from a simple calculation of Hoeffing’s inequality.

Thus, it suffices to derive a bound for µ(∥PPmk(·, x)∥Hk
)− µZ(∥PPmk(·, x)∥Hk

) or its expectation; we do it by letting
Q = Pm and f̂ = f in Proposition 9. By combining (just summing up) the inequalities (25)–(28), and (22), we obtain the
desired inequality in high probability. For the result in expectation, we first combine the inequalities (25)–(28), and (23) to
get the bound

E[µ(f)]− E[µZ(f)] ≤ E[µZ(∥PPmk(·, x)∥Hk
)] +

√
kmax

ℓ

(
80m2 log(1 + 2ℓ)

9
+ 69

)
+ 3

√∑
j>m

σj

(recall f(x) = ∥Pk(·, x)∥Hk
). Since we can also estimate E[µZ(∥PPmk(·, x)∥Hk

)] as

E[µZ(∥PPmk(·, x)∥Hk
)] ≤ E[µZ(∥Pk(·, x)∥Hk

)] + E
[
µZ(∥PP⊥

mk(·, x)∥Hk
)
]

≤ E[µZ(∥Pk(·, x)∥Hk
)] +

√∑
j>m

σj ,

we obtain the desired conclusion.
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B.6. Proof of Remark 1

Proof. We assume ℓ ≥ 3 here. Let F (x) := −β−1x1−1/d exp(−βx1/d). If d ≥ 2, its derivative is

F ′(x) = exp(−βx1/d)− 1− 1/d

β
x−1/d exp(−βx1/d) =

(
1− 1− 1/d

β
x−1/d

)
exp(−βx1/d).

Thus, if x ≥ (log ℓ)d/βd, we have F ′(x) ≥ d exp(−βx1/d). This inequality is still true if d = 1. By taking m =
⌊(2 log ℓ)d/βd⌋, we obtain∑

i>m

σi ≲
∫ ∞

2(log ℓ)d/βd

exp(−βx1/d) dx ≤ −dF (2(log ℓ)d/βd) =
2d−1d

βd
· (log ℓ)

d−1

ℓ2
.

Therefore, this choice of m satisfies√∑
i>m

σi = O
(
(log ℓ)(d−1)/2

ℓ

)
, m2 = O

(
(log ℓ)2d

)
.

Combining these with the inequality in Corollary 1 gives the desired estimate.

B.7. Proof of Proposition 1

Proof. We basically just compute the trace of the operator P⊥
Z K. Indeed, we have∫

X
∥P⊥

Z k(·, x)∥2Hk
=

∫
X
(k(x, x)− kZ(x, x)) dµ(x), (29)

and, from (5), we also have the following identity:∫
X
k(x, x) dµ(x) =

∞∑
i=1

⟨ei,Kei⟩L2(µ) . (30)

For kZ , as we can write kZ(x, y) =
∑ℓ

i=1 gi(x)gi(y) by using gi ∈ L2(µ) (see e.g., (18)), we can also have∫
X
kZ(x, x) dµ(x) =

∑
i∈I

〈
ei,KZei

〉
L2(µ)

=

∞∑
i=1

〈
ei,KZei

〉
L2(µ)

, (31)

where KZ : L2(µ) → L2(µ) is the integral operator given by g 7→
∫
X kZ(·, x)g(x) dµ(x), and (ei)i∈I is an orthonormal

basis of L2(µ) including (ei)
∞
i=1. The second equality follows from the fact that K − KZ is a (semi-)positive definite

operator since k − kZ is a positive definite kernel, and so we have 0 ≤
〈
ei,KZei

〉
L2(µ)

≤ ⟨ei,Kei⟩L2(µ) = 0 for any

i ∈ I \ Z>0. For this integral operator, since we have kZ(·, x) = PZk(·, x), we can prove

KZg =

∫
X
PZk(·, x)g(x) dµ(x) = PZ

∫
X
k(·, x)g(x) dµ(x) = PZKg

for any g ∈ L2(µ) under the well-definedness of K. Thus, from (29)–(31), we have∫
X
∥P⊥

Z k(·, x)∥2Hk
=

∞∑
i=1

〈
ei, (K −KZ)ei

〉
L2(µ)

=

∞∑
i=1

〈
ei, P

⊥
Z Kei

〉
L2(µ)

. (32)

For general f ∈ Hk and g ∈ L2(µ), we can prove

⟨f,Kg⟩Hk
=

〈
f,

∫
X
k(·, x)g(x) dµ(x)

〉
Hk

=

∫
X
⟨f, k(·, x)⟩Hk

g(x) dµ(x) = ⟨f, g⟩L2(µ) ,

so that in particular 〈
g, P⊥

Z Kg
〉
L2(µ)

=
〈
Kg, P⊥

Z Kg
〉
Hk

= ∥P⊥
Z Kg∥2Hk

.

