
Vision Research 187 (2021) 55–65

Available online 30 June 2021
0042-6989/© 2021 Elsevier Ltd. This article is made available under the Elsevier license (http://www.elsevier.com/open-access/userlicense/1.0/).

Redundancy between spectral and higher-order texture statistics for natural 
image segmentation 

Daniel Herrera-Esposito a,*, Leonel Gómez-Sena a, Ruben Coen-Cagli b 
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A B S T R A C T   

Visual texture, defined by local image statistics, provides important information to the human visual system for 
perceptual segmentation. Second-order or spectral statistics (equivalent to the Fourier power spectrum) are a 
well-studied segmentation cue. However, the role of higher-order statistics (HOS) in segmentation remains un
clear, particularly for natural images. Recent experiments indicate that, in peripheral vision, the HOS of the 
widely adopted Portilla-Simoncelli texture model are a weak segmentation cue compared to spectral statistics, 
despite the fact that both are necessary to explain other perceptual phenomena and to support high-quality 
texture synthesis. Here we test whether this discrepancy reflects a property of natural image statistics. First, 
we observe that differences in spectral statistics across segments of natural images are redundant with differences 
in HOS. Second, using linear and nonlinear classifiers, we show that each set of statistics individually affords high 
performance in natural scenes and texture segmentation tasks, but combining spectral statistics and HOS pro
duces relatively small improvements. Third, we find that HOS improve segmentation for a subset of images, 
although these images are difficult to identify. We also find that different subsets of HOS improve segmentation 
to a different extent, in agreement with previous physiological and perceptual work. These results show that the 
HOS add modestly to spectral statistics for natural image segmentation. We speculate that tuning to natural 
image statistics under resource constraints could explain the weak contribution of HOS to perceptual segmen
tation in human peripheral vision.   

1. Introduction 

Scene segmentation is an essential function of visual processing. 
Grouping visual features together in a segment and separating different 
segments in a scene requires multiple processes and sources of infor
mation. These include gestalt principles such as proximity, similarity, 
common fate (Wagemans et al., 2012); geometrical cues such as sym
metry and collinearity (Field et al., 1993; Geisler et al., 2001; Sigman 
et al., 2001); statistical cues related to texture information (Julesz, 1962; 
Landy & Bergen, 1991; Li, 2002); binocular disparity cues (Bakin et al., 
2000; Zhaoping et al., 2009); detection of edges and boundaries between 
regions (Ben-Shahar, 2006; Wolfson & Landy, 1998); and shape infor
mation derived from object recognition and semantic understanding of 
scenes (Neri, 2014, 2017), just to name a few. 

Here we focus on visual texture, which can be defined by the local 
statistical properties of an image region (Julesz, 1962; Victor et al., 
2017). This is a particularly important and well-studied substrate for 

image segmentation, as reflected in the vast perceptual (Julesz, 1962; 
Landy, 2013; Landy & Bergen, 1991; Victor, 1994; Victor et al., 2017) 
and physiological (Knierim & van Essen, 1992; Lamme, 1995; Lamme 
et al., 1999; Nothdurft et al., 2000; Roelfsema, 2006) literature and in 
successful models of human texture segmentation (Bergen & Landy, 
1991; Bhatt et al., 2007; Li, 2002; Malik & Perona, 1990; Victor et al., 
2017). Notably, most of this work has been focused on studying second- 
order statistics (represented in the Fourier power spectrum, henceforth 
spectral statistics), despite abundant evidence that higher-order statis
tics (HOS) also strongly influence texture perception (Balas, 2006; 
Freeman et al., 2013; Freeman & Simoncelli, 2011; Hermundstad et al., 
2014; Julesz et al., 1978; Portilla & Simoncelli, 2000; Tesileanu et al., 
2020; Victor et al., 2013; Victor & Conte, 1996) and are essential to 
capture the appearance of natural textures (Balas, 2006; Portilla & 
Simoncelli, 2000). Studies of HOS cues for texture segmentation have 
used artificial textures, and relatively low-order statistics (Hermundstad 
et al., 2014; Julesz et al., 1978; Tesileanu et al., 2020; Tkacik et al., 
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2010; Victor et al., 2013; Zavitz & Baker, 2014). As a consequence, the 
relevance of HOS for texture-based segmentation remains uncertain, 
particularly in the context of natural vision. 

Texture processing is especially prominent in peripheral vision, and 
the most influential theory of peripheral vision relies on summary sta
tistics (SS) of textures (Balas et al., 2009; Freeman et al., 2013; Freeman 
& Simoncelli, 2011; Rosenholtz, 2016). One important instantiation of 
the SS theory relies on the statistics defined by the Portilla-Simoncelli 
(PS) algorithm for texture synthesis (Balas et al., 2009; Freeman & 
Simoncelli, 2011; Portilla & Simoncelli, 2000), which uses marginal 
pixel statistics, spectral statistics and a specific set of HOS (detailed 
below) to synthesize textures with naturalistic appearance. The PS 
instantiation of the SS model uses a filtering stage analogous to the 
primary visual cortex (V1) followed by a HOS encoding stage (Fig. 1b), 
and captures many aspects of peripheral perception (Balas et al., 2009; 
Ehinger & Rosenholtz, 2016; Freeman et al., 2013; Freeman & Simon
celli, 2011; Rosenholtz et al., 2012) as well as the selectivity of neurons 
at higher stages of the visual cortex (Freeman et al., 2013; Okazawa 
et al., 2015; 2017;; Ziemba et al., 2016). 

