

000 BEYOND SINGLE VIEWS: ACHIEVING SIGNIFICANT 001 GAINS IN TEXT CLUSTERING VIA INFORMATIVE DI- 002 VERSIFICATION 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Clustering text into coherent groups is a long-standing challenge, complicated
014 by high-dimensional embeddings, semantic ambiguity, and distributional shifts in
015 unseen data. Recent advances in large language models (LLMs) and retrieval-
016 augmented generation (RAG) systems have further underscored the need for ro-
017 bust and scalable knowledge representation methods. In this work, we introduce
018 a novel clustering framework based on informative diversification. Our method
019 applies a set of semantic-preserving transformations to generate multiple views
020 of the data, and then harnesses their collective structure through a spectral con-
021 sensus process. We prove that consensus clustering achieves an exponentially
022 lower expected error rate compared to any single view, provided the views are
023 diverse and informative. We then propose an iterative co-training procedure that
024 learns a cluster-friendly latent space by jointly minimizing a contrastive InfoNCE
025 loss and a Gaussian mixture negative log-likelihood loss. This training sharpens
026 assignments and pulls embeddings toward their cluster centroids, while dynami-
027 cally updating cluster assignments to accommodate the evolving latent space. The
028 result is a robust and generalizable model that not only outperforms baselines on
029 benchmark datasets but also maintains strong accuracy on unseen text, making it
030 a powerful tool for real-world knowledge discovery and retrieval-augmented gen-
031 eration systems.
032

Keywords: *Informative Diversification, Consensus Clustering, Multi-View Em-
033 beddings, Gaussian Mixture Models, Contrastive Learning.*

1 INTRODUCTION AND PREVIOUS WORK

034 The unprecedented growth of unstructured text—ranging from scientific repositories and
035 enterprise communications to social media and multilingual streams—has made the discovery of latent
036 thematic structures indispensable. Since its inception in the 1960s for organizing bibliographic
037 records, document clustering has evolved through methods such as k -means, hierarchical cluster-
038 ing, and probabilistic models including Latent Dirichlet Allocation (LDA) (Blei et al. (2003)) and
039 the Stochastic Block Model (SBM). Today, the role of clustering is further amplified by large lan-
040 guage models (LLMs) and retrieval-augmented generation (RAG), where well-structured corpora
041 are essential for curating training data, reducing redundancy, and strengthening retrieval pipelines.
042 Despite decades of progress, clustering text remains difficult. Text embeddings are high-dimensional
043 and sparse, semantics are context-dependent, and multilingual corpora complicate alignment.
044

045 Traditional text clustering methods have been dominated by three main families of algorithms:
046 centroid-based approaches (K-Means), probabilistic models (Gaussian Mixture Model, Stochastic
047 Block Model), and graph-based methods (Spectral Clustering, Modularity Maximization). A con-
048 siderable amount of work has used probabilistic models as an effectively proven method for text
049 clustering considering the high dimensional space representation of textual embeddings and the
050 probabilistic nature of this task.
051

052 A foundational work for clustering with probabilistic models is the Expectation-Maximization algo-
053 rithm for Gaussian Mixture Models (GMMs) established by (Dempster et al. (1977)). This proba-
054 bilistic framework was successfully applied to text with generative models like Probabilistic Latent
055

054 Semantic Analysis (Hofmann (1999)) and Latent Dirichlet Allocation (Blei et al. (2003)), which
 055 were used to discover thematic structures. Subsequent developments like the Correlated Topic
 056 Model (Blei & Lafferty (2007)) extended these concepts to capture topic correlations. A signifi-
 057 cant drawback of these early approaches was their operation on simplistic bag-of-words representa-
 058 tions, which ignored word order and contextual semantics, limiting their capacity to capture nuanced
 059 meaning.

060 The advent of deep learning catalyzed a shift towards jointly learning representations and clus-
 061 ter assignments. Early neural approaches like the Deep Clustering Network (Yang et al. (2016))
 062 demonstrated how neural architectures could learn clustering-friendly representations. Other works
 063 like Deep Embedded Clustering (Xie et al. (2016)) integrated autoencoders with clustering objec-
 064 tives. ClusterGAN (Mukherjee et al. (2019)) employed generative adversarial networks to learn
 065 latent spaces amenable to clustering. While innovative, these methods exhibited a strong depen-
 066 dence on careful pre-training and initialization and were often trapped in suboptimal local minima,
 067 and relied on similarity measures ill-suited for complex, high-dimensional embeddings. This led to
 068 a resurgence of probabilistic thinking within deep architectures. For instance, Variational Deep Em-
 069 bedding (Jiang et al. (2017)) unified variational autoencoders with a GMM prior. This was extended
 070 by subsequent works like GraphEDM (Wang et al. (2019)) which incorporated graph convolutional
 071 networks to capture structural relationships. Although elegant, such deep generative models intro-
 072 duced considerable training complexity and instability by simultaneously optimizing reconstruction
 073 and clustering.

074 To combat the instability and variance inherent in single-model approaches, the field shifted towards
 075 learning multi-view and consensus clustering. Early consensus methods (Strehl & Ghosh (2002))
 076 aggregated multiple clusterings into a robust partition but were computationally expensive and op-
 077 erated as post-hoc procedures disconnected from representation learning. Recent innovations in
 078 self-supervised consensus learning (Liu et al. (2021)) have attempted to generate synthetic views
 079 through semantic-preserving transformations, reducing the dependency on naturally occurring mul-
 080 tiview data while maintaining the stability benefits of consensus approaches.

081 **Contributions:** In our work, we build on this progression with the following contributions:

- 082 1. We propose a clustering method that creates multiple views of the original embeddings
 083 and then harnesses their collective structure through a spectral consensus process, reducing
 084 misclustering error relative to single-view methods.
- 085 2. We design a hybrid objective combining contrastive learning and gaussian mixture negative
 086 log-likelihood, which maximizes mutual information between embeddings and consensus
 087 clusters, improving generalization to unseen data.
- 088 3. We develop an iterative co-training scheme that alternates between updating cluster assign-
 089 ments and model parameters, yielding stable solutions that outperform baselines.

