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ABSTRACT

Clustering text into coherent groups is a long-standing challenge, complicated
by high-dimensional embeddings, semantic ambiguity, and distributional shifts in
unseen data. Recent advances in large language models (LLMs) and retrieval-
augmented generation (RAG) systems have further underscored the need for ro-
bust and scalable knowledge representation methods. In this work, we introduce
a novel clustering framework based on informative diversification. Our method
applies a set of semantic-preserving transformations to generate multiple views
of the data, and then harnesses their collective structure through a spectral con-
sensus process. We prove that consensus clustering achieves an exponentially
lower expected error rate compared to any single view, provided the views are
diverse and informative. We then propose an iterative co-training procedure that
learns a cluster-friendly latent space by jointly minimizing a contrastive InfoNCE
loss and a Gaussian mixture negative log-likelihood loss. This training sharpens
assignments and pulls embeddings toward their cluster centroids, while dynami-
cally updating cluster assignments to accommodate the evolving latent space. The
result is a robust and generalizable model that not only outperforms baselines on
benchmark datasets but also maintains strong accuracy on unseen text, making it
a powerful tool for real-world knowledge discovery and retrieval-augmented gen-
eration systems.
Keywords: Informative Diversification, Consensus Clustering, Multi-View Em-
beddings, Gaussian Mixture Models, Contrastive Learning.

1 INTRODUCTION AND PREVIOUS WORK

The unprecedented growth of unstructured text—ranging from scientific repositories and enter-
prise communications to social media and multilingual streams—has made the discovery of latent
thematic structures indispensable. Since its inception in the 1960s for organizing bibliographic
records, document clustering has evolved through methods such as k-means, hierarchical cluster-
ing, and probabilistic models including Latent Dirichlet Allocation (LDA) (Blei et al. (2003)) and
the Stochastic Block Model (SBM). Today, the role of clustering is further amplified by large lan-
guage models (LLMs) and retrieval-augmented generation (RAG), where well-structured corpora
are essential for curating training data, reducing redundancy, and strengthening retrieval pipelines.
Despite decades of progress, clustering text remains difficult. Text embeddings are high-dimensional
and sparse, semantics are context-dependent, and multilingual corpora complicate alignment.

Traditional text clustering methods have been dominated by three main families of algorithms:
centroid-based approaches (K-Means), probabilistic models (Gaussian Mixture Model, Stochastic
Block Model), and graph-based methods (Spectral Clustering, Modularity Maximization). A con-
siderable amount of work has used probabilistic models as an effectively proven method for text
clustering considering the high dimensional space representation of textual embeddings and the
probabilistic nature of this task.

A foundational work for clustering with probabilistic models is the Expectation-Maximization algo-
rithm for Gaussian Mixture Models (GMMs) established by (Dempster et al. (1977)). This proba-
bilistic framework was successfully applied to text with generative models like Probabilistic Latent
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Semantic Analysis (Hofmann (1999)) and Latent Dirichlet Allocation (Blei et al. (2003)), which
were used to discover thematic structures. Subsequent developments like the Correlated Topic
Model (Blei & Lafferty (2007)) extended these concepts to capture topic correlations. A signifi-
cant drawback of these early approaches was their operation on simplistic bag-of-words representa-
tions, which ignored word order and contextual semantics, limiting their capacity to capture nuanced
meaning.

The advent of deep learning catalyzed a shift towards jointly learning representations and clus-
ter assignments. Early neural approaches like the Deep Clustering Network (Yang et al. (2016))
demonstrated how neural architectures could learn clustering-friendly representations. Other works
like Deep Embedded Clustering (Xie et al. (2016)) integrated autoencoders with clustering objec-
tives. ClusterGAN (Mukherjee et al. (2019)) employed generative adversarial networks to learn
latent spaces amenable to clustering. While innovative, these methods exhibited a strong depen-
dence on careful pre-training and initialization and were often trapped in suboptimal local minima,
and relied on similarity measures ill-suited for complex, high-dimensional embeddings. This led to
a resurgence of probabilistic thinking within deep architectures. For instance, Variational Deep Em-
bedding (Jiang et al. (2017)) unified variational autoencoders with a GMM prior. This was extended
by subsequent works like GraphEDM (Wang et al. (2019)) which incorporated graph convolutional
networks to capture structural relationships. Although elegant, such deep generative models intro-
duced considerable training complexity and instability by simultaneously optimizing reconstruction
and clustering.