Recent work by us and others (Doerig et al., 2019; Herrera-Esposito 
et al., 2021; Herzog et al., 2015; Manassi et al., 2012; 2013;; Wallis et al., 
2019) suggests that perceptual segmentation is an important missing 
component from the SS model of the visual periphery. In particular, we 
(Herrera-Esposito et al., 2021) observed that segmentation cues improve 
performance in a naturalistic texture discrimination task, when target 
textures are surrounded by distractor textures. Remarkably, however, 
when we introduced a difference in HOS between target and distractor 
textures, that difference induced little segmentation, on average, if these 
regions shared the same spectral statistics (although there is some be
tween texture variability in the estimated effect of HOS). This observa
tion raises the following question: why are these HOS only a weak 
segmentation cue (relative to spectral statistics) to our peripheral visual 
systems? 

Here we test whether this observation reflects a property of natural 
images’ statistics, which may be exploited by the human peripheral vi
sual system through processes of statistical inference (Hindi Attar et al., 
2007), or whether it reflects suboptimal processing. Under the first hy
pothesis, two scenarios are possible. First (Fig. 1D, top), the HOS might 
be an unreliable cue for texture-based segmentation, because differences 
in local HOS between two regions do not reliably correspond to differ
ences in the segments of the scene. In this case, the visual system would 
learn to weigh the spectral statistics information more heavily than the 
HOS information, similar to much previous research in visual (Adams & 
Mamassian, 2004; Jacobs, 1999; Knill & Saunders, 2003; Saarela & 

Landy, 2012), auditory (Cazettes et al., 2014; Pavão et al., 2020) and 
multisensory (Fetsch et al., 2012; Gu et al., 2008) cue combination. A 
second possibility (Fig. 1D, middle) is that the HOS may be a reliable cue 
for segmentation, but highly redundant with the spectral statistics. For 
example, if it seldom occurs that two different neighboring segments in a 
natural image have similar spectral statistics but different HOS that 
allow to segregate them, then these HOS would add little information to 
the process of texture-based segmentation of natural images. Then, using 
the spectral statistics but not HOS for peripheral segmentation, could be 
advantageous considering resource constraints (see Discussion). Lastly 
(Fig. 1D, bottom), an alternative hypothesis is that both spectral statis
tics and HOS are informative about segmentation and independent of 
each other, in which case the smaller weight placed on HOS by pe
ripheral segmentation processes would reflect a combination of inac
curate encoding of the HOS of PS and suboptimal readout of that 
information. 

To test those possibilities, first we studied how spectral statistics and 
HOS change across natural textures and natural scenes segments. Next, 
we trained an observer model to solve a classification task using 
different combinations of spectral statistics and HOS, in which the goal 
is to determine whether two image patches belong to the same image 
segment or not (see Fig. 1). We used both images of composite natural 
textures, where we defined the ground-truth segmentation, and images 
of natural scenes with segmentation maps drawn by humans (Martin 
et al., 2001). Our results provide the first quantification of the relative 
power of spectral statistics and HOS of the PS model for texture-based 
segmentation of natural images. 

2. Methods 

2.1. Image and segment selection 

For the analysis of texture images we used 638 natural texture im
ages obtained from the Brodatz (Brodatz, 1966), Salzburg Texture Image 
(Salzburg Texture Image Database (STex), n.d.), and the Lazebnik et al. 
databases (Lazebnik et al., 2005). We converted the color images to 
grayscale with the image package for octave, by extracting the lumi
nance channel of the YIQ color space. We then normalized the pixel 
values of each image to have a mean of 0.5 and a standard deviation of 
0.2 on a scale between 0 and 1. Next, we cropped 4 non-overlapping 
square patches of 128 × 128 pixels from the vertices of the image, 
thus obtaining 4 sample patches per texture (a total of 2552 patches). 

For the natural scene analysis we used the 500 natural scene images 
from the Berkeley segmentation database (BSD) (Martin et al., 2001), 

Fig. 1. (A) Example pairs of patches taken 
from different (left) or from the same (right) 
image segment of a natural image. (B) Illus
tration of the computing of the different 
image statistics, with a first filtering stage 
and a second stage of computing image sta
tistics. (C) Segmentation task, in which the 
statistics of two image patches are used to 
classify them as belonging to the same or to 
different segments. (D) Each row illustrates 
one possible scenario of spectral statistics 
and HOS contributions to image segmenta
tion. Plots show the distribution of the dif
ference between statistics across image 
patches from the same (green) and from 
different (brown) segments for different 
combinations of statistics (first three col
umns), and the corresponding performance 
of different segmentation models using these 
statistics (fourth column).   
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and their corresponding segmentation maps labeled by a human (we 
used the first map available for each image). We converted the color 
images to grayscale with the same procedure as for textures. The seg
ments analyzed for each image were the central segment of the image 
(the one containing the central pixel) and all its neighbors. To avoid 
excessive noise in the computed statistics, we filtered out the images in 
which the central segment had less than 8192 pixels (equivalent to a 
128 × 64 pixels). Furthermore, we also filtered out the neighboring 
segments with less than 4096 pixels (equivalent to a 64 × 64 pixel 
patch). After this selection procedure, 416 images and a total of 1696 
segments were used. 

2.2. Pairing image patches and texture segmentation task 

Region-based segmentation consists in the process of determining 
whether two image regions belong to the same segment or not. We 
modeled this region-based segmentation task using texture as a substrate 
by employing a classification task on pairs of image patches. 

We generated pairs of image patches that could either belong to the 
same segment or to different segments (Fig. 1). For brevity, we refer to 
these pairs as “matched” and “unmatched” respectively. Then, we 
computed the statistics of the patches (see details below) and, depending 
on the analysis, we either computed the angle between the vectors of 
statistics of the two patches (used in Fig. 2; see subsection 2.3 for de
tails), or we computed the absolute difference between the patches for 
each of the PS statistics (used in all other figures and tables). The clas
sification task consists in determining whether the two texture patches 
belong to the same segment or not. 

