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Abstract001

Understanding how people’s perspectives on002
different issues change in correspondence with003
one another is essential for modeling collec-004
tive reasoning and social dynamics. However,005
this problem remains underexplored due to the006
absence of standardized benchmarks and eval-007
uation protocols. In this work, we introduce008
BELIEFBENCH, a new benchmark for evalu-009
ating whether large language models (LLMs)010
can detect when shifts in beliefs about one real-011
world event are accompanied by correspond-012
ing shifts in beliefs about another. The bench-013
mark is constructed from Polymarket, a pre-014
diction market platform where event probabil-015
ities are updated daily, reflecting crowd belief016
over time. We formulate a classification task017
in which event pairs are labeled based on a018
combination of time-series co-movement, se-019
mantic similarity, and other metadata. Label020
quality is validated by human annotators. Our021
evaluation reveals two key findings: (1) LLMs022
consistently outperform heuristic and neural023
baselines in identifying meaningful belief cor-024
relations across diverse domains; (2) Chain-of-025
Thought prompting improves performance in026
settings that require multi-step reasoning, such027
as politics and elections, but can hurt perfor-028
mance in domains where surface-level signals029
are more predictive. BELIEFBENCH thus pro-030
vides a challenging testbed for evaluating how031
well LLMs capture the co-evolution of perspec-032
tives and the underlying temporal and causal033
reasoning processes.034

1 Introduction035

Social beliefs represent an individual’s perspec-036

tive about uncertain future events—for example,037

presidential election outcomes or financial mar-038

ket trends. Each person holds many such beliefs039

shaped by their prior education and life experi-040

ences, and these beliefs are rarely independent.041

When concrete new evidence becomes available,042

multiple beliefs may shift simultaneously rather043

Figure 1: Using betting platform data to study con-
nections between social beliefs. On platforms like
Polymarket, users bet on the outcomes of real-world
events. We show two markets above: Will ETH hit
$2000? and Will the Fed raise interest rates?. Each
market provides a time series of probabilities, reflecting
collective beliefs about future events. We observe that
time series for each market are often correlated—for ex-
ample, the two above show contradictory trends. Such
co-movements reveal connections between beliefs, mo-
tivating our study of whether LLMs can provide the
reason behind such correlation.

than in isolation. For instance, the release of a 044

major poll showing a surge in support for Donald 045

Trump could not only update one’s belief about 046

“Will Trump win the 2024 election?” but also shift 047

expectations about “Will Republicans control the 048

Senate?”, since the two outcomes are closely tied. 049

Likewise, an unexpected announcement from the 050

Federal Reserve about tightening monetary policy 051

may change beliefs about “Will the Fed raise inter- 052

est rates?” and simultaneously alter expectations 053

on “Will Bitcoin fall below $30,000?”, capturing 054

broader macroeconomic sentiment (Li et al., 2024a; 055

Lee et al., 2025; Radivojevic et al., 2024). 056

At the collective level, such updates can trigger 057

a “butterfly effect,” where a single event reshapes 058
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public beliefs across society, leading to broad con-059

sequences. A financial crisis, for example, can alter060

expectations about interest rates, currency stabil-061

ity, and political outcomes, amplifying systemic062

risks. Understanding the correlations among so-063

cial beliefs—such as co-occurrence (Kolajo et al.,064

2022; Minnema et al., 2023; Glandt et al., 2021),065

semantic similarity (Wang et al., 2024a; Cann et al.,066

2023; Lu et al., 2025), or implicit causal alignment067

(Deng et al., 2021; Wang et al., 2024b; Peng et al.,068

2021)—is therefore crucial for interpreting societal069

trends and forecasting collective behavior. More-070

over, these correlations often extend beyond direct071

pairs: if belief A is linked to B, and B to C, people072

may implicitly associate A with C as well. De-073

tecting such transitive or multi-hop relationships074

requires models to reason beyond surface cues and075

integrate temporal and institutional knowledge.076

Despite its importance, automatically uncover-077

ing these latent structures remains a significant078

challenge. Traditional approaches (Guan et al.,079

2021; Ren et al., 2022; Li et al., 2024b) rely on080

structured datasets with fixed ontologies, which081

generalize poorly to the dynamic, unstructured be-082

lief expressions found in real-world forecasting or083

market settings. The task is further complicated084

by scarce and noisy belief-linked time-series data,085

limited leakage-free benchmarks, the difficulty of086

defining reliable ground truth, and the need to rea-087

son beyond lexical overlap to capture temporal pat-088

terns and latent semantics. Large language models089

(LLMs) are particularly promising here: pretrained090

on vast, diverse corpora, they can flexibly interpret091

unstructured language, infer implicit causal and092

semantic links, and reason over multi-hop depen-093

dencies without requiring rigid ontologies. This094

naturally raises the question: Can LLMs identify095

correlations between real-world social beliefs?096

To address this question, we first build a new097

benchmark with high-quality labels, constructed098

from SocialWM (Anonymous, 2025), a dataset col-099

lected from Polymarket1, a decentralized forecast-100

ing platform. Each event pair is labeled based on101

a combination of time-series co-movement and se-102

mantic similarity, with labels generated automati-103

cally and validated against human annotations. We104

then evaluate a diverse set of LLM families on this105

benchmark to assess their ability to identify mean-106

ingful belief correlations. Our results reveal several107

insights: (1) LLMs consistently outperform heuris-108

1https://polymarket.com/

tic and neural baselines, with GPT-4o achieving 109

Spearman correlations up to 0.53 and QWK scores 110

above 0.52, significantly surpassing all heuristic 111

baselines; (2) While Chain-of-Thought prompt- 112

ing (Wei et al., 2023) enhances interpretability by 113

surfacing intermediate reasoning steps that support 114

multi-hop associations, its impact on performance 115

is mixed, with improvements observed in some set- 116

tings but degradations in others; (3) performance 117

drops on post-cutoff events, underscoring limits in 118

temporal generalization due to pretraining. 119

2 Related Work 120

Social belief correlation detection. Identifying 121

correlations between beliefs associated with real- 122

world events, such as co-occurrence, semantic rele- 123

vance, or implicit causal links, is fundamental to un- 124

derstanding social dynamics. Cataldi et al. (2010) 125

propose a co-occurrence graph to detect tweet 126

topics. The Whatsup framework (Hettiarachchi 127

et al., 2023) resolves co-occurring events using self- 128

learned word embeddings. TimeBank (Gast et al., 129

2016) and MATRES (Ning et al., 2018) provide 130

structured datasets for temporal and causal relation 131

extraction. Zhou et al. (2021) introduce a BERT- 132

based model for reasoning over event correlations. 133

In the financial setting, MARKETGPT (Wheeler 134

and Varner, 2024) and PLUTUS (Xu et al., 2024) 135

develop pretrained models for market belief under- 136

standing. However, many of these studies rely on 137

synthetic setups or structured event representations, 138

limiting their applicability to noisy, ambiguous real- 139

world beliefs. Our work differs by introducing a re- 140

alistic evaluation task constructed from real-world 141

market data, enabling systematic measurement of 142

LLMs’ ability to identify belief correlations under 143

temporal uncertainty and semantic sparsity. 144

Social reasoning Prior work uses the term “so- 145

cial reasoning” to refer to tasks like understanding 146

social norms, commonsense interactions, or mod- 147

eling human mental states. For example, SocKET 148

benchmarks LLMs on social-concept understand- 149

ing and moral expectations (Choi et al., 2023), 150

while Gandhi & colleagues study mental-state rea- 151

soning for theory-of-mind modeling (Gandhi et al., 152

2024). Other work evaluates LLMs’ understand- 153

ing of social norms in large-scale benchmark set- 154

tings, such as the Social Norm dataset (Yuan et al., 155

2024) and the NormAd cultural adaptability frame- 156

work (Rao et al., 2025). Prior work often defines 157

social reasoning through individual or small-group 158
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cognition, focusing on human-centric scripts or159