To combat the instability and variance inherent in single-model approaches, the field shifted towards
learning multi-view and consensus clustering. Early consensus methods (Strehl & Ghosh (2002))
aggregated multiple clusterings into a robust partition but were computationally expensive and op-
erated as post-hoc procedures disconnected from representation learning. Recent innovations in
self-supervised consensus learning (Liu et al. (2021)) have attempted to generate synthetic views
through semantic-preserving transformations, reducing the dependency on naturally occurring mul-
tiview data while maintaining the stability benefits of consensus approaches.

Contributions: In our work, we build on this progression with the following contributions:

1. We propose a clustering method that creates multiple views of the original embeddings
and then harnesses their collective structure through a spectral consensus process, reducing
misclustering error relative to single-view methods.

2. We design a hybrid objective combining contrastive learning and gaussian mixture negative
log-likelihood, which maximizes mutual information between embeddings and consensus
clusters, improving generalization to unseen data.

3. We develop an iterative co-training scheme that alternates between updating cluster assign-
ments and model parameters, yielding stable solutions that outperform baselines.

Figure 1 illustrates the methodology including: Consensus clustering and Contrastive Training.

2 METHODOLOGY

2.1 OVERVIEW OF THE GAUSSIAN MIXTURE MODEL (GMM)

The Gaussian Mixture Model (GMM) is a probabilistic model for clustering and density estimation.
It is defined as a weighted sum of Gaussian distributions:

p(x) =

K∑
k=1

πkN (x | µk,Σk),

where:

• πk is the mixing coefficient of the k-th component, with
∑K

k=1 πk = 1,
• N (x | µk,Σk) denotes the Gaussian distribution with mean µk and covariance Σk.

Given a dataset D = {x1, . . . ,xN}, the likelihood under the GMM is: L(Θ) =
∏N

n=1 p(xn | Θ),
where Θ = {πk, µk,Σk}Kk=1 are the model parameters to be estimated.
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Figure 1: Text Clustering using Multi-view Transformation

The Expectation-Maximization (EM) algorithm is used for maximum likelihood estimation, until
convergence:

• E-Step: Compute the responsibilities:

γnk =
πkN (xn | µk,Σk)∑K
j=1 πjN (xn | µj ,Σj)

.

• M-Step: Update parameters:

πk ←
1

N

N∑
n=1

γnk, µk ←
∑N

n=1 γnkxn∑N
n=1 γnk

, Σk ←
∑N

n=1 γnk(xn − µk)(xn − µk)
T∑N

n=1 γnk
.

2.2 TEXT CONSENSUS CLUSTERING BASED ON MULTI VIEW REPRESENTATION

2.2.1 MULTI-VIEW EMBEDDINGS VIA VIEW-SPECIFIC TRANSFORMATIONS

Let xi denote the textual content associated with the i-th document of a textual dataset where
i ∈ {1, . . . , N}. Each text is encoded with a Sentence-BERT Transformer fθ to obtain the tex-
tual embeddings: hi = fθ(xi), hi ∈ Rd.

Given embeddings H = [h1, . . . ,hn] ∈ Rd×n, we construct m alternative views using view-specific
transformations. For transformation Tθ : Rd → Rd,

H
(v)
i = Tθ(v)(hi), v ∈ {1, . . . ,m}, i ∈ {1, . . . , n},

where each θ(v) is a randomly sampled parameter set (e.g., a random matrix or noise parameter) for
view v. This results in m distinct transformed datasets H(v) = [h

(v)
1 , . . . ,h

(v)
n ]. We consider both

deterministic transformations (such as using Principle Component Analysis PCA, Wavelet Packet
Transforms WPT, or the use of several BERT models as shown in Table 1) and stochastic transfor-
mations (such as injecting Gaussian Noise).

2.2.2 CONSENSUS CLUSTERING VIA SPECTRAL CLUSTERING

For each view v, we perform clustering using GMM with K components and isotropic homogeneous
covariance. Let C(v) = {C(v)

1 , . . . , C
(v)
K } denote the resulting cluster assignment for view v, and

A(v) : {1, . . . , n} → {1, . . . ,K} the cluster assignment function: A(v)(i) = k if x
(v)
i ∈ C

(v)
k .
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Table 1: Several Pretrained sentence embedding models used for the Multi-view embeddings gener-
ation.

Model Output dimension
all-MiniLM-L6-v2 384
paraphrase-MiniLM-L6-v2 384
multi-qa-MiniLM-L6-cos-v1 384
all-mpnet-base-v2 768
paraphrase-multilingual-MiniLM-L12-v2 384
distiluse-base-multilingual-cased-v2 512
all-distilroberta-v1 768

We construct a co-occurrence (consensus) matrix W ∈ Rn×n, whose entry Wij is the fraction of
views in which nodes i and j are assigned to the same cluster:

Wij =
1

m

m∑
v=1

I
(
A(v)(i) = A(v)(j)

)
, where I(·) is the indicator function.