For the texture images we considered the whole image as one 
segment, and thus built the matched pairs by pairing two patches from 
the same texture, and the unmatched pairs by pairing two patches from 
different textures. 

For the natural images in the BSD, the matched pairs were obtained 
by splitting the center patch, and the neighboring patches with more 
than 8192 pixels, vertically into two halves at the point that produced 
the most balanced pixel distribution, and pairing the two halves. The 
unmatched pairs were obtained by pairing the central patch of an image 

with a neighboring segment. 

2.3. Computing texture statistics 

For each image patch we computed the summary statistics of the PS 
model. These comprise a set of marginal pixel statistics, and a set of 
statistics over the filter outputs of the steerable pyramid (Portilla & 
Simoncelli, 2000). We used a bank of filters with 4 orientations and 4 
scales, and a neighborhood of 7 pixels for computing spatial correla
tions. For the cropped texture patches we used the original PS code. For 
the patches of natural scenes we used a modified version of the Freeman 
metamer model (Freeman & Simoncelli, 2011). The original code first 
filters an image with the steerable pyramid, and then computes the 
weighted average of the pairwise products of filter outputs (equivalent 
to computing correlations), using a predetermined set of regular 
weighting windows. Our modification consisted in using an irregular 
weighting window, given by the segmentation map of the BSD image. In 
both textures and natural scenes we also modified the code to compute 
correlations where the original models computed covariances because 
we observed that correlations afforded better performance in the 
discrimination task. 

We separated the statistics of the PS model into 3 groups, following 
previous work (Portilla & Simoncelli, 2000; Ziemba et al., 2016): pixel 
statistics, Fourier power spectrum (spectral statistics), and statistics of 
higher-order (HOS). The pixel statistics are marginal statistics over the 
pixel values, including mean, variance, and the skewness and kurtosis at 
different lowpass versions of the image. The spectral statistics are 
equivalent to pairwise pixel correlations, which are found in the PS 
model in the central autocorrelation matrices of the image subsampled 
at different scales, and in the mean modulus of activation of quadrature 
pairs of complex filters. The rest of the statistics in the PS model, which 
are not captured by the marginal pixel statistics or by pairwise pixel 
correlations, are referred to as HOS. These comprise correlations across 
space, scale, and orientation between the magnitude of complex band
pass quadrature filters (i.e. the energy of the filters), and local phase 
statistics (Portilla & Simoncelli, 2000). With the parameters we used for 
the PS model, we obtained 16 pixel statistics, 137 spectral statistics 
statistics, and 552 HOS. 

2.4. Correlation between spectral statistics and HOS 

To analyze the correlation between spectral statistics and HOS dif
ferences between image regions, we first z-scored each statistic across 
the BSD patches to have 0 mean and a standard deviation of 1. Then for 
each pair of patches we computed the angle between their vectors of 
spectral statistics and the angle between their vectors of HOS statistics (i. 
e. we computed the angles in the respective 137 and 552 dimensional 
spaces for the two kinds of statistics). Then we computed the Pearson 
correlation between these two. 

2.5. Training the linear classifier models 

All linear classification models using the absolute differences in 
statistics were trained by ridge regression, using the glmnet package 
v4.0-2 (Friedman et al., 2019) in R 3.6.3 (R Core Team, 2018). We used 
the default settings of the package in which the scaling parameter for the 
penalization is selected by 10-fold cross-validation on the training set. 
We used misclassification rate as the criterion for both selecting the 
penalization parameter and training the model. We also performed a 
weighting of the pairs of images in the training set so that the overall 
training weight was the same for the two classes. We also normalized 
each predictor to have unit variance and zero mean in the training set. 
We performed this procedure both for the models performing the seg
mentation task, as for the models performing the identification of pairs 
of patches with useful HOS. 

Fig. 2. Relation between the difference in HOS and the difference in spectral 
statistics for pairs of image patches from the BSD database. The color of the dots 
indicates whether the pair of patches are extracted from the same image 
segment (green) or not (brown). 
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2.6. Training the segmentation models 

For the image segmentation task, we trained a family of linear 
models to classify the pairs of patches using the absolute difference in 
each statistic between the patches. The subsets of the PS statistics used in 
each model are indicated in the text. 

For the classification of patches from the natural texture images we 
first separated the texture images into a training and a testing set, 
randomly assigning 319 texture images to each. Then for each texture 
image we generated all the unique combinations of pairs of patches for 
the matched condition (6 combinations). Then we generated pairs of 
patches from different textures (randomly sorted) within each image set, 
generating 10 pairs of these for each texture. This procedure generated 
1914 matched pairs of patches and 1595 unmatched pairs of patches for 
each the training set and the testing set. 

For the classification of patches from natural scenes, we randomly 
sorted the images into a training set of 332 images and a testing set of 84. 
We then generated the pairs of patches as described above, producing 
2688 pairs of patches (1408 matched pairs and 1280 unmatched). On 
average, there were 2150 pairs of patches in the training set, and 537 
pairs in the testing set (there is some variability due to the image sorting, 
since not all images had the same number of segments). 

We repeated the random sorting of training and testing set 20 times 
for each model. In the figures, we show the results for the model trained 
with each sorting, as well as the average performance. 

2.7. Identifying pairs with useful HOS 

To identify the pairs of patches where HOS improved segmentation 
(referred to as pairs with useful HOS for brevity), we first split the 
number of images in the dataset (either for BSD or for the textures) into 
10 non-overlapping subsets, to be used as testing sets separately. Then, 
we iterated through all the 10 subsets of patches, training a segmenta
tion model on the image pairs that did not belong to the testing subset, 
and then testing the model on the subset. For each subset we trained 
both a model using spectral statistics alone, and a model using HOS 
alone. Then, for each pair in the testing set, we compared the outputs of 
the two models, and we labeled all pairs of patches that were incorrectly 
classified by spectral statistics but correctly classified by HOS as having 
useful HOS. We repeated this procedure for all testing sets, obtaining a 
label for each pair of patches. The same procedure was performed 
comparing the model with spectral statistics alone to the model with 
both spectral and HOS. 

