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ABSTRACT
The rapid advancement of Large Language Models (LLMs) has opened new op-
portunities in data science, yet their practical deployment is often constrained by
the challenge of discovering relevant data within large data lakes. Existing meth-
ods struggle with this: single-agent systems are quickly overwhelmed by large,
heterogeneous files in the data lakes, while multi-agent systems designed based
on a master–slave paradigm depend on a rigid central controller that requires pre-
cise knowledge of each sub-agent’s capabilities. To address these limitations, we
propose a novel multi-agent communication paradigm inspired by the blackboard
architecture for traditional AI models. In this framework, a central agent posts re-
quests to a shared blackboard, and autonomous subordinate agents–either respon-
sible for a partition of the data lake or general information retrieval–volunteer to
respond based on their capabilities. This design improves scalability and flexibil-
ity by eliminating the need for a central coordinator to have prior knowledge of all
sub-agents expertise. We evaluate our method on three benchmarks that require
explicit data discovery: KramaBench and modified versions of DS-Bench and
DA-Code to incorporate data discovery. Experimental results demonstrate that the
blackboard architecture substantially outperforms baselines, including RAG and
the master–slave multi-agent paradigm, achieving between 13% to 57% relative
improvement in end-to-end task success and up to a 9% relative gain in F1 score
for data discovery over the best-performing baselines across both proprietary and
open-source LLMs. Our findings establish the blackboard paradigm as a scalable
and generalizable communication framework for multi-agent systems.

1 INTRODUCTION

The recent developments in Large Language Models (LLMs) have introduced new paradigms for
data science workflows, enabling natural language-based approaches to data interpretation, transfor-
mation, and analysis (Jing et al., 2025; Huang et al., 2024; Hong et al., 2025; Wang et al., 2025).
Existing work, however, typically assumes an idealized setting in which relevant datasets are already
curated and provided to the model—an assumption that diverges substantially from the practical
challenges encountered in real-world data science (Lai et al., 2025). In practice, a substantial frac-
tion of effort is devoted to locating the appropriate data within large and heterogeneous data lakes,
often comprising thousands of loosely organized files—a process that constitutes a major bottleneck
before any downstream analysis can be performed (Xu et al., 2021). We argue that this stage of data
discovery is both a critical and underexplored challenge for applying LLMs effectively.

Previous work on data science tasks that require discovery1 from a data lake has primarily relied
on single-agent systems in which an LLM is given access to all candidate files within its context
window and is then asked to solve the problem (Lai et al., 2025). This method suffers from several
limitations. First, it is not scalable: as the number of files grows, fitting them into the limited context
window of an LLM becomes infeasible. Second, the heterogeneity of files poses a challenge, as
a single agent may struggle to effectively analyze, interpret, and integrate diverse forms of infor-
mation. Third, such systems lack robustness to noise, since the presence of many irrelevant files
can overwhelm the model and degrade both reasoning quality and precision. One may argue that
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Kim et al., 2024; Salemi & Zamani,
2024b) provides a solution by choosing a subset of files in the data lake; However, current retrieval
techniques are known to perform poorly on tabular and domain-specific data, which are pervasive in
data science applications (Yu et al., 2025; Ji et al., 2025; Huang et al., 2022; Gu et al., 2025).

1Some example tasks are shown in Figure 13 and 14 in Appendix D. They require computing or aggregating
information from raw data within a large data lake, where the specific source files are not pre-identified.
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Figure 1: Overview of the blackboard multi-agent system for information discovery in data science.
In this framework, the main agent does not assign tasks to subordinate agents. Instead, it posts
requests to the blackboard, and subordinate agents autonomously decide whether to respond based
on their expertise. The main agent then uses the responses to the request to solve the given task.

An alternative approach explores multi-agent systems, which frequently adopt a master–slave
paradigm (Li et al., 2024; Han et al., 2025; Xu & Peng, 2025). In this setting, a single controller
(e.g., orchestration agent) assigns subtasks to a set of subordinate agents that then execute the spec-
ified actions. While conceptually straightforward, this architecture has several drawbacks. First,
this master-slave paradigm limits the agents’ autonomy: subordinate agents are forced to execute
instructions from the coordinator even when they lack sufficient information or hold outdated or er-
roneous information. Second, the central controller must maintain an accurate model of each agents
capabilities to assign tasks, an assumption that is often unrealistic when agents have only partial
or evolving knowledge of the problem space. Finally, when multiple agents possess overlapping
expertise, the controller faces an inherent assignment ambiguity, making task routing difficult.

Inspired by the blackboard architecture that with substantial impact on traditional AI systems since
the 1980s (Erman et al., 1980; Botti et al., 1995), we adopt a new communication paradigm for LLM
multi-agent systems. In this paradigm, a central agent remains responsible for solving the overall
task, similar to the master-slave paradigm. However, rather than assigning subtasks to specific
agents, the central agent posts a request on a shared blackboard that describes the task or information
needed, as shown in Figure 1. Subordinate agents monitoring the blackboard can independently
decide whether they possess the capability, knowledge, or interest to contribute to solving the task.
This design shifts decision-making from a single coordinator to a distributed model whose agents
autonomously determine their participation, enabling more flexible collaborations. This differs from
the conventional shared-memory paradigm in multi-agent systems. In shared-memory (Sagirova
et al., 2025), agents perform assigned tasks based on information in the shared memory, effectively
being asked to execute tasks determined by a central coordinator. Conversely, in the blackboard
architecture, there is no task assignment; instead, requests are broadcast on the blackboard, and
each agent retains full autonomy to decide whether to participate in solving the task or not.