091 Figure 1 illustrates the methodology including: Consensus clustering and Contrastive Training.

092

093 2 METHODOLOGY

094

095 2.1 OVERVIEW OF THE GAUSSIAN MIXTURE MODEL (GMM)

096

097 The Gaussian Mixture Model (GMM) is a probabilistic model for clustering and density estimation.
 098 It is defined as a weighted sum of Gaussian distributions:

$$099 p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k),$$

100

101 where:

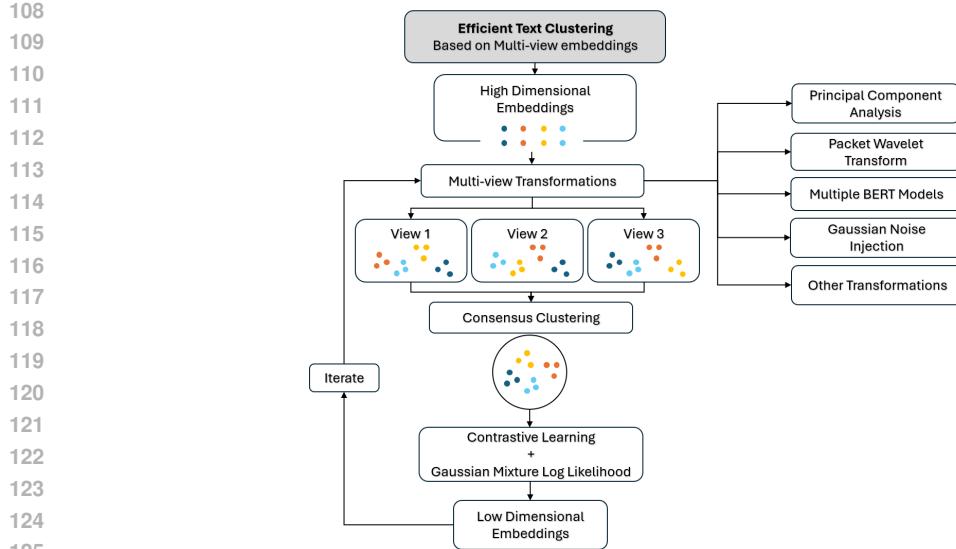
102

- 103 • π_k is the mixing coefficient of the k -th component, with $\sum_{k=1}^K \pi_k = 1$,
- 104 • $\mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)$ denotes the Gaussian distribution with mean μ_k and covariance Σ_k .

105

106

107 Given a dataset $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, the likelihood under the GMM is: $\mathcal{L}(\Theta) = \prod_{n=1}^N p(\mathbf{x}_n \mid \Theta)$,
 108 where $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are the model parameters to be estimated.

Figure 1: *Text Clustering using Multi-view Transformation*

The Expectation-Maximization (EM) algorithm is used for maximum likelihood estimation, until convergence:

- **E-Step:** Compute the responsibilities:

$$\gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)}.$$

- **M-Step:** Update parameters:

$$\pi_k \leftarrow \frac{1}{N} \sum_{n=1}^N \gamma_{nk}, \quad \mu_k \leftarrow \frac{\sum_{n=1}^N \gamma_{nk} \mathbf{x}_n}{\sum_{n=1}^N \gamma_{nk}}, \quad \Sigma_k \leftarrow \frac{\sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \mu_k)(\mathbf{x}_n - \mu_k)^T}{\sum_{n=1}^N \gamma_{nk}}.$$

2.2 TEXT CONSENSUS CLUSTERING BASED ON MULTI VIEW REPRESENTATION

2.2.1 MULTI-VIEW EMBEDDINGS VIA VIEW-SPECIFIC TRANSFORMATIONS

Let \mathbf{x}_i denote the textual content associated with the i -th document of a textual dataset where $i \in \{1, \dots, N\}$. Each text is encoded with a Sentence-BERT Transformer f_θ to obtain the textual embeddings: $\mathbf{h}_i = f_\theta(\mathbf{x}_i)$, $\mathbf{h}_i \in \mathbb{R}^d$.

Given embeddings $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_n] \in \mathbb{R}^{d \times n}$, we construct m alternative views using view-specific transformations. For transformation $T_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^d$,

$$\mathbf{H}_i^{(v)} = T_{\theta(v)}(\mathbf{h}_i), \quad v \in \{1, \dots, m\}, \quad i \in \{1, \dots, n\},$$

where each $\theta^{(v)}$ is a randomly sampled parameter set (e.g., a random matrix or noise parameter) for view v . This results in m distinct transformed datasets $\mathbf{H}^{(v)} = [\mathbf{h}_1^{(v)}, \dots, \mathbf{h}_n^{(v)}]$. We consider both deterministic transformations (such as using Principle Component Analysis PCA, Wavelet Packet Transforms WPT, or the use of several BERT models as shown in Table 1) and stochastic transformations (such as injecting Gaussian Noise).

2.2.2 CONSENSUS CLUSTERING VIA SPECTRAL CLUSTERING

For each view v , we perform clustering using GMM with K components and isotropic homogeneous covariance. Let $\mathcal{C}^{(v)} = \{C_1^{(v)}, \dots, C_K^{(v)}\}$ denote the resulting cluster assignment for view v , and $\mathcal{A}^{(v)} : \{1, \dots, n\} \rightarrow \{1, \dots, K\}$ the cluster assignment function: $\mathcal{A}^{(v)}(i) = k$ if $\mathbf{x}_i^{(v)} \in C_k^{(v)}$.

162 Table 1: Several Pretrained sentence embedding models used for the Multi-view embeddings gener-
163 ation.

165 Model	166 Output dimension
166 all-MiniLM-L6-v2	384
167 paraphrase-MiniLM-L6-v2	384
168 multi-qa-MiniLM-L6-cos-v1	384
169 all-mpnet-base-v2	768
170 paraphrase-multilingual-MiniLM-L12-v2	384
171 distiluse-base-multilingual-cased-v2	512
172 all-distilroberta-v1	768

172 We construct a co-occurrence (consensus) matrix $\mathbf{W} \in \mathbb{R}^{n \times n}$, whose entry \mathbf{W}_{ij} is the fraction of
173 views in which nodes i and j are assigned to the same cluster:

174
$$\mathbf{W}_{ij} = \frac{1}{m} \sum_{v=1}^m \mathbb{I}(\mathcal{A}^{(v)}(i) = \mathcal{A}^{(v)}(j)),$$
 where $\mathbb{I}(\cdot)$ is the indicator function.
175
176

177 Finally, we obtain the refined consensus clustering $\hat{\mathcal{C}} = \{\hat{C}_1, \dots, \hat{C}_K\}$ with spectral clustering. We
178 compute the normalized graph Laplacian \mathbf{L} corresponding to \mathbf{W} :
179

180
$$\mathbf{D} = \text{diag}(d_1, \dots, d_n), \quad d_i = \sum_{j=1}^n \mathbf{W}_{ij}, \quad \mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2},$$

