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Abstract

Understanding how people’s perspectives on
different issues change in correspondence with
one another is essential for modeling collec-
tive reasoning and social dynamics. However,
this problem remains underexplored due to the
absence of standardized benchmarks and eval-
uation protocols. In this work, we introduce
BELIEFBENCH, a new benchmark for evalu-
ating whether large language models (LLMs)
can detect when shifts in beliefs about one real-
world event are accompanied by correspond-
ing shifts in beliefs about another. The bench-
mark is constructed from Polymarket, a pre-
diction market platform where event probabil-
ities are updated daily, reflecting crowd belief
over time. We formulate a classification task
in which event pairs are labeled based on a
combination of time-series co-movement, se-
mantic similarity, and other metadata. Label
quality is validated by human annotators. Our
evaluation reveals two key findings: (1) LLMs
consistently outperform heuristic and neural
baselines in identifying meaningful belief cor-
relations across diverse domains; (2) Chain-of-
Thought prompting improves performance in
settings that require multi-step reasoning, such
as politics and elections, but can hurt perfor-
mance in domains where surface-level signals
are more predictive. BELIEFBENCH thus pro-
vides a challenging testbed for evaluating how
well LLMs capture the co-evolution of perspec-
tives and the underlying temporal and causal
reasoning processes.

1 Introduction

Social beliefs represent an individual’s perspec-
tive about uncertain future events—for example,
presidential election outcomes or financial mar-
ket trends. Each person holds many such beliefs
shaped by their prior education and life experi-
ences, and these beliefs are rarely independent.
When concrete new evidence becomes available,
multiple beliefs may shift simultaneously rather
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Figure 1: Using betting platform data to study con-
nections between social beliefs. On platforms like
Polymarket, users bet on the outcomes of real-world
events. We show two markets above: Will ETH hit
$2000? and Will the Fed raise interest rates?. Each
market provides a time series of probabilities, reflecting
collective beliefs about future events. We observe that
time series for each market are often correlated—for ex-
ample, the two above show contradictory trends. Such
co-movements reveal connections between beliefs, mo-
tivating our study of whether LLMs can provide the
reason behind such correlation.

than in isolation. For instance, the release of a
major poll showing a surge in support for Donald
Trump could not only update one’s belief about
“Will Trump win the 2024 election?” but also shift
expectations about “Will Republicans control the
Senate?”, since the two outcomes are closely tied.
Likewise, an unexpected announcement from the
Federal Reserve about tightening monetary policy
may change beliefs about “Will the Fed raise inter-
est rates?” and simultaneously alter expectations
on “Will Bitcoin fall below $30,000?”, capturing
broader macroeconomic sentiment (Li et al., 2024a;
Lee et al., 2025; Radivojevic et al., 2024).

At the collective level, such updates can trigger
a “butterfly effect,” where a single event reshapes



public beliefs across society, leading to broad con-
sequences. A financial crisis, for example, can alter
expectations about interest rates, currency stabil-
ity, and political outcomes, amplifying systemic
risks. Understanding the correlations among so-
cial beliefs—such as co-occurrence (Kolajo et al.,
2022; Minnema et al., 2023; Glandt et al., 2021),
semantic similarity (Wang et al., 2024a; Cann et al.,
2023; Lu et al., 2025), or implicit causal alignment
(Deng et al., 2021; Wang et al., 2024b; Peng et al.,
2021)—is therefore crucial for interpreting societal
trends and forecasting collective behavior. More-
over, these correlations often extend beyond direct
pairs: if belief A is linked to B, and B to C, people
may implicitly associate A with C as well. De-
tecting such transitive or multi-hop relationships
requires models to reason beyond surface cues and
integrate temporal and institutional knowledge.
Despite its importance, automatically uncover-
ing these latent structures remains a significant
challenge. Traditional approaches (Guan et al.,
2021; Ren et al., 2022; Li et al., 2024b) rely on
structured datasets with fixed ontologies, which
generalize poorly to the dynamic, unstructured be-
lief expressions found in real-world forecasting or
market settings. The task is further complicated
by scarce and noisy belief-linked time-series data,
limited leakage-free benchmarks, the difficulty of
defining reliable ground truth, and the need to rea-
son beyond lexical overlap to capture temporal pat-
terns and latent semantics. Large language models
(LLMs) are particularly promising here: pretrained
on vast, diverse corpora, they can flexibly interpret
unstructured language, infer implicit causal and
semantic links, and reason over multi-hop depen-
dencies without requiring rigid ontologies. This
naturally raises the question: Can LLMs identify
correlations between real-world social beliefs?
To address this question, we first build a new
benchmark with high-quality labels, constructed
from Social WM (Anonymous, 2025), a dataset col-
lected from Polymarket', a decentralized forecast-
ing platform. Each event pair is labeled based on
a combination of time-series co-movement and se-
mantic similarity, with labels generated automati-
cally and validated against human annotations. We
then evaluate a diverse set of LLM families on this
benchmark to assess their ability to identify mean-
ingful belief correlations. Our results reveal several
insights: (1) LLMs consistently outperform heuris-
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tic and neural baselines, with GPT-40 achieving
Spearman correlations up to 0.53 and QWK scores
above (.52, significantly surpassing all heuristic
baselines; (2) While Chain-of-Thought prompt-
ing (Wei et al., 2023) enhances interpretability by
surfacing intermediate reasoning steps that support
multi-hop associations, its impact on performance
is mixed, with improvements observed in some set-
tings but degradations in others; (3) performance
drops on post-cutoff events, underscoring limits in
temporal generalization due to pretraining.

2 Related Work

Social belief correlation detection. Identifying
correlations between beliefs associated with real-
world events, such as co-occurrence, semantic rele-
vance, or implicit causal links, is fundamental to un-
derstanding social dynamics. Cataldi et al. (2010)
propose a co-occurrence graph to detect tweet
topics. The Whatsup framework (Hettiarachchi
et al., 2023) resolves co-occurring events using self-
learned word embeddings. TimeBank (Gast et al.,
2016) and MATRES (Ning et al., 2018) provide
structured datasets for temporal and causal relation
extraction. Zhou et al. (2021) introduce a BERT-
based model for reasoning over event correlations.
In the financial setting, MARKETGPT (Wheeler
and Varner, 2024) and PLUTUS (Xu et al., 2024)
develop pretrained models for market belief under-
standing. However, many of these studies rely on
synthetic setups or structured event representations,
limiting their applicability to noisy, ambiguous real-
world beliefs. Our work differs by introducing a re-
alistic evaluation task constructed from real-world
market data, enabling systematic measurement of
LLMs’ ability to identify belief correlations under
temporal uncertainty and semantic sparsity.

Social reasoning Prior work uses the term “so-
cial reasoning” to refer to tasks like understanding
social norms, commonsense interactions, or mod-
eling human mental states. For example, SocKET
benchmarks LL.LMs on social-concept understand-
ing and moral expectations (Choi et al., 2023),
while Gandhi & colleagues study mental-state rea-
soning for theory-of-mind modeling (Gandhi et al.,
2024). Other work evaluates LLMs’ understand-
ing of social norms in large-scale benchmark set-
tings, such as the Social Norm dataset (Yuan et al.,
2024) and the NormAd cultural adaptability frame-
work (Rao et al., 2025). Prior work often defines
social reasoning through individual or small-group
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cognition, focusing on human-centric scripts or
moral norms. In contrast, we define it as identi-
fying meaningful connections between real-world
social beliefs, capturing co-occurrence, semantic
relevance, and implicit causality in different do-
mains. Our task centers on reasoning over col-
lective dynamics using noisy, unstructured signals
(e.g., prediction markets), shifting focus from in-
terpersonal commonsense to event-level inference
relevant for social science and forecasting.

3 Preliminary

Social belief We define a social belief as a collec-
tive expectation about the outcome of a real-world
event. For example, people may hold beliefs such
as “Candidate X will win the 2024 election,” “Bit-
coin will surpass $100,000 this year,” or “Team Y
will win the championship.” These beliefs are in-
herently dynamic: they evolve as new information
emerges, such as polling updates, economic indi-
cators, or breaking news. Unlike static opinions,
social beliefs can be quantified and tracked over
time, providing a lens into how collective expecta-
tions shift in response to external events.