By letting g = ei in the above equation, we can deduce the desired equality from (32). For the inequality, use the bound

∥P⊥
Z Kei∥2Hk

≤ ∥Kei∥2Hk
= ∥σiei∥2Hk

= σi∥
√
σiei∥2Hk

= σi

for each i > m.
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B.8. Proof of Corollary 2

Proof. From Proposition 1 and (8), it suffices to prove for an arbitrary g ∈ L2(µ) that

∥P⊥
Z Kg∥2Hk

= inf
wi

sup
∥f∥Hk

≤1

∣∣∣∣∣µ(fg)−
ℓ∑

i=1

wif(zi)

∣∣∣∣∣
2

≤ 4
∑
i>ℓ

σi.

It is indeed an immediate consequence of Belhadji (2021, Theorem 4).

B.9. Proof of Lemma 4

Proof. Given the Mercer decomposition k(x, y) =
∑∞

i=1 σiei(x)ei(y), we can compute

hµ(x, y) =

∫
X
k(x, t)k(t, y) dµ(t)

=

∞∑
i,j=1

σiσjei(x)ej(y)

∫
X
ei(t)ei(t) dµ(t)

=

∞∑
i,j=1

δijσiσjei(x)ej(y) =

∞∑
i=1

σ2
i ei(x)ei(y),

where we have used the fact that (ei)∞i=1 is an orthonormal set in L2(µ).

B.10. Proof of Lemma 5

Proof. From (9), we have

⟨fi, fj⟩L2(µ) = v⊤i (H
+)⊤H⊤HH+vj = (HH+vi)

⊤(HH+vj). (33)

Here, note that {vi, κi > 0} ⊂ (kerH⊤)⊥ as we have, for any v ∈ kerH⊤,

0 = v⊤Hk(Z,Z)+H⊤v =

ℓ∑
i=1

κiv
⊤viv

⊤
i v =

ℓ∑
i=1

κi(v
⊤vi)

2.

Therefore, HH+vi = vi if κi > 0 since HH+ is the projection onto (kerH⊤)⊥, and so {fi, κi > 0} is orthonormal
from (33). We can also see that fi = (H+vi)

⊤k(Z, ·) is an eigenfunction of KZ from the remark below (10) and
HH+vi = vi.

B.11. Proof of Proposition 2

Proof. We rewrite kZµ in terms of another summation as follows:

kZµ (x, y) :=

ℓ∑
i=1

κifi(x)fi(y)

= k(x, Z)H+

(
ℓ∑

i=1

κiviv
⊤
i

)
(H⊤)+k(Z, y)

= k(x, Z)H+Hk(Z,Z)+H⊤(H⊤)+k(Z, y)

=
∑
λi>0

1

λi
u⊤
i H

⊤(H+)⊤k(Z, x)k(y, Z)H+Hui, (34)

where (λi, ui) are eigenpairs of k(Z,Z). Recall also that we have

kZ(x, y) = k(x, Z)k(Z,Z)+k(Z, y) =
∑
λi>0

1

λi
u⊤
i k(Z, x)k(y, Z)ui. (35)
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From (34) and this, it suffices to prove u⊤k(Z, ·) = u⊤H⊤(H+)⊤k(Z, ·) in L2(µ) for any u ∈ Rℓ. Indeed, we have∫
X

(
u⊤k(Z, x)− u⊤H⊤(H+)⊤k(Z, x)

)2
dµ(x)

=

∫
X

(
u⊤ (Iℓ −H⊤(H+)⊤

)
k(Z, x)

)2
dµ(x)

= u⊤ (Iℓ −H⊤(H+)⊤
)(∫

X
k(Z, x)k(x, Z) dµ(x)

)
(Iℓ −H+H)u

= u⊤ (Iℓ −H⊤(H+)⊤
)
H⊤H(Iℓ −H+H)u = 0

since H⊤(H+)⊤H⊤ = H⊤ and HH+H = H hold (Iℓ is the identity matrix). Thus, we obtain the desired assertion.

Finally, we prove that kZµ and kZ coincide when kerhµ(Z,Z) ⊂ ker k(Z,Z). From (34) and (35), it suffices to prove
H+Hui = ui for indices i with λi > 0. Note that H+H is the orthogonal projection onto the orthogonal complement of
kerH = kerH⊤H = hµ(Z,Z) from a general property of the pseudo-inverse. Since ui is an eigenvector of k(Z,Z) with
a positive eigenvalue λi, it is orthogonal to any v ∈ ker k(Z,Z) (as u⊤

i v = λ−1
i u⊤

i k(Z,Z)v = 0). Therefore, if we have
kerhµ(Z,Z) ⊂ ker k(Z,Z), ui is also orthogonal to kerhµ(Z,Z) and so H+Hui = ui as desired.