181
182

183 where \mathbf{D} is the diagonal degree matrix and \mathbf{I} is the identity matrix.184 Then, we compute the K smallest eigenvectors of \mathbf{L} and form the matrix $U = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K] \in$
185 $\mathbb{R}^{n \times K}$, where \mathbf{u}_k denotes the k^{th} eigenvector associated with the k^{th} smallest eigenvalue.
186187 We then row-normalize U to obtain $\tilde{U}_i = \frac{U_i}{\|U_i\|_2}$, $i = 1, \dots, n$, where U_i is the i^{th} row of U .
188189 Finally, we apply K -means clustering to the rows $\{\tilde{U}_1, \dots, \tilde{U}_n\}$, assigning each node i to its corre-
190 sponding cluster \hat{C}_k (refer to Algorithm 1 for implementation details).
191

192 2.2.3 CONSENSUS VS. SINGLE-VIEW CLUSTERING:

193 In the appendix, we provided theoretical guarantees showing that consensus clustering based on
194 multiple transformed views of the data achieves a strictly lower expected misclustering rate com-
195 pared to applying Gaussian Mixture Models (GMMs) on a single view. The purpose of this analysis
196 was to rigorously quantify the advantage of aggregating information across multiple views rather
197 than relying on any one view alone.198 Specifically, we studied the minimax risk: $\inf_{\hat{z}} \sup_{z^*} \mathbb{E}[h(\hat{z}, z^*)]$,
199

200 The misclustering fraction is defined as:

201
$$h(\hat{z}, z^*) = \min_{\pi \in S_K} \frac{1}{n} \sum_{j=1}^n \mathbf{1}\{\pi(\hat{z}_j) \neq z_j^*\}.$$

202
203

204 where $z^* = (z_1^*, \dots, z_n^*)$ denotes the true cluster assignment of all n samples, $\hat{z} = (\hat{z}_1, \dots, \hat{z}_n)$ is
205 the estimated assignment, and S_K is the set of all permutations of $\{1, \dots, K\}$.
206207 In the single-view case, we derived a lower bound on the misclustering error by introducing the
208 advantage parameter for each cluster a as $\delta_a = r_a - \max_{b \neq a} p_{ab}$ and the minimum advantage
209 parameter as $\delta = \min_a \delta_a$, where r_a is the probability that a point from cluster a is correctly assigned
210 and p_{ab} is the probability that a point from cluster a is assigned to cluster b where $b \neq a$.
211212 This leads to the bound:
213

214
$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}} \geq \frac{1 - \delta}{2},$$

215

216 which is valid beyond Gaussian mixtures.
217218 We then analyzed multi-view consensus clustering, where m independent transformed views are
219 clustered separately and the final label is determined via majority vote. By applying Hoeffding's
220

inequality to the sum of correct votes across views, we derive the following upper bound as function of δ and m :

$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} \leq (K - 1) \exp\left(-\frac{m\delta^2}{2}\right),$$

The upper bound shows exponential decay in m whenever the per-view advantage δ is positive.

The main conclusion is that, while the single-view misclustering rate is bounded below by a positive constant, the multi-view consensus error decreases exponentially with the number of views m under mild conditions on view diversity and informativeness. Therefore, there exists a finite m_0 such that for all $m > m_0$,

$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} < \mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}}.$$

This establishes the theorem that consensus clustering with sufficiently many independent informative views strictly improves upon single-view clustering in expectation.

For a multivariate Gaussian, the covariance matrix fully determines the joint distribution. Thus, zero covariance implies that the joint density factorizes, and the variables are independent.

Moreover, one can argue that weakly uncorrelated views contribute proportionally to their degree of uncorrelation: a lower correlation implies that each view is more effective, and fewer views are required to achieve the same performance. Consequently, for weakly uncorrelated views, the total number of views m is greater than or equal to the number of *effective* views.

Theorem for Consensus Clustering

Condition 1 (View Diversity): The collection $\{X_v\}_{v=1}^m$ is mutually independent.

Condition 2 (View Informativeness):

$$r_a^{(v)} > \max_{b \neq a} p_{ab}^{(v)} \quad \text{for all } a \in \{1, \dots, K\}, v \in \{1, \dots, m\}$$

which implies $\delta = \min_{v,a} \delta_a^{(v)} > 0$ where $\delta_a^{(v)} = r_a^{(v)} - \max_{b \neq a} p_{ab}^{(v)}$

Result:

$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} \leq (K - 1) \exp\left(-\frac{m\delta^2}{2}\right) \xrightarrow{m \rightarrow \infty} 0$$

$$\exists m_0 \text{ such that } \forall m > m_0, \quad \mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} < \mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}}$$

2.3 LATENT SPACE REPRESENTATION LEARNING

After obtaining the refined cluster assignment, we train the MLP q_ϕ to produce cluster shaped latent representations. Our training objective is to maximize the mutual information between embeddings $\mathbf{h}_i \in \mathbb{R}^d$ and their assigned cluster centroids $\mathbf{c}_i \in \mathbb{R}^d$, to ensure that the learned representations reflect cluster-level semantics. Let H and C be the random variables corresponding to the embeddings and cluster centroids, respectively. The mutual information is defined as:

$$I(H; C) = H(C) - H(C | H) = - \sum_{k=1}^K \pi_k \log \pi_k + \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \gamma_{ik} \log \gamma_{ik}. \quad (1)$$

Mutual information is maximized by (i) encouraging balanced cluster weights $\pi_k = 1/K$ to increase $H(C)$, and (ii) promoting confident assignments $\gamma_{ik} \rightarrow 1$ for the true cluster to reduce $H(C | H)$. Since changing $H(C)$ alters the cluster distribution, our practical optimization focuses on minimizing $H(C | H)$ by sharpening the assignment probabilities γ_{ik} (see Appendix A for details).

The assignment probability is given by:

$$\gamma_{ik} = \frac{\pi_k \cdot \mathcal{N}(\mathbf{h}_i | \boldsymbol{\mu}_k, \sigma_k)}{\sum_{j=1}^K \pi_j \cdot \mathcal{N}(\mathbf{h}_i | \boldsymbol{\mu}_j, \sigma_j)}. \quad (2)$$

For L2-normalized embeddings, this reduces to a softmax over cosine similarities:

$$\mathcal{N}(\mathbf{h}_i | \boldsymbol{\mu}, \sigma^2) \propto \exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu})}{\sigma^2}\right). \quad (3)$$

This directly connects to the InfoNCE loss, which for a single sample h_i is defined as:

$$\mathcal{L}_N^{(i)} = -\log \frac{\exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu}_k)}{\tau}\right)}{\sum_{j=1}^K \exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu}_j)}{\tau}\right)}, \quad (4)$$

with the total loss averaged over all samples:

$$\mathcal{L}_N = \frac{1}{N} \sum_{i=1}^N \mathcal{L}_N^{(i)}. \quad (5)$$

Minimizing \mathcal{L}_N increases similarity between embeddings and their assigned centroids while decreasing similarity to others, thereby sharpening γ_{ik} , reducing $H(C \mid H)$, and consequently maximizing $I(H; C)$ (Appendix A).