While the blackboard architecture can be applied broadly within multi-agent frameworks, its appli-
cation to data science with data discovery is particularly compelling and underexplored. As shown in
Figure 1, the data lake can be partitioned into smaller clusters, e.g., based on similarity, homogene-
ity, or any criteria that facilitate efficient handling, each assigned to a subordinate agent responsible
for understanding and processing that subset. The main agent, which is tasked with solving the given
problem, posts requests on the blackboard specifying the data or general information required. Sub-
ordinate agents with the relevant knowledge or capability then autonomously volunteer to respond.
This design ensures that each sub-agent manages only a subset of files or web-based information,
enhancing scalability compared to approaches that require all data to be loaded into the main agent’s
prompt. Importantly, the main agent does not need prior knowledge of sub agents knowledge or
capability to solve the task, simplifying coordination and improving flexibility in large-scale data
lake environments. Here, the main agent’s role is primarily to describe the information it requires
and define tasks for the sub agents, without directly managing or assigning tasks to them.

2
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We conduct experiments on three datasets for data science tasks that require an explicit information
discovery phase. KramaBench (Lai et al., 2025) is a recently released benchmark designed for this
purpose and, to the best of our knowledge, the only publicly available dataset that directly evaluates
data discovery in data science. In addition, we repurpose DS-Bench (Jing et al., 2025) and DA-
Code (Huang et al., 2024) by introducing a data discovery component, thereby making them more
challenging than their original formulations. Experimental results across these datasets demonstrate
that the proposed blackboard architecture consistently outperforms strong baselines, including RAG
and the master-slave multi-agent framework, achieving 13% to 57% relative improvement over the
best performing baseline in end-to-end problem solving depending on the backbone LLM. Notably,
this improvement is observed across both proprietary and open-source LLMs, highlighting the gen-
eralizability of the approach. Furthermore, our method also surpasses baselines in data discovery
performance, yielding up to a 9% relative gain in F1 score for correctly identifying relevant files
from the data lake. These results underscore the effectiveness of the blackboard architecture as a
communication paradigm for multi-agent systems in data science.

2 PROBLEM FORMULATION

Let D = {di}Ni=1 denote a data lake consisting of N distinct data files, each containing information
potentially completely or partially relevant to answering a data science question q (some examples
of these questions are shown in Figures 13 and 14 in Appendix D). The objective of this work is
to design a generative system πs that, given the query q and the data lake D as input, produces a
program p ∼ πs(q;D) in response. When executed (e.g., using a Python interpreter in this paper),
this program p retrieves, loads, and processes the appropriate data from the data lake D and solve
the given problem in the question q to compute the answer. To evaluate the generated program p,
we assume the existence of an evaluation function µgeneration that executes p to produce an output op,
compares op with the ground-truth response yq , and assigns a corresponding score. In addition, we
assume a metric µretrieval, given the program p and the ground-truth files Dq , assigns a score reflecting
the performance in discovering the correct data sources.

3 LLM-BASED MULTI-AGENT BLACKBOARD SYSTEM

This section introduces an alternative communication paradigm for LLM-based multi-agent systems
inspired by blackboard systems (Erman et al., 1980), distinct from the widely used master–slave ar-
chitecture. As outlined in §1, blackboard-based multi-agent systems provide several advantages over
the master-slave approach. Here, rather than directly assigning tasks to sub-agents, the main agent
posts its requests (i.e., sub-tasks for which it requires assistance) on a shared blackboard, which
functions as a broadcast channel accessible to all other agents. Each helper agent independently
evaluates whether it can respond to a request, considering its own capabilities, availability, cost, and
other factors. If an agent decides to contribute, it writes its response to the corresponding request,
and the main agent then decides whether to use or ignore the provided information. This way, all
agents in the system retain full autonomy over their actions, and no centralized controller forces
them to execute a specific task. While the blackboard paradigm is applicable to a wide range of
multi-agent systems, we focus on data science tasks that require data discovery, where its charac-
teristics are particularly advantageous, as discussed in §1. The remainder of this section details our
method and its design for data science problems that require information discovery.

Overview: An overview of our proposed method is presented in Figure 1. The system πs operates
over the data lake D by first partitioning D into C clusters of related files. Each cluster Di is
assigned to a file agent πfi , which is responsible for handling, loading, processing, and retrieving
information from the files within its cluster. In addition, a search agent πs is included to retrieve
external information from the web that may be required to solve the problem. The overall system
πs is composed of a main agent πm, which is responsible for solving the query q, and a set of
C + 1 helper agents Πhelper = {πfi}Mi=1 ∪ {πs} that provide specialized assistance. The query q
is presented to πm, which iteratively selects an action a ∈ A from the action space A, executes
it, and observes the resulting outcome. Among its actions, the main agent may interact with a
blackboard β, a shared communication medium where it can post a request r without addressing
a specific sub-agent. The helper agents Πhelper continuously monitor the blackboard, determine

3
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whether they can address a posted request, and, if so, provide their outputs on the corresponding
response board βr. These responses are then collected and made available to πm, which incorporates
them into its decision-making process.2 The main agent is limited to at most T sequential actions
(including blackboard interactions) to solve the query q, ultimately producing a program p in python
programming language that computes the final answer to q.