Finally, we obtain the refined consensus clustering Ĉ = {Ĉ1, . . . , ĈK} with spectral clustering. We
compute the normalized graph Laplacian L corresponding to W:

D = diag(d1, . . . , dn), di =

n∑
j=1

Wij , L = I−D−1/2WD−1/2,

where D is the diagonal degree matrix and I is the identity matrix.

Then, we compute the K smallest eigenvectors of L and form the matrix U = [u1,u2, . . . ,uK ] ∈
Rn×K , where uk denotes the kth eigenvector associated with the kth smallest eigenvalue.

We then row-normalize U to obtain Ũi =
Ui

∥Ui∥2
, i = 1, . . . , n, where Ui is the ith row of U .

Finally, we apply K-means clustering to the rows {Ũ1, . . . , Ũn}, assigning each node i to its corre-
sponding cluster Ĉk (refer to Algorithm 1 for implementation details).

2.2.3 CONSENSUS VS. SINGLE-VIEW CLUSTERING:

In the appendix, we provided theoretical guarantees showing that consensus clustering based on
multiple transformed views of the data achieves a strictly lower expected misclustering rate com-
pared to applying Gaussian Mixture Models (GMMs) on a single view. The purpose of this analysis
was to rigorously quantify the advantage of aggregating information across multiple views rather
than relying on any one view alone.

Specifically, we studied the minimax risk: inf ẑ supz∗ E[h(ẑ, z∗)],

The misclustering fraction is defined as:

h(ẑ, z∗) = min
π∈SK

1

n

n∑
j=1

1{π(ẑj) ̸= z∗j }.

where z∗ = (z∗1 , . . . , z
∗
n) denotes the true cluster assignment of all n samples, ẑ = (ẑ1, . . . , ẑn) is

the estimated assignment, and SK is the set of all permutations of {1, . . . ,K}.
In the single-view case, we derived a lower bound on the misclustering error by introducing the
advantage parameter for each cluster a as δa = ra − maxb ̸=a pab and the minimum advantage
parameter as δ = mina δa, where ra is the probability that a point from cluster a is correctly assigned
and pab is the probability that a point from cluster a is assigned to cluster b where b ̸= a.

This leads to the bound:
E[h(ẑ, z∗)]original view ≥

1− δ

2
,

which is valid beyond Gaussian mixtures.

We then analyzed multi-view consensus clustering, where m independent transformed views are
clustered separately and the final label is determined via majority vote. By applying Hoeffding’s

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

inequality to the sum of correct votes across views, we derive the following upper bound as function
of δ and m:

E[h(ẑ, z∗)]consensus ≤ (K − 1) exp

(
−mδ2

2

)
,

The upper bound shows exponential decay in m whenever the per-view advantage δ is positive.

The main conclusion is that, while the single-view misclustering rate is bounded below by a positive
constant, the multi-view consensus error decreases exponentially with the number of views m under
mild conditions on view diversity and informativeness. Therefore, there exists a finite m0 such that
for all m > m0,

E[h(ẑ, z∗)]consensus < E[h(ẑ, z∗)]original view.

This establishes the theorem that consensus clustering with sufficiently many independent informa-
tive views strictly improves upon single-view clustering in expectation.

For a multivariate Gaussian, the covariance matrix fully determines the joint distribution. Thus, zero
covariance implies that the joint density factorizes, and the variables are independent.

Moreover, one can argue that weakly uncorrelated views contribute proportionally to their degree
of uncorrelation: a lower correlation implies that each view is more effective, and fewer views are
required to achieve the same performance. Consequently, for weakly uncorrelated views, the total
number of views m is greater than or equal to the number of effective views.

Theorem for Consensus Clustering
Condition 1 (View Diversity): The collection {Xv}mv=1 is mutually independent.
Condition 2 (View Informativeness):

r(v)a > max
b ̸=a

p
(v)
ab for all a ∈ {1, . . . ,K}, v ∈ {1, . . . ,m}

which implies δ = minv,a δ
(v)
a > 0 where δ

(v)
a = r

(v)
a −maxb̸=a p

(v)
ab

Result:
E[h(ẑ, z∗)]consensus ≤ (K − 1) exp

(
−mδ2

2

)
m→∞−−−−→ 0

∃m0 such that ∀m > m0, E[h(ẑ, z∗)]consensus < E[h(ẑ, z∗)]original view

2.3 LATENT SPACE REPRESENTATION LEARNING

After obtaining the refined cluster assignment, we train the MLP qϕ to produce cluster shaped latent
representations. Our training objective is to maximize the mutual information between embeddings
hi ∈ Rd and their assigned cluster centroids ci ∈ Rd, to ensure that the learned representations re-
flect cluster-level semantics. Let H and C be the random variables corresponding to the embeddings
and cluster centroids, respectively. The mutual information is defined as:

I(H;C) = H(C)−H(C | H) = −
K∑

k=1

πk log πk +
1

N

N∑
i=1

K∑
k=1

γik log γik. (1)

Mutual information is maximized by (i) encouraging balanced cluster weights πk = 1/K to increase
H(C), and (ii) promoting confident assignments γik → 1 for the true cluster to reduce H(C |
H). Since changing H(C) alters the cluster distribution, our practical optimization focuses on
minimizing H(C | H) by sharpening the assignment probabilities γik (see Appendix A for details).

The assignment probability is given by:

γik =
πk · N (hi | µk, σk)∑K
j=1 πj · N (hi | µj , σj)

. (2)

For L2-normalized embeddings, this reduces to a softmax over cosine similarities:

N (hi | µ, σ2) ∝ exp

(
sim(hi,µ)

σ2

)
. (3)
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This directly connects to the InfoNCE loss, which for a single sample hi is defined as:

L(i)
N = − log

exp
(

sim(hi,µk)
τ

)
∑K

j=1 exp
(

sim(hi,µj)
τ

) , (4)

with the total loss averaged over all samples:

LN =
1

N

N∑
i=1

L(i)
N . (5)

MinimizingLN increases similarity between embeddings and their assigned centroids while decreas-
ing similarity to others, thereby sharpening γik, reducing H(C | H), and consequently maximizing
I(H;C) (Appendix A).

On the other hand, our prior assumption is that embeddings are generated from a Gaussian Mixture
Models. We enforce the Gaussian mixture prior through a negative log-likelihood loss:

LGMM = −
n∑

i=1

log

(
K∑

k=1

πkN (hi|µk,Σk)

)
,

The combined optimization objective integrates both losses: L = αLInfoNCE + βLGMM,

Backpropagation through L simultaneously pulls embeddings toward assigned centroids while re-
pelling others via LInfoNCE and constrains embeddings to lie on the manifold defined by the Gaussian
mixture via LGMM. Algorithm 2 describes the iterative algorithm that iterate between applying algo-
rithm 1 for consensus clustering and training on joint contrastive and GMM negative log-likelihood
losses.

Algorithm 1 Consensus Multi-view Text Clustering
Require: Embeddings H = {hi}ni=1, number of views m, clusters K
Ensure: Consensus labels ŷ ∈ {1, . . . ,K}n

1 Initialize transforms {T (v)}mv=1 (e.g., PCA, encoders, perturbations)
2 for v ← 1 to m do
3 H(v) ← T (v)(h), R(v) ← GMM(H(v),K) // soft n×K assignments

c(v) ← argmaxR(v) // hard labels

4 Wij ← 1
m

∑
v 1{c

(v)
i = c

(v)
j }, L ← I −D−1/2WD−1/2 with D = diag(W1), U ← K smallest

eigenvectors of L row-normalized, ŷ ← KMeans(U,K)
5 return ŷ

Algorithm 2 Iterative Latent Space Learning with Consensus
Require: Embeddings {hi}, clusters K, encoder ϕθ, parameters {πk,µk,Σk}, weights α, β, tem-

perature τ , epochs E, Number of epochs as Clustering Interval e
Ensure: Trained ϕθ, consensus assignments ŷ

6 for epoch← 1 to E do
7 if epoch%e = 0 then
8 Run Alg. 1, update ŷ, {µk}

9 InfoNCE loss: LInfoNCE = 1
N

∑
i− log

exp(
sim(hi,µŷi

)

τ )∑
j exp(

sim(hi,µj)
τ )

10 GMM loss: LGMM = −
∑

i log
(∑

k πkN (hi|µk,Σk)
)

11 Training: L = αLInfoNCE + βLGMM ⇒ Update encoder ϕθ by backpropagation
12 return encoder ϕθ

6
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3 EVALUATION

We conduct our experimentations using 2 datasets: DBPedia and Reuters R8 Datasets. We evaluate
first the Consensus Clustering alone, then we evaluate the effectiveness of the iterative co-training
by testing on unseen text data.