Note that the size of the train and test sets used here are different 
from the main segmentation task. As described above, for the main 
segmentation task, when using the texture dataset half of the textures 
went into the training set, and when using natural images, 20% of the 
images went into the training set. Here, in both cases 90% of the dataset 
went into training for each model. This means that for the texture 
dataset, 6314 pairs of textures were used for training, and 704 for testing 
in each iteration. For the natural scenes dataset, on average 2419 pairs 
went into the training set and 269 into the testing set for each iteration. 

Then, we again split the dataset into 10 subsets, and for each subset, 
we trained a linear classifier on the rest of the patches to identify 
whether the pairs had useful HOS or not, using as inputs for this task the 
spectral and HOS. This way, for each pair of patches we obtained a 
ground-truth label indicating whether it had useful HOS, as observed in 
the segmentation models, and the output of a classifier labeling it as 
having useful HOS or not. 

2.8. Data and code availability 

All the analysis code used in this work is available at https://git. 
io/JJNyr. 

3. Results 

We used a texture discrimination task to quantify the contribution of 
different image statistics to texture-based segmentation (Fig. 1). Spe
cifically, the texture statistics of two image patches are given as input, 
and a classifier indicates whether these two patches belong to the same 
image segment or not (matched and unmatched pairs of patches 
respectively). We considered different groups of image statistics of the 
PS texture model: marginal pixel statistics, Fourier power spectrum 
(spectral statistics), and higher-order statistics (HOS) (see Methods for 
further detail). To quantify the contribution of these statistics, we 
trained different models using the absolute difference between the 
values of these statistics and compared their performance at the task. 

3.1. Differences in spectral statistics and HOS are redundant in natural 
images 

We first studied the correlation between differences in spectral sta
tistics and HOS across segments, as a basic estimate of redundancy Fig. 2 
shows, for 2688 pairs of neighboring image patches sampled from 416 
natural scenes (BSD, (Martin et al., 2001), the angle between their 
vectors of spectral statistics (which measures how different the spectral 
statistics are between the two patches), and the angle between their HOS 
statistics. We found a strong positive correlation between the spectral 
statistics angles and the HOS angles (Fig. 2; Pearson correlation = 0.55, 
p = 2e-16, CI = [0.52–0.58]) for neighboring patches, suggesting a high 
redundancy between these statistics. 

Besides the correlation, which indicates overall redundancy, a more 
relevant question is how much information the differences in the indi
vidual spectral statistics and HOS provide for the task of segmentation. 
To quantify this we next measured how the use of the spectral statistics 
difference compares to both the use of HOS, and to the combination of 
spectral statistics and HOS for segmentation. 

3.2. Spectral statistics and HOS are redundant for natural scene 
segmentation 

To test the information in the different sets of statistics and in their 
combination for image segmentation, we trained a linear classifier on 
the individual statistics of the PS texture model using ridge regression to 
solve a segmentation task (see Methods). We used the same 2688 pairs of 
natural scene patches as in Fig. 2. We performed 20 repetitions of the 
task by randomly separating the image set into 332 images for the 
training set (an average of 2150 pairs of segments) and 84 for the testing 
set (an average of 537 segments) for each repetition. 

Fig. 3B shows that adding the spectral statistics to the marginal pixel 
statistics improved performance, albeit modestly. The combination of 
pixel and HOS performed better than pixel and spectral statistics, 
although the difference was small, and spectral statistics performed 
slightly better than HOS when both were used without pixel statistics. 
Finally, combining spectral and HOS led to an improvement in seg
mentation performance (both with and without pixel statistics), 
although the improvement was modest. 

These results show that the segmentation performance of the model 
using spectral statistics is high, and that it improves only modestly when 
adding HOS, even though HOS alone also achieved high performance. 
This supports the idea that the HOS of the PS model are highly redun
dant with the spectral statistics for segmenting natural images. We 
observed similar results with a non-linear decoder (i.e. a neural 
network), showing that our findings do not simply reflect a limitation of 
the linear decoder (Tables S1, S2, Fig. S1). 

We reasoned that our results could be influenced by differences in 
dimensionality: the spectral statistics of the Portilla-Simoncelli model 
are 4 times less numerous than the HOS (137 statistics and 552 statistics 
respectively, with our selected number of orientations, scales and 
neighborhood size), and we found similar ratios for their intrinsic 
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dimensionality (Tables S3, S4). To test this possibility, we used PCA to 
match the dimensionality of the spectral and HOS statistics, and we 
found similar results to Fig. 3B (Table S5). Thus, despite the HOS being 
more numerous, when using subspaces with the same dimensionality, 
spectral and HOS statistics still perform similarly on segmentation. 

3.3. Spectral statistics and HOS are redundant for natural texture 
segmentation 

Next, we asked whether the contributions of these sets of statistics to 
the more specific task of segmenting natural textures, is similar to what 
we found for natural scenes. This is important because in the BSD, 
natural scenes have been segmented manually by human observers who 
likely used several other cues, in addition to texture, to determine seg
mentation. The use of these other cues for segmenting and grouping 
image patches in scenes may influence the observed distribution of 
texture features across and within segments. Thus, to better understand 
the contribution of HOS to natural texture segmentation, we next 
repeated the analysis for a texture segmentation task, using pairs of 
patches that were obtained from natural texture images (Brodatz, 1966; 
Lazebnik et al., 2005) (Fig. 4A). 