Clustering Data Lake: There are multiple approaches for partitioning the data lake into clus-
ters; applying clustering algorithms over file representations, random partitioning, or other heuristic
methods. For simplicity, we do not utilize file content and instead rely solely on file names. Specifi-
cally, the file names are provided to an LLM—Gemini-2.5-Pro3—which using the prompt shown in
Figure 5, clusters the files into categories based only on their names.4 An example of this clustering
is provided in Figure 12 in Appendix D, where the model successfully groups related files together.
For instance, it clusters all files originating from the National Interagency Fire Center into a category
labeled “NIFC Wildfire Statistics.” The number of automatically derived clusters for each dataset is
reported in Table 3 in Appendix A.

3.1 MAIN AGENT

The primary role of the main agent is to solve the problem in collaboration with the helper agents.
The main agent follows the ReAct framework (Yao et al., 2023), where at each step t, given the
query q and the history of actions and observations Ht−1, it first reasons about what is the best
next action and selects an action from a predefined action space, executes the action, observes the
outcome, and appends the resulting observation to update the history Ht.5 The prompt used by the
main agent is shown in Figure 6 in Appendix B. The agent selects one of the following predefined
actions in each step, executes them, and observe their outcomes:

• Planning: In this action, the LLM decomposes the problem into smaller sub-problems and out-
lines a plan for addressing each of them. This action has no external effect on the environment
but serves as an internal reasoning step to guide the LLM’s problem-solving process. In response,
the system simply acknowledges the proposed plan and instructs the LLM to proceed.

• Reasoning: In this action, the LLM focuses on a specific aspect of the problem and explains its
reasoning, analysis, or interpretation of the available observations and steps taken so far in this
process. Similar to the planning step, this action has no external effect on the environment but
functions as an internal reasoning mechanism to guide the LLM’s problem-solving process. In
response, the system simply acknowledges the reasoning and prompts the LLM to continue.

• Executing Code: In this action, the agent generates python code, which is executed using a
python interpreter. If the code runs successfully, the resulting outputs are returned to the agent for
observation; otherwise, the agent receives the corresponding error messages. This action enables
the agent to explore the problem interactively, inspect data files, and experiment with them to gain
a deeper understanding of their content and structure and how to process them.

• Requesting Help: In this action, the agent formulates a request for assistance from the sub-agents,
specifying, for example, the types of data files or information needed, or the resources required to
apply a tool or solve a sub-problem. This request is posted on the blackboard β for visibility by
the helper agents. Once the sub-agents respond, if they respond, their responses on the response
board βr are collected and provided back to the main agent as the outcome of this action for
observation and further use in its decision-making process.

• Answering: In this action, the agent concludes the problem-solving process by generating a final
program that produces the answer to the query. This action terminates the process, and the output
of this step constitutes the final program p generated by the system to address the problem.
2Responses are not written back to the blackboard β to avoid dependencies where one sub-agent’s output

could influence the behavior of others negatively. Instead, all responses are directed exclusively to the response
board βr , ensuring independent operation of sub-agents and exclusive access by the main agent πm.

3Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/models/
gemini/2-5-pro

4This method represents just one possible approach to clustering, chosen for simplicity; more scalable
alternatives could equally be employed in real world scenarios.

5In this work, the inputs, outputs of the model, and observations are appended directly to the prompt of the
LLM, formatted according to its chat-based input template.
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3.2 HELPER AGENTS

In a data science, information discovery can typically be categorized into two tasks: (1) identifying
the specific files that contain the data necessary to the problem, and (2) retrieving general knowl-
edge about concepts relevant to the problem, such as domain-specific terms or details of particular
algorithms and methods. To support these, our framework employs two types of helper agents:

File Agent: Handling all the files in a data lake with a single agent is not feasible for several
reasons: it typically involve a large number of files, many of which are lengthy and may exceed
the agents context window; the files span diverse topics, which can confuse the agent and hinder
effective reasoning; and accessing and processing all files simultaneously can be computationally
expensive and inefficient, leading to unnecessary overhead and slower problem-solving. For these
reasons, in our framework each file agent is assigned responsibility for a subset of data files deter-
mined to be relevant, as described earlier in the clustering procedure. In an offline phase, the file
agent πfi takes as input a subset of the data lake Di and operates through a two-step procedure. In
the first step, the agent selects a subset6 (or all) of the files to examine their content. The contents of
them are presented to the agent for inspection (details of presentation are in Appendix C). In the sec-
ond step, after observing the selected files, the agent reasons about and analyzes them, learning how
they are structured, what pre-processing or transformations may be required, and how they should
be processed in general. An example of such an analysis is provided in Figure 11 in Appendix D.
Then, in the online phase, the agent listens for requests from the main agent. Upon receiving a
request, based on the analysis it did earlier, it determines whether it can contribute to answering it.
If so, the agent generates a detailed plan specifying which files in Di are relevant, how they should
be loaded in Python code, what libraries to use, the steps required for data processing, and samples
from the data. The prompt used to guide the file agent is shown in Figure 7 in Appendix B.