moral norms. In contrast, we define it as identi-160

fying meaningful connections between real-world161

social beliefs, capturing co-occurrence, semantic162

relevance, and implicit causality in different do-163

mains. Our task centers on reasoning over col-164

lective dynamics using noisy, unstructured signals165

(e.g., prediction markets), shifting focus from in-166

terpersonal commonsense to event-level inference167

relevant for social science and forecasting.168

3 Preliminary169

Social belief We define a social belief as a collec-170

tive expectation about the outcome of a real-world171

event. For example, people may hold beliefs such172

as “Candidate X will win the 2024 election,” “Bit-173

coin will surpass $100,000 this year,” or “Team Y174

will win the championship.” These beliefs are in-175

herently dynamic: they evolve as new information176

emerges, such as polling updates, economic indi-177

cators, or breaking news. Unlike static opinions,178

social beliefs can be quantified and tracked over179

time, providing a lens into how collective expecta-180

tions shift in response to external events.181

Data source for social belief To capture such182

evolving beliefs at scale, we use Polymarket2, a183

decentralized prediction market where users trade184

on outcomes of real-world events with clear resolu-185

tion criteria (e.g., “Will Candidate X win the 2024186

election?”). Each market typically has a binary187

“Yes”/“No” structure, and daily trading prices pro-188

vide time-stamped, financially incentivized prob-189

ability estimates that reflect the crowd’s collec-190

tive belief. Polymarket spans diverse domains, in-191

cluding politics, economics, cryptocurrency, and192

sports, and markets often remain active for weeks193

or months, allowing us to observe the temporal dy-194

namics of belief formation and revision. Compared195

to text sources such as news or social media, predic-196

tion markets aggregate dispersed signals into quan-197

titative, externally verifiable probabilities, making198

them a robust proxy for real-time social belief.199

Connections between social beliefs While indi-200

vidual beliefs can be measured, identifying mean-201

ingful relationships between them remains chal-202

lenging. Such connections are often implicit, multi-203

hop, and cross-domain—for instance, an election204

outcome may shift financial markets, or geopoliti-205

cal tensions may influence energy prices via global206
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supply chains. Detecting these links requires rea- 207

soning beyond surface semantics, such as identi- 208

fying shared actors, institutional dependencies, or 209

indirect causal chains. Our task examines whether 210

LLMs can uncover these latent connections be- 211

tween real-world social beliefs. 212

4 Problem Definition 213

Notation Let E be the set of market events from 214

Polymarket. Each event e ∈ E is defined by a 215

natural language question qe and a belief trajec- 216

tory {pet}
Te
t=1, where each pet ∈ (0, 1) denotes the 217

market-implied probability of event e on day t, de- 218

rived from trading activity. Thus, {pet}
Te
t=1 forms 219

a time series capturing the temporal dynamics of 220

the evolving social belief, while qe provides the 221

semantic content of the event. 222

Social belief correlation task Formally, given a 223

pair of events (A,B) ∈ E × E , each represented 224

by their natural language descriptions (qA, qB) and 225

belief trajectories {pAt }
TA
t=1 and {pBt }

TB
t=1, where 226

each {pet} is a time series of daily market-implied 227

probabilities, the goal is to estimate the strength of 228

correlation between their associated social beliefs. 229

We define a mapping 230

f : E × E −→ Y, (1) 231

where the label space Y = {1, 2, 3, 4, 5} encodes 232

ordinal levels of correlation: 1 (very weak), 2 233

(weak), 3 (medium), 4 (strong), and 5 (very strong). 234

The task is formulated as ordinal classification, 235

where the model predicts a discrete label ŷ = 236

f(A,B) ∈ Y . In our setting, f can be a LLM, 237

which jointly reasons over the semantic content 238

(qA, qB) and the temporal patterns ({pAt }, {pBt }) 239

to infer correlation strength. 240

5 BELIEFBENCH: A Benchmark for 241

Tracking Co-evolution of Social Beliefs 242

To benchmark the social belief correlation task, we 243

construct a dataset based on SocialWM (Anony- 244

mous, 2025), derived from Polymarket. In this 245

section, we first explain how belief pairs are se- 246

lected, then describe our procedure for collecting 247

ground-truth correlation labels, and how we verify 248

them. Finally, we provide details on the evaluation 249

methodology. 250

5.1 Belief Pair Selection 251

Not all markets offer informative or reliable signals 252

for belief reasoning. To ensure that the included 253
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Figure 2: Overview of the BELIEFBENCH construction and evaluation pipeline. (a) Social belief data is
collected and filtered from Polymarket. (b) Event pairs are constructed and scored based on semantic and temporal
signals. The resulting correlation score S(A,B) is discretized into five relevance levels. (c) Human verification is
conducted to validate labeling quality, with annotators reaching strong agreement using a shared rubric. (d) Models
predict relevance labels for event pairs. Performance is evaluated using both regression and classification metrics.

events reflect collective crowd beliefs rather than254

noise, we apply two filters: one based on trading255

volume, the other on volatility of belief movement.256

Volume filter Markets with very low trading vol-257

ume are often driven by isolated trades and do not258

reflect meaningful aggregation of public belief. We259

remove the bottom 25% of events by trading vol-260

ume within each domain. This helps exclude illiq-261

uid or inactive markets where probability shifts are262

unreliable.263

Volatility filter We require the event to have suf-264

ficient probability movement. A flat probability265

series provides little statistical signal. By impos-266

ing a minimum volatility threshold, we ensure267

that the probability series contain enough varia-268

tion to make the correlation test meaningful. Let269

rt = logit(pt) − logit(pt−1) be logit return, i.e.,270

day-to-day changes in log-odds. Denote by σ
(w)
t271

the rolling standard deviation of {rτ}tτ=t−w+1 over272

a window of w days. Let γ be the volatility thresh-273

old and α be the required proportion. We retain a274

base market only if275

1

T − w + 1

T∑
t=w

1
[
σ
(w)
t ≥ γ

]
≥ α, (2)276

i.e., at least α fraction of the windows have the277

standard deviation of the daily logit returns above278

γ.279

5.2 Belief Pair Labeling 280

To establish ground-truth labels for belief corre- 281

lation, we adopt a hybrid scoring framework that 282

integrates both semantic and temporal information. 283

This enables us to measure not only surface-level 284

similarity but also co-movement in belief dynamics 285

across event pairs. Each pair (A,B) is assigned 286

a composite score S(A,B) based on four inter- 287

pretable features. 288

Feature1: Change-point synchrony We iden- 289

tify time points where an event’s belief trajectory 290

exhibits statistically significant shifts by applying 291

z-score thresholding to the price deltas in its time 292

series. For each event, we extract a set of such 293

change points. The synchrony score then measures 294

the fraction of change points in event A that align 295

within a short temporal window δ of any change 296

point in event B. This captures the intuition that 297

jointly fluctuating beliefs are likely to be correlated: 298

s1(A,B) =
1

|TA|
∑
t∈TA

1
[
∃ t′ ∈ TB, |t− t′| < δ

]
.