B.12. Proof of Proposition 4

First, we give a proof for a folklore property of products of positive semi-definite matrices.
Lemma 6. Let ℓ,m ≥ n be positive integers and A,B ∈ Rn×n be (symmetric) positive semi-definite matrices. Assume
B = C⊤C = D⊤D for a real matrix C ∈ Rm×n and D ∈ Rℓ×n. Then, CAC⊤ and DAD⊤ have the same set of nonzero
eigenvalues with the same multiplicity (in terms of real eigenvectors).

Proof. For a real square matrix M ∈ Rj×j and a real number λ, let us define Sλ(M) := {v ∈ Rj | Mv = λv} be the real
eigenspace of M corresponding to λ.

We shall prove there is a bijection between Sλ(AB) and Sλ(CAC⊤) for each real λ ̸= 0 (and the same for Sλ(DAD⊤)
by symmetry). Once we establish this, we see that each λ ̸= 0 has the same multiplicity as an eigenvalue of CAC⊤ and
DAD⊤ (multiplicity can be zero; in that case λ is not an eigenvalue), and the desired assertion follows.

Let us fix λ ̸= 0. If v ∈ Sλ(CAC⊤), we have CAC⊤(Cv) = CABv = λ(Cv), so Cv ∈ Sλ(CAC⊤). We also have
Cv′ ̸= Cv for another element (v ̸=)v′ ∈ Sλ(AB) since AC⊤(Cv′ − Cv) = AB(v′ − v) = λ(v′ − v) ̸= 0. Thus, matrix
multiplication by C is an injective map from Sλ(AB) to Sλ(CAC⊤).

Let us finally prove Sλ(AB) ∋ v 7→ Cv ∈ Sλ(CAC⊤) is surjective. Let u ∈ Sλ(CAC⊤). Then, u = λ−1(λu) =
λ−1CAC⊤u = C(λ−1AC⊤u), so we can write u = Cv for v = λ−1AC⊤u. It remains to prove v ∈ Sλ(AB), but we can
see it as follows:

ABv = AB

(
1

λ
AC⊤u

)
=

1

λ
(AC⊤C)AC⊤u =

1

λ
AC⊤(CAC⊤u) =

1

λ
AC⊤(λu) = λv.

Therefore, we have a bijection between Sλ(AB) and Sλ(CAC⊤) and we are done.

Recall µ(kZµ − kZs,µ) ≤
∑ℓ

i=s+1 κi holds for eigenvalues κ1 ≥ · · ·κℓ ≥ 0 of Hµk(Z,Z)+H⊤
µ with H⊤

µ Hµ = hµ(Z,Z)

(that immediately follows from the definitions of kZµ and kZs,µ, and that fi are L2(µ)-orthonormal). By replacing µ with
µX , we have µX(kZX − kZs,X) ≤

∑ℓ
i=s+1 κ

X
i for eigenvalues of κX

1 ≥ · · · ≥ κX
ℓ ≥ 0 of HXk(Z,Z)+H⊤

X , where
H⊤

XHX = hX(Z,Z) = 1
M k(Z,X)k(X,Z).

By using the lemma, we can see that κX
i are actually the same as the eigenvalues of 1

M k(X,Z)k(Z,Z)+k(Z,X) =
1
M kZ(X,X). As k − kZ is a positive definite kernel, k(X,X) − kZ(X,X) is a positive semi-definite matrix, the i-th
largest eigenvalue of kZ(X,X) is bounded by the i-th largest eigenvalue of k(X,X) (Weyl’s inequality).

Now, let λX
1 ≥ λX

2 ≥ · · · ≥ 0 be the eigenvalues of k(X,X). From the above argument, we have

µX(kZX − kZs,X) ≤
ℓ∑

i=s+1

κX
i ≤ 1

M

ℓ∑
i=s+1

λX
i ≤ 1

M

M∑
i=s+1

λX
i .
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Notice that we can apply Lemma 3 with X instead of Z, and obtain E
[
µX(kZX − kZs,X)

]
≤
∑

i>s σi as desired.