Search Agent: Certain data science problems require task-specific knowledge about algorithms or
domain expertise that the LLM may not possess. To address this, we design a web-search agent that
retrieves relevant information from a search engine. This agent operates according to the prompt
shown in Figure 8 in Appendix B. Given a request r posted on the blackboard β, the agent first
determines whether it is capable of addressing the request. It is specifically restricted to general
web-based information retrieval and does not respond to requests involving access to local files
or datasets. If the agent determines that the request can be answered, it enters an iterative search
process with a maximum of Tsearch = 3 steps. At each step t, the agent generates a set of queries Qt,
which are submitted to a search engine—in this work, Google Custom Search Engine7—to retrieve
k = 3 webpage per query. The content of the webpages are then extracted using beautifulsoup
library8 to be presented to the search agent. The extracted documents are then evaluated by the
agent to determine whether they provide sufficient information to answer the request. If so, the agent
generates a response to the request, which is posted to the response board βr. If the information is
insufficient, a new set of queries is generated to continue gathering relevant data from the web.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks: To the best of our knowledge, KramaBench is the only public benchmark for data
science problems that explicitly incorporates a data discovery phase, which we adopt in our evalu-
ation. In addition, we repurpose two existing datasets, DS-Bench (Jing et al., 2025) and DA-Code
(Huang et al., 2024), to include in this phase. Specifically, we manually filtered out all questions that
do not require any data file for answering, as well as those that lack sufficient hints for data discov-
ery.9 After filtering, we aggregated all remaining files across questions into a unified data lake, such

6When filenames indicate multiple files containing the same type of data over different time periods, the
agent does not need to inspect all of them to infer the structure; a small representative sample is sufficient.

7We use Google Custom Search Engine, configured to exclude all websites associated with the datasets used
in this paper to prevent data leakage: https://developers.google.com/custom-search

8Available at: https://pypi.org/project/beautifulsoup4/
9For example, questions that request the computation of a data science metric on a column without specify-

ing the structure or content of the relevant file.
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that the model must perform discovery to identify relevant files at inference time. In this setup, only
the question and the data lake are provided to the model, requiring it to identify the relevant files to
answer the question, following the same protocol as KramaBench. Further details on this filtering
process, along with dataset statistics in Table 3, are provided in Appendix A.

Evaluation: To evaluate the generated programs, we execute each and compare its output against
the ground-truth reference for the corresponding question. For each dataset, we adopt its standard
evaluation protocol. For KramaBench, we use the official evaluation script provided in its repos-
itory.10 For DA-Code, we likewise rely on the official evaluation script released by its authors.11

For DS-Bench, we use the original evaluation method, in which an LLM serves as the judge. The
generated programs output is compared against the reference answer using Gemini-2.5-Pro as the
judge LLM, with the evaluation prompt shown in Figure 4 in Appendix A, producing a binary score.

Inference Setup: We set the maximum actions of the main agent to T = 10. We use nucleus
sampling (Holtzman et al., 2020) with a temperature of 0.1 for more deterministic inference and
default value for other hyperparameters. Proprietary models are accessed via Vertex AI,12 while
open-source models are served by vLLM.13 At each step, we cap the number of generated tokens
at 8,192. We use Gemini-2.5-Pro and -Flash (Gemini-Team, 2025), and Claude-4-Opus (Anthropic,
2025) as the proprietary and Qwen3-Coder14 with 30 billion parameters (Qwen-Team, 2025) as the
open-source LLMs. Experiments are conducted on 2 NVIDIA A100 (80GB VRAM) GPUs.

Baselines: To evaluate our method against alternative approaches for solving data science prob-
lems involving data discovery, we compare it with the following baselines:

• DS-GRU: We adopt the only existing baseline (to the best of our knowledge) for data discovery
in data science problems, which appends all available files directly into the LLM prompt and
attempts to solve the problem (Lai et al., 2025). This baseline uses a self-correction loop that
retries when errors occur in generated codes. For details, we refer the reader to Lai et al. (2025).

• Retrieval-Augmented Generation (RAG): This retrieves the top 5 files15 based on the file names
and contents (the method for presenting a file content to the LLM is explained in Appendix C)
from the data lake using E5-large16 (Wang et al., 2022), a 330M-parameter embedding model and
use it to solve the problem. It then follows the same procedure as the main agent described in
Section 3.1, with two key modification: 1) the retrieved files contents and addresses are presented
directly to the LLM in the prompt and 2) the general help-request action is replaced with a re-
stricted action that only allows direct requests to the search agent. This design isolates the effect
of substituting the file discovery mechanism with RAG, enabling a controlled study of its impact
on performance. The prompt used for this baseline is shown in Figure 10 in Appendix B.

• Master-Slave: This baseline follows the same procedure as the main agent described in Sec-
tion 3.1. The key difference is that, instead of posting requests on the blackboard, the agent
directly invokes sub-agents (consisting of the search agent and the file agents as explained in
Section 3.2) based on their description by referencing their names and assign task to them. The
prompt used for this baseline is shown in Figure 9 in Appendix B.