On the other hand, our prior assumption is that embeddings are generated from a Gaussian Mixture Models. We enforce the Gaussian mixture prior through a negative log-likelihood loss:

$$\mathcal{L}_{\text{GMM}} = - \sum_{i=1}^n \log \left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{h}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right),$$

The combined optimization objective integrates both losses: $\mathcal{L} = \alpha \mathcal{L}_{\text{InfoNCE}} + \beta \mathcal{L}_{\text{GMM}}$,

Backpropagation through \mathcal{L} simultaneously pulls embeddings toward assigned centroids while repelling others via $\mathcal{L}_{\text{InfoNCE}}$ and constrains embeddings to lie on the manifold defined by the Gaussian mixture via \mathcal{L}_{GMM} . Algorithm 2 describes the iterative algorithm that iterate between applying algorithm 1 for consensus clustering and training on joint contrastive and GMM negative log-likelihood losses.

Algorithm 1 Consensus Multi-view Text Clustering

Require: Embeddings $H = \{h_i\}_{i=1}^n$, number of views m , clusters K

Ensure: Consensus labels $\hat{y} \in \{1, \dots, K\}^n$

1 Initialize transforms $\{T^{(v)}\}_{v=1}^m$ (e.g., PCA, encoders, perturbations)

2 **for** $v \leftarrow 1$ **to** m **do**

⁴ $W_{ij} \leftarrow \frac{1}{m} \sum_v \mathbf{1}\{c_i^{(v)} = c_j^{(v)}\}$, $L \leftarrow I - D^{-1/2}WD^{-1/2}$ with $D = \text{diag}(W\mathbf{1})$, $U \leftarrow K$ smallest eigenvectors of L row-normalized, $\hat{u} \leftarrow \text{KMeans}(U, K)$

5 return \hat{u}

Algorithm 2 Iterative Latent Space Learning with Consensus

Require: Embeddings $\{\mathbf{h}_i\}$, clusters K , encoder ϕ_θ , parameters $\{\pi_k, \mu_k, \Sigma_k\}$, weights α, β , temperature τ , epochs E , Number of epochs as Clustering Interval e

Ensure: Trained ϕ_θ , consensus assignments \hat{y}

6 **for** $epoch \leftarrow 1$ **to** E **do**

7 | **if** $epoch \% e = 0$ **then**

8 | Run Alg. 1, update $\hat{y}, \{\mu_k\}$

$$\textbf{InfoNCE loss: } \mathcal{L}_{\text{InfoNCE}} = \frac{1}{N} \sum_i -\log \frac{\exp(\frac{\sim(\mathbf{h}_i, \mu_{\hat{y}_i})}{\tau})}{\sum_j \exp(\frac{\sim(\mathbf{h}_i, \mu_j)}{\tau})}$$

$$\textbf{GMM loss: } \mathcal{L}_{\text{GMM}} = - \sum_i \log \left(\sum_k \pi_k \mathcal{N}(\mathbf{h}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

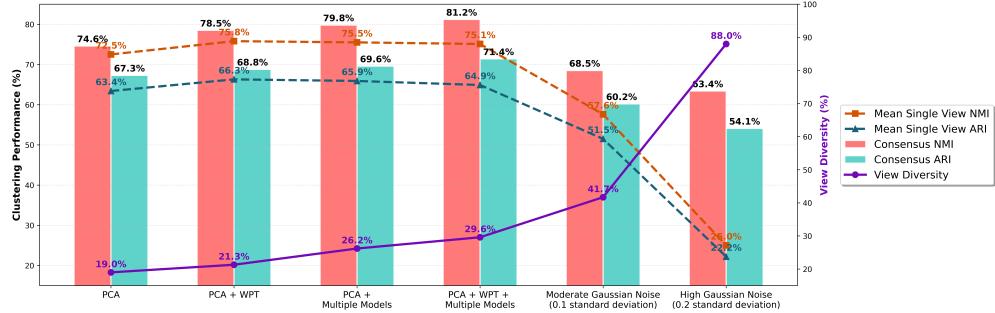
Training: $\mathcal{L} = \alpha \mathcal{L}_{\text{InfoNCE}} + \beta \mathcal{L}_{\text{GMM}} \Rightarrow$ Update encoder ϕ_θ by backpropagation

12. **return** encoder ϕ_e

324 3 EVALUATION

326 We conduct our experimentations using 2 datasets: DBpedia and Reuters R8 Datasets. We evaluate
 327 first the Consensus Clustering alone, then we evaluate the effectiveness of the iterative co-training
 328 by testing on unseen text data.

330 3.1 MULTI-VIEW CONSENSUS LEARNING EVALUATION



343 Figure 2: *Multi-view Clustering Performance against View Diversity*

344
 345 Table 2: NMI and ARI values of several models under some transformations on the DBpedia Dataset
 346 with $k = 8$ clusters

	Metric	Single View			Multi-View Consensus Clustering	
		KMeans		Gaussian Mixture Model	Gaussian Mixture Model	
		Heterogeneous	Homogeneous		Heterogeneous	Homogeneous
Original Embeddings	NMI	69.5	68.8	69.5	61.4	—
Original Embeddings	ARI	60.6	60.3	60.7	52.5	—
WPT Transform	NMI	—	70.5 \pm 0.7	73.6 \pm 2.3	—	71.0 73.0
WPT Transform	ARI	—	60.7 \pm 1.4	63.6 \pm 0.9	—	61.7 63.2
PCA	NMI	—	70.1 \pm 0.5	74.1 \pm 1.9	—	70.6 74.6
PCA	ARI	—	59.6 \pm 1.6	65.5 \pm 1.8	—	61.6 67.3
PCA + WPT Transform	NMI	—	65.0 \pm 6.3	73.9 \pm 4.4	—	71.4 78.8
PCA + WPT Transform	ARI	—	60.7 \pm 1.4	63.6 \pm 0.9	—	61.0 69.3
PCA + Gaussian Noise	NMI	—	68.3 \pm 1.7	69.6 \pm 4.0	—	70.8 76.0
PCA + Gaussian Noise	ARI	—	58.8 \pm 2.2	61.0 \pm 4.1	—	61.4 66.9
PCA + Multiple Models	NMI	—	71.0 \pm 2.2	75.6 \pm 3.0	—	72.6 78.9
PCA + Multiple Models	ARI	—	59.9 \pm 3.1	66.2 \pm 3.6	—	62.4 68.8
PCA + Gaussian Noise + Multiple Models	NMI	—	68.5 \pm 3.2	70.8 \pm 4.8	—	77.6 80.0
PCA + Gaussian Noise + Multiple Models	ARI	—	57.8 \pm 3.8	61.1 \pm 5.7	—	66.7 70.0
PCA + WPT + Multiple Models	NMI	—	66.3 \pm 5.2	73.4 \pm 4.8	—	75.2 81.2
PCA + WPT + Multiple Models	ARI	—	53.5 \pm 6.6	62.9 \pm 6.6	—	65.0 71.4