Data source for social belief To capture such
evolving beliefs at scale, we use Polymarket?, a
decentralized prediction market where users trade
on outcomes of real-world events with clear resolu-
tion criteria (e.g., “Will Candidate X win the 2024
election?”). Each market typically has a binary
“Yes”/“No” structure, and daily trading prices pro-
vide time-stamped, financially incentivized prob-
ability estimates that reflect the crowd’s collec-
tive belief. Polymarket spans diverse domains, in-
cluding politics, economics, cryptocurrency, and
sports, and markets often remain active for weeks
or months, allowing us to observe the temporal dy-
namics of belief formation and revision. Compared
to text sources such as news or social media, predic-
tion markets aggregate dispersed signals into quan-
titative, externally verifiable probabilities, making
them a robust proxy for real-time social belief.

Connections between social beliefs While indi-
vidual beliefs can be measured, identifying mean-
ingful relationships between them remains chal-
lenging. Such connections are often implicit, multi-
hop, and cross-domain—for instance, an election
outcome may shift financial markets, or geopoliti-
cal tensions may influence energy prices via global
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supply chains. Detecting these links requires rea-
soning beyond surface semantics, such as identi-
fying shared actors, institutional dependencies, or
indirect causal chains. Our task examines whether
LLMs can uncover these latent connections be-
tween real-world social beliefs.

4 Problem Definition

Notation Let £ be the set of market events from
Polymarket. Each event e € & is defined by a
natural language question ¢. and a belief trajec-
tory {p¢}/=,, where each pf € (0,1) denotes the
market-implied probability of event e on day ¢, de-
rived from trading activity. Thus, {p¢}.<, forms
a time series capturing the temporal dynamics of
the evolving social belief, while g, provides the
semantic content of the event.

Social belief correlation task Formally, given a
pair of events (A, B) € £ x &, each represented
by their natural language descriptions (¢4, ¢p) and
belief trajectories {pf}tTﬁl and {p? };‘Ffl, where
each {pf} is a time series of daily market-implied
probabilities, the goal is to estimate the strength of
correlation between their associated social beliefs.
We define a mapping

FiEXE — D, ¢5)

where the label space ) = {1,2,3,4,5} encodes
ordinal levels of correlation: 1 (very weak), 2
(weak), 3 (medium), 4 (strong), and 5 (very strong).
The task is formulated as ordinal classification,
where the model predicts a discrete label § =
f(A,B) € Y. In our setting, f can be a LLM,
which jointly reasons over the semantic content

(¢4, qp) and the temporal patterns ({p{'}, {p{’})
to infer correlation strength.

5 BELIEFBENCH: A Benchmark for
Tracking Co-evolution of Social Beliefs

To benchmark the social belief correlation task, we
construct a dataset based on SocialWM (Anony-
mous, 2025), derived from Polymarket. In this
section, we first explain how belief pairs are se-
lected, then describe our procedure for collecting
ground-truth correlation labels, and how we verify
them. Finally, we provide details on the evaluation
methodology.

5.1 Belief Pair Selection

Not all markets offer informative or reliable signals
for belief reasoning. To ensure that the included
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Figure 2: Overview of the BELIEFBENCH construction and evaluation pipeline. (a) Social belief data is
collected and filtered from Polymarket. (b) Event pairs are constructed and scored based on semantic and temporal
signals. The resulting correlation score S(A, B) is discretized into five relevance levels. (c) Human verification is
conducted to validate labeling quality, with annotators reaching strong agreement using a shared rubric. (d) Models
predict relevance labels for event pairs. Performance is evaluated using both regression and classification metrics.

events reflect collective crowd beliefs rather than
noise, we apply two filters: one based on trading
volume, the other on volatility of belief movement.

Volume filter Markets with very low trading vol-
ume are often driven by isolated trades and do not
reflect meaningful aggregation of public belief. We
remove the bottom 25% of events by trading vol-
ume within each domain. This helps exclude illig-
uid or inactive markets where probability shifts are
unreliable.

Volatility filter We require the event to have suf-
ficient probability movement. A flat probability
series provides little statistical signal. By impos-
ing a minimum volatility threshold, we ensure
that the probability series contain enough varia-
tion to make the correlation test meaningful. Let

= logit(p;) — logit(p;—1) be logit return, i.e.,
day-to-day changes in log-odds. Denote by aiw)
the rolling standard deviation of {r,}._, . over
a window of w days. Let ~ be the volatility thresh-
old and « be the required proportion. We retain a
base market only if

T
1 3 (w)
T—w—l—lt:wl[gt 27] > a, 2

i.e., at least « fraction of the windows have the
standard deviation of the daily logit returns above

.

5.2 Belief Pair Labeling

To establish ground-truth labels for belief corre-
lation, we adopt a hybrid scoring framework that
integrates both semantic and temporal information.
This enables us to measure not only surface-level
similarity but also co-movement in belief dynamics
across event pairs. Each pair (A, B) is assigned
a composite score S(A, B) based on four inter-
pretable features.

Featurel: Change-point synchrony We iden-
tify time points where an event’s belief trajectory
exhibits statistically significant shifts by applying
z-score thresholding to the price deltas in its time
series. For each event, we extract a set of such
change points. The synchrony score then measures
the fraction of change points in event A that align
within a short temporal window ¢ of any change
point in event B. This captures the intuition that
jointly fluctuating beliefs are likely to be correlated:

2.1

teTy

51(A,B) = 3t e Tp, |t —t'| <4].
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Feature2: Tag Jaccard similarity To estimate
topical overlap, we use the Jaccard index over tag
sets from Polymarket metadata. Each event in-
cludes tags that describe its domain or subject mat-
ter. A high Jaccard score indicates that two events
are framed under similar categories or themes,



which may reflect a shared discourse context:
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Feature3: Minimum time gap We compute the
minimum absolute time difference between any
change point in event A and any in event B. This
measures how closely belief shifts in the two events
occur in time. We convert this to a soft similarity
score using a monotonic inverse transformation:

1

1+ min
teTa, t'eTp

53(A7B) = [t—t'] (5)

T

Featured4: Textual similarity We embed the text
descriptions of events using sentence-transformer
models and compute cosine similarity between the
resulting embeddings. This feature captures seman-
tic proximity at the lexical and conceptual level,
and complements the tag-based feature with more
nuanced language modeling:

s4(A,B) =1 —cos (ea,eB) . (6)

Overall The four feature scores are linearly com-
bined into a single heuristic correlation score. The
weights are optimized on a development set to
best match human relevance judgments. We dis-
cretize S(A, B) into five relevance classes: very
weak (0.0-0.2), weak (0.2-0.4), medium (0.4-0.6),
strong (0.6-0.8), and very strong (0.8—1.0). These
bucketed labels serve as groundtruth in evaluation:

4
S(A,B) =) w;-si(A,B) (7
=1

where w; is tuned to make the prediction highly
aligned with a small set of human annotation re-
sults.

5.3 Human Verification

To validate the quality of the heuristic labels used
in evaluation, we conducted a human annotation
study on a representative subset of 50 event pairs,
stratified across five correlation levels. Three an-
notators rated each pair based solely on textual se-
mantics and related news, without access to belief
trajectories or model predictions. Inter-annotator
agreement was strong, with pairwise Pearson corre-
lations ranging from 0.75 to 0.81 and an intra-class
correlation (ICC) of 0.77. Furthermore, the ag-
gregated human judgments exhibit high alignment

with the heuristic scores used in our benchmark,
achieving a Pearson correlation of 0.689. These
results confirm that the scoring function reflects
intuitive assessments of belief correlation. Full pro-
tocol details and annotation examples are provided
in Appendix §G.

5.4 Model Evaluation

We evaluate model predictions against labels using
both regression and classification metrics. For re-
gression, we first map the five discrete relevance
classes to their midpoint values, and then compute
Mean Squared Error (MSE), Mean Absolute Error
(MAE) between predicted scores and these bin cen-
ters. For classification, we discretize model outputs
into five bins and report accuracy, macro-averaged
F1 score, and quadratic-weighted kappa (QWK)
to assess ordinal agreement. These metrics collec-
tively measure both score precision and the ability
to capture ordinal relevance patterns.

6 Experiments

LLMs have powerful social reasoning capability.
Here we used the data in SocialWM to test whether
LLMs can judge the degree of relevance between
real-world events, using a five-level scale from very
weak to very strong.

6.1 Experimental Settings

For experiments, we consider two categories of
models: (1) baselines using heuristic rules or pre-
trained neural encoders, and (2) prompting-based
LLMs that generate predictions.

Baselines We implement several heuristic base-
lines that rely on simple similarity or overlap met-
rics computed from event metadata. We also in-
clude a neural baseline using a cross-encoder model
(nli-deberta-v3-base), which computes a scalar
relevance score from the concatenated text of the
two event descriptions. These continuous scores
are then discretized into the same five relevance
bins for evaluation.