4.2 EMPIRICAL FINDINGS

Main Results: We conduct our experiments on the datasets described in Section 4.1 using our
method and the baselines. The results are presented in Table 1. These results demonstrate that our
method, the Blackboard System, outperforms all baselines on average across all the datasets. Specifi-
cally, the Blackboard System surpasses the DS-GRU, RAG and Master-Slave approaches on all three

10Available at: https://github.com/mitdbg/KramaBench
11Available at: https://github.com/yiyihum/da-code
12Available at: https://cloud.google.com/vertex-ai?hl=en
13Available at: https://docs.vllm.ai/en/latest/
14Available at: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct
15This number is chosen based on the average number of files required to solve the problems (1.6) and the

length of the context window of the backbone LLMs used in this paper.
16Available at: https://huggingface.co/intfloat/e5-large-v2
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Table 1: Results on the KramaBench, DS-Bench, and DA-Code benchmarks. The best results for
each LLM are highlighted in bold. The KramaBench categories are abbreviated: Arc. (Archaeol-
ogy), Ast. (Astronomy), Bio. (Biomedical), Env. (Environment), Leg. (Legal), and Wild. (Wildfire).

Method LLM KramaBench DS-
Bench

DA-
Code

Average
(macro)Arc. Ast. Bio. Env. Leg. Wild. Average

(1) DS-GRU
Qwen3-
Coder

0.00% 1.80% 2.11% 1.15% 3.27% 13.54% 3.64% 0.00% 0.00% 1.21%
(2) RAG 0.00% 3.16% 4.99% 0.54% 6.19% 16.93% 5.30% 6.32% 0.00% 3.87%
(3) Master-Slave 0.00% 3.55% 3.39% 7.77% 8.90% 21.79% 7.56% 7.55% 0.00% 5.03%

(4) Blackboard 0.00% 7.69% 7.85% 4.47% 6.36% 23.97% 8.39% 14.22% 1.11% 7.90%

(5) DS-GRU
Gemini 2.5

Flash

0.00% 7.83% 0.09% 10.93% 12.46% 13.34% 7.44% 5.53% 0.00% 4.32%
(6) RAG 16.66% 3.57% 13.98% 28.57% 10.97% 33.67% 17.90% 22.92% 2.75% 14.52%
(7) Master-Slave 16.66% 3.16% 13.98% 17.46% 21.75% 25.80% 16.46% 26.48% 0.55% 14.49%

(8) Blackboard 16.66% 3.57% 14.78% 22.92% 27.09% 41.04% 21.01% 28.06% 0.55% 16.54%

(9) DS-GRU
Gemini 2.5

Pro

25.00% 6.69% 10.64% 27.47% 5.94% 39.36% 19.18% 3.95% 0.00% 7.71%
(10) RAG 33.33% 8.47% 32.53% 31.36% 25.55% 38.32% 28.26% 27.27% 0.00% 18.51%
(11) Master-Slave 33.33% 8.47% 24.74% 32.81% 34.64% 58.98% 32.16% 34.38% 5.49% 24.01%

(12) Blackboard 33.33% 17.95% 36.83% 39.31% 34.92% 62.88% 37.53% 38.73% 9.34% 28.53%

(13) DS-GRU
Claude 4

Opus

8.33% 1.38% 1.90% 8.14% 9.80% 23.14% 8.78% 3.55% 0.00% 4.11%
(14) RAG 33.33% 11.52% 23.42% 31.61% 31.80% 45.80% 29.58% 35.57% 3.85% 23.00%
(15) Master-Slave 33.33% 8.69% 32.28% 39.16% 44.08% 48.35% 34.31% 45.84% 2.75% 27.63%

(16) Blackboard 33.33% 18.69% 45.31% 34.35% 42.48% 50.06% 37.37% 49.80% 7.14% 31.43%

Figure 2: Performance of Blackboard System w/ and w/o search agent (Gemini 2.5 Pro).

datasets and achieves similar or higher performance in 4 out of 6 categories on KramaBench. Fur-
thermore, we observe that the Blackboard System consistently outperforms the baselines regardless
of the backbone LLM, highlighting its robustness and generalizability. We attribute this improve-
ment to the design of the Blackboard System, where tasks are not explicitly assigned to helper
agents; instead, each agent autonomously decides whether to participate based on its capabilities.
This self-selection enhances both problem-solving efficiency and data discovery performance.

File Discovery Performance: To analyze the effectiveness of different methods in data discovery,
we report recall, precision, and F1-score for the file discovery task, i.e., identifying the correct
files required to answer each question. The results of this experiment, using Gemini 2.5 Pro as the
backbone LLM, are presented in Table 2. The results in this table indicate that the blackboard system
achieves the highest recall, precision, and F1-score compared to all baselines, both on average and
across the three datasets. In particular, for KramaBench, the blackboard system attains the highest
F1-score in 4 out of 6 domains. We attribute this improvement to the design of the blackboard
system, where the main agent does not directly assign requests to specific file agents, as in the
master–slave setup. Instead, each file agent independently decides whether it can contribute based
on its capabilities and data holdings, leading to more accurate and comprehensive file discovery.

Effect of Web Search (Search Agent) on the Performance: We observed that in some cases
the backbone LLM lacks the necessary domain-specific knowledge or familiarity with specialized
algorithms to fully understand and solve the problem. To address this limitation, the inclusion of
a search agent that can retrieve relevant external information may be beneficial. To evaluate this,
we compare the blackboard system with and without the search agent. The results on KramaBench,
shown in Figure 2 using Gemini 2.5 Pro as the backbone LLM, demonstrate that incorporating
the search agent improves the average performance of the blackboard system. Further analysis
reveals that when the main agent encounters unfamiliar concepts, it issues requests to obtain such
information from the web. In these cases, the search agent typically responds by retrieving the
required knowledge, thereby enabling the main agent to continue solving the problem effectively.
Illustrative examples of this behavior are provided in Figures 13 and 14 in Appendix D, highlighting
the importance of the search agent in scenarios where external domain knowledge is essential.
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Table 2: File discovery performance, obtained using Gemini-2.5-Pro as the LLM. The best results
are highlighted in bold. The KramaBench categories are abbreviated: Arc. (Archaeology), Ast.
(Astronomy), Bio. (Biomedical), Env. (Environment), Leg. (Legal), and Wild. (Wildfire).