3.1 MULTI-VIEW CONSENSUS LEARNING EVALUATION

Figure 2: Multi-view Clustering Performance against View Diversity

Table 2: NMI and ARI values of several models under some transformations on the DBPedia Dataset
with k = 8 clusters

Metric
Single View Multi-View Consensus Clustering

KMeans Gaussian Mixture Model Spectral Clustering Gaussian Mixture Model
Heterogeneous Homogeneous Heterogeneous Homogeneous

Original Embeddings NMI 69.5 68.8 69.5 61.4 – –
ARI 60.6 60.3 60.7 52.5 – –

WPT Transform NMI – 70.5 ± 0.7 73.6 ± 2.3 – 71.0 73.0
ARI – 60.7 ± 1.4 63.6 ± 0.9 – 61.7 63.2

PCA NMI – 70.1 ± 0.5 74.1 ± 1.9 – 70.6 74.6
ARI – 59.6 ± 1.6 65.5 ± 1.8 – 61.6 67.3

PCA + WPT Transform NMI – 65.0 ± 6.3 73.9 ± 4.4 – 71.4 78.8
ARI – 60.7 ± 1.4 63.6 ± 0.9 – 61.0 69.3

PCA + Gaussian Noise NMI – 68.3 ± 1.7 69.6 ± 4.0 – 70.8 76.0
ARI – 58.8 ± 2.2 61.0 ± 4.1 – 61.4 66.9

PCA + Multiple Models NMI – 71.0 ± 2.2 75.6 ± 3.0 – 72.6 78.9
ARI – 59.9 ± 3.1 66.2 ± 3.6 – 62.4 68.8

PCA + Gaussian Noise + Multiple Models NMI – 68.5 ± 3.2 70.8 ± 4.8 – 77.6 80.0
ARI – 57.8 ± 3.8 61.1 ± 5.7 – 66.7 70.0

PCA + WPT + Multiple Models NMI – 66.3 ± 5.2 73.4 ± 4.8 – 75.2 81.2
ARI – 53.5 ± 6.6 62.9 ± 6.6 – 65.0 71.4

Table 3: NMI and ARI values of several models under some transformations on the DBPedia Dataset
with k = 14 clusters

Metric
Single View Multi-View Consensus Clustering

KMeans Gaussian Mixture Model Spectral Clustering Gaussian Mixture Model
Heterogeneous Homogeneous Heterogeneous Homogeneous

Original Embeddings NMI 72.7 69.4 72.8 58.5 – –
ARI 61.2 57.5 61.2 46.2 – –

WPT Transform NMI – 72.2 ± 1.1 76.7 ± 1.2 – 73.7 77.9
ARI – 59.5 ± 1.7 65.0 ± 1.9 – 62.0 67.5

Multiple Models NMI – 71.1 ± 1.8 75.1 ± 2.2 – 75.3 78.0
ARI – 58.8 ± 2.3 63.1 ± 2.7 – 63.1 65.9

PCA + Multiple Models NMI – 73.0 ± 1.7 75.9 ± 2.1 – 76.8 79.6
ARI – 58.9 ± 2.4 63.6 ± 2.8 – 63.4 67.7

PCA + Gaussian Noise + Multiple Models NMI – 70.8 ± 2.5 71.5 ± 4.0 – 77.2 79.4
ARI – 57.8 ± 2.9 60.1 ± 4.0 – 64.2 67.6

PCA + WPT + Multiple Models NMI – 66.4 ± 6.7 74.0 ± 4.2 – 76.8 80.8
ARI – 50.0 ± 9.4 59.6 ± 7.6 – 64.0 68.8

7
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Table 4: NMI and ARI values of several models under some transformations on the Reuters R8
Dataset with k = 6 clusters

Metric
Single View Multi-View Consensus Clustering

KMeans Gaussian Mixture Model Spectral Clustering Gaussian Mixture Model
Heterogeneous Homogeneous Heterogeneous Homogeneous

Original Embeddings NMI 72.8 73.9 65.0 68.6 – –
ARI 68.0 70.0 55.4 61.4 – –

PCA + Gaussian Noise + Multiple Models NMI – 64.1 ±5.0 69.3 ±7.0 – 74.7 81.0
ARI – 62.6 ±5.4 63.1 ±8.8 – 71.9 75.0

PCA + WPT + Multiple Models NMI – 62.8 ±11.0 70.2 ±10.8 – 77.5 82.5
ARI – 57.7 ±13.7 64.1 ±14.7 – 73.7 81.1

We evaluate the Multi-view Consensus Clustering framework against standard baselines including
K-Means, Gaussian Mixture Models (GMM), and Spectral Clustering. For both the GMM baseline
and our consensus approach, we consider two covariance settings: isotropic heterogeneous (Case 1)
and isotropic homogeneous (Case 2). Experimental results demonstrate that our consensus model
achieves superior performance under homogeneous isotropic covariance. As shown in Tables 2, 3
and 4, our framework consistently outperforms baselines on both DBPedia and Reuters R8 datasets
when combined with appropriate transformations. The method shows particular effectiveness with
high perturbations (e.g., PCA + WPT + Multiple Models) that preserve semantic structure.