We trained the model on 3509 pairs of texture patches using ridge 
regression (see Methods), and then tested it on 3509 pairs of patches 
sampled from a different set of natural textures. We repeated this pro
cedure 20 times, resampling the training and test sets. 

We observed that segmentation performance for natural textures was 
in general higher than for the natural scenes (Fig. 4B). Also, segmenta
tion improved substantially when we added the spectral statistics to the 
pixel statistics. As with natural images, we observed that using pixel 
statistics and HOS led to similar performance than using pixel and 
spectral statistics. Using both the spectral statistics and HOS also 
improved performance over using the spectral statistics alone, although 
modestly. 

These results indicate that spectral and HOS are redundant for the 
task of natural texture-segmentation. We note that although the results 
for texture segmentation are similar to those for scene segmentation, 
models trained on one dataset generalize poorly to the other (Table S6), 
supporting the hypothesis that different texture features may be 
required for the two tasks. 

3.4. Images with useful HOS are difficult to identify 

In our experimental work (Herrera-Esposito et al., 2021), we 
observed considerable between-texture variability in the effect of HOS 
on segmentation. Similarly, previous work (Freeman et al., 2013; Oka
zawa et al., 2015; 2017;; Ziemba et al., 2016) showed that different 
synthetic PS textures lead to different perceptual and neural discrimi
nability. Therefore, we considered the possibility that, although 
combining spectral and HOS leads to a modest performance improve
ment overall, HOS could be particularly useful for some subset of 
images. 

To analyze this possibility, we identified pairs of natural scene 
patches where classification was better when using HOS. Specifically, 
we compared for each pair of patches the classification with spectral 
statistics alone to HOS alone (we obtained similar results when using 
spectral and HOS together, data not shown). 

Overall, 10% of the full set of pairs were better classified by HOS 
than by spectral statistics, with similar proportions for pairs belonging to 
the same and to different segments (data not shown). Conversely, 12.5% 
of the pairs were better classified by spectral statistics than by HOS. In 
particular, 59% of the pairs misclassified by spectral statistics were 
correctly classified by HOS, confirming that HOS are useful for some 
images. In addition, if segmentation by spectral and HOS were inde
pendent, the error rates for HOS should be the same in the complete 
dataset (19.3%) as in the subset misclassified by spectral statistics. 
Instead, 41% of the pairs misclassified by spectral statistics were also 

Fig. 3. (A) Example of pairs of image patches used 
in the task. Top: Patches belong to the different 
segments. Bottom: Patches belong to the same 
segment. (B) Performance of a linear model in 
classifying pairs of image patches as belonging to 
the same or to different image segments. Models 
using different subsets of statistics from the PS 
model are shown. The empty circles show model 
performance for the 20 individual models trained 
and evaluated with different splits of training and 
testing data sets. The filled circles show the mean 
performance across splits.   

Fig. 4. (A) Example of pairs of texture patches used in the task. Top: Patches belong to the different textures. Bottom: Patches belong to the same texture. (B) 
Performance of a linear model classifying pairs of texture patches as belonging to the same or to different textures. Models using different subsets of the PS statistics 
are shown. Same conventions as in Fig. 3B. 
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misclassified by HOS, reflecting the redundancy in the responses of the 
two sets of statistics. 

We next tested whether this subset of images with more useful HOS 
can be identified from their statistics, which would be required for the 
visual system to use HOS more strongly in these cases. For this, we 
relabeled the pairs of patches to indicate whether segmentation was 
better when using HOS or not, and we then trained a new linear classifier 
on these labels, using spectral and HOS together as predictors (see 
Methods). 

The confusion matrix (Table 1) shows that the classifier performed 
better than chance, (p less than 2e-16, McNemar’s test), which indicates 
that there is some consistent difference between pairs where HOS 
improve segmentation and those where it does not. However, due to the 
imbalance between the classes, we observe a low overall accuracy of 
68%, that is lower than the accuracy obtained by classifying all pairs as 
not being improved by HOS. In line with these results, visual inspection 
of the pairs of patches better classified by HOS does not show obvious 
patterns that distinguish them from other pairs (Fig. 5A). 

We obtained similar results for texture segmentation. We found that 
8.7% of the texture pairs were better classified by HOS than by spectral 
statistics, and that 8.4% were better classified by spectral statistics than 
by HOS. Of the pairs misclassified by spectral statistics, 58% of which 
were also misclassified by HOS, showing again redundancy in their re
sponses. A classifier trained to identify the patches with HOS improve
ment, as described for BSD above, had a performance better than chance 
(p less than 2e-16, McNemar’s test, Table 2), but with a low accuracy of 
67%. Fig. 5B shows some example pairs of textures with different clas
sification outcomes for spectral and HOS (more example pairs can be 
found together in the open repository with the analysis code). 

In sum, the misclassifications of spectral and HOS showed redun
dancy in both natural scenes and textures, but a subset of the pairs of 
patches was better classified by HOS. Nonetheless, the pairs better 
classified by HOS were not accurately identified by a linear classifier (for 
further analysis on the causes of the low accuracy see Supplementary 
section S4). We also obtained similar results when using a procedure to 
reduce possible labeling noise, in which we trained to separate models 
on non-overlapping subsets of the training set, and required that HOS be 
better than spectral statistics in both training sets for a given pair, in 
order to label that pair as having useful HOS (results not shown). 

Furthermore, we compared the predictions from these models to our 
previous experimental results (Herrera-Esposito et al., 2021), to test 
whether the observed experimental variability between pairs of textures 
correlates with the estimated usefulness of the HOS. We did not observe 
any clear agreement between the two that could be suggestive of fine- 
tuning to use HOS in informative cases (Fig. S2, although the low 
number of textures and several other caveats demand caution when 
interpreting these results, see the Supplementary section S5). 