(3) 299

Feature2: Tag Jaccard similarity To estimate 300

topical overlap, we use the Jaccard index over tag 301

sets from Polymarket metadata. Each event in- 302

cludes tags that describe its domain or subject mat- 303

ter. A high Jaccard score indicates that two events 304

are framed under similar categories or themes, 305
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which may reflect a shared discourse context:306

s2(A,B) =
|KA ∩ KB|
|KA ∪ KB|

. (4)307

Feature3: Minimum time gap We compute the308

minimum absolute time difference between any309

change point in event A and any in event B. This310

measures how closely belief shifts in the two events311

occur in time. We convert this to a soft similarity312

score using a monotonic inverse transformation:313

s3(A,B) =
1

1 + min
t∈TA, t′∈TB

|t−t′|
τ

. (5)314

Feature4: Textual similarity We embed the text315

descriptions of events using sentence-transformer316

models and compute cosine similarity between the317

resulting embeddings. This feature captures seman-318

tic proximity at the lexical and conceptual level,319

and complements the tag-based feature with more320

nuanced language modeling:321

s4(A,B) = 1− cos (eA, eB) . (6)322

Overall The four feature scores are linearly com-323

bined into a single heuristic correlation score. The324

weights are optimized on a development set to325

best match human relevance judgments. We dis-326

cretize S(A,B) into five relevance classes: very327

weak (0.0–0.2), weak (0.2–0.4), medium (0.4–0.6),328

strong (0.6–0.8), and very strong (0.8–1.0). These329

bucketed labels serve as groundtruth in evaluation:330

S(A,B) =

4∑
i=1

wi · si(A,B) (7)331

where wi is tuned to make the prediction highly332

aligned with a small set of human annotation re-333

sults.334

5.3 Human Verification335

To validate the quality of the heuristic labels used336

in evaluation, we conducted a human annotation337

study on a representative subset of 50 event pairs,338

stratified across five correlation levels. Three an-339

notators rated each pair based solely on textual se-340

mantics and related news, without access to belief341

trajectories or model predictions. Inter-annotator342

agreement was strong, with pairwise Pearson corre-343

lations ranging from 0.75 to 0.81 and an intra-class344

correlation (ICC) of 0.77. Furthermore, the ag-345

gregated human judgments exhibit high alignment346

with the heuristic scores used in our benchmark, 347

achieving a Pearson correlation of 0.689. These 348

results confirm that the scoring function reflects 349

intuitive assessments of belief correlation. Full pro- 350

tocol details and annotation examples are provided 351

in Appendix §G. 352

5.4 Model Evaluation 353

We evaluate model predictions against labels using 354

both regression and classification metrics. For re- 355

gression, we first map the five discrete relevance 356

classes to their midpoint values, and then compute 357

Mean Squared Error (MSE), Mean Absolute Error 358

(MAE) between predicted scores and these bin cen- 359

ters. For classification, we discretize model outputs 360

into five bins and report accuracy, macro-averaged 361

F1 score, and quadratic-weighted kappa (QWK) 362

to assess ordinal agreement. These metrics collec- 363

tively measure both score precision and the ability 364

to capture ordinal relevance patterns. 365

6 Experiments 366

LLMs have powerful social reasoning capability. 367

Here we used the data in SocialWM to test whether 368

LLMs can judge the degree of relevance between 369

real-world events, using a five-level scale from very 370

weak to very strong. 371

6.1 Experimental Settings 372

For experiments, we consider two categories of 373

models: (1) baselines using heuristic rules or pre- 374

trained neural encoders, and (2) prompting-based 375

LLMs that generate predictions. 376

Baselines We implement several heuristic base- 377

lines that rely on simple similarity or overlap met- 378

rics computed from event metadata. We also in- 379

clude a neural baseline using a cross-encoder model 380

(nli-deberta-v3-base), which computes a scalar 381

relevance score from the concatenated text of the 382

two event descriptions. These continuous scores 383

are then discretized into the same five relevance 384

bins for evaluation. 385

Prompting-based LLMs We evaluate a diverse 386

set of language models, including GPT-4o, Qwen2- 387

72B-Instruct, DeepSeek-R1, and others, using a 388

prompting-based classification setup. Each model 389

receives as input the titles and descriptions of two 390

events and is asked to assess how strongly the 391

events are related by selecting one of five prede- 392

fined relevance intervals. For each model, we com- 393
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MSE MAE
Accuracy

MacroF1 QWK

GPT-4o-CoT
DeepSeek-V3

GPT-4o
GPT-o3-mini-CoT

GPT-o3-mini
DeepSeek-V3-CoT

Llama-3-70B
DeepSeek-R1-CoT
Llama-3-70B-CoT

Qwen2-72B
Qwen2-72B-CoT

DeepSeek-R1
Time-Overlap

Cross-Encoder
Volume-Sort

Volume-Similar
Random

0.95 0.97 1.00 0.82 0.70
0.95 0.93 0.83 1.00 1.00
0.96 0.94 0.82 0.95 1.00
1.00 1.00 0.87 0.74 0.79
0.95 0.91 0.74 0.86 0.83
0.96 0.93 0.75 0.87 0.90
0.85 0.81 0.71 0.79 0.99
0.75 0.57 0.29 0.44 0.29
0.89 0.81 0.61 0.81 0.95
0.90 0.86 0.70 0.70 0.86
0.88 0.80 0.57 0.70 0.67
0.49 0.27 0.06 0.15 0.20
0.79 0.73 0.62 0.56 0.28
0.74 0.66 0.48 0.21 0.27
0.82 0.73 0.49 0.18 0.00
0.27 0.06 0.00 0.00 0.03
0.00 0.00 0.29 0.36 0.03

Politics

MSE MAE
Accuracy

MacroF1 QWK

GPT-4o-CoT
DeepSeek-V3

GPT-4o
GPT-o3-mini-CoT

GPT-o3-mini
DeepSeek-V3-CoT

Llama-3-70B
DeepSeek-R1-CoT
Llama-3-70B-CoT

Qwen2-72B
Qwen2-72B-CoT

DeepSeek-R1
Time-Overlap

Cross-Encoder
Volume-Sort

Volume-Similar
Random

0.99 0.98 0.85 0.70 0.85
1.00 1.00 1.00 0.95 0.99
0.99 0.98 0.92 1.00 1.00
0.72 0.77 0.90 0.98 0.96
0.84 0.82 0.81 0.93 0.89
0.96 0.90 0.72 0.89 0.94
0.84 0.77 0.68 0.92 0.96
0.90 0.74 0.26 0.28 0.16
0.89 0.78 0.53 0.90 0.91
0.91 0.85 0.75 0.83 0.78
0.87 0.74 0.41 0.60 0.69
0.82 0.66 0.22 0.19 0.26
0.51 0.41 0.22 0.26 0.29
0.41 0.29 0.02 0.13 0.30
0.42 0.31 0.01 0.00 0.00
0.35 0.20 0.00 0.10 0.10
0.00 0.00 0.17 0.32 0.05

Crypto

MSE MAE
Accuracy

MacroF1 QWK

GPT-4o-CoT
DeepSeek-V3

GPT-4o
GPT-o3-mini-CoT

GPT-o3-mini
DeepSeek-V3-CoT

Llama-3-70B
DeepSeek-R1-CoT
Llama-3-70B-CoT

Qwen2-72B
Qwen2-72B-CoT

DeepSeek-R1
Time-Overlap

Cross-Encoder
Volume-Sort

Volume-Similar
Random

0.68 0.58 0.39 0.34 0.78
0.59 0.47 0.22 0.26 0.74
0.48 0.41 0.24 0.23 0.54
0.38 0.37 0.36 0.35 0.77
0.56 0.53 0.55 0.46 1.00
0.57 0.45 0.17 0.20 0.66
0.66 0.53 0.26 0.32 0.92
0.88 0.85 0.87 0.52 0.74
0.62 0.48 0.20 0.25 0.83
0.52 0.48 0.31 0.31 0.55
0.51 0.45 0.29 0.28 0.55
1.00 1.00 1.00 1.00 0.71
0.59 0.49 0.36 0.38 0.88
0.00 0.00 0.00 0.00 0.00
0.11 0.11 0.05 0.00 0.06
0.59 0.42 0.25 0.19 0.25
0.23 0.16 0.31 0.31 0.09
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MSE MAE
Accuracy