363
 364 Table 3: NMI and ARI values of several models under some transformations on the DBpedia Dataset
 365 with $k = 14$ clusters

	Metric	Single View			Multi-View Consensus Clustering	
		KMeans		Gaussian Mixture Model	Gaussian Mixture Model	
		Heterogeneous	Homogeneous		Heterogeneous	Homogeneous
Original Embeddings	NMI	72.7	69.4	72.8	58.5	—
Original Embeddings	ARI	61.2	57.5	61.2	46.2	—
WPT Transform	NMI	—	72.2 \pm 1.1	76.7 \pm 1.2	—	73.7 77.9
WPT Transform	ARI	—	59.5 \pm 1.7	65.0 \pm 1.9	—	62.0 67.5
Multiple Models	NMI	—	71.1 \pm 1.8	75.1 \pm 2.2	—	75.3 78.0
Multiple Models	ARI	—	58.8 \pm 2.3	63.1 \pm 2.7	—	63.1 65.9
PCA + Multiple Models	NMI	—	73.0 \pm 1.7	75.9 \pm 2.1	—	76.8 79.6
PCA + Multiple Models	ARI	—	58.9 \pm 2.4	63.6 \pm 2.8	—	63.4 67.7
PCA + Gaussian Noise + Multiple Models	NMI	—	70.8 \pm 2.5	71.5 \pm 4.0	—	77.2 79.4
PCA + Gaussian Noise + Multiple Models	ARI	—	57.8 \pm 2.9	60.1 \pm 4.0	—	64.2 67.6
PCA + WPT + Multiple Models	NMI	—	66.4 \pm 6.7	74.0 \pm 4.2	—	76.8 80.8
PCA + WPT + Multiple Models	ARI	—	50.0 \pm 9.4	59.6 \pm 7.6	—	64.0 68.8

Table 4: NMI and ARI values of several models under some transformations on the Reuters R8 Dataset with $k = 6$ clusters

	Metric	Single View				Multi-View Consensus Clustering		
		KMeans		Gaussian Mixture Model		Spectral Clustering	Gaussian Mixture Model	
		Heterogeneous	Homogeneous	Heterogeneous	Homogeneous		Heterogeneous	Homogeneous
Original Embeddings	NMI	72.8	73.9	65.0	68.6	—	—	—
	ARI	68.0	70.0	55.4	61.4	—	—	—
PCA + Gaussian Noise + Multiple Models	NMI	—	64.1 ± 5.0	69.3 ± 7.0	—	74.7	81.0	
	ARI	—	62.6 ± 5.4	63.1 ± 8.8	—	71.9	75.0	
PCA + WPT + Multiple Models	NMI	—	62.8 ± 11.0	70.2 ± 10.8	—	77.5	82.5	
	ARI	—	57.7 ± 13.7	64.1 ± 14.7	—	73.7	81.1	

We evaluate the Multi-view Consensus Clustering framework against standard baselines including K-Means, Gaussian Mixture Models (GMM), and Spectral Clustering. For both the GMM baseline and our consensus approach, we consider two covariance settings: isotropic heterogeneous (Case 1) and isotropic homogeneous (Case 2). Experimental results demonstrate that our consensus model achieves superior performance under homogeneous isotropic covariance. As shown in Tables 2, 3 and 4, our framework consistently outperforms baselines on both DBpedia and Reuters R8 datasets when combined with appropriate transformations. The method shows particular effectiveness with high perturbations (e.g., PCA + WPT + Multiple Models) that preserve semantic structure.

Figure 2 illustrates the relationship between the diversity of the generated views, the clustering performance of individual views, and the overall performance of the consensus method. Diversity is quantified as the mean ARI value across all pairwise combinations of the generated views. The results demonstrate that the effectiveness of consensus clustering is determined solely by two factors: the diversity among the generated views and the clustering performance of the Gaussian mixture model on these views. This empirical observation supports the theorem established earlier, which links the performance of consensus clustering to its ability to satisfy both the *diversity condition* and the *informativeness condition*. Specifically, the theoretical proof in the appendix showed that the consensus clustering error depends on the number of diverse views m and on the advantage term δ of each view, the latter being directly related to the clustering quality of the corresponding transformed view. The plot confirms this by showing that the PCA + WPT + Multiple Models transformation achieves the best results, as it more closely satisfies the conditions of the theorem. These findings highlight the importance of transformation choice. Transformations that generate a greater degree of diversity (e.g., through stronger feature corruption or nonlinear perturbations) while still preserving the informativeness condition (Condition 2) are more likely to produce less correlated views. By effectively increasing the usable number of views m , such transformations enable the consensus method to achieve a lower error floor, thereby more accurately reflecting the theoretical guarantees of the proof.

3.2 TRAINING EVALUATION

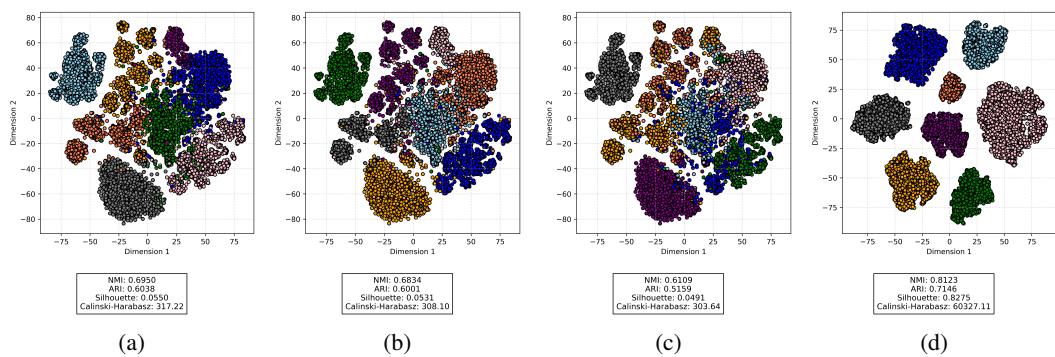


Figure 3: Comparative clustering results on the DBpedia dataset, for $k = 8$ clusters. a) KMeans Clustering. b) Gaussian Mixture Model Clustering. c) Spectral Clustering. d) Consensus Clustering - Contrastive Training at epoch 20.