Prompting-based LLMs We evaluate a diverse
set of language models, including GPT-40, Qwen2-
72B-Instruct, DeepSeek-R1, and others, using a
prompting-based classification setup. Each model
receives as input the titles and descriptions of two
events and is asked to assess how strongly the
events are related by selecting one of five prede-
fined relevance intervals. For each model, we com-
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Figure 3: Overall performance heatmaps across four domains: Politics, Crypto, Sports, and Election. Each
heatmap shows model performance across five metrics: MSE, MAE (lower is better), and Accuracy, Macro-F1,
QWK (higher is better). To make metrics comparable, error metrics are negated and all values are min-max
normalized within each metric and dataset. Models are sorted by their average normalized score across all datasets.

Higher values indicate better normalized performance.

pare two prompting strategies: a direct classifica-
tion setting and a Chain-of-Thought (CoT) vari-
ant. In the CoT setting, the model first generates a
brief explanation describing any semantic, causal,
or temporal connections it identifies between the
events. It then outputs a structured JSON object
indicating the predicted relevance label. This de-
sign allows us to evaluate both the classification
performance and the interpretability of the model’s
reasoning process.

6.2 Experimental Results

GPT-40+CoT demonstrates strong and consis-
tent performance across domains. In Figure 3,
we evaluate model performance on four domains:
Politics, Election, Crypto, and Sports. GPT-
40+CoT consistently ranks among the top models
in both classification metrics (Accuracy, F1, QWK)
and regression metrics (MSE, MAE). Compared to
smaller closed-source models such as GPT-03-mini
and open-source models including Meta-Llama-
3-70B, Qwen2-72B, GPT-40+CoT achieves high
overall scores with stable results across domains.
While heuristic baselines (e.g., based on time over-
lap or volume) are included for reference, they
typically lag behind LLM-based models. This sug-

gests that even without access to metadata, large
language models can effectively infer event rela-
tionships from text alone.

LLMs perform well in semantically dense do-
mains but struggle in sparse ones. As shown
in Figure 3, model performance varies by domain
structure. In Crypto and Election, where events
share entities, timelines, or institutions, models
achieve stronger results. Even simple heuristics
perform well due to the rich semantic context. In
contrast, Sports events are often isolated and actor-
specific, leading to the weakest performance. Polit-
ical events fall in between, requiring both structural
and contextual reasoning. These patterns suggest
that LLMs are most effective in domains with co-
herent and recurring semantics.

The effectiveness of CoT prompting varies by
domain and reasoning complexity. Chain-of-
Thought (CoT) prompting is most effective in do-
mains requiring multi-hop reasoning, such as Pol-
itics and Election. For example, GPT-40-CoT
and GPT-03-mini-CoT achieve strong regression
performance (MSE, MAE) in Politics, while
GPT-03-mini-CoT and DeepSeek-V3-CoT im-
prove ranking consistency in Election. However,
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Figure 4: Performance degradation on post-cutoff
events across models (Election domain). All models
exhibit worse MSE performance on post-cutoff event
pairs, highlighting challenges in temporal generaliza-
tion. GPT-40 shows the smallest increase in error. (MSE
values are sign-inverted for visualization clarity.)

gains are uneven: GPT-40 shows better calibra-
tion in Politics but lower Macro-F1 and QWK, and
Election improvements remain mostly in regres-
sion metrics. In contrast, CoT consistently reduces
performance in Sports and Crypto, where relevance
depends on surface-level patterns; here, CoT vari-
ants of GPT-03-mini and DeepSeek underperform
across Accuracy and QWK. Overall, CoT helps
when latent dependencies must be inferred but in-
troduces noise in domains driven by direct signals.

7 Discussion

We investigate how LLMs reason about social event
relevance through two research questions. RQ1
shows performance degrades after the knowledge
cutoff (Figure 4), highlighting LLMs’ dependence
on up-to-date factual knowledge. RQ2 analyzes
Chain-of-Thought outputs, revealing that LLMs
rely mainly on confounding signals and narrative
connections rather than explicit logic.

RQ1: Does the knowledge cutoff influence per-
formance? We investigate whether LLMs rely
on factual knowledge from pretraining or can gen-
eralize to unseen events. To this end, we compare
model performance on event pairs occurring be-
fore and after the model’s knowledge cutoff. As
shown in Figure 4, all evaluated models exhibit
clear performance degradation on post-cutoff exam-
ples in the election domain, measured by percent-
age change in MSE. For instance, GPT-40 shows
a substantial drop of over 50%, while DeepSeek-
v3 and LLaMA-3 also experience notable declines.
These results suggest that while LLMs may gener-
alize to unseen patterns to some extent, their ability
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Figure 5: Distribution of reasoning types from GPT-
40’s Chain-of-Thought outputs across domains. Each
pair was labeled based on the explanation produced
by the model. A majority of predictions are based on
shared context (confounding) or loose narrative links
(CoT basis), while only a small portion exhibit explicit
logical or causal reasoning. This suggests the model is
primarily identifying correlations rather than inferring
direct causal links.

to capture belief correlation often depends on up-to-
date world knowledge learned during pretraining.

RQ2: How do LLMs judge belief correlation?
To better understand what types of relationships
LLMs rely on when judging belief correlation, we
analyze their Chain-of-Thought (CoT) outputs and
categorize the reasoning basis. As shown in Fig-
ure 5, only a small fraction of cases reflect explicit
logical connections: approximately 8.7% in pol-
itics and less than 5.7% in sports. In contrast, a
large proportion of predictions fall under confound-
ing relationships (e.g., shared context or common
background factors), accounting for 55% in poli-
tics and 32% in sports. These results suggest that
LLMs do not primarily rely on formal logic or di-
rect causality. Instead, they often identify perceived
connections through narrative, intuition, or shared
framing. This supports our interpretation that the
LLM captures relatedness rather than strict causal
inference.

8 Case Study

To better understand how LLMs assess event rele-
vance, we analyze predictions across representative
event pairs. We group cases into two types: (1)
0-hop pairs, which exhibit surface-level thematic
overlap, and (2) 1-hop or multi-hop pairs, which
require reasoning over latent causal or institutional
structures. For each category, we examine the be-
havior of GPT-03-mini with and without Chain-
of-Thought (CoT) prompting. Further qualitative
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focusing on the stablecoin
\Y74
e | )
oll0o

ions, which directly
USDC’s market cap and the
other on ETH's price. They tisk appetite. This shift

share a common thematic capital away from speculative
\ context... ) \ assets like Ethereum.. )

Explanation by GPT-40 + CoT

This chain exemplifies a
segment of the belief
graph shown in (c).

Fed increases interest
rates by 25+ bps after
July 2024 meeting?

chain in (b) exemplifies a segment within this network.

examples and detailed outputs are included in Ap-
pendix §C.

Single-hop: Topical overlap These pairs often
belong to the same domain (e.g., cryptocurrency)
and share broad semantic context, but lack direct
interaction or dependency. In this setting, CoT
prompting frequently introduces spurious logic,
weakening relevance predictions. For example,
the model underestimates the relationship between
ETH price and USDC market cap by overempha-
sizing their economic independence. In contrast,
the non+CoT variant better preserves local topi-
cal proximity, yielding predictions that align more
closely with human annotations. This suggests that
when cues are shallow but sufficient, simple infer-
ence is preferable to added reasoning steps.

Multi-hop: Causal or institutional reasoning
We define multi-hop reasoning as cases where
the relevance between events depends on indirect
or institutional links, such as shared political ac-
tors, procedural dependencies, or regulatory chains,
rather than simple topical overlap. In such settings,
particularly in the politics and election domains
where multi-hop structures are more common, CoT
prompting tends to improve overall prediction met-
rics. For instance, when evaluating how nomina-
tion outcomes relate to vice-presidential picks, or
how financial regulations affect related assets, CoT
helps the model trace relevant dependencies. How-
ever, despite the overall gains, a non-negligible
number of cases still suffer from flawed reasoning,
such as hallucinated links or incoherent logic.