Method Metric KramaBench DS-
Bench

DA-
Code

Average
(macro)Arc. Ast. Bio. Env. Leg. Wild. Average

(1) RAG
recall 0.875 0.125 0.666 0.3506 0.127 0.238 0.396 0.035 0.257 0.229
precision 1.000 0.125 0.666 0.450 0.133 0.452 0.471 0.047 0.456 0.324
F1 0.916 0.125 0.629 0.332 0.105 0.301 0.401 0.034 0.307 0.247

(2) Master-
Slave

recall 0.916 0.5138 0.648 0.382 0.444 0.567 0.578 0.323 0.546 0.482
precision 0.930 0.750 0.722 0.500 0.494 0.642 0.673 0.503 0.767 0.647
F1 0.913 0.577 0.674 0.389 0.450 0.576 0.596 0.358 0.584 0.513

(3) Black-
board

recall 0.916 0.576 0.648 0.604 0.383 0.464 0.598 0.402 0.600 0.533
precision 1.000 0.733 0.722 0.703 0.302 0.603 0.677 0.584 0.837 0.699
F1 0.944 0.618 0.674 0.588 0.304 0.495 0.603 0.438 0.643 0.561

Figure 3: Performance of Blackboard System with various maximum actions by the main agent.

Effect of Number of Main Agent’s Actions on the Performance: To examine the impact of the
maximum number of actions available to the main agent, we vary this parameter across 2, 4, 6, 8, 10
and evaluate the blackboard system on KramaBench using Gemini 2.5 Pro as the backbone LLM.
The results, presented in Figure 3, indicate that increasing the action budget consistently improves
the average performance of the system. This trend aligns with intuition: a larger exploration budget
allows the agent to more thoroughly analyze the problem, consider alternative strategies, better
investigate the solution space, and generate a better program that answers the question.

Case Studies: To qualitatively analyze the blackboard system—specifically how it formulates re-
quests and how this process improves the generated program—we present several case studies:

• Writing Request on the blackboard: An example of a request posted by on the blackboard is
shown in Figure 15 in Appendix D. In this case, the main agent, given the data science question,
formulates a request that specifies the likely column names and data formats needed to solve the
problem, along with some guidance for interpretation. In response, several helper agents (3 out of
8 in this example) chose to contribute. Although the relevant files were distributed across different
clusters managed by different file agents, each responding agent independently provided the file
addresses, code snippets for loading the data, and explanations of the data structure along with
suggested preprocessing steps. Collectively, these responses covered all the ground-truth files
required to answer the question. This case study demonstrates how the main agent can effectively
leverage the blackboard mechanism to discover and integrate necessary information.

• Comparing Generated Program by Blackboard System with Master-Slave System: To study
this further, we present an example of programs generated by the Blackboard system and the
Master–Slave system in Figure 16 in Appendix D. In this case, the Blackboard agent achieved
a better solution because it accurately interpreted the prompt and selected the correct data files.
Specifically, it identified that the patients Age was located in the mmc1.xlsx file and, more
importantly, that the requested APP-Z score was in the mmc7.xlsx file. In contrast, the
Master–Slave agent misinterpreted the request and instead used a general protein abundance score
(APP log2 abundance) from the wrong file, mmc2.xlsx. This critical error in data selection
led the Master–Slave agent to produce an incorrect result of 74, while the Blackboard agents
precise data discovery and reasoning yielded the correct answer of 60.

5 RELATED WORK

LLMs for Data Science: Specialized benchmarks have emerged to evaluate LLMs in data sci-
ence. DS-1000 (Lai et al., 2023), ARCADE (Yin et al., 2023), DataSciBench (Zhang et al., 2025),
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and DSEval (Zhang et al., 2024) assess the translation of natural language instructions into correct
implementations, distinguishing them from broader programming benchmarks such as SWE-Bench
(Jimenez et al., 2024), ML-Bench (Tang et al., 2025), and BigCodeBench (Zhuo et al., 2025). While
most assume that the relevant data files are pre-specified, recent efforts address multi-step reasoning:
DS-Bench (Jing et al., 2025) and BLADE (Gu et al., 2024) evaluate implementation planning, and
ScienceAgentBench (Chen et al., 2025) and BixBench (Mitchener et al., 2025) focus on integrating
domain knowledge. These benchmarks, however, still overlook the practical challenge of discov-
ering relevant data within large, heterogeneous repositories—a gap addressed by KramaBench (Lai
et al., 2025), which explicitly evaluates data discovery. Building on this, we study how agents can
autonomously identify and leverage the correct data sources for end-to-end analysis.