Figure 2 illustrates the relationship between the diversity of the generated views, the clustering
performance of individual views, and the overall performance of the consensus method. Diversity
is quantified as the mean ARI value across all pairwise combinations of the generated views. The
results demonstrate that the effectiveness of consensus clustering is determined solely by two factors:
the diversity among the generated views and the clustering performance of the Gaussian mixture
model on these views. This empirical observation supports the theorem established earlier, which
links the performance of consensus clustering to its ability to satisfy both the diversity condition
and the informativeness condition. Specifically, the theoretical proof in the appendix showed that
the consensus clustering error depends on the number of diverse views m and on the advantage
term δ of each view, the latter being directly related to the clustering quality of the corresponding
transformed view. The plot confirms this by showing that the PCA + WPT + Multiple Models
transformation achieves the best results, as it more closely satisfies the conditions of the theorem.
These findings highlight the importance of transformation choice. Transformations that generate
a greater degree of diversity (e.g., through stronger feature corruption or nonlinear perturbations)
while still preserving the informativeness condition (Condition 2) are more likely to produce less
correlated views. By effectively increasing the usable number of views m, such transformations
enable the consensus method to achieve a lower error floor, thereby more accurately reflecting the
theoretical guarantees of the proof.

3.2 TRAINING EVALUATION

(a) (b) (c) (d)

Figure 3: Comparative clustering results on the DBPedia dataset, for k = 8 clusters. a) KMeans
Clustering. b) Gaussian Mixture Model Clustering. c) Spectral Clustering. d) Consensus Clustering
- Contrastive Training at epoch 20.
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We assess the effectiveness of the training procedure in reshaping the latent space such that it be-
comes more amenable to clustering. As illustrated in Figure 3, our method successfully brings
embeddings closer to their assigned centroids, thereby validating its effectiveness. This observation
is validated when looking at the silhouette score and the Calinski-Harabasz score. Both metrics
indicate a more topologically clustered latent space, which can subsequently be more effectively
clustered by a simple algorithm such as KMeans.

3.3 CLUSTERING ON UNSEEN TEST DATA

We investigate whether a clustering model trained on a subset of the data can be effectively applied
to unseen samples, under the assumption that these samples are drawn from the same underlying
distribution as the training data. The results, reported in Table 5 and Figure 4, indicate that clustering
can be performed on a relatively small subset of the dataset, after which the trained model reshapes
the latent space such that the resulting embeddings are more amenable to clustering using a simple
KMeans or GMM algorithm.

Table 5: Clustering Performance under Different Settings, after 10 epochs

Setting NMI (Train) ARI (Train) NMI (Test) ARI (Test)
90% Training - 10% Testing 80.4 71.1 79.6 70.3
50% Training - 50% Testing 80.4 71.1 79.9 70.8
20% Training - 80% Testing 80.1 68.7 78.7 67.6
10% Training - 90% Testing 81.3 71.5 79.5 70.1

Training (90%) Testing (10%)

(a) Training on 90% and Testing on 10% of the text
documents.

Training (10%) Testing (90%)

(b) Training on 10% and Testing on 90% of the text
documents.

Figure 4: Clustering performance on unseen text documents from the DBPedia dataset for k = 8
clusters at epoch 10.

4 CONCLUSION

In this work, we present a consensus clustering method that generates multi-view transformations of
the original embeddings to achieve a better clustering performance compared to single-view cluster-
ing. The clustering effectiveness increases with the degree of diversity, which is determined by the
number of uncorrelated views generated by the transformation, and the clustering performance on
each single view.

Then, we trained an MLP encoder to project the original high-dimensional latent space into a lower-
dimensional representation, where applying KMeans clustering yields improved results. The combi-
nation of contrastive loss and Gaussian negative log-likelihood contributes to shaping a latent space
that enhances clustering quality and maintains consistency with the Gaussian prior assumption.

Finally, we demonstrated that the proposed model generalizes effectively to unseen text documents,
achieving robust clustering performance even when trained on a relatively small fraction of the
available dataset.
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A APPENDIX

PROOF 1 - MINIMIZING INFONCE LOSS MAXIMIZES MUTUAL INFORMATION BETWEEN
EMBEDDINGS AND THEIR ASSIGNED CLUSTER CENTROIDS

In this proof, we demonstrate that minimizing the InfoNCE loss maximizes the mutual information
between embeddings and their assigned cluster centroids. The mutual information I(h; c) between
node embeddings h and cluster assignments c is defined as:

I(h; c) = H(c)−H(c | h) (6)

where H(c) is the entropy of cluster assignments:

H(c) = −
K∑

k=1

p(ck) log p(ck) = −
K∑

k=1

πk log πk (7)

and H(c | h) is the conditional entropy:

H(c | h) = −
N∑
i=1

K∑
k=1

p(hi)p(ck | hi) log p(ck | hi) = −
1

N

N∑
i=1

K∑
k=1

γik log γik. (8)
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The mutual information is therefore expressed as:

I(h; c) = −
K∑

k=1

πk log πk +
1

N

N∑
i=1

K∑
k=1

γik log γik (9)

Mutual information maximization is achieved through two mechanisms:

1. Maximizing H(c) by encouraging uniform cluster weights πk = 1
K ;

2. Minimizing H(c | h) by promoting confident assignments where γik → 1 for the true
cluster and γik → 0 for others.

We initialize cluster weights with a uniform distribution 1
K but training the optimal clustering might

diverge the weights from being uniform, which is totally acceptable since our main objective is to
yield the best possible clustering which is sometimes reached with non-uniform weight distribution.
But since we also want to maximize I(h, c) and since H(c) is not to be changed because it will
directly affect the clustering, the objective of maximizing mutual information while preserving the
optimal clustering would be to minimize H(c|h) by promoting confident assignments.

The soft assignment probability γik is computed as:

γik =
πk · N (hi | µk, σk)∑K
j=1 πj · N (hi | µj , σj)

(10)

which is maximized when N (hi | µk, σk) is maximized and N (hi | µj , σj) is minimized for all
j ̸= k.

For L2-normalized embeddings where ∥hi∥ = ∥µ∥ = 1:

sim(hi,µ) =
h⊤
i µ

∥hi∥ ∥µ∥
= h⊤

i µ

and:
∥hi − µ∥2 = 2− 2h⊤

i µ = 2(1− sim(hi,µ)).

The Gaussian density simplifies to:

N (hi | µ, σ2) =
1√
2πσ2

exp

(
−∥hi − µ∥2

2σ2

)
=

1√
2πσ2

exp

(
sim(hi,µ)

σ2

)
(11)

N (hi | µ, σ2) ∝ exp

(
sim(hi,µ)

σ2

)

The InfoNCE loss for a single sample hi is defined as:

L(i)
N = − log

exp
(

sim(hi,µk)
τ

)
∑K

j=1 exp
(

sim(hi,µj)
τ

) (12)

with the total loss averaged over all samples:

LN =
1

N

N∑
i=1

L(i)
N (13)

Minimizing LN increases the similarity between hi and its assigned centroid µk while decreasing
similarity to other centroids. This sharpens the posterior distribution γik, reducing H(c | h) which
maximizes the mutual information I(h; c) constrained on obtaining the optimal clustering.

11
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PROOF 2 - CONSENSUS CLUSTERING ACHIEVES A LOWER EXPECTED MISCLUSTERING RATE
THAN SINGLE VIEW CLUSTERING

In this proof, we demonstrate that running any clustering model on multiple transformed views of
the data, followed by a spectral consensus step on a co-occurrence matrix, yields a strictly smaller
expected misclustering rate than applying the same clustering procedure on a single view, under
some conditions.

For any clustering algorithm, define:

• ra = probability that a point from cluster a is correctly assigned

• pab = probability that a point from cluster a is assigned to cluster b (b ̸= a)

Define the advantage for cluster a as:

δa = ra −max
b̸=a

pab.

This measures how much better the algorithm is at correct assignment vs. its highest misassignment.

Let δ = mina δa be the minimum advantage across all clusters.

We define the misclustering fraction for an estimator ẑ is:

h(ẑ, z∗) = min
π∈SK

1

n

n∑
j=1

1{π(ẑj) ̸= z∗j }.

where z∗ = (z∗1 , . . . , z
∗
n) denotes the true cluster assignment of all n samples, ẑ = (ẑ1, . . . , ẑn) is

the estimated assignment, and SK is the set of all permutations of {1, . . . ,K}.

A - LOWER BOUND ON THE EXPECTED MISCLUSTERING RATE OF THE GAUSSIAN MIXTURE
MODEL

Our goal is to derive a lower bound on the minimax risk:

inf
ẑ
sup
z∗

E[h(ẑ, z∗)].

For each cluster a, we have:

1− ra =
∑
b ̸=a

pab ≥ max
b̸=a

pab,

and thus:
1− δa = 1− ra +max

b̸=a
pab ≤ 2(1− ra),

which implies:

1− ra ≥
1− δa

2
≥ 1− δ

2
.

Now consider the worst-case scenario where only two clusters have the minimum advantage δ and
the remaining clusters are perfectly separated (δa = 1 for other clusters).