Butterfly-effect: Chainable social beliefs In ad-
dition to reasoning over isolated event pairs, LLMs
can identify extended chains of belief correlations.
As illustrated in Figure 6, GPT-40 with CoT gener-
ates coherent reasoning paths between events that
are not obviously related on the surface, such as
political discourse, celebrity actions, and electoral
outcomes. The center panel shows a plausible be-
lief chain inferred from pairwise high-scoring links,
which forms a subgraph of the larger belief network
shown on the right. This reflects what we refer to as
the social butterfly effect, where local signals prop-
agate through institutional or topical structures to
shape broader expectations. These high-confidence
structures are observed not only in the Election
domain but also in other domains, suggesting that
LLMs are capable of reconstructing latent belief
networks from unstructured input.

9 Conclusion

We present BELIEFBENCH, a new benchmark for
evaluating LLMs’ ability to reason over real-world
social belief correlations derived from prediction
market data. LLMs consistently outperform heuris-
tic and embedding-based methods across domains,
revealing their capacity to identify semantic and
temporal relationships in belief dynamics. While
Chain-of-Thought prompting helps in complex rea-
soning cases, it may reduce accuracy in simpler
contexts. Our findings highlight both the promise
and current limits of LLMs in modeling evolving
social beliefs, and point to future directions in adap-
tive prompting and temporal modeling.



10 Limitations

Heuristic-score-based ground truth Our
ground-truth labels are derived from a weighted
heuristic score S(A, B) that combines temporal
synchrony, textual similarity, tag overlap, and
time alignment (see Section §5.2). Although this
method improves over pure correlation-based
approaches (e.g. Kendall’s 7), it can still assign
high scores to spurious pairs, for example events
with spikes in coincident volatility or shared
metadata but without substantive connection. Such
false positives can penalize models that correctly
reject these superficial links, limiting the fidelity of
the supervision signal.

Platform and domain bias Polymarket does not
list every real-world event - in many domains, the
coverage is patchy.

Black-box prompt-based design Our study in-
tentionally focuses on black-box, prompt-based
approach without task-specific fine-tuning or cus-
tom model architectures. While this choice aligns
with our goal of evaluating LLLMs in realistic usage
scenarios, it limits our ability to optimize perfor-
mance on this task. Future work could explore
fine-tuning, retrieval-augmented methods, or spe-
cialized architectures to better capture subtle belief
relationships.

Temporal overlap assumption Our approach fo-
cuses on social belief pairs with overlapping active
periods to ensure that the measured time-series cor-
relations capture dynamic co-movement as traders
respond to new information. While this design
helps reduce noise in estimating relevance, it also
limits the benchmark’s ability to evaluate delayed
or indirect causal links that might manifest outside
of these overlapping windows. Future work could
explore more advanced temporal modeling strate-
gies, such as lag-aware correlation measures or
causal inference techniques to better capture these
complex, cross-temporal relationships.

11 Ethical Statement

This work analyzes public event data from Poly-
market, a prediction market platform that provides
open-access market-level data without any user-
identifiable information. We do not collect or pro-
cess individual-level data, and all analysis is con-
ducted at the event level. Thus, privacy concerns
are minimal.

Our evaluation framework involves using large
language models (LLMs) to assess the relevance be-
tween social events. These models, while powerful,
may exhibit unintended biases, particularly in po-
litically sensitive or socially charged domains. We
caution against using these models as authoritative
predictors or decision-making tools in high-stakes
environments.

Additionally, while our work aims to understand
event relationships, it does not attempt to fore-
cast outcomes or provide trading recommendations.
The models are evaluated solely on their reason-
ing and ranking capability and should not be inter-
preted as reliable financial or political forecasting
instruments.

Finally, while our method is training-free, the
evaluation dataset itself may reflect biases from
Polymarket’s coverage, which is shaped by com-
munity interest and market dynamics. As a result,
certain domains, such as Sports or Politics, may
be overrepresented, potentially influencing model
predictions or evaluation trends. We encourage fu-
ture work to broaden coverage to include a more
balanced set of social domains.

References

2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

2024. Qwen2 technical report. Preprint,

arXiv:2407.10671.

2025a. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

2025b.  Deepseek-v3 technical report.
arXiv:2412.19437.

Preprint,

Anonymous. 2025. Title omitted for double-blind re-
view. Under review.

Tristan J. B. Cann, Ben Dennes, Travis Coan, Saffron
O’Neill, and Hywel T. P. Williams. 2023. Using
semantic similarity and text embedding to measure
the social media echo of strategic communications.
Preprint, arXiv:2303.16694.

Mario Cataldi, Luigi Di Caro, and Claudio Schifanella.
2010. Emerging topic detection on twitter based on
temporal and social terms evaluation. In Proceedings
of the Tenth International Workshop on Multimedia
Data Mining, MDMKDD ’10, New York, NY, USA.
Association for Computing Machinery.

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and
David Jurgens. 2023. Do LLMs understand social


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2303.16694
https://arxiv.org/abs/2303.16694
https://arxiv.org/abs/2303.16694
https://arxiv.org/abs/2303.16694
https://arxiv.org/abs/2303.16694
https://doi.org/10.1145/1814245.1814249
https://doi.org/10.1145/1814245.1814249
https://doi.org/10.1145/1814245.1814249
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699

knowledge? evaluating the sociability of large lan-
guage models with SocKET benchmark. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11370-11403,
Singapore. Association for Computational Linguis-
tics.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning.
2021. Causal knowledge guided societal event fore-
casting. Preprint, arXiv:2112.05695.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tong-
shuang Wu, and Graham Neubig. 2024. Better syn-
thetic data by retrieving and transforming existing
datasets. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 6453-6466,
Bangkok, Thailand. Association for Computational
Linguistics.

Volker Gast, Lennart Bierkandt, Stephan Druskat, and
Christoph Rzymski. 2016. Enriching TimeBank: To-
wards a more precise annotation of temporal relations
in a text. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3844-3850, PortoroZ, Slovenia.
European Language Resources Association (ELRA).

Kyle Glandt, Sarthak Khanal, Yingjie Li, Doina
Caragea, and Cornelia Caragea. 2021. Stance detec-
tion in COVID-19 tweets. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1596-1611, Online. Association
for Computational Linguistics.

Saiping Guan, Xueqi Cheng, Long Bai, Fujun Zhang,
Zixuan Li, Yutao Zeng, Xiaolong Jin, and Jiafeng
Guo. 2021. What is event knowledge graph: A sur-
vey. CoRR, abs/2112.15280.

Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev
Bhogal, and Mohamed Medhat Gaber. 2023. What-
sup: An event resolution approach for co-occurring
events in social media. Information Sciences,
625:553-5717.

Taiwo Kolajo, Olawande Daramola, and Ayodele A
Adebiyi. 2022. Real-time event detection in social
media streams through semantic analysis of noisy
terms. Journal of Big Data, 9(1):90.

Jean Lee, Nicholas Stevens, and Soyeon Caren Han.
2025. Large language models in finance (finllms).
Neural Computing and Applications.

Lincan Li, Jiaqi Li, Catherine Chen, Fred Gui, Hongjia
Yang, Chenxiao Yu, Zhengguang Wang, Jianing Cai,
Junlong Aaron Zhou, Bolin Shen, Alex Qian, Weixin
Chen, Zhongkai Xue, Lichao Sun, Lifang He, Hanjie
Chen, Kaize Ding, Zijian Du, Fangzhou Mu, and 28
others. 2024a. Political-llm: Large language models
in political science. Preprint, arXiv:2412.06864.

Pu Li, Xiaoyan Yu, Hao Peng, Yantuan Xian, Lin-
gqin Wang, Li Sun, Jingyun Zhang, and Philip S.

10

Yu. 2024b. Relational prompt-based pre-trained lan-
guage models for social event detection. Preprint,
arXiv:2404.08263.

Yiwei Lu, Zhengtao Yu, Yantuan Xian, Yuxin Huang,
and Yan Xiang. 2025. Unsupervised social media
event detection method combining semantic edge
pruning and community discovery. In Proceedings
of the 4th International Conference on Computer, Ar-
tificial Intelligence and Control Engineering, CAICE
725, page 1045-1052, New York, NY, USA. Associa-
tion for Computing Machinery.

Gosse Minnema, Huiyuan Lai, Benedetta Muscato, and
Malvina Nissim. 2023. Responsibility perspective
transfer for Italian femicide news. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 7907-7918, Toronto, Canada. Associa-
tion for Computational Linguistics.

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1318-1328, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv
Ranjan, Philip S. Yu, and Lifang He. 2021. Stream-
ing social event detection and evolution discovery
in heterogeneous information networks. Preprint,
arXiv:2104.00853.

Kristina Radivojevic, Nicholas Clark, and Paul Brenner.
2024. Llms among us: Generative ai participating
in digital discourse. In Proceedings of the AAAI
Symposium Series, volume 3, pages 209-218.