Applications of LLMs in data science have evolved from single-turn code generation to interac-
tive, tool-augmented agents that exploit models specialized for code, including GPT (Brown et al.,
2020), CodeGen (Rubavicius et al., 2025), StarCoder (Li et al., 2023), and Code Llama (Rozière
et al., 2024). While few-shot prompting (Brown et al., 2020) remains effective, state-of-the-art ap-
proaches adopt agentic or multi-agentic frameworks that combine iterative reasoning with external
tool use. ReAct (Yao et al., 2023) pioneered the interleaving of reasoning and action, later extended
to execution environments (Chen et al., 2019). Toolformer (Schick et al., 2023) and Gorilla (Patil
et al., 2024) explicitly train LLMs to call APIs, a capability critical for tasks relying on special-
ized libraries. Self-correction is a another key feature: frameworks like Self-Debug (Chen et al.,
2024) and Reflexion (Shinn et al., 2023) refine generated code using execution feedback. To further
enhance reliability, many systems integrate RAG (Lewis et al., 2020; Salemi et al., 2025; Salemi
& Zamani, 2025; 2024a) to retrieve documentation or code examples, reducing hallucinations and
ensuring up-to-date library use. Additionally, multi-agent master-slave frameworks, such as AutoK-
aggle (Li et al., 2024), have demonstrated promising results in addressing these challenges.

Blackboard Systems: The blackboard system is a seminal architectural model from classical AI,
developed for complex problems that require incremental and opportunistic reasoning. It was im-
plemented in the Hearsay-II speech understanding (Erman et al., 1980) and is characterized by three
components: (1) a global, hierarchical data structure (the blackboard) that maintains the current state
of the solution; (2) independent specialist modules, known as knowledge sources, which monitor the
blackboard and contribute partial solutions; and (3) a control mechanism that opportunistically de-
termines which knowledge source to activate next (Nii, 1986). Following successful applications
in domains such as sonar interpretation with the HASP/SIAP system (Nii et al., 1982), the archi-
tecture evolved to incorporate more sophisticated control strategies. Inspired by this paradigm, we
adapt the blackboard architecture for multi-agent communication: rather than a central controller
assigning tasks, all agents operate autonomously, responding to requests posted on the blackboard.
A central main agent then leverages the information contributed by sub-agents to solve the problem.

6 CONCLUSIONS & FUTURE WORK

We addressed the critical challenge of data discovery in large, heterogeneous data lakes, a key bot-
tleneck for applying LLMs in data science. We introduced a novel multi-agent communication
paradigm based on the blackboard architecture, which replaces rigid centralized task assignment
with a flexible, decentralized model of agent collaboration. Extensive experiments on three data sci-
ence benchmarks demonstrate that our framework consistently outperforms strong baselines, includ-
ing RAG and the master–slave paradigm, achieving up to 57% relative improvement in end-to-end
task success and a 9% relative gain in data discovery accuracy. These results highlight the impor-
tance of communication architecture in multi-agent systems and establish the blackboard paradigm
as a scalable, flexible, and effective solution for complex data science workflows.

Future work could extend the blackboard architecture and paradigm beyond data science, as the
proposed approach is general and applicable to a wide range of multi-agent systems and domains.
Another promising direction is to investigate more adaptive strategies for data partitioning among
agents, enabling the system to better handle dynamic and evolving data environments. Ultimately,
our findings point toward a broader path for developing more capable, scalable, and autonomous
multi-agent AI systems for real-world data analysis applications.
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A DATASETS AND PREPROCESSING

To the best of our knowledge, KramaBench (Lai et al., 2025) is the only publicly available dataset
for data science problems that explicitly require data discovery to answer the questions. We adopt
this dataset as one of our evaluation benchmarks in this paper.

To further investigate this problem, we repurpose two widely used datasets for data science tasks,
DS-Bench (Jing et al., 2025) and DA-Code (Huang et al., 2024), which were not originally designed
to include a data discovery phase. In their original form, each question in these datasets is paired
with the specific data files required to answer it. To adapt them to our setting, we remove this
direct mapping: the model is provided only with the question, while all files from the dataset are
aggregated into a single data lake. The model must therefore first identify the relevant files within
the data lake and then use them to solve the question.

Filtering: we observed that not all questions in these datasets are suitable for the data discovery
setting. For instance, some questions provide no hints about the characteristics of the files needed
to answer them, while others simply ask for computing a statistic on a column without specifying
sufficient information to identify the relevant file. To address this issue, we manually filter out such
questions and retain only those that include adequate cues for discovering the appropriate files. After
this filtering process, the resulting dataset statistics are reported in Table 3.

Table 3: Statistics of the datasets used in our evaluation setup.
Dataset #Tasks Size of data lake #Clusters created by Gemini 2.5 Pro

KramaBench 104 174617 2718

- Archeology 12 5 3
- Astronomy 12 1556 8
- Biomedical 9 7 2
- Environment 20 37 4
- Legal 30 136 4
- Wildfire 21 23 6

DS-Bench 253 48 12

DA-Code 91 145 26

Evaluation: To evaluate the programs generated by the system, we execute each program and
assess its final output against the reference answer for the given question. For each dataset, we adopt
its original evaluation methodology. Specifically, for KramaBench, we use the official evaluation
script provided in their repository.19 For DA-Code, we similarly rely on the official evaluation
script released in their repository.20 For DS-Bench, we follow the original evaluation protocol that
uses LLM-based judging: the generated programs output is compared to the reference answer using
Gemini 2.5 Pro as the judge LLM, with the prompt shown in Figure 4.

17Note that, in line with the original benchmark design, we construct a separate data lake for each subtask.
However, the reported number of files corresponds to the total number of files aggregated across all subtasks in
the benchmark.