MacroF1 QWK

GPT-4o-CoT
DeepSeek-V3

GPT-4o
GPT-o3-mini-CoT
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DeepSeek-R1-CoT
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0.88 0.79 0.63 1.00 0.99
0.89 0.81 0.65 0.94 0.97
1.00 1.00 1.00 0.93 0.85
0.99 0.96 0.97 0.75 1.00
0.94 0.87 0.75 0.58 0.67
0.91 0.81 0.58 0.93 1.00
0.64 0.52 0.40 0.74 0.86
1.00 0.96 0.77 0.50 0.44
0.76 0.60 0.30 0.59 0.82
0.80 0.68 0.43 0.69 0.98
0.84 0.71 0.43 0.85 0.98
0.79 0.60 0.19 0.19 0.33
0.60 0.47 0.27 0.50 0.36
0.28 0.17 0.00 0.00 0.30
0.52 0.38 0.12 0.08 0.00
0.40 0.23 0.04 0.06 0.09
0.00 0.00 0.15 0.36 0.06
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Figure 3: Overall performance heatmaps across four domains: Politics, Crypto, Sports, and Election. Each
heatmap shows model performance across five metrics: MSE, MAE (lower is better), and Accuracy, Macro-F1,
QWK (higher is better). To make metrics comparable, error metrics are negated and all values are min-max
normalized within each metric and dataset. Models are sorted by their average normalized score across all datasets.
Higher values indicate better normalized performance.

pare two prompting strategies: a direct classifica-394

tion setting and a Chain-of-Thought (CoT) vari-395

ant. In the CoT setting, the model first generates a396

brief explanation describing any semantic, causal,397

or temporal connections it identifies between the398

events. It then outputs a structured JSON object399

indicating the predicted relevance label. This de-400

sign allows us to evaluate both the classification401

performance and the interpretability of the model’s402

reasoning process.403

6.2 Experimental Results404

GPT-4o+CoT demonstrates strong and consis-405

tent performance across domains. In Figure 3,406

we evaluate model performance on four domains:407

Politics, Election, Crypto, and Sports. GPT-408

4o+CoT consistently ranks among the top models409

in both classification metrics (Accuracy, F1, QWK)410

and regression metrics (MSE, MAE). Compared to411

smaller closed-source models such as GPT-o3-mini412

and open-source models including Meta-Llama-413

3-70B, Qwen2-72B, GPT-4o+CoT achieves high414

overall scores with stable results across domains.415

While heuristic baselines (e.g., based on time over-416

lap or volume) are included for reference, they417

typically lag behind LLM-based models. This sug-418

gests that even without access to metadata, large 419

language models can effectively infer event rela- 420

tionships from text alone. 421

LLMs perform well in semantically dense do- 422

mains but struggle in sparse ones. As shown 423

in Figure 3, model performance varies by domain 424

structure. In Crypto and Election, where events 425

share entities, timelines, or institutions, models 426

achieve stronger results. Even simple heuristics 427

perform well due to the rich semantic context. In 428

contrast, Sports events are often isolated and actor- 429

specific, leading to the weakest performance. Polit- 430

ical events fall in between, requiring both structural 431

and contextual reasoning. These patterns suggest 432

that LLMs are most effective in domains with co- 433

herent and recurring semantics. 434

The effectiveness of CoT prompting varies by 435

domain and reasoning complexity. Chain-of- 436

Thought (CoT) prompting is most effective in do- 437

mains requiring multi-hop reasoning, such as Pol- 438

itics and Election. For example, GPT-4o-CoT 439

and GPT-o3-mini-CoT achieve strong regression 440

performance (MSE, MAE) in Politics, while 441

GPT-o3-mini-CoT and DeepSeek-V3-CoT im- 442

prove ranking consistency in Election. However, 443
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events across models (Election domain). All models
exhibit worse MSE performance on post-cutoff event
pairs, highlighting challenges in temporal generaliza-
tion. GPT-4o shows the smallest increase in error. (MSE
values are sign-inverted for visualization clarity.)

gains are uneven: GPT-4o shows better calibra-444

tion in Politics but lower Macro-F1 and QWK, and445

Election improvements remain mostly in regres-446

sion metrics. In contrast, CoT consistently reduces447

performance in Sports and Crypto, where relevance448

depends on surface-level patterns; here, CoT vari-449

ants of GPT-o3-mini and DeepSeek underperform450

across Accuracy and QWK. Overall, CoT helps451

when latent dependencies must be inferred but in-452

troduces noise in domains driven by direct signals.453

7 Discussion454

We investigate how LLMs reason about social event455

relevance through two research questions. RQ1456

shows performance degrades after the knowledge457

cutoff (Figure 4), highlighting LLMs’ dependence458

on up-to-date factual knowledge. RQ2 analyzes459

Chain-of-Thought outputs, revealing that LLMs460

rely mainly on confounding signals and narrative461

connections rather than explicit logic.462

RQ1: Does the knowledge cutoff influence per-463

formance? We investigate whether LLMs rely464

on factual knowledge from pretraining or can gen-465

eralize to unseen events. To this end, we compare466

model performance on event pairs occurring be-467

fore and after the model’s knowledge cutoff. As468

shown in Figure 4, all evaluated models exhibit469

clear performance degradation on post-cutoff exam-470

ples in the election domain, measured by percent-471

age change in MSE. For instance, GPT-4o shows472

a substantial drop of over 50%, while DeepSeek-473

v3 and LLaMA-3 also experience notable declines.474

These results suggest that while LLMs may gener-475

alize to unseen patterns to some extent, their ability476
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Figure 5: Distribution of reasoning types from GPT-
4o’s Chain-of-Thought outputs across domains. Each
pair was labeled based on the explanation produced
by the model. A majority of predictions are based on
shared context (confounding) or loose narrative links
(CoT basis), while only a small portion exhibit explicit
logical or causal reasoning. This suggests the model is
primarily identifying correlations rather than inferring
direct causal links.

to capture belief correlation often depends on up-to- 477

date world knowledge learned during pretraining. 478

RQ2: How do LLMs judge belief correlation? 479

To better understand what types of relationships 480

LLMs rely on when judging belief correlation, we 481

analyze their Chain-of-Thought (CoT) outputs and 482

categorize the reasoning basis. As shown in Fig- 483

ure 5, only a small fraction of cases reflect explicit 484

logical connections: approximately 8.7% in pol- 485

itics and less than 5.7% in sports. In contrast, a 486

large proportion of predictions fall under confound- 487

ing relationships (e.g., shared context or common 488

background factors), accounting for 55% in poli- 489

tics and 32% in sports. These results suggest that 490

LLMs do not primarily rely on formal logic or di- 491

rect causality. Instead, they often identify perceived 492

connections through narrative, intuition, or shared 493

framing. This supports our interpretation that the 494

LLM captures relatedness rather than strict causal 495

inference. 496

8 Case Study 497

To better understand how LLMs assess event rele- 498

vance, we analyze predictions across representative 499

event pairs. We group cases into two types: (1) 500

0-hop pairs, which exhibit surface-level thematic 501

overlap, and (2) 1-hop or multi-hop pairs, which 502

require reasoning over latent causal or institutional 503

structures. For each category, we examine the be- 504

havior of GPT-o3-mini with and without Chain- 505

of-Thought (CoT) prompting. Further qualitative 506

7



Figure 6: Case study of social belief reasoning with LLMs. (a) Pairwise relevance cases: GPT-4o+CoT explains
both single-hop (topical) and multi-hop (causal) belief pairs. (b) An example belief chain constructed from
high-relevance event pairs (score > 0.6), with links inferred by GPT-4o using Chain-of-Thought reasoning. (c) A
schematic belief correlation graph, where edges denote LLM-predicted high-confidence belief correlations. The
chain in (b) exemplifies a segment within this network.