Abhinav Sukumar Rao, Akhila Yerukola, Vishwa Shah,
Katharina Reinecke, and Maarten Sap. 2025. Nor-
mAd: A framework for measuring the cultural adapt-
ability of large language models. In Proceedings of
the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 2373-2403, Albuquerque, New
Mexico. Association for Computational Linguistics.

Jiagian Ren, Lei Jiang, Hao Peng, Zhiwei Liu, Jia Wu,
and Philip S. Yu. 2022. Evidential temporal-aware
graph-based social event detection via dempster-
shafer theory. Preprint, arXiv:2205.12179.

Haoyu Wang, Hongming Zhang, Kaigiang Song, Dong
Yu, and Dan Roth. 2024a. Event semantic classi-
fication in context. In Findings of the Association
for Computational Linguistics: EACL 2024, pages
1395-1407, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Zimu Wang, Lei Xia, Wei Wang, and Xinya Du.
2024b. Document-level causal relation extraction
with knowledge-guided binary question answering.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 16944—-16955, Mi-
ami, Florida, USA. Association for Computational
Linguistics.


https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://doi.org/10.18653/v1/2023.emnlp-main.699
https://arxiv.org/abs/2112.05695
https://arxiv.org/abs/2112.05695
https://arxiv.org/abs/2112.05695
https://doi.org/10.18653/v1/2024.findings-acl.385
https://doi.org/10.18653/v1/2024.findings-acl.385
https://doi.org/10.18653/v1/2024.findings-acl.385
https://doi.org/10.18653/v1/2024.findings-acl.385
https://doi.org/10.18653/v1/2024.findings-acl.385
https://aclanthology.org/L16-1608/
https://aclanthology.org/L16-1608/
https://aclanthology.org/L16-1608/
https://aclanthology.org/L16-1608/
https://aclanthology.org/L16-1608/
https://doi.org/10.18653/v1/2021.acl-long.127
https://doi.org/10.18653/v1/2021.acl-long.127
https://doi.org/10.18653/v1/2021.acl-long.127
https://arxiv.org/abs/2112.15280
https://arxiv.org/abs/2112.15280
https://arxiv.org/abs/2112.15280
https://doi.org/10.1007/s00521-024-10495-6
https://arxiv.org/abs/2412.06864
https://arxiv.org/abs/2412.06864
https://arxiv.org/abs/2412.06864
https://arxiv.org/abs/2404.08263
https://arxiv.org/abs/2404.08263
https://arxiv.org/abs/2404.08263
https://doi.org/10.1145/3727648.3727820
https://doi.org/10.1145/3727648.3727820
https://doi.org/10.1145/3727648.3727820
https://doi.org/10.1145/3727648.3727820
https://doi.org/10.1145/3727648.3727820
https://doi.org/10.18653/v1/2023.findings-acl.501
https://doi.org/10.18653/v1/2023.findings-acl.501
https://doi.org/10.18653/v1/2023.findings-acl.501
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://arxiv.org/abs/2104.00853
https://arxiv.org/abs/2104.00853
https://arxiv.org/abs/2104.00853
https://arxiv.org/abs/2104.00853
https://arxiv.org/abs/2104.00853
https://doi.org/10.18653/v1/2025.naacl-long.120
https://doi.org/10.18653/v1/2025.naacl-long.120
https://doi.org/10.18653/v1/2025.naacl-long.120
https://doi.org/10.18653/v1/2025.naacl-long.120
https://doi.org/10.18653/v1/2025.naacl-long.120
https://arxiv.org/abs/2205.12179
https://arxiv.org/abs/2205.12179
https://arxiv.org/abs/2205.12179
https://arxiv.org/abs/2205.12179
https://arxiv.org/abs/2205.12179
https://aclanthology.org/2024.findings-eacl.94/
https://aclanthology.org/2024.findings-eacl.94/
https://aclanthology.org/2024.findings-eacl.94/
https://doi.org/10.18653/v1/2024.findings-emnlp.986
https://doi.org/10.18653/v1/2024.findings-emnlp.986
https://doi.org/10.18653/v1/2024.findings-emnlp.986

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Aaron Wheeler and Jeffrey D. Varner. 2024. Mar-
ketgpt: Developing a pre-trained transformer (gpt)
for modeling financial time series.  Preprint,
arXiv:2411.16585.

Yuanjian Xu, Anxian Liu, Jianing Hao, Zhenzhuo Li,
Shichang Meng, and Guang Zhang. 2024. Plutus:
A well pre-trained large unified transformer can
unveil financial time series regularities. Preprint,
arXiv:2408.10111.

Ye Yuan, Kexin Tang, Jianhao Shen, Ming Zhang, and
Chenguang Wang. 2024. Measuring social norms of
large language models. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2024,
pages 650-699, Mexico City, Mexico. Association
for Computational Linguistics.

Yucheng Zhou, Xiubo Geng, Tao Shen, Guodong Long,
and Daxin Jiang. 2021. Eventbert: A pre-trained
model for event correlation reasoning. Preprint,
arXiv:2110.06533.


https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2411.16585
https://arxiv.org/abs/2411.16585
https://arxiv.org/abs/2411.16585
https://arxiv.org/abs/2411.16585
https://arxiv.org/abs/2411.16585
https://arxiv.org/abs/2408.10111
https://arxiv.org/abs/2408.10111
https://arxiv.org/abs/2408.10111
https://arxiv.org/abs/2408.10111
https://arxiv.org/abs/2408.10111
https://doi.org/10.18653/v1/2024.findings-naacl.43
https://doi.org/10.18653/v1/2024.findings-naacl.43
https://doi.org/10.18653/v1/2024.findings-naacl.43
https://arxiv.org/abs/2110.06533
https://arxiv.org/abs/2110.06533
https://arxiv.org/abs/2110.06533

A Artifact Details

A.1 Artifact Information

This artifact contains all components required to
reproduce the results in our study of belief correla-
tion reasoning in large language models (LLMs).
It includes:

* Code: A complete implementation of the pair-
wise belief correlation scoring pipeline, includ-
ing preprocessing, model inference (with and
without Chain-of-Thought prompting), and eval-
uation metrics.

Data:

— Manually annotated development and test
sets across four domains: Politics, Election,
Cryptocurrency, and Sports.

— Rubric definitions used to guide annotation.

— Annotation metadata and inter-annotator
agreement statistics.

Models: Inference scripts for querying multiple
foundation models via standard APIs. Specifi-
cally, GPT-40 and GPT-03-mini were accessed
through the official OpenAl API, while Meta-
Llama-3, DeepSeek-V3, and Qwen?2 series were
accessed via the Together.ai inference platform.
All calls are wrapped with reproducible configu-
rations, and API versions are specified to ensure
consistent results across runs. For models sup-
porting Chain-of-Thought (CoT) prompting, the
corresponding CoT-enabled variants are also in-
cluded.

Evaluation: Scripts to compute both regression
and classification metrics, including MSE, MAE,
Accuracy, Macro-F1, QWK. Also included are
scripts to produce the figures and tables in the
main paper and appendix.

Case Study Tools: Utilities for constructing be-
lief chains, visualizing belief graphs, and analyz-
ing CoT rationales.

The artifact is designed for easy replication and
modification. Each script is documented with usage
instructions, input formats, and expected outputs.
Running the default configuration will reproduce
all key results from the paper. At the time of sub-
mission, these materials are under preparation for
release. We will make the code and data available
upon publication.

A.2 Artifact License

All components of our artifact are intended for
research use and will be released under open-source
or permissive licenses upon publication.
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* Codebase: The full codebase, including prepro-
cessing, inference, and evaluation scripts, will be
released under the MIT License.
Annotated Data: The manually labeled develop-
ment and test sets, along with rubric definitions
and annotation metadata, are original contribu-
tions of this work. These datasets will be released
under the CC BY 4.0 License, permitting reuse
with attribution for research and non-commercial
purposes.

— Codebase: The full codebase, including pre-
processing, inference, and evaluation scripts,
will be released under the MIT License.

— Annotated Data: The manually labeled devel-
opment and test sets, along with rubric defi-
nitions and annotation metadata, are original
contributions of this work. These datasets will
be released under the CC BY 4.0 License, per-
mitting reuse with attribution for research and
non-commercial purposes.