The error is lower bounded by the error on the two closest clusters:

E[h(ẑ, z∗)]original view ≥ 1−δ
2

The key insight is that there is a fundamental limit to how well any clustering algorithm can perform,
determined by the advantage parameter.

12
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B. MULTI-VIEW CONSENSUS CLUSTERING IMPROVES UPON SINGLE-VIEW CLUSTERING

Suppose we have m independent views of the data, each obtained by applying a transformation.

Assume that for each view v, the clustering algorithm produces labels such that for any point from
cluster a:

r(v)a > max
b̸=a

p
(v)
ab .

Define the advantage for cluster a in view v as:

δ(v)a = r(v)a −max
b̸=a

p
(v)
ab .

Let
δ(v) = min

a
δ(v)a , and δ = min

v
δ(v).

We assume δ > 0.

The views are independent. For multi-view consensus clustering, we consider majority voting: each
point is assigned to the cluster that wins the majority of votes across views.

For a fixed point from cluster a, the probability that it is misclassified to cluster b is the probability
that the number of views assigning it to b is at least the number assigning it to a. Let Xv be the
indicator that view v assigns the point to a, and Yv be the indicator that view v assigns it to b. Note
that for each view, Xv and Yv are not independent, but across views they are independent. Consider
the difference Zv = Xv − Yv . Then the event that the point is assigned to b rather than a requires
that the sum of Zv over v is ≤ 0. The expected value of Zv is r(v)a − p

(v)
ab ≥ δ

(v)
a ≥ δ. Applying

Hoeffding’s inequality to the sum of Zv (note that Zv takes values in [−1, 1] with range 2), we get:

Pr

(
m∑

v=1

Zv ≤ 0

)
≤ exp

(
− 2(mδ)2

m · (2)2

)
= exp

(
−mδ2

2

)
.

By union bound over all b ̸= a, the probability that a specific point from cluster a is misclassified is
at most:

Pr(error for point from a) ≤ (K − 1) exp

(
−mδ2

2

)
.

Since this bound holds for every point regardless of its cluster membership, the expected misclus-
tering fraction is also bounded by:

E[h(ẑ, z∗)]consensus ≤ (K − 1) exp
(
−mδ2

2

)
.

Superiority of Multi-View Consensus

From Part A, the expected misclustering error of a single view is bounded below by:

E[h(ẑ, z∗)]original view ≥
1− δ

2

The Multi-view bound decays exponentially with m, while the single-view error is constant in m.
Therefore, for sufficiently large m:

E[h(ẑ, z∗)]consensus < E[h(ẑ, z∗)]original view

Conditions:

Condition 1 (View Diversity): For any additional view m, the view must be independent of all
previous views. Formally, the collection of indicator random variables {Xv}mv=1 is mutually inde-
pendent, This ensures the new view provides non-redundant information essential for Hoeffding’s
inequality.
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Condition 2 (View Informativeness): Each view must provide meaningful clustering information.
Formally, for each true cluster a and view v, the probability of correct assignment must exceed the
maximum probability of incorrect assignment:

r(v)a > max
b ̸=a

p
(v)
ab for all a ∈ {1, . . . ,K}, v ∈ {1, . . . ,m}.

This implies the advantage parameter δ = minv,a δ
(v)
a > 0, where δ

(v)
a = r

(v)
a −maxb ̸=a p

(v)
ab .

Under these conditions, the consensus misclustering error decays exponentially with the number of
views m:

E[h(ẑ, z∗)]consensus ≤ (K − 1) exp

(
−mδ2

2

)
.

Consequently:
lim

m→∞
E[h(ẑ, z∗)]consensus = 0.

Since the single-view misclustering error is bounded below by a positive constant 1−δ
2 (from Part

A), there exists a finite m0 such that for all m > m0:

E[h(ẑ, z∗)]consensus < E[h(ẑ, z∗)]original view

That is, consensus clustering with sufficiently many views outperforms single-view clustering.

Theorem for Consensus Clustering
Condition 1 (View Diversity): The collection {Xv}mv=1 is mutually independent.
Condition 2 (View Informativeness):

r(v)a > max
b ̸=a

p
(v)
ab for all a ∈ {1, . . . ,K}, v ∈ {1, . . . ,m}

which implies δ = minv,a δ
(v)
a > 0 where δ

(v)
a = r

(v)
a −maxb ̸=a p

(v)
ab

Result:
E[h(ẑ, z∗)]consensus ≤ (K − 1) exp

(
−mδ2

2

)
m→∞−−−−→ 0

∃m0 such that ∀m > m0, E[h(ẑ, z∗)]consensus < E[h(ẑ, z∗)]original view
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