examples and detailed outputs are included in Ap-507

pendix §C.508

Single-hop: Topical overlap These pairs often509

belong to the same domain (e.g., cryptocurrency)510

and share broad semantic context, but lack direct511

interaction or dependency. In this setting, CoT512

prompting frequently introduces spurious logic,513

weakening relevance predictions. For example,514

the model underestimates the relationship between515

ETH price and USDC market cap by overempha-516

sizing their economic independence. In contrast,517

the non+CoT variant better preserves local topi-518

cal proximity, yielding predictions that align more519

closely with human annotations. This suggests that520

when cues are shallow but sufficient, simple infer-521

ence is preferable to added reasoning steps.522

Multi-hop: Causal or institutional reasoning523

We define multi-hop reasoning as cases where524

the relevance between events depends on indirect525

or institutional links, such as shared political ac-526

tors, procedural dependencies, or regulatory chains,527

rather than simple topical overlap. In such settings,528

particularly in the politics and election domains529

where multi-hop structures are more common, CoT530

prompting tends to improve overall prediction met-531

rics. For instance, when evaluating how nomina-532

tion outcomes relate to vice-presidential picks, or533

how financial regulations affect related assets, CoT534

helps the model trace relevant dependencies. How-535

ever, despite the overall gains, a non-negligible536

number of cases still suffer from flawed reasoning,537

such as hallucinated links or incoherent logic.538

Butterfly-effect: Chainable social beliefs In ad- 539

dition to reasoning over isolated event pairs, LLMs 540

can identify extended chains of belief correlations. 541

As illustrated in Figure 6, GPT-4o with CoT gener- 542

ates coherent reasoning paths between events that 543

are not obviously related on the surface, such as 544

political discourse, celebrity actions, and electoral 545

outcomes. The center panel shows a plausible be- 546

lief chain inferred from pairwise high-scoring links, 547

which forms a subgraph of the larger belief network 548

shown on the right. This reflects what we refer to as 549

the social butterfly effect, where local signals prop- 550

agate through institutional or topical structures to 551

shape broader expectations. These high-confidence 552

structures are observed not only in the Election 553

domain but also in other domains, suggesting that 554

LLMs are capable of reconstructing latent belief 555

networks from unstructured input. 556

9 Conclusion 557

We present BELIEFBENCH, a new benchmark for 558

evaluating LLMs’ ability to reason over real-world 559

social belief correlations derived from prediction 560

market data. LLMs consistently outperform heuris- 561

tic and embedding-based methods across domains, 562

revealing their capacity to identify semantic and 563

temporal relationships in belief dynamics. While 564

Chain-of-Thought prompting helps in complex rea- 565

soning cases, it may reduce accuracy in simpler 566

contexts. Our findings highlight both the promise 567

and current limits of LLMs in modeling evolving 568

social beliefs, and point to future directions in adap- 569

tive prompting and temporal modeling. 570
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10 Limitations571

Heuristic-score-based ground truth Our572

ground-truth labels are derived from a weighted573

heuristic score S(A,B) that combines temporal574

synchrony, textual similarity, tag overlap, and575

time alignment (see Section §5.2). Although this576

method improves over pure correlation-based577

approaches (e.g. Kendall’s τ ), it can still assign578

high scores to spurious pairs, for example events579

with spikes in coincident volatility or shared580

metadata but without substantive connection. Such581

false positives can penalize models that correctly582

reject these superficial links, limiting the fidelity of583

the supervision signal.584

Platform and domain bias Polymarket does not585

list every real-world event - in many domains, the586

coverage is patchy.587

Black-box prompt-based design Our study in-588

tentionally focuses on black-box, prompt-based589

approach without task-specific fine-tuning or cus-590

tom model architectures. While this choice aligns591

with our goal of evaluating LLMs in realistic usage592

scenarios, it limits our ability to optimize perfor-593

mance on this task. Future work could explore594

fine-tuning, retrieval-augmented methods, or spe-595

cialized architectures to better capture subtle belief596

relationships.597

Temporal overlap assumption Our approach fo-598

cuses on social belief pairs with overlapping active599

periods to ensure that the measured time-series cor-600

relations capture dynamic co-movement as traders601

respond to new information. While this design602

helps reduce noise in estimating relevance, it also603

limits the benchmark’s ability to evaluate delayed604

or indirect causal links that might manifest outside605

of these overlapping windows. Future work could606

explore more advanced temporal modeling strate-607

gies, such as lag-aware correlation measures or608

causal inference techniques to better capture these609

complex, cross-temporal relationships.610

11 Ethical Statement611

This work analyzes public event data from Poly-612

market, a prediction market platform that provides613

open-access market-level data without any user-614

identifiable information. We do not collect or pro-615

cess individual-level data, and all analysis is con-616

ducted at the event level. Thus, privacy concerns617

are minimal.618

Our evaluation framework involves using large 619

language models (LLMs) to assess the relevance be- 620

tween social events. These models, while powerful, 621

may exhibit unintended biases, particularly in po- 622

litically sensitive or socially charged domains. We 623

caution against using these models as authoritative 624

predictors or decision-making tools in high-stakes 625

environments. 626

Additionally, while our work aims to understand 627

event relationships, it does not attempt to fore- 628

cast outcomes or provide trading recommendations. 629

The models are evaluated solely on their reason- 630

ing and ranking capability and should not be inter- 631

preted as reliable financial or political forecasting 632

instruments. 633

Finally, while our method is training-free, the 634

evaluation dataset itself may reflect biases from 635

Polymarket’s coverage, which is shaped by com- 636

munity interest and market dynamics. As a result, 637

certain domains, such as Sports or Politics, may 638

be overrepresented, potentially influencing model 639

predictions or evaluation trends. We encourage fu- 640

ture work to broaden coverage to include a more 641

balanced set of social domains. 642
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A Artifact Details806

A.1 Artifact Information807

This artifact contains all components required to808

reproduce the results in our study of belief correla-809

tion reasoning in large language models (LLMs).810

It includes:811

• Code: A complete implementation of the pair-812

wise belief correlation scoring pipeline, includ-813

ing preprocessing, model inference (with and814

without Chain-of-Thought prompting), and eval-815

uation metrics.816

• Data:817

– Manually annotated development and test818

sets across four domains: Politics, Election,819

Cryptocurrency, and Sports.820

– Rubric definitions used to guide annotation.821

– Annotation metadata and inter-annotator822

agreement statistics.823

• Models: Inference scripts for querying multiple824

foundation models via standard APIs. Specifi-825

cally, GPT-4o and GPT-o3-mini were accessed826

through the official OpenAI API, while Meta-827

Llama-3, DeepSeek-V3, and Qwen2 series were828

accessed via the Together.ai inference platform.829

All calls are wrapped with reproducible configu-830

rations, and API versions are specified to ensure831

consistent results across runs. For models sup-832

porting Chain-of-Thought (CoT) prompting, the833

corresponding CoT-enabled variants are also in-834

cluded.835

• Evaluation: Scripts to compute both regression836

and classification metrics, including MSE, MAE,837

Accuracy, Macro-F1, QWK. Also included are838

scripts to produce the figures and tables in the839

main paper and appendix.840

• Case Study Tools: Utilities for constructing be-841

lief chains, visualizing belief graphs, and analyz-842

ing CoT rationales.843

The artifact is designed for easy replication and844

modification. Each script is documented with usage845

instructions, input formats, and expected outputs.846

Running the default configuration will reproduce847

all key results from the paper. At the time of sub-848

mission, these materials are under preparation for849

release. We will make the code and data available850

upon publication.851

A.2 Artifact License852

All components of our artifact are intended for853

research use and will be released under open-source854

or permissive licenses upon publication.855

• Codebase: The full codebase, including prepro- 856

cessing, inference, and evaluation scripts, will be 857

released under the MIT License. 858

• Annotated Data: The manually labeled develop- 859

ment and test sets, along with rubric definitions 860

and annotation metadata, are original contribu- 861

tions of this work. These datasets will be released 862

under the CC BY 4.0 License, permitting reuse 863

with attribution for research and non-commercial 864

purposes. 865

– Codebase: The full codebase, including pre- 866

processing, inference, and evaluation scripts, 867

will be released under the MIT License. 868

– Annotated Data: The manually labeled devel- 869

opment and test sets, along with rubric defi- 870

nitions and annotation metadata, are original 871

contributions of this work. These datasets will 872

be released under the CC BY 4.0 License, per- 873

mitting reuse with attribution for research and 874

non-commercial purposes. 875

– Model Usage: Our study relies on querying 876

several pretrained language models. We use 877

GPT-4o and GPT-o3-mini via the OpenAI 878

API,3 which are proprietary models licensed 879

by OpenAI. We also evaluate open-weight 880

models including Meta-Llama-3 70B (gra, 881

2024), DeepSeek-V3 (dee, 2025b), DeepSeek- 882

R1 (dee, 2025a), and Qwen2 (yan, 2024), 883

accessed through the Together.ai inference 884

platform, all released under Apache 2.0 or 885

similar permissive licenses. For comparison, 886

we include a cross-encoder baseline using 887

nli-deberta-v3-base4 from Hugging Face, 888

licensed under the MIT License. 889

We respect all license terms associated with the 890

use of these third-party models and APIs. No 891

model weights are redistributed. All data and code 892

will be clearly marked with their respective licenses 893

in the released repository. 894

A.3 Data Usage 895

Our dataset includes events across four domains: 896

Politics, Election, Cryptocurrency, and Sports. We 897

use a subset of Polymarket data curated by prior 898

work currently under review (Anonymous, 2025). 899

The final dataset will be released under the MIT 900

License for academic use. 901

• Source and Licensing: 902

3https://platform.openai.com/docs/models/
gpt-4o

4https://huggingface.co/cross-encoder/
nli-deberta-v3-base
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• Use Consistency: Our data usage is consistent903