— Model Usage: Our study relies on querying
several pretrained language models. We use
GPT-40 and GPT-03-mini via the OpenAl
API,? which are proprietary models licensed
by OpenAl. We also evaluate open-weight
models including Meta-Llama-3 70B (gra,
2024), DeepSeek-V3 (dee, 2025b), DeepSeek-
R1 (dee, 2025a), and Qwen2 (yan, 2024),
accessed through the Together.ai inference
platform, all released under Apache 2.0 or
similar permissive licenses. For comparison,
we include a cross-encoder baseline using
nli-deberta-v3-base* from Hugging Face,
licensed under the MIT License.

We respect all license terms associated with the
use of these third-party models and APIs. No
model weights are redistributed. All data and code
will be clearly marked with their respective licenses
in the released repository.

A.3 Data Usage

Our dataset includes events across four domains:
Politics, Election, Cryptocurrency, and Sports. We
use a subset of Polymarket data curated by prior
work currently under review (Anonymous, 2025).
The final dataset will be released under the MIT
License for academic use.

* Source and Licensing:

3https://platform.openai.com/docs/models/
gpt-4o0

4https://huggingface.co/cross—encoder/
nli-deberta-v3-base


https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/cross-encoder/nli-deberta-v3-base
https://huggingface.co/cross-encoder/nli-deberta-v3-base

» Use Consistency: Our data usage is consistent
with the intended purpose of the source materials,
which were either licensed for research or cre-
ated explicitly for this project. No repurposing
beyond research evaluation has been conducted.

* Human Annotation: Each belief correlation
pair in the development and test sets was labeled
by multiple annotators using a rubric-based scale.
Inter-annotator agreement scores are included in
the Appendix §G to reflect labeling quality.

* Privacy and Safety: The dataset does not con-
tain any personally identifiable information (PII),
user metadata, or social media handles. All
text has been reviewed to exclude offensive con-
tent, and no inference was made regarding demo-
graphic or protected attributes.

* Intended Use: The dataset is intended exclu-
sively for research on social reasoning, belief
dynamics, and LLM evaluation. It is not suit-
able for deployment in user-facing applications
or downstream tasks involving sensitive decision-
making.

A.4 Data Statistics

Our benchmark covers four domains: Politics, Elec-
tion, Cryptocurrency, and Sports.

The final benchmark includes:

* Total event pairs: 8,839

* Label format: Each pair is assigned a contin-
uous belief correlation score in the range [0, 1],
reflecting graded relatedness. For classification-
based analyses, scores are mapped to a 5-point
ordinal scale (from strongly unrelated to strongly
related) using predefined thresholds.

* Label source: The majority of labels were de-
rived programmatically via rubric-based scoring;
a small subset was verified by human annotators
for calibration and quality assurance.

* Agreement check: For the verified subset, each
pair was annotated by 3 annotators. The average
inter-annotator correlation exceeds 0.78, indicat-
ing strong agreement on the ordinal scale used
for verification.

B LLM Prompt

The prompt of the zero shot and CoT version are
in Table 1
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C Case Study Examples

C.1 0-hop: Thematic Overlap without Direct
Link

These pairs are topically similar but lack direct

causal or temporal connection.

Example 1 Event 1: USDC market cap over $25
billion EOY?

Event 2: Will ETH hit $2,000 by EOY?

Ground Truth: 0.4-0.6

GPT-03-mini (CoT): 0.2-0.4

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events occur in the cryptocurrency
space, with one focusing on the stablecoin USDC’s
market cap and the other on ETH’s price. They
share a common thematic context but are mea-
suring distinct characteristics of the crypto mar-
ket with minimal direct causal influence between
them."

Example 2 Event 1: Will ETH hit $2,000 by
EOY?

Event 2: Huobi insolvent in 20237

Ground Truth: 0.4-0.6

GPT-03-mini (CoT): 0.2-0.4

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events relate to the cryptocurrency in-
dustry. However, while ETH reaching a certain
price is a market performance event, Huobi’s insol-
vency is a corporate financial event. Their connec-
tion is thematic but not directly causal or tempo-
rally linked."

C.2 1-hop or Multi-hop: Causal or
Institutional Links

These examples involve shared actors, institutional
decisions, or policy-level connections.

Example 3 Event 1: Will SEC delay Bitcoin
ETF decision?

Event 2: Ethereum spot ETF approved by Mar 31?7
Ground Truth: 0.6-0.8

GPT-03-mini (CoT): 0.6-0.8

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events involve SEC decisions regard-
ing cryptocurrency ETFs. They are thematically
linked, as they both pertain to regulatory actions on
crypto investments and have overlapping timelines,
despite focusing on different digital assets (Bitcoin
and Ethereum)."

Example 4 Event 1: Will Haley beat DeSantis
in Iowa?



Original Prompt

CoT Prompt

You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.

Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

Return only a valid JSON object in the form: {"label”:
"0.4-0.6"}. Do not include explanations, formatting, or any
additional text.

Labels (choose one key only):

"0.0-0.2" — Unrelated — No real connection in topic, time,
or influence.

"0.2-0.4" — Weakly Related — Small thematic overlap, but
no causal or temporal influence.

"0.4-0.6" — Moderately Related — Events share context or
actors but remain largely independent.

"0.6-0.8" — Strongly Related — One event influences or is
likely affected by the other.

"0.8-1.0" — Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{el1_title}
{e1_desc}

Event 2
{e2_title}
{e2_desc}

Strictly respond with a JSON object like:
"0.6-0.8"}

{"label”:

You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.

Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

First, in a few concise sentences, explain any causal,
temporal, or thematic links you see.

Then, on a new line, output ONLY one valid JSON object like:
{"label”: "@.4-0.6"}. Do not include any additional text.

Labels (choose one key only):

"0.0-0.2" — Unrelated — No real connection in topic, time,
or influence.

"0.2-0.4" — Weakly Related — Small thematic overlap, but
no causal or temporal influence.

"0.4-0.6" — Moderately Related — Events share context or
actors but remain largely independent.

"0.6-0.8" — Strongly Related — One event influences or is
likely affected by the other.

"0.8-1.0" — Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{el_title}
{el1_desc}

Event 2
{e2_title}
{e2_desc}

Give your concise reasoning, then output the JSON ob-
ject on the next line.

Table 1: Comparison of Original vs. CoT prompt templates
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Event 2: Will Kristi Noem win the U.S. 2024 Re-
publican VP nomination?

Ground Truth: 0.2-0.4

GPT-03-mini (CoT): 0.2-0.4

GPT-03-mini (No CoT): 0.4-0.6

CoT: "Both events occur within the context of U.S.
Republican political dynamics in the 2024 election
cycle, sharing a general theme of intra-party com-
petition. However, they concern distinct contests
with different candidates and positions, and there
is no direct causal or temporal link between them."
We include the full benchmark results across all
domains and metrics in Tables 2-5.

D Full Benchmark Results

We include the full benchmark results across all
domains and metrics in Tables 2-5.

E Use Of AI Assistants

We did use ChatGPT as the writing assistant to
help us write part of the paper. Additionally, we
utilize the power of CodePilot to help us code faster.
However, all the Al-generated writing and coding
components assisted by Al are manually checked
and modified. There is no full Al-generated content
in the paper.
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Method MSE MAE  Accuracy Macro-F1 QWK

random 0.1459  0.3130 0.1977 0.1377 0.0071
heuristic (vol. max—min) 0.0411 0.1674 0.2860 0.0910 -0.0040
heuristic (vol. sim.) 0.1113  0.3003 0.0691 0.0414 0.0089
heuristic (time overlap) 0.0459 0.1687 0.3437 0.1913 0.1121
GPT-40 0.0234  0.1258 0.4317 0.2978 0.4094
GPT-40 + CoT 0.0250 0.1214 0.5116 0.2621 0.2843
GPT-03-mini 0.0253  0.1322 0.3973 0.2722 0.3415
GPT-03-mini + CoT 0.0188 0.1147 0.4561 0.2411 0.3238
Meta-Llama3-70B 0.0377  0.1532 0.3847 0.2543 0.4084
Meta-Llama3-70B + CoT 0.0327 0.1518 0.3400 0.2593 0.3887
DeepSeek-V3 0.0250 0.1291 0.4383 0.3100 0.4105
DeepSeek-V3 + CoT 0.0236  0.1286 0.4006 0.2752 0.3697
DeepSeek-R1 0.0830  0.2600 0.0940 0.0807 0.0786
DeepSeek-R1 + CoT 0.0512  0.1996 0.1959 0.1585 0.1162
Qwen2-72B 0.0309 0.1426 0.3800 0.2292 0.3526
Qwen2-72B + CoT 0.0338 0.1534 0.3200 0.2285 0.2749
cross-encoder (nli-deberta-v3-base) 0.0519  0.1812 0.2797 0.0969 0.1076

Table 2: Performance on Politics domain. Evaluation across selected metrics.