3.5. Subsets of HOS contribute differently to segmentation 

Besides the results from previous studies mentioned above, showing 

that different PS textures drive mid-level visual areas and perception to 
different degrees, the same line of research has also identified specific 
subsets of HOS as driving perception (Freeman et al., 2013; Hermund
stad et al., 2014; Tesileanu et al., 2020; Victor et al., 2013) and physi
ology (Freeman et al., 2013; Okazawa et al., 2015; 2017;; Yu et al., 
2015) to different degrees. Also, this has been shown to follow natural 
image statistics (Hermundstad et al., 2014; Tesileanu et al., 2020; Yu 
et al., 2015). Therefore, we next wondered whether different subsets of 
HOS would show varying degrees of usefulness in our segmentation task. 

To determine the relevance of different subsets of HOS to our seg
mentation model, we divided the HOS into the four subsets used in the 
PS model (Portilla & Simoncelli, 2000): energy correlations across 
space, energy correlations across scale, energy correlations across 
orientation, and phase correlations across scale (also called linear cor
relations across scale in some studies). We then tested the performance 
of different combinations of these subsets of HOS, with and without 
spectral statistics, in the segmentation task. 

Fig. 6 shows the performance of the segmentation models (top row, 
natural scenes; bottom row, natural textures) using different subsets of 
HOS. All the subsets of HOS alone had considerably worse performance 
than spectral statistics (indicated by the dashed blue line, Fig. 6A) for 
natural scene segmentation. Adding each subset of HOS to spectral 
statistics did not reach the performance of the full model (purple line, 
Fig. 6B). Similarly removing each subset of HOS never decreased per
formance to the level of spectral statistics alone (Fig. 6C). In most cases, 
spatial correlations were the most useful subset of HOS. Also, orientation 
and phase statistics were the least useful when considered alone and 
together with spectral statistics, but phase statistics gained in relevance 
when removing the subsets of HOS from the full model. 

Results for textures (Fig. 6D–F) were similar to those for natural 
scenes, except that adding orientation correlations improved perfor
mance more markedly, and removing spatial correlations did not reduce 
performance. 

These analyses confirm that different HOS subsets have different 
usefulness for segmenting natural scenes and natural textures. Spatial 
correlations seem to be, in general, the most informative subset of HOS, 
and in most cases they were followed by correlations across scale. Phase 
correlations allowed for improved performance when combined with 
spectral statistics, and they had a considerable effect when removed 
from the full model, indicating that they contain useful information that 
is not redundant with the rest of the HOS. Correlations across orientation 
were generally among the least useful for segmentation when consid
ering models containing spectral statistics. 

4. Discussion 

We have studied the importance of different image statistics, namely 
the spectral statistics and HOS of the PS texture model, for segmenting 
natural textures and images. First, we showed that there is a strong 
correlation between the difference in spectral statistics and the differ
ence in HOS for pairs of neighboring patches in natural scenes (Fig. 2). 
Then, using segmentation tasks with either natural scenes segmented by 
human observers or natural textures, we showed that using either the 
spectral statistics alone or the HOS alone were enough to solve the task 
with high accuracy, indicating they are both reliable cues for segmen
tation. Importantly, combining both together produced modest im
provements, for both linear and non-linear classifiers (Figures 2 and 3, 
Fig.S1, Table S2). These results indicate a strong redundancy between 
spectral statistics and HOS specifically in the context of image seg
mentation, and seem to rule out the alternatives that HOS cues for 
segmentation are either unreliable or largely independent from spectral 
statistics. 

In a recent study on human texture perception, we reported that 
differences in the HOS of the PS model between adjacent textures in 
peripheral vision produced only weak segmentation when the textures 
had matched spectral statistics (Herrera-Esposito et al., 2021). In 

Table 1 
Classification of pairs of natural image patches as being better segmented by 
HOS or not. The columns of the table indicate the observed ground truth label, of 
whether a pair of patches was better labeled by HOS than by spectral statistics or 
not. The rows indicate the label for the pairs of patches predicted by a linear 
classifier. Each cell in the table shows the number of pairs for each combination 
of true and predicted labels.   

Label: No HOS 
improvement 

Label: HOS 
improvement  

Predicted: No HOS 
improvement 

1707 160 1867 

Predicted: HOS 
improvement 

711 110 821  

2418 270   
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another related study (Balas, 2008), the author observed that human 
texture similarity judgements were better predicted by the power 
spectrum of the textures alone, than by the entire set of PS statistics. 
These results are of particular interest because these statistics have high 
perceptual relevance (Balas, 2006; Freeman et al., 2013; Freeman & 
Simoncelli, 2011; Portilla & Simoncelli, 2000; Wallis et al., 2017) and 
drive neural activity in mid-level visual areas (Freeman et al., 2013; 
Okazawa et al., 2015; 2017;; Ziemba et al., 2016). Furthermore, these 
statistics are related to the second processing stage in the SS model of 
peripheral vision (Balas et al., 2009; Freeman et al., 2013; Freeman & 

Simoncelli, 2011; Rosenholtz, 2016), of which segmentation has been 
argued to be an important missing component (Doerig et al., 2019; 
Herrera-Esposito et al., 2021; Herzog et al., 2015; Manassi et al., 2012; 
2013;; Wallis et al., 2019), making their role in segmentation an 
essential aspect for the further development of this model. In the present 
work we expand on our previous results showing that the small effect 
observed for these HOS on perceptual segmentation may be related to 
their redundancy with spectral statistics in natural images for the task of 
image segmentation (Fig. 1), since they may not add much to the initial 
segmentation process based on the power-spectrum representation in V1 
(Lamme, 1995; Landy & Bergen, 1991; Li, 2002; Nothdurft et al., 2000; 
Victor et al., 2017). 