with the intended purpose of the source materials,904

which were either licensed for research or cre-905

ated explicitly for this project. No repurposing906

beyond research evaluation has been conducted.907

• Human Annotation: Each belief correlation908

pair in the development and test sets was labeled909

by multiple annotators using a rubric-based scale.910

Inter-annotator agreement scores are included in911

the Appendix §G to reflect labeling quality.912

• Privacy and Safety: The dataset does not con-913

tain any personally identifiable information (PII),914

user metadata, or social media handles. All915

text has been reviewed to exclude offensive con-916

tent, and no inference was made regarding demo-917

graphic or protected attributes.918

• Intended Use: The dataset is intended exclu-919

sively for research on social reasoning, belief920

dynamics, and LLM evaluation. It is not suit-921

able for deployment in user-facing applications922

or downstream tasks involving sensitive decision-923

making.924

A.4 Data Statistics925

Our benchmark covers four domains: Politics, Elec-926

tion, Cryptocurrency, and Sports.927

The final benchmark includes:928

• Total event pairs: 8,839929

• Label format: Each pair is assigned a contin-930

uous belief correlation score in the range [0, 1],931

reflecting graded relatedness. For classification-932

based analyses, scores are mapped to a 5-point933

ordinal scale (from strongly unrelated to strongly934

related) using predefined thresholds.935

• Label source: The majority of labels were de-936

rived programmatically via rubric-based scoring;937

a small subset was verified by human annotators938

for calibration and quality assurance.939

• Agreement check: For the verified subset, each940

pair was annotated by 3 annotators. The average941

inter-annotator correlation exceeds 0.78, indicat-942

ing strong agreement on the ordinal scale used943

for verification.944

B LLM Prompt945

The prompt of the zero shot and CoT version are946

in Table 1947

C Case Study Examples 948

C.1 0-hop: Thematic Overlap without Direct 949

Link 950

These pairs are topically similar but lack direct 951

causal or temporal connection. 952

Example 1 Event 1: USDC market cap over $25 953

billion EOY? 954

Event 2: Will ETH hit $2,000 by EOY? 955

Ground Truth: 0.4–0.6 956

GPT-o3-mini (CoT): 0.2–0.4 957

GPT-o3-mini (No CoT): 0.4–0.6 958

CoT: "Both events occur in the cryptocurrency 959

space, with one focusing on the stablecoin USDC’s 960

market cap and the other on ETH’s price. They 961

share a common thematic context but are mea- 962

suring distinct characteristics of the crypto mar- 963

ket with minimal direct causal influence between 964

them." 965

Example 2 Event 1: Will ETH hit $2,000 by 966

EOY? 967

Event 2: Huobi insolvent in 2023? 968

Ground Truth: 0.4–0.6 969

GPT-o3-mini (CoT): 0.2–0.4 970

GPT-o3-mini (No CoT): 0.4–0.6 971

CoT: "Both events relate to the cryptocurrency in- 972

dustry. However, while ETH reaching a certain 973

price is a market performance event, Huobi’s insol- 974

vency is a corporate financial event. Their connec- 975

tion is thematic but not directly causal or tempo- 976

rally linked." 977

C.2 1-hop or Multi-hop: Causal or 978

Institutional Links 979

These examples involve shared actors, institutional 980

decisions, or policy-level connections. 981

Example 3 Event 1: Will SEC delay Bitcoin 982

ETF decision? 983

Event 2: Ethereum spot ETF approved by Mar 31? 984

Ground Truth: 0.6–0.8 985

GPT-o3-mini (CoT): 0.6–0.8 986

GPT-o3-mini (No CoT): 0.4–0.6 987

CoT: "Both events involve SEC decisions regard- 988

ing cryptocurrency ETFs. They are thematically 989

linked, as they both pertain to regulatory actions on 990

crypto investments and have overlapping timelines, 991

despite focusing on different digital assets (Bitcoin 992

and Ethereum)." 993

Example 4 Event 1: Will Haley beat DeSantis 994

in Iowa? 995
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Original Prompt CoT Prompt
You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.
Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

Return only a valid JSON object in the form: {"label":
"0.4-0.6"}. Do not include explanations, formatting, or any
additional text.

Labels (choose one key only):
"0.0-0.2" → Unrelated — No real connection in topic, time,
or influence.
"0.2-0.4"→ Weakly Related — Small thematic overlap, but
no causal or temporal influence.
"0.4-0.6"→ Moderately Related — Events share context or
actors but remain largely independent.
"0.6-0.8" → Strongly Related — One event influences or is
likely affected by the other.
"0.8-1.0" → Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{e1_title}
{e1_desc}

Event 2
{e2_title}
{e2_desc}

Strictly respond with a JSON object like: {"label":
"0.6-0.8"}

You are an expert in interpreting and reasoning about real-world
events, such as those found on prediction markets.
Your task is to read two events and classify how related they are
using exactly one of the label keys below. Base your judgement
on any causal, temporal, or thematic relationship that may exist.

First, in a few concise sentences, explain any causal,
temporal, or thematic links you see.
Then, on a new line, output ONLY one valid JSON object like:
{"label": "0.4-0.6"}. Do not include any additional text.

Labels (choose one key only):
"0.0-0.2" → Unrelated — No real connection in topic, time,
or influence.
"0.2-0.4"→ Weakly Related — Small thematic overlap, but
no causal or temporal influence.
"0.4-0.6"→ Moderately Related — Events share context or
actors but remain largely independent.
"0.6-0.8" → Strongly Related — One event influences or is
likely affected by the other.
"0.8-1.0" → Highly Related — One event is clearly a
consequence, cause, or restatement of the other.

Event 1
{e1_title}
{e1_desc}

Event 2
{e2_title}
{e2_desc}

Give your concise reasoning, then output the JSON ob-
ject on the next line.