Method MSE MAE  Accuracy Macro-F1 QWK
random 0.1330  0.3000 0.2019 0.1541 0.0125
heuristic (vol. max—>min) 0.0878  0.2447 0.1430 0.0560 -0.0140
heuristic (vol. sim.) 0.0945 0.2645 0.1403 0.0864 0.0398
heuristic (time overlap) 0.0779  0.2274 0.2179 0.1344 0.1427
heuristic (tag overlap) 0.0152 0.1014 0.5471 0.5691 0.6999
GPT-40 0.0252  0.1265 0.4683 0.3584 0.5227
GPT-40 + CoT 0.0256  0.1274 0.4433 0.2687 0.4447
GPT-03-mini 0.0412  0.1549 0.4284 0.3360 0.4645
GPT-03-mini + CoT 0.0543 0.1638 0.4632 0.3531 0.5011
Meta-Llama3-70B 0.0416  0.1640 0.3828 0.3349 0.5004
Meta-Llama3-70B + CoT 0.0364 0.1612 0.3303 0.3278 0.4733
DeepSeek-V3 0.0242  0.1230 0.4974 0.3428 0.5187
DeepSeek-V3 + CoT 0.0289  0.1402 0.3963 0.3244 0.4886
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0352  0.1698 0.2320 0.1420 0.0713
Qwen2-72B 0.0336  0.1488 0.4067 0.3069 0.4024
Qwen2-72B + CoT 0.0387 0.1683 0.2867 0.2385 0.3550

cross-encoder (nli-deberta-v3-base) 0.0888  0.2483 0.1466 0.0967 0.1491

Table 3: Performance on Cryptocurrency domain. Evaluation across selected metrics.

Method MSE MAE  Accuracy Macro-F1 QWK
random 0.1423  0.3093 0.2016 0.1759 0.0099
heuristic (vol. max—min) 0.1612 0.3197 0.1090 0.0490 -0.0030
heuristic (vol. sim.) 0.0885 0.2531 0.1780 0.1289 0.0941
heuristic (time overlap) 0.0877 0.2383 0.2157 0.2058 0.4190
heuristic (tag overlap) 0.0229  0.1298 0.4407 0.4982 0.7932
GPT-40 0.1042  0.2558 0.1746 0.1431 0.2418
GPT-40 + CoT 0.0744  0.2209 0.2267 0.1890 0.3678
GPT-03-mini 0.0931 0.2305 0.2840 0.2383 0.4805
GPT-03-mini + CoT 0.1199  0.2654 0.2182 0.1922 0.3620
Meta-Llama3-70B 0.0772  0.2312 0.1813 0.1790 0.4399
Meta-Llama3-70B + CoT 0.0838 0.2404 0.1629 0.1523 0.3916
DeepSeek-V3 0.0884 0.2432 0.1678 0.1558 0.3438
DeepSeek-V3 + CoT 0.0909 0.2480 0.1500 0.1305 0.3026
DeepSeek-R1 0.0258 0.1307 0.4409 0.4599 0.3327
DeepSeek-R1 + CoT 0.0442  0.1625 0.3972 0.2620 0.3454
Qwen2-72B 0.0983  0.2422 0.2000 0.1751 0.2478
Qwen2-72B + CoT 0.1006  0.2476 0.1933 0.1625 0.2499
cross-encoder (nli-deberta-v3-base) 0.1779  0.3432 0.0916 0.0496 -0.0360

Table 4: Performance on Sports domain. Evaluation across selected metrics.
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Method MSE MAE Accuracy Macro-F1 QWK

random 0.1268 0.2914 0.2058 0.1558 0.0077
heuristic (vol. max—-min) 0.0719  0.2227 0.1940 0.0870 -0.0200
heuristic (vol. sim.) 0.0850 0.2504 0.1610 0.0835 0.0181
heuristic (time overlap) 0.0639  0.2063 0.2570 0.1906 0.1380
heuristic (tag overlap) 0.0175 0.1121 0.4721 0.5775 0.6283
GPT-40 0.0219 0.1112 0.5575 0.2940 0.3522
GPT-40 + CoT 0.0346 0.1489 0.4033 0.3100 0.4149
GPT-03-mini 0.0278 0.1344 0.4548 0.2088 0.2752
GPT-03-mini + CoT 0.0231 0.1187 0.5451 0.2496 0.4183
Meta-Llama3-70B 0.0596 0.1970 0.3103 0.2468 0.3598
Meta-Llama3-70B + CoT 0.0470 0.1834 0.2660 0.2118 0.3397
DeepSeek-V3 0.0330 0.1456 0.4132 0.2953 0.4087
DeepSeek-V3 + CoT 0.0312  0.1450 0.3836 0.2930 0.4197
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0220 0.1192 0.4636 0.1893 0.1715
Qwen2-72B 0.0430 0.1696 0.3233 0.2345 0.4127
Qwen2-72B + CoT 0.0383  0.1639 0.3200 0.2737 0.4104

cross-encoder (nli-deberta-v3-base) 0.0972  0.2604 0.1436 0.0688 0.1117

Table 5: Performance on Election domain. Evaluation across selected metrics.

Table 6: Annotation scale with definitions and representative examples. Each bin corresponds to a level of
relevance used in rating event pairs.

Label Definition Example Event Pair
Range
0.0-0.2 Unrelated; events concern differ- Will China invade Taiwan in 20247

ent topics, entities, or timelines.  vs.
Karine Jean-Pierre out as Press Secretary

by July 31?
0.2-0.4 Weakly related; minimal topical ~ U.S. military action against Iran in 2024?
overlap, but no structural link. vs.
Democrats win popular vote by 4-5%?
0.4-0.6 Moderately related; shared ac- Will another candidate win NY-16 Demo-
tors, parties, or contexts. cratic Primary?
Vs.
Will a candidate from another party win
NY Senate?
0.6-0.8 Strongly related; possible causal ~ Will Trump tweet 90+ times Oct 25-Nov
or strategic link. 1?

V.
Will Trump win 30% of Black men?

0.8-1.0 Highly related; one event entails  Biden resign during his speech today?
the other. vs.
Biden removed via 25th Amendment?

17



F Heuristic Selection Methods

To provide interpretable baselines for belief cor-
relation reasoning, we introduce a set of heuristic
scoring methods for ranking candidate event pairs.
Unlike learned models, these heuristics use domain
knowledge and surface-level attributes to estimate
correlation scores without language understand-
ing or reasoning. They serve as simple, zero-shot
approximations to relevance or co-movement be-
tween beliefs.

Random We assign a uniform random score to
each candidate event. This provides a lower-bound
reference for performance and reflects the difficulty
of the task in the absence of any meaningful signal.

18

Volume-Based Sorting We hypothesize that
highly traded events are more likely to be central or
influential in public discourse. For each candidate,
we compute its total market trading volume (over
the active time window) and use this as a relevance
score. We experiment with two variants:

* Volume Max-to-Min: Assigns the candidate’s
normalized trading volume as its correlation
score. Events with higher volume are assumed
to be more generally relevant, independent of the
base event.

Volume Similarity: Computes the absolute dif-
ference in trading volume between the base and
candidate events. Event pairs with more similar
volumes receive higher scores, under the assump-
tion that similarly salient events may co-occur in
public discourse or exhibit belief co-activation.

Temporal Overlap We compute the degree of
overlap in time between the base and candidate
event windows. Events that occur in similar time-
frames may be causally or contextually linked. The
score is computed as the ratio of overlapping dura-
tion to union duration.

Cross-Encoder Baseline We include a
strong neural retrieval baseline using the
nli-deberta-v3-base cross-encoder. It jointly
encodes event pairs and outputs a real-valued rele-
vance score. Although trained on general-purpose
sentence similarity or natural language inference
tasks, it often captures surface-level lexical or
semantic overlap, making it a competitive 0-hop
semantic baseline.

G Human Evaluation of Heuristic
Scoring

G.1 Setup

Objective and Sampling. To assess whether our
heuristic scoring function aligns with human intu-
ition, we conducted an annotation study over 50
event pairs. These pairs were drawn evenly across
five correlation levels (very weak to very strong)
according to the algorithmic relevance scores de-
scribed in Section §5.2. This stratified sampling
ensured that the full range of belief correlation
strengths was represented, enabling consistent eval-
uation across relevance levels.