In line with this argument, previous work showed that the higher 
variability in second-order pixel statistics in natural images as compared 
to third and fourth-order pixel statistics matched their perceptual sa
liency (Hermundstad et al., 2014; Tesileanu et al., 2020; Tkacik et al., 
2010). Nonetheless, besides using a different kind of texture than the 
ones presented in this work and our experimental study (Herrera- 
Esposito et al., 2021), the computational analysis of image statistics in 
these previous studies was performed in the context of efficient coding, 
rather than the specific perceptual task of image segmentation. Different 
tasks may rely on different texture properties (Victor et al., 2017), which 

Fig. 5. (A) Examples of pairs of natural scene patches with different classification outcomes for both spectral and HOS. Only pairs extracted from different segments 
are shown. Smaller gray boxes group the patches that form a pair. Larger black boxes indicate the classification outcome for both spectral and HOS. (B) Same as (A) 
but for natural textures. 

Table 2 
Classification of pairs of texture image patches as being better segmented by 
HOS or not. Same conventions as Table 1.   

Label: No HOS 
improvement 

Label: HOS 
improvement  

Predicted: No HOS 
improvement 

4324 271 4595 

Predicted: HOS 
improvement 

2087 336 2423  

6411 607   
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can explain why the HOS of the PS model are simultaneously very 
important for texture perception (Balas, 2006; Portilla & Simoncelli, 
2000; Wallis et al., 2017) but maybe less so for segmentation. A varia
tion of this idea is also espoused in those previous studies on natural 
texture statistics (Hermundstad et al., 2014; Yu et al., 2015), where it is 
noted that the sensory periphery (i.e. the retina) and the cortex face 
different constraints and goals that lead to different coding regimes. In 
this sense, the present work is a contribution to the growing efforts of 
comparing perceptual systems to model observers performing sophisti
cated tasks on natural images (Burge, 2020). 

But although there is a high redundancy between the spectral sta
tistics and the HOS for image segmentation, the observation that HOS 
are a reliable segmentation cue and that they can improve texture seg
mentation, raises the question of why the spectral statistics and not the 
HOS are used as a strong segmentation cue, as shown in peripheral 
vision (Hermundstad et al., 2014; Herrera-Esposito et al., 2021; Victor 
et al., 2013). One possible explanation to this regard is the constraint in 
resources that makes information processing by the visual system a 
balance of costs and benefits. While the HOS improved model perfor
mance, they did so only modestly and one could hypothesize that the 
cost of using these HOS would lead the visual system to use the spectral 
statistics as the main segmentation cue, with these HOS being a sec
ondary or null segmentation cue. 

Nonetheless, a softer version of the hypothesis is that the HOS of the 
PS model are particularly useful in some scenarios (i.e. specific kinds of 
images), and that the visual system is fine-tuned to rely on HOS in these 
cases. As mentioned previously, this could be in line with our previous 
experimental work on perceptual human segmentation (Herrera-Espo
sito et al., 2021), as well as with previous physiological and perceptual 
work studying PS textures (Freeman et al., 2013; Okazawa et al., 2015; 
2017;; Ziemba et al., 2016). Since this fine-tuning would rely on the 
ability to identify which images have useful HOS for segmentation, here 

we tested whether a linear model could identify the pairs of patches 
where HOS improved segmentation over spectral statistics. We found 
that these pairs of patches were difficult to identify (Tables 1, 2), sug
gesting that this kind of fine-tuning may be difficult to achieve in 
practice. Furthermore, when comparing the predictions from the models 
to our experimental results reported in (Herrera-Esposito et al., 2021) 
we did not find any agreement between models and experiment that 
could suggest such a fine tuning (Fig. S2, although this analysis is pre
liminary due to the little experimental data available, and should be 
interpreted with caution). 

Although the pairs of patches with useful HOS could not be clearly 
identified, we did find that some subsets of HOS are more useful than 
others for segmentation, both in isolation and in combination with 
spectral statistics (Fig. 6). Mainly, we observed that when considering 
the subsets of HOS separately, spatial and scale energy correlations were 
generally the ones with best segmentation performance (Fig. 6A, B, D, 
E). This finding agrees with previous studies showing that scale and 
spatial energy correlations explain the most variance in the variability of 
perceptual sensitivity between PS textures (Freeman et al., 2013), and in 
V4 neurons ability to discriminate PS textures from noise (Okazawa 
et al., 2015). 

The agreement between our analysis and these previous results may 
reflect a fine tuning of the visual system to the usefulness of the different 
subsets of HOS, which is captured in our analysis of segmentation. But 
this agreement does not necessarily mean that the visual system is tuned 
to use these HOS specifically for segmentation. One alternative is that 
these HOS are the most informative ones in general, and the visual 
system is tuned to use them for other tasks as well. In relation to this, 
(Okazawa et al., 2015) reported that energy correlations across space 
are the HOS with highest performance in a texture classification task, 
which they propose as a possible explanation to their physiology results. 
Furthermore, the ordering of HOS relevance may also depend on what 

Fig. 6. Performance at the segmentation task using different subsets of HOS. Each grey bar shows the average over the outcome of 50 different models trained on 
random splittings of the data into train and test set. The error bars show the 95% confidence interval of the mean. The dashed horizontal blue line shows the 
performance for the model using only spectral statistics, and the red line shows the performance of the model with spectral and all HOS. (A) Segmentation per
formance for the BSD using subsets of HOS alone. (B) Segmentation performance for the BSD using subsets of HOS together with spectral statistics. (C) Segmentation 
performance for the BSD using the model containing spectral statistics and all subsets of HOS except those indicated in the horizontal axis. (D), (E) and (F), same as 
(A), (B) and (C) but for the texture segmentation dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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ranking criterion is used, requiring careful comparisons across tasks and 
methods. For example, we observed a different ordering of the relevance 
of HOS subsets when performing segmentation alone than when in the 
context of the full model (Fig. 6C, F). In line with this, the ranking of 
HOS subsets relevance obtained from analyzing their contribution to 
discriminability of textures from spectrally matched noise in V4 is 
somewhat different from the ranking obtained for explaining V4 re
sponses to textures in general (Okazawa et al., 2015; 2017). Therefore, 
more work is needed to understand how the information different HOS 
subsets carry for segmentation in natural images, relates to their use by 
the visual system. 