Table 1: Comparison of Original vs. CoT prompt templates
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Event 2: Will Kristi Noem win the U.S. 2024 Re-996

publican VP nomination?997

Ground Truth: 0.2–0.4998

GPT-o3-mini (CoT): 0.2–0.4999

GPT-o3-mini (No CoT): 0.4–0.61000

CoT: "Both events occur within the context of U.S.1001

Republican political dynamics in the 2024 election1002

cycle, sharing a general theme of intra-party com-1003

petition. However, they concern distinct contests1004

with different candidates and positions, and there1005

is no direct causal or temporal link between them."1006

We include the full benchmark results across all1007

domains and metrics in Tables 2–5.1008

D Full Benchmark Results1009

We include the full benchmark results across all1010

domains and metrics in Tables 2–5.1011

E Use Of AI Assistants1012

We did use ChatGPT as the writing assistant to1013

help us write part of the paper. Additionally, we1014

utilize the power of CodePilot to help us code faster.1015

However, all the AI-generated writing and coding1016

components assisted by AI are manually checked1017

and modified. There is no full AI-generated content1018

in the paper.1019
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Method MSE MAE Accuracy Macro-F1 QWK

random 0.1459 0.3130 0.1977 0.1377 0.0071
heuristic (vol. max→min) 0.0411 0.1674 0.2860 0.0910 -0.0040
heuristic (vol. sim.) 0.1113 0.3003 0.0691 0.0414 0.0089
heuristic (time overlap) 0.0459 0.1687 0.3437 0.1913 0.1121
GPT-4o 0.0234 0.1258 0.4317 0.2978 0.4094
GPT-4o + CoT 0.0250 0.1214 0.5116 0.2621 0.2843
GPT-o3-mini 0.0253 0.1322 0.3973 0.2722 0.3415
GPT-o3-mini + CoT 0.0188 0.1147 0.4561 0.2411 0.3238
Meta-Llama3-70B 0.0377 0.1532 0.3847 0.2543 0.4084
Meta-Llama3-70B + CoT 0.0327 0.1518 0.3400 0.2593 0.3887
DeepSeek-V3 0.0250 0.1291 0.4383 0.3100 0.4105
DeepSeek-V3 + CoT 0.0236 0.1286 0.4006 0.2752 0.3697
DeepSeek-R1 0.0830 0.2600 0.0940 0.0807 0.0786
DeepSeek-R1 + CoT 0.0512 0.1996 0.1959 0.1585 0.1162
Qwen2-72B 0.0309 0.1426 0.3800 0.2292 0.3526
Qwen2-72B + CoT 0.0338 0.1534 0.3200 0.2285 0.2749
cross-encoder (nli-deberta-v3-base) 0.0519 0.1812 0.2797 0.0969 0.1076

Table 2: Performance on Politics domain. Evaluation across selected metrics.

Method MSE MAE Accuracy Macro-F1 QWK

random 0.1330 0.3000 0.2019 0.1541 0.0125
heuristic (vol. max→min) 0.0878 0.2447 0.1430 0.0560 -0.0140
heuristic (vol. sim.) 0.0945 0.2645 0.1403 0.0864 0.0398
heuristic (time overlap) 0.0779 0.2274 0.2179 0.1344 0.1427
heuristic (tag overlap) 0.0152 0.1014 0.5471 0.5691 0.6999
GPT-4o 0.0252 0.1265 0.4683 0.3584 0.5227
GPT-4o + CoT 0.0256 0.1274 0.4433 0.2687 0.4447
GPT-o3-mini 0.0412 0.1549 0.4284 0.3360 0.4645
GPT-o3-mini + CoT 0.0543 0.1638 0.4632 0.3531 0.5011
Meta-Llama3-70B 0.0416 0.1640 0.3828 0.3349 0.5004
Meta-Llama3-70B + CoT 0.0364 0.1612 0.3303 0.3278 0.4733
DeepSeek-V3 0.0242 0.1230 0.4974 0.3428 0.5187
DeepSeek-V3 + CoT 0.0289 0.1402 0.3963 0.3244 0.4886
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0352 0.1698 0.2320 0.1420 0.0713
Qwen2-72B 0.0336 0.1488 0.4067 0.3069 0.4024
Qwen2-72B + CoT 0.0387 0.1683 0.2867 0.2385 0.3550
cross-encoder (nli-deberta-v3-base) 0.0888 0.2483 0.1466 0.0967 0.1491

Table 3: Performance on Cryptocurrency domain. Evaluation across selected metrics.

Method MSE MAE Accuracy Macro-F1 QWK

random 0.1423 0.3093 0.2016 0.1759 0.0099
heuristic (vol. max→min) 0.1612 0.3197 0.1090 0.0490 -0.0030
heuristic (vol. sim.) 0.0885 0.2531 0.1780 0.1289 0.0941
heuristic (time overlap) 0.0877 0.2383 0.2157 0.2058 0.4190
heuristic (tag overlap) 0.0229 0.1298 0.4407 0.4982 0.7932
GPT-4o 0.1042 0.2558 0.1746 0.1431 0.2418
GPT-4o + CoT 0.0744 0.2209 0.2267 0.1890 0.3678
GPT-o3-mini 0.0931 0.2305 0.2840 0.2383 0.4805
GPT-o3-mini + CoT 0.1199 0.2654 0.2182 0.1922 0.3620
Meta-Llama3-70B 0.0772 0.2312 0.1813 0.1790 0.4399
Meta-Llama3-70B + CoT 0.0838 0.2404 0.1629 0.1523 0.3916
DeepSeek-V3 0.0884 0.2432 0.1678 0.1558 0.3438
DeepSeek-V3 + CoT 0.0909 0.2480 0.1500 0.1305 0.3026
DeepSeek-R1 0.0258 0.1307 0.4409 0.4599 0.3327
DeepSeek-R1 + CoT 0.0442 0.1625 0.3972 0.2620 0.3454
Qwen2-72B 0.0983 0.2422 0.2000 0.1751 0.2478
Qwen2-72B + CoT 0.1006 0.2476 0.1933 0.1625 0.2499
cross-encoder (nli-deberta-v3-base) 0.1779 0.3432 0.0916 0.0496 -0.0360

Table 4: Performance on Sports domain. Evaluation across selected metrics.
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Method MSE MAE Accuracy Macro-F1 QWK

random 0.1268 0.2914 0.2058 0.1558 0.0077
heuristic (vol. max→min) 0.0719 0.2227 0.1940 0.0870 -0.0200
heuristic (vol. sim.) 0.0850 0.2504 0.1610 0.0835 0.0181
heuristic (time overlap) 0.0639 0.2063 0.2570 0.1906 0.1380
heuristic (tag overlap) 0.0175 0.1121 0.4721 0.5775 0.6283
GPT-4o 0.0219 0.1112 0.5575 0.2940 0.3522
GPT-4o + CoT 0.0346 0.1489 0.4033 0.3100 0.4149
GPT-o3-mini 0.0278 0.1344 0.4548 0.2088 0.2752
GPT-o3-mini + CoT 0.0231 0.1187 0.5451 0.2496 0.4183
Meta-Llama3-70B 0.0596 0.1970 0.3103 0.2468 0.3598
Meta-Llama3-70B + CoT 0.0470 0.1834 0.2660 0.2118 0.3397
DeepSeek-V3 0.0330 0.1456 0.4132 0.2953 0.4087
DeepSeek-V3 + CoT 0.0312 0.1450 0.3836 0.2930 0.4197
DeepSeek-R1 0.0441 0.1833 0.2206 0.1137 0.1267
DeepSeek-R1 + CoT 0.0220 0.1192 0.4636 0.1893 0.1715
Qwen2-72B 0.0430 0.1696 0.3233 0.2345 0.4127
Qwen2-72B + CoT 0.0383 0.1639 0.3200 0.2737 0.4104
cross-encoder (nli-deberta-v3-base) 0.0972 0.2604 0.1436 0.0688 0.1117

Table 5: Performance on Election domain. Evaluation across selected metrics.

Table 6: Annotation scale with definitions and representative examples. Each bin corresponds to a level of
relevance used in rating event pairs.

Label
Range

Definition Example Event Pair

0.0–0.2 Unrelated; events concern differ-
ent topics, entities, or timelines.

Will China invade Taiwan in 2024?
vs.
Karine Jean-Pierre out as Press Secretary
by July 31?

0.2–0.4 Weakly related; minimal topical
overlap, but no structural link.

U.S. military action against Iran in 2024?
vs.
Democrats win popular vote by 4–5%?

0.4–0.6 Moderately related; shared ac-
tors, parties, or contexts.

Will another candidate win NY-16 Demo-
cratic Primary?
vs.
Will a candidate from another party win
NY Senate?

0.6–0.8 Strongly related; possible causal
or strategic link.

Will Trump tweet 90+ times Oct 25–Nov
1?
vs.
Will Trump win 30% of Black men?

0.8–1.0 Highly related; one event entails
the other.