Annotators and Conditions. Three annotators,
who were NLP researchers involved in the project,
participated in the study. While familiar with the



modeling setup, they lacked domain-specific exper-
tise in forecasting or geopolitical reasoning. An-
notations were conducted non-blind: annotators
shared the same rubric and examples to guide their
judgments

G.2 Annotation Protocol

Rubric Development and Scoring Process.
Prior to annotation, the three annotators collab-
oratively developed a shared rubric to define five
levels of belief correlation, ranging from unrelated
to highly related. This rubric was iteratively re-
fined through internal calibration rounds, ensuring
that all annotators applied consistent semantic and
causal reasoning. During annotation, each anno-
tator independently rated all 50 event pairs on a
continuous scale from 0.0 to 1.0 using the agreed
rubric. Table 6 summarizes the scoring bins and
includes representative examples for each level.

Label Aggregation and Annotation Conditions.
Although annotators shared a rubric, the annota-
tion process itself was conducted independently
without real-time coordination. Final labels were
aggregated by majority vote; in cases of complete
disagreement, we averaged the three scores. To
prevent bias, annotators were shown only the event
texts, without access to belief trajectories, model
predictions, or algorithmic scores. This ensured
that all judgments reflected semantic reasoning
alone.

Annotator Agreement. We evaluate inter-
annotator reliability using both pairwise Pearson
correlations and intra-class correlation (ICC).
As shown in Table 7, pairwise Pearson scores
range from 0.752 to 0.814, indicating strong
linear consistency among annotators. The highest
alignment is observed between Annotators A and
B (0.814), while A and C show slightly lower but
still robust agreement (0.752). To complement this,
we compute ICC(2,1) under a two-way random
effects model, yielding a value of 0.771. This
reflects substantial agreement across annotators
and confirms the reliability of the human labels as
a benchmark for model alignment.

G.3 Alignment with Heuristic Model

To measure how well the heuristic score S(A4, B)
matches human judgment, we compute the Pear-
son correlation between model predictions and the
aggregated human labels. The resulting correlation
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Table 7: Inter-annotator agreement. Pearson correla-
tion coefficients between annotators.

Annotator A Annotator B Annotator C

Annotator A 1.000 0.814 0.752
Annotator B 0.814 1.000 0.798
Annotator C 0.752 0.798 1.000

of p = 0.689 (Table 8) indicates strong alignment
between the scoring function and human reasoning.

Table 8: Model-human alignment. Pearson correlation
between the heuristic score and human annotations.

Method
Heuristic score S(A, B)

Pearson Correlation

0.689

H Detailed Performance Degradation
After Cutoff

I Demo Interface Overview

We build a web-based demo to showcase how our
system connects real-time news and prediction mar-
ket data. The interface allows users to explore
forecastable events, understand model-generated
reasoning, and vote on likely outcomes. Below, we
walk through its key components.

Main Event Grid. Upon entering the demo (Fig-
ure 8), users see a grid of active prediction ques-
tions. Each card displays an event (e.g., “Will X
and Truth Social merger be announced before Au-
gust?”’) along with real-time probability estimates
for each outcome (Yes/No), sourced from Poly-
market. Users can filter events by domain (e.g.,
politics, crypto) via the dropdown menu. Clicking
on the “News” tab navigates to a dedicated news
feed page. Selecting an individual event card leads
to a detailed view for reasoning and voting.

News Integration. The “News” section (Fig-
ure 9) presents a chronological list of recent head-
lines. Clicking on any headline redirects users to
the original article. Users can also expand or col-
lapse a card by clicking the dropdown triangle on
the right. When expanded, the card reveals any pre-
diction events automatically identified as seman-
tically or causally related to the article, bridging
news and belief markets.

Detailed Event View. When clicking on a grid
cell, users are taken to a dedicated page for that



Performance Change After Knowledge Cutoff

Election Domain Politics Domain
I MSE I MSE
104 I MAE 204 I MAE
I Accuracy 17.1% [ Accuracy
[ Macro-F1 38% [ Macro-F1
B QWK QWK

-10.2%

-18.0%

Change Rate (%)
Change Rate (%)

~201 -18.2%

-50.9% -26.5%

T T T T T T
GPT-40 DeepSeek v3 LLaMA GPT-40 DeepSeek v3 LLaMA
Models Models

(Note: For MSE and MAE, values are sign-ij d for ipretation. Positive values indicate performance improvement, negative values indicate degradation. ]

Figure 7: Performance change after knowledge cutoff across domains and models. Bars show the relative change
in evaluation metrics on post-cutoff event pairs, compared to pre-cutoff ones. For metrics like MSE and MAE,
values are sign-inverted to ensure a consistent interpretation, where negative values indicate degraded performance.
GPT-40 shows a substantial decline across most metrics in the election domain, while performance remains more
stable in the politics domain.

prediction question (Figure 10). Here, they can se-
lect an outcome and choose from a list of candidate
reasons generated by an LLM. These explanations
help users interpret possible causal mechanisms.
The right panel shows a time-series chart visualiz-
ing real-time market probabilities for each option.
After selecting both an outcome and a reason, users
can vote to register their belief.
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I—l > Clicking “News" navigates
New:
Openmarket o to a page displaying

Filter by Tag:

Tecent heaalnes.

The “Filter by Tag" dropdown

e |€t5 USETS SOTE EVENLS DY
domain, such as politics

Clicking on any event card

Will Trump repeal Presidential term limits?

No 99.5%

Bird flu pandemic before August 20257

No

X and Truth Social merger announced before

[~ opens a detailed view.
Will Trump impose large tariffs in his first 6

August? months?
Yes 0.4% Yes 96.3%
No 29.6% No 3.7%
Doge ETF approved by July 31? Ripple ETF approved by July 31?
Yes 2.05 Yes 8.5%
No 97.9 No 91.5%

Each grid cell corresponds to one
prediction event with real-time
probabilities based on data from

Will GPT-5 be released by December 317

Yes 93.7%

No 6.3%

Figure 8: Main interface with real-time prediction events. Cards show current market probabilities and are filterable

by topic.

Polymarket.
Litecoin ETF approved by July 317

No 92.5%

Will federal spending decrease by $500-
750b between Q4 2024 and Q2 2025?

No

Openmarket

Latest News

U.S. Wholesale Prices Were Flat in June

Clicking the news headline redirects

Related Market Events

No related market events found

users to the original news source.

New York Mayor Eric Adams Led Criminal Enterprise at NYPD, Former Top Cop Alleges

Canada Imposes Limits on Steel Imports From All Countries Except U.S., Mexico

51:00

‘A Return to Self' Review: At Home in the World

Crisis Spirals in Syria With Israeli Strikes on Damascus

Figure 9: News page interface. Each news item links to the source and may surface relevant market events.
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Users can click the dropdown triangle to
expand or collapse each news card. When
expanded, it reveals any related prediction
market events linked to th article.



Openmarket  tews After selecting both an outcome and
a i ;
Will no Fed rate cuts happen in 2025? Vote Option submit their vote by clicking the
“Vote" button.

Yes 16.5%
. - . Selected: Yes
Alist of cand_ldate reasons is generated by an Chance: 16.5%
No LLM to explain possible outcomes. Users can 83.5%
select the one they find most convincing.

Select your reason:

If inflation remains above the Federal Reserve's target, it is less likely they will
cut rates in 2025, as they prioritize controlling inflation over stimulating m Esimatod  Both
growth. A strong labor market and steady economic growth could deter the

Fed from implementing rate cuts, as they might not see a need to stimulate
an already healthy economy. 100

(1votes)

The Federal Reserve's cautious approach to rate adjustments suggests they %57
might hold rates steady unless there is a significant economic downturn. In
the absence of unexpected economic shocks, the Fed might continue with
stable rates to maintain economic stability. ol

(1 votes)

Market expectations can influence Fed decisions, and if there is a consensus 254 'L ﬂ’

that no cuts are needed, the Fed may align with these expectations unless N b .l .

there are ca@p.!lmg reasons to do u:nfmn§-. Historically, the Fa_d tends to ) Viz “\_;r-" %L T \"hr
be conservative in altering rates, especially if they have recently increased

them, preferring to observe the long-term effects before considering cuts. 0 |

) — 2025-03-24T11:00:052 2025-07-06T23:60:07Z
(1 votes)

A real-time time series chart shows the market's et
probability estimates for each outcome

Figure 10: Detailed view of a prediction event. Users select an outcome and reason, then submit their vote.
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