We assess the effectiveness of the training procedure in reshaping the latent space such that it becomes more amenable to clustering. As illustrated in Figure 3, our method successfully brings embeddings closer to their assigned centroids, thereby validating its effectiveness. This observation is validated when looking at the silhouette score and the Calinski-Harabasz score. Both metrics indicate a more topologically clustered latent space, which can subsequently be more effectively clustered by a simple algorithm such as KMeans.

3.3 CLUSTERING ON UNSEEN TEST DATA

We investigate whether a clustering model trained on a subset of the data can be effectively applied to unseen samples, under the assumption that these samples are drawn from the same underlying distribution as the training data. The results, reported in Table 5 and Figure 4, indicate that clustering can be performed on a relatively small subset of the dataset, after which the trained model reshapes the latent space such that the resulting embeddings are more amenable to clustering using a simple KMeans or GMM algorithm.

Table 5: Clustering Performance under Different Settings, after 10 epochs

Setting	NMI (Train)	ARI (Train)	NMI (Test)	ARI (Test)
90% Training - 10% Testing	80.4	71.1	79.6	70.3
50% Training - 50% Testing	80.4	71.1	79.9	70.8
20% Training - 80% Testing	80.1	68.7	78.7	67.6
10% Training - 90% Testing	81.3	71.5	79.5	70.1

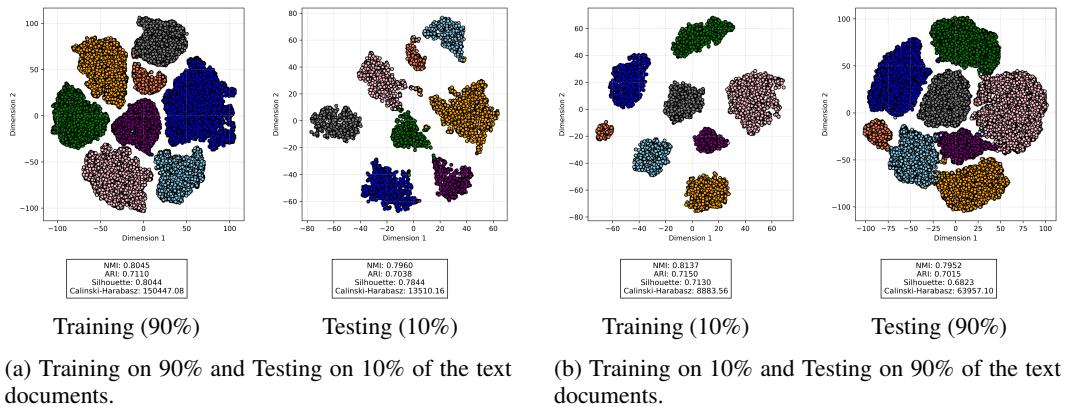


Figure 4: Clustering performance on unseen text documents from the DBpedia dataset for $k = 8$ clusters at epoch 10.

4 CONCLUSION

In this work, we present a consensus clustering method that generates multi-view transformations of the original embeddings to achieve a better clustering performance compared to single-view clustering. The clustering effectiveness increases with the degree of diversity, which is determined by the number of uncorrelated views generated by the transformation, and the clustering performance on each single view.

Then, we trained an MLP encoder to project the original high-dimensional latent space into a lower-dimensional representation, where applying KMeans clustering yields improved results. The combination of contrastive loss and Gaussian negative log-likelihood contributes to shaping a latent space that enhances clustering quality and maintains consistency with the Gaussian prior assumption.

Finally, we demonstrated that the proposed model generalizes effectively to unseen text documents, achieving robust clustering performance even when trained on a relatively small fraction of the available dataset.

486 REFERENCES
487

488 David M Blei and John D Lafferty. A correlated topic model of science. *The annals of applied*
489 *statistics*, pp. 17–35, 2007.

490 David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of machine*
491 *Learning research*, 3(Jan):993–1022, 2003.

492 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
493 via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1):
494 1–22, 1977.

495 Thomas Hofmann. Probabilistic latent semantic indexing. In *Proceedings of the 22nd annual in-*
496 *ternational ACM SIGIR conference on Research and development in information retrieval*, pp.
497 50–57, 1999.

498 Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep
499 embedding: An unsupervised generative approach to clustering. In *26th International Joint Con-*
500 *ference on Artificial Intelligence, IJCAI 2017*, pp. 1965–1972. International Joint Conferences on
501 Artificial Intelligence, 2017.

502 Changshu Liu, Liangjian Wen, Zhao Kang, Guangchun Luo, and Ling Tian. Self-supervised con-
503 sensus representation learning for attributed graph. In *Proceedings of the 29th ACM international*
504 *conference on multimedia*, pp. 2654–2662, 2021.

505 Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. Clustergan: Latent space
506 clustering in generative adversarial networks. In *Proceedings of the AAAI conference on artificial*
507 *intelligence*, volume 33, pp. 4610–4617, 2019.

508 Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse framework for com-
509 bining multiple partitions. *Journal of machine learning research*, 3(Dec):583–617, 2002.

510 Yifan Wang, Yuliang Sun, Zeyu Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
511 Graph embedding with rich information through heterogeneous network. In *2019 International*
512 *joint conference on neural networks (IJCNN)*, pp. 1–8. IEEE, 2019.

513 Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
514 In *International conference on machine learning*, pp. 478–487. PMLR, 2016.

515 Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations
516 and image clusters. In *Proceedings of the IEEE conference on computer vision and pattern recog-*
517 *nition*, pp. 5147–5156, 2016.