Biden resign during his speech today?
vs.
Biden removed via 25th Amendment?
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F Heuristic Selection Methods1020

To provide interpretable baselines for belief cor-1021

relation reasoning, we introduce a set of heuristic1022

scoring methods for ranking candidate event pairs.1023

Unlike learned models, these heuristics use domain1024

knowledge and surface-level attributes to estimate1025

correlation scores without language understand-1026

ing or reasoning. They serve as simple, zero-shot1027

approximations to relevance or co-movement be-1028

tween beliefs.1029

Random We assign a uniform random score to1030

each candidate event. This provides a lower-bound1031

reference for performance and reflects the difficulty1032

of the task in the absence of any meaningful signal.1033

Volume-Based Sorting We hypothesize that 1034

highly traded events are more likely to be central or 1035

influential in public discourse. For each candidate, 1036

we compute its total market trading volume (over 1037

the active time window) and use this as a relevance 1038

score. We experiment with two variants: 1039

• Volume Max-to-Min: Assigns the candidate’s 1040

normalized trading volume as its correlation 1041

score. Events with higher volume are assumed 1042

to be more generally relevant, independent of the 1043

base event. 1044

• Volume Similarity: Computes the absolute dif- 1045

ference in trading volume between the base and 1046

candidate events. Event pairs with more similar 1047

volumes receive higher scores, under the assump- 1048

tion that similarly salient events may co-occur in 1049

public discourse or exhibit belief co-activation. 1050

Temporal Overlap We compute the degree of 1051

overlap in time between the base and candidate 1052

event windows. Events that occur in similar time- 1053

frames may be causally or contextually linked. The 1054

score is computed as the ratio of overlapping dura- 1055

tion to union duration. 1056

Cross-Encoder Baseline We include a 1057

strong neural retrieval baseline using the 1058

nli-deberta-v3-base cross-encoder. It jointly 1059

encodes event pairs and outputs a real-valued rele- 1060

vance score. Although trained on general-purpose 1061

sentence similarity or natural language inference 1062

tasks, it often captures surface-level lexical or 1063

semantic overlap, making it a competitive 0-hop 1064

semantic baseline. 1065

G Human Evaluation of Heuristic 1066

Scoring 1067

G.1 Setup 1068

Objective and Sampling. To assess whether our 1069

heuristic scoring function aligns with human intu- 1070

ition, we conducted an annotation study over 50 1071

event pairs. These pairs were drawn evenly across 1072

five correlation levels (very weak to very strong) 1073

according to the algorithmic relevance scores de- 1074

scribed in Section §5.2. This stratified sampling 1075

ensured that the full range of belief correlation 1076

strengths was represented, enabling consistent eval- 1077

uation across relevance levels. 1078

Annotators and Conditions. Three annotators, 1079

who were NLP researchers involved in the project, 1080

participated in the study. While familiar with the 1081
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modeling setup, they lacked domain-specific exper-1082

tise in forecasting or geopolitical reasoning. An-1083

notations were conducted non-blind: annotators1084

shared the same rubric and examples to guide their1085

judgments1086

G.2 Annotation Protocol1087

Rubric Development and Scoring Process.1088

Prior to annotation, the three annotators collab-1089

oratively developed a shared rubric to define five1090

levels of belief correlation, ranging from unrelated1091

to highly related. This rubric was iteratively re-1092

fined through internal calibration rounds, ensuring1093

that all annotators applied consistent semantic and1094

causal reasoning. During annotation, each anno-1095

tator independently rated all 50 event pairs on a1096

continuous scale from 0.0 to 1.0 using the agreed1097

rubric. Table 6 summarizes the scoring bins and1098

includes representative examples for each level.1099

Label Aggregation and Annotation Conditions.1100

Although annotators shared a rubric, the annota-1101

tion process itself was conducted independently1102

without real-time coordination. Final labels were1103

aggregated by majority vote; in cases of complete1104

disagreement, we averaged the three scores. To1105

prevent bias, annotators were shown only the event1106

texts, without access to belief trajectories, model1107

predictions, or algorithmic scores. This ensured1108

that all judgments reflected semantic reasoning1109

alone.1110

Annotator Agreement. We evaluate inter-1111

annotator reliability using both pairwise Pearson1112

correlations and intra-class correlation (ICC).1113

As shown in Table 7, pairwise Pearson scores1114

range from 0.752 to 0.814, indicating strong1115

linear consistency among annotators. The highest1116

alignment is observed between Annotators A and1117

B (0.814), while A and C show slightly lower but1118

still robust agreement (0.752). To complement this,1119

we compute ICC(2,1) under a two-way random1120

effects model, yielding a value of 0.771. This1121

reflects substantial agreement across annotators1122

and confirms the reliability of the human labels as1123

a benchmark for model alignment.1124

G.3 Alignment with Heuristic Model1125

To measure how well the heuristic score S(A,B)1126

matches human judgment, we compute the Pear-1127

son correlation between model predictions and the1128

aggregated human labels. The resulting correlation1129

Table 7: Inter-annotator agreement. Pearson correla-
tion coefficients between annotators.

Annotator A Annotator B Annotator C

Annotator A 1.000 0.814 0.752
Annotator B 0.814 1.000 0.798
Annotator C 0.752 0.798 1.000

of ρ = 0.689 (Table 8) indicates strong alignment 1130

between the scoring function and human reasoning. 1131

Table 8: Model-human alignment. Pearson correlation
between the heuristic score and human annotations.

Method Pearson Correlation

Heuristic score S(A,B) 0.689

H Detailed Performance Degradation 1132

After Cutoff 1133

I Demo Interface Overview 1134

We build a web-based demo to showcase how our 1135

system connects real-time news and prediction mar- 1136

ket data. The interface allows users to explore 1137

forecastable events, understand model-generated 1138

reasoning, and vote on likely outcomes. Below, we 1139

walk through its key components. 1140

Main Event Grid. Upon entering the demo (Fig- 1141

ure 8), users see a grid of active prediction ques- 1142

tions. Each card displays an event (e.g., “Will X 1143

and Truth Social merger be announced before Au- 1144

gust?”) along with real-time probability estimates 1145

for each outcome (Yes/No), sourced from Poly- 1146

market. Users can filter events by domain (e.g., 1147

politics, crypto) via the dropdown menu. Clicking 1148

on the “News” tab navigates to a dedicated news 1149

feed page. Selecting an individual event card leads 1150

to a detailed view for reasoning and voting. 1151

News Integration. The “News” section (Fig- 1152

ure 9) presents a chronological list of recent head- 1153

lines. Clicking on any headline redirects users to 1154

the original article. Users can also expand or col- 1155

lapse a card by clicking the dropdown triangle on 1156

the right. When expanded, the card reveals any pre- 1157

diction events automatically identified as seman- 1158

tically or causally related to the article, bridging 1159

news and belief markets. 1160

Detailed Event View. When clicking on a grid 1161

cell, users are taken to a dedicated page for that 1162
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Note: For MSE and MAE, values are sign-inverted for consistent interpretation. Positive values indicate performance improvement, negative values indicate degradation.

Figure 7: Performance change after knowledge cutoff across domains and models. Bars show the relative change
in evaluation metrics on post-cutoff event pairs, compared to pre-cutoff ones. For metrics like MSE and MAE,
values are sign-inverted to ensure a consistent interpretation, where negative values indicate degraded performance.
GPT-4o shows a substantial decline across most metrics in the election domain, while performance remains more
stable in the politics domain.

prediction question (Figure 10). Here, they can se-1163

lect an outcome and choose from a list of candidate1164

reasons generated by an LLM. These explanations1165

help users interpret possible causal mechanisms.1166

The right panel shows a time-series chart visualiz-1167

ing real-time market probabilities for each option.1168

After selecting both an outcome and a reason, users1169

can vote to register their belief.1170
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Figure 8: Main interface with real-time prediction events. Cards show current market probabilities and are filterable
by topic.

Figure 9: News page interface. Each news item links to the source and may surface relevant market events.
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Figure 10: Detailed view of a prediction event. Users select an outcome and reason, then submit their vote.
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