In conclusion, the results presented here, show that spectral statistics 
and the HOS of the PS model have a strong redundancy for natural scene 
and texture segmentation, which coupled with resource constraints may 
explain the weak effect of these HOS in human segmentation (Herrera- 
Esposito et al., 2021). This also suggests that segmentation based on the 
HOS of the PS model may not be crucial to future extensions of the SS 
model of peripheral vision, but rather that existing models of segmen
tation based on the outputs of V1-like oriented filters that respond to 
spectral statistics (Bergen & Landy, 1991; Bhatt et al., 2007; Li, 2002) 
may be enough to considerably expand its explanatory power. None
theless, there are some important caveats that need to be considered. 

One important caveat is that the redundancy between spectral and 
HOS reported here is compatible with either of them taking a secondary 
role. Although there is plenty of evidence showing the primacy of 
spectral statistics over HOS in texture segmentation, these studies have 
been mostly done in the peripheral visual field. Therefore, it is not clear 
whether the same holds for central vision, and our results here do not 
necessarily mean that HOS take a secondary role there. Furthermore, our 
main line of argument rests on the potential cost of using HOS for seg
mentation, and the role of resource constraints in the brain. Given that 
resources are much more constrained in the periphery than in central 
vision, our line of thought is compatible with a stronger role of HOS for 
segmentation in central vision. 

Another important caveat is that we only considered a specific set of 
HOS, the ones in the PS model. While the HOS of the PS model capture to 
a considerable extent the perceptual quality of natural textures, they 
sometimes fail to fully reproduce their structure (Portilla & Simoncelli, 
2000). Therefore, other HOS not present in the PS model are important 
for texture perception, and it is possible that they contribute more 
strongly to segmentation, both in humans and in segmentation models. 
One example is the correlations between the features of mid-level layers 
in deep neural networks, which have been shown to capture the visual 
appearance of many textures (Gatys et al., 2015), and that allow for 
good performance in image segmentation (Vacher & Coen-Cagli, 2019). 

On the other hand, we also did not consider other low-level seg
mentation (or saliency) cues that are represented in V1, such as color, 
binocular disparity and motion (Braddick, 1993; Li & Lennie, 2001; 
Møller & Hurlbert, 1996; Nakayama et al., 1989; Saarela & Landy, 
2012). A more general version of our main hypothesis could be that, for 
segmentation, the HOS of the PS model are redundant with the cues 
available in V1 in general, and not only with spectral statistics. This 
alternative hypothesis would be more in line with the proposal that 
there is a bottom-up saliency or segmentation map in V1 based on these 
features (Li, 2002; Zhang et al., 2012; Zhaoping, 2019). Therefore, it is 
possible that by ignoring these other early segmentation cues, we 
overestimated the contribution of HOS to bottom-up segmentation. This 
more general hypothesis may also explain why, being redundancy a 
mutual relationship where either kind of statistics could be used, it is the 
HOS that adopt a secondary role. 

The last important consideration is that we used a region-based 
texture segmentation task (i.e. using the properties of two image re
gions to decide whether they belong to the same segment), but seg
mentation may also proceed through processes based on identifying 
texture-defined edges (Giora & Casco, 2007; Landy, 2013; Machilsen 
& Wagemans, 2011; Rosenholtz, 2014). This other type of model may 

change some of the analysis regarding the possible roles of HOS. For 
example, the most popular edge-based texture segmentation model is 
the Filter-Rectify-Filter (FRF) model, which consists in a V1-like filtering 
with rectification, followed by a second filtering stage capable of 
detecting texture-defined edges (Landy, 2013). Depending on the non- 
linearity used in such models (among other possible modifications), 
they may be able to find edges defined by HOS discontinuities, and these 
models have been shown to correlate with human HOS-based segmen
tation in central vision in one study (Zavitz & Baker, 2014). It is inter
esting to note that such a segmentation process could show sensitivity to 
HOS, even though still operating directly on rectified V1 outputs, 
instead of operating on units that encode HOS directly, such as V2 
neuron outputs. This means that a simple segmentation model operating 
over V1 outputs could still explain some effect of HOS such as those 
observed in our experimental work (Herrera-Esposito et al., 2021). 
Another important edge-based segmentation mechanism is the emer
gence of selectivity to texture borders by tuned contextual modulation, 
which can emphasize the response of neurons near texture edges. This 
mechanism is proposed to be an important mechanism for computing 
segmentation and saliency in this area (Li, 1999, 2002; Nothdurft et al., 
2000). It is difficult to anticipate how HOS may affect these complex 
mechanisms when they operate on V1-like outputs, but they could lead 
to effects on segmentation that are not captured by our region-based 
segmentation task. Also, in another previous study (Ziemba et al., 
2018), it is shown that contextual modulation for textures in V2 neurons 
is tuned to the HOS of the PS model, which could also give rise to this 
kind of segmentation based on contextual-modulation within V2. 
Nonetheless, see also (Schmid & Victor, 2014) where V2 neurons re
sponses to texture-defined edges are argued to be compatible with a 
filter-rectify-filter mechanism, and less so with this kind of contextual 
modulation mechanism. 
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