523 A APPENDIX
524525 PROOF 1 - MINIMIZING INFO NCE LOSS MAXIMIZES MUTUAL INFORMATION BETWEEN
526 EMBEDDINGS AND THEIR ASSIGNED CLUSTER CENTROIDS
527

528 In this proof, we demonstrate that minimizing the InfoNCE loss maximizes the mutual information
529 between embeddings and their assigned cluster centroids. The mutual information $I(\mathbf{h}; \mathbf{c})$ between
530 node embeddings \mathbf{h} and cluster assignments \mathbf{c} is defined as:

$$531 \quad I(\mathbf{h}; \mathbf{c}) = H(\mathbf{c}) - H(\mathbf{c} \mid \mathbf{h}) \quad (6)$$

532 where $H(\mathbf{c})$ is the entropy of cluster assignments:

$$533 \quad H(\mathbf{c}) = - \sum_{k=1}^K p(c_k) \log p(c_k) = - \sum_{k=1}^K \pi_k \log \pi_k \quad (7)$$

534 and $H(\mathbf{c} \mid \mathbf{h})$ is the conditional entropy:

$$535 \quad H(\mathbf{c} \mid \mathbf{h}) = - \sum_{i=1}^N \sum_{k=1}^K p(\mathbf{h}_i) p(c_k \mid \mathbf{h}_i) \log p(c_k \mid \mathbf{h}_i) = - \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \gamma_{ik} \log \gamma_{ik}. \quad (8)$$

540 The mutual information is therefore expressed as:
 541

$$542 \quad 543 \quad 544 \quad I(\mathbf{h}; \mathbf{c}) = - \sum_{k=1}^K \pi_k \log \pi_k + \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \gamma_{ik} \log \gamma_{ik} \quad (9)$$

546 Mutual information maximization is achieved through two mechanisms:
 547

- 548 1. Maximizing $H(\mathbf{c})$ by encouraging uniform cluster weights $\pi_k = \frac{1}{K}$;
- 549 2. Minimizing $H(\mathbf{c} \mid \mathbf{h})$ by promoting confident assignments where $\gamma_{ik} \rightarrow 1$ for the true
 550 cluster and $\gamma_{ik} \rightarrow 0$ for others.

552 We initialize cluster weights with a uniform distribution $\frac{1}{K}$ but training the optimal clustering might
 553 diverge the weights from being uniform, which is totally acceptable since our main objective is to
 554 yield the best possible clustering which is sometimes reached with non-uniform weight distribution.
 555 But since we also want to maximize $I(\mathbf{h}, \mathbf{c})$ and since $H(\mathbf{c})$ is not to be changed because it will
 556 directly affect the clustering, the objective of maximizing mutual information while preserving the
 557 optimal clustering would be to minimize $H(\mathbf{c} \mid \mathbf{h})$ by promoting confident assignments.

558 The soft assignment probability γ_{ik} is computed as:
 559

$$560 \quad 561 \quad 562 \quad \gamma_{ik} = \frac{\pi_k \cdot \mathcal{N}(\mathbf{h}_i \mid \boldsymbol{\mu}_k, \sigma_k)}{\sum_{j=1}^K \pi_j \cdot \mathcal{N}(\mathbf{h}_i \mid \boldsymbol{\mu}_j, \sigma_j)} \quad (10)$$

563 which is maximized when $\mathcal{N}(\mathbf{h}_i \mid \boldsymbol{\mu}_k, \sigma_k)$ is maximized and $\mathcal{N}(\mathbf{h}_i \mid \boldsymbol{\mu}_j, \sigma_j)$ is minimized for all
 564 $j \neq k$.

565 For L2-normalized embeddings where $\|\mathbf{h}_i\| = \|\boldsymbol{\mu}\| = 1$:

$$566 \quad 567 \quad 568 \quad \text{sim}(\mathbf{h}_i, \boldsymbol{\mu}) = \frac{\mathbf{h}_i^\top \boldsymbol{\mu}}{\|\mathbf{h}_i\| \|\boldsymbol{\mu}\|} = \mathbf{h}_i^\top \boldsymbol{\mu}$$

569 and:

$$570 \quad 571 \quad \|\mathbf{h}_i - \boldsymbol{\mu}\|^2 = 2 - 2\mathbf{h}_i^\top \boldsymbol{\mu} = 2(1 - \text{sim}(\mathbf{h}_i, \boldsymbol{\mu})).$$

572 The Gaussian density simplifies to:
 573

$$574 \quad 575 \quad 576 \quad \mathcal{N}(\mathbf{h}_i \mid \boldsymbol{\mu}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\|\mathbf{h}_i - \boldsymbol{\mu}\|^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu})}{\sigma^2}\right) \quad (11)$$

$$577 \quad 578 \quad 579 \quad \mathcal{N}(\mathbf{h}_i \mid \boldsymbol{\mu}, \sigma^2) \propto \exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu})}{\sigma^2}\right)$$

580 The InfoNCE loss for a single sample \mathbf{h}_i is defined as:
 581

$$582 \quad 583 \quad 584 \quad 585 \quad \mathcal{L}_N^{(i)} = -\log \frac{\exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu}_k)}{\tau}\right)}{\sum_{j=1}^K \exp\left(\frac{\text{sim}(\mathbf{h}_i, \boldsymbol{\mu}_j)}{\tau}\right)} \quad (12)$$

586 with the total loss averaged over all samples:
 587

$$588 \quad 589 \quad 590 \quad \mathcal{L}_N = \frac{1}{N} \sum_{i=1}^N \mathcal{L}_N^{(i)} \quad (13)$$

592 Minimizing \mathcal{L}_N increases the similarity between \mathbf{h}_i and its assigned centroid $\boldsymbol{\mu}_k$ while decreasing
 593 similarity to other centroids. This sharpens the posterior distribution γ_{ik} , reducing $H(\mathbf{c} \mid \mathbf{h})$ which
 maximizes the mutual information $I(\mathbf{h}; \mathbf{c})$ constrained on obtaining the optimal clustering.

594 PROOF 2 - CONSENSUS CLUSTERING ACHIEVES A LOWER EXPECTED MISCLUSTERING RATE
 595 THAN SINGLE VIEW CLUSTERING
 596

597 In this proof, we demonstrate that running any clustering model on multiple transformed views of
 598 the data, followed by a spectral consensus step on a co-occurrence matrix, yields a strictly smaller
 599 expected misclustering rate than applying the same clustering procedure on a single view, under
 600 some conditions.

601 For any clustering algorithm, define:

603 • r_a = probability that a point from cluster a is correctly assigned
 604 • p_{ab} = probability that a point from cluster a is assigned to cluster b ($b \neq a$)

606 Define the advantage for cluster a as:

608
$$\delta_a = r_a - \max_{b \neq a} p_{ab}.$$

610 This measures how much better the algorithm is at correct assignment vs. its highest misassignment.

611 Let $\delta = \min_a \delta_a$ be the minimum advantage across all clusters.

613 We define the misclustering fraction for an estimator \hat{z} is:

615
$$h(\hat{z}, z^*) = \min_{\pi \in S_K} \frac{1}{n} \sum_{j=1}^n \mathbf{1}\{\pi(\hat{z}_j) \neq z_j^*\}.$$

618 where $z^* = (z_1^*, \dots, z_n^*)$ denotes the true cluster assignment of all n samples, $\hat{z} = (\hat{z}_1, \dots, \hat{z}_n)$ is
 619 the estimated assignment, and S_K is the set of all permutations of $\{1, \dots, K\}$.