B.13. Proof of Proposition 5

Proof. Fix a sample X with ker k(X,Z) ⊂ ker k(Z,Z) and let us use the same notation as in µ, i.e.,

• H⊤H = hX(Z,Z) = 1
M k(Z,X)k(X,Z);

• Hk(Z,Z)+H⊤ = V diag(κ1, . . . , κℓ)V
⊤ with κ1 ≥ · · ·κℓ ≥ 0 and V being orthogonal;

• fi = (H+vi)
⊤k(Z, ·) and kZX(x, y) =

∑ℓ
i=1 κifi(x)fi(y).

In this case, from the same argument as the last paragraph in the proof of Proposition 2, we have H+H is an identity map over
(kerhX(Z,Z))⊥ = (ker k(X,Z))⊥ ⊃ (ker k(Z,Z))⊥. By considering the SVD of k(Z,Z), we see that (ker k(Z,Z))⊥

is exactly the linear subspace of Rℓ spanned by eigenvectors of k(Z,Z) with nonzero eigenvalues, which is equal to
{k(Z,Z)v | v ∈ Rℓ} = {k(Z,Z)+v | v ∈ Rℓ}. In particular, we have H+Hk(Z,Z)+ = k(Z,Z)+.

We now prove that {√κifi | i ≥ 1, κi > 0} actually forms an orthonoramal set in Hk. Indeed, if κi, κj > 0, we have〈√
κifi,

√
κjfj

〉
Hk

=
√
κiκjv

⊤
i (H

+)⊤k(Z,Z)H+vj

=
1

√
κiκj

v⊤i
[
Hk(Z,Z)+H⊤] (H+)⊤k(Z,Z)H+

[
Hk(Z,Z)+H⊤] vj

=
1

√
κiκj

v⊤i Hk(Z,Z)+k(Z,Z)k(Z,Z)+H⊤vj

=
1

√
κiκj

v⊤i Hk(Z,Z)+H⊤vj = δij ,

where we have used the fact that vi and vj are eigenvectors of Hk(Z,Z)+H⊤ with eigenvalues κi and κj , respectively.

Let P : Hk → Hk be the orthogonal projection onto span{√κifi | i > s, κi > 0}. Then, we have

Pk(·, x) =
ℓ∑

i=s+1

⟨
√
κifi, k(·, x)⟩Hk

√
κifi =

ℓ∑
i=s+1

√
κifi(x)

√
κifi,

and so ∥Pk(·, x)∥2Hk
=
∑ℓ

i=s+1 κifi(x)
2 = kZ(x, x) − kZs,X(x, x). Note that the projection P is a random operator

depending on the sample X . Now, we can use Theorem 1 with the empirical measure given by X instead of Z to obtain

E
[
µ(
√
kZ − kZs,X)

]
≤ 2E

[
µX(

√
kZX − kZs,X)

]
+ 4

√∑
i>m

σi +

√
kmax

M

(
80m2 log(1 + 2M)

9
+ 69

)
. (36)

for any integer m ≥ 1, where we have used ∥Pk(·, x)∥Hk
=
√

kZ(x, x)− kZs,X(x, x) =
√
kZX(x, x)− kZs,X(x, x) almost

surely. From Proposition 4, we have

E
[
µX(

√
kZX − kZs,X)

]2
≤ E

[
µX(

√
kZX − kZs,X)2

]
≤ E

[
µX(kZX − kZs,X)

]
≤
∑
i>s

σi,

and combining it with (36) leads to the desired conclusion.

B.14. Proof of Theorem 4

Proof. We first prove the result for Qn = KQuad(ks,Y,Y). Since k(x, x) ≥ kZ(x, x) = kZY (x, x) ≥ kYs,Z(x, x) for x ∈ Y
from Proposition 3, we have

µY (
√
k − kZs,Y ) ≤ µY (

√
k − kZ) + µY (

√
kZY − kZs,Y ).
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From Proposition 4, by taking the expectation with regard to Y , we have

E
[
µY (

√
kZY − kZs,Y )

]
≤
√

E
[
µY (kZY − kZs,Y )

]
≤
√∑

i>s

σi,

and so we obtain

E
[
µY (

√
k − kZs,Y )

]
≤ µ(

√
k − kZ) +

√∑
i>s

σi

By combining it with (13), it is now sufficient to show E[MMDk(µY , µ)] ≤
√
ck,µ/N , but actually it follows from the

identity E
[
MMDk(µY , µ)

2
]
= ck,µ/N , which can be shown by a straightforward calculation (see, e.g., Hayakawa et al.,

2022, Proof of Theorem 7).

In the case of Qn = KQuad(kZs,µ, Y ), we instead have the decomposition

µY (
√
k − kZs,µ) ≤ µY (

√
k − kZ) + µY (

√
kZµ − kZs,µ);

Theorem 2 yields the desired estimate for expectation.
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