621 A - LOWER BOUND ON THE EXPECTED MISCLUSTERING RATE OF THE GAUSSIAN MIXTURE
 622 MODEL

624 Our goal is to derive a lower bound on the minimax risk:

626
$$\inf_{\hat{z}} \sup_{z^*} \mathbb{E}[h(\hat{z}, z^*)].$$

629 For each cluster a , we have:

630
$$1 - r_a = \sum_{b \neq a} p_{ab} \geq \max_{b \neq a} p_{ab},$$

633 and thus:

634
$$1 - \delta_a = 1 - r_a + \max_{b \neq a} p_{ab} \leq 2(1 - r_a),$$

636 which implies:

637
$$1 - r_a \geq \frac{1 - \delta_a}{2} \geq \frac{1 - \delta}{2}.$$

640 Now consider the worst-case scenario where only two clusters have the minimum advantage δ and
 641 the remaining clusters are perfectly separated ($\delta_a = 1$ for other clusters).

642 The error is lower bounded by the error on the two closest clusters:

644
$$\boxed{\mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}} \geq \frac{1 - \delta}{2}}$$

646 The key insight is that there is a fundamental limit to how well any clustering algorithm can perform,
 647 determined by the advantage parameter.

648 B. MULTI-VIEW CONSENSUS CLUSTERING IMPROVES UPON SINGLE-VIEW CLUSTERING
649650 Suppose we have m independent views of the data, each obtained by applying a transformation.
651652 Assume that for each view v , the clustering algorithm produces labels such that for any point from
653 cluster a :

654
$$r_a^{(v)} > \max_{b \neq a} p_{ab}^{(v)}.$$

655

Define the advantage for cluster a in view v as:

656
$$\delta_a^{(v)} = r_a^{(v)} - \max_{b \neq a} p_{ab}^{(v)}.$$

657

658 Let

659
$$\delta^{(v)} = \min_a \delta_a^{(v)}, \quad \text{and} \quad \delta = \min_v \delta^{(v)}.$$

660

661 We assume $\delta > 0$.
662663 The views are independent. For multi-view consensus clustering, we consider majority voting: each
664 point is assigned to the cluster that wins the majority of votes across views.
665666 For a fixed point from cluster a , the probability that it is misclassified to cluster b is the probability
667 that the number of views assigning it to b is at least the number assigning it to a . Let X_v be the
668 indicator that view v assigns the point to a , and Y_v be the indicator that view v assigns it to b . Note
669 that for each view, X_v and Y_v are not independent, but across views they are independent. Consider
670 the difference $Z_v = X_v - Y_v$. Then the event that the point is assigned to b rather than a requires
671 that the sum of Z_v over v is ≤ 0 . The expected value of Z_v is $r_a^{(v)} - p_{ab}^{(v)} \geq \delta_a^{(v)} \geq \delta$. Applying
672 Hoeffding's inequality to the sum of Z_v (note that Z_v takes values in $[-1, 1]$ with range 2), we get:
673

674
$$\Pr \left(\sum_{v=1}^m Z_v \leq 0 \right) \leq \exp \left(-\frac{2(m\delta)^2}{m \cdot (2)^2} \right) = \exp \left(-\frac{m\delta^2}{2} \right).$$

675

676 By union bound over all $b \neq a$, the probability that a specific point from cluster a is misclassified is
677 at most:

678
$$\Pr(\text{error for point from } a) \leq (K-1) \exp \left(-\frac{m\delta^2}{2} \right).$$

679

680 Since this bound holds for every point regardless of its cluster membership, the expected misclu-
681 tering fraction is also bounded by:
682

683
$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} \leq (K-1) \exp \left(-\frac{m\delta^2}{2} \right).$$

684

686 **Superiority of Multi-View Consensus**
687688 From Part A, the expected misclustering error of a single view is bounded below by:
689

690
$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}} \geq \frac{1-\delta}{2}$$

691

692 The Multi-view bound decays exponentially with m , while the single-view error is constant in m .
693 Therefore, for sufficiently large m :
694

695
$$\mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} < \mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}}$$

696

697 **Conditions:**
698699 **Condition 1 (View Diversity):** For any additional view m , the view must be independent of all
700 previous views. Formally, the collection of indicator random variables $\{X_v\}_{v=1}^m$ is mutually inde-
701 pendent. This ensures the new view provides non-redundant information essential for Hoeffding's
inequality.

702 **Condition 2 (View Informativeness):** Each view must provide meaningful clustering information.
 703 Formally, for each true cluster a and view v , the probability of correct assignment must exceed the
 704 maximum probability of incorrect assignment:

$$706 \quad r_a^{(v)} > \max_{b \neq a} p_{ab}^{(v)} \quad \text{for all } a \in \{1, \dots, K\}, v \in \{1, \dots, m\}.$$

708 This implies the advantage parameter $\delta = \min_{v,a} \delta_a^{(v)} > 0$, where $\delta_a^{(v)} = r_a^{(v)} - \max_{b \neq a} p_{ab}^{(v)}$.

710 Under these conditions, the consensus misclustering error decays exponentially with the number of
 711 views m :

$$712 \quad \mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} \leq (K-1) \exp\left(-\frac{m\delta^2}{2}\right).$$

714 Consequently:

$$715 \quad \lim_{m \rightarrow \infty} \mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} = 0.$$

717 Since the single-view misclustering error is bounded below by a positive constant $\frac{1-\delta}{2}$ (from Part
 718 A), there exists a finite m_0 such that for all $m > m_0$:

$$719 \quad \mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} < \mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}}$$

720 That is, consensus clustering with sufficiently many views outperforms single-view clustering.

722 **Theorem for Consensus Clustering**

723 **Condition 1 (View Diversity):** The collection $\{X_v\}_{v=1}^m$ is mutually independent.

724 **Condition 2 (View Informativeness):**

$$726 \quad r_a^{(v)} > \max_{b \neq a} p_{ab}^{(v)} \quad \text{for all } a \in \{1, \dots, K\}, v \in \{1, \dots, m\}$$

728 which implies $\delta = \min_{v,a} \delta_a^{(v)} > 0$ where $\delta_a^{(v)} = r_a^{(v)} - \max_{b \neq a} p_{ab}^{(v)}$

729 **Result:**

$$730 \quad \mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} \leq (K-1) \exp\left(-\frac{m\delta^2}{2}\right) \xrightarrow{m \rightarrow \infty} 0$$

732 $\exists m_0$ such that $\forall m > m_0$, $\mathbb{E}[h(\hat{z}, z^*)]_{\text{consensus}} < \mathbb{E}[h(\hat{z}, z^*)]_{\text{original view}}$

734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755