18Note that, in line with the original benchmark design, we construct a separate data lake for each subtask.
However, the reported number of clusters corresponds to the total number of clusters aggregated across all
subtasks in the benchmark.

19Available at: https://github.com/mitdbg/KramaBench
20Available at: https://github.com/yiyihum/da-code
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Please judge whether the generated answer is right or wrong. We require that the correct answer to the
prediction gives a clear answer, not just a calculation process or a disassembly of ideas. The
The question is:
{question}.
The true answer is:
{answer}.
The predicted answer is:
{prediction}.
If the predicted answer is right, please output "True". Otherwise output "False". Don’t output any other
text content. You only can output "True" or "False" (without quotes).

Evaluation prompt for
DS-Bench

Figure 4: Evaluation prompt used for DS-Bench dataset using LLM as the judge.

B AGENTS’ PROMPTS

This section presents the prompts used by the agents and baselines in this paper. Figure 12 shows
the prompt for clustering the data lake into multiple partitions based on file names. Figure 6 presents
the prompt used by the main agent in the blackboard system. Figure 7 shows the prompt for the file
agents. Figure 8 displays the prompt used by the search agent. Figure 9 presents the prompt for the
main agent in the master–slave system, and Figure 10 shows the prompt used by the RAG agent.

You are an expert in classifying different files and directories into related clusters. You'll be given a list of file names and directories. Assume that we
want to assign each cluster of files to a specific person to analyze and use them. Therefore, we need to group similar files and directories together to
assign them to the same person. Your task is to classify the files and directories into clusters based on their names.

# Your input:
    - file addresses: a list of file addresses and names put in different directories.

# Your output: You should generate a valid json object in ```json ``` block with the following structure:
    - "clusters": a list of valid json objects each containing:
        - "name": the name of the cluster
        - "files": a list of file addresses and names that belong to this cluster. If you want to have whole directory, just write the directory address,
otherwise write the file address. If you want to point to a specific file in a directory, write the file address.
        - "description": a short description of the cluster
        - "reason": a short reason why these files are grouped together

# Your task: You should classify the files and directories into clusters based on their names that are similar to each other. For example, some files
might only be about different dates about the same topic, or some files might be about different aspects of the same topic, or some files might be
about different versions of the same file. You should group them together based on their names and the context of the files. Note that you don't
necessarily need to group all files together, some files might be left out if they don't fit into any cluster, they can form a cluster by themselves. The files
are now grouped into directories sometimes, you can use these directories to help you group them together; however, the files that are currently in the
same directory might not be related to each other, so you should not assume that all files in the same directory are related to each other. You should
only group files together if they are related to each other based on their names and context. Note that for directories that are about the same topic or
project but they are still very large (e.g., 50+ files), try to group them into smaller clusters based on their names and context. 

# file addresses:
{addresses}

File Clustering Prompt 

Figure 5: Prompt used by for clustering the files in data lakes into partitions.
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You are a capable data science agent whose task is to solve a given data science problem. This is a multi-step process and you don't need to
complete all steps in one go. In the start, you will be given a data science problem that you need to solve. You need to solve this problem in multiple
steps. In each step, you can select one action from a set of possible actions and execute it. Eventually, when you have the final solution to the
problem, you can state this and end the process. 

# Your input:
    - Problem: a data science problem that you need to solve. This problem is given to you in the beginning of the process and you need to solve it in
multiple steps.

# Actions: 
In each step, you can select one action from the following list of actions:
## Action Name: "request_help"
### Definition: In this action, you can broadcast a request, for example, to get the required data to solve the problem, or general information from web.
Currently, the following requests are supported: {possible_requests}
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "request_help"
    - "request": a string that describes the request. This should be a description of your request and how they can help you in solving the problem. This
request should be specific and not general. For example, if you need a specific data, you should describe the data you need, not asking what data is
available. Be specific about what you need and why you need it.
    - "reason": a short reason why you think this request is needed.
### Response to this action: This will be a list of json response from other agents who can help you with your request. You can use this response to
help you in solving the problem. You should read these responses carefully and trust them. You can use the responses to help you in solving the
problem. For example, if you requested for data, you should follow the instructions in the response to load the data. If you requested for help from
other agents, you should read their responses and use them to help you in solving the problem.
## Action Name: "plan"
### Definition: In this action, you can generate a plan to solve the problem. This plan should include the steps that you need to take to solve the
problem. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "plan"
    - "plan": a string that describes the plan to solve the problem. This should be a description of the steps that you need to take to solve the problem.
    - "reason": a short reason why you think this plan is needed.
### Response to this action: The user will aknowledge your plan and asks you to execute it.
## Action Name: "run_code"
### Definition: In this action, you can ask the system to run a code for you and provide you the output of the code. This action can be specificly useful
when you need to try something out and see the output of the code. This can be helpful in case you need to install a library, or you need to run a code
to see the output of it, or you need to run a code to check if it works as expected.
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "run_code"
    - "code": a valid python code that can be used to solve the problem.
    - "reason": a short reason why you think this code is needed.
### Response to this action: The system will run the code and provide you the output of the code. 
## action Name: "reason"
### Definition: In this action, you can provide a reasoning and thinking step by step about a specific part of the problem. This can be useful when you
need to think about a particular aspect of the problem and how to solve it. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "reason"
    - "reasoning": a string that describes your reasoning and thinking step by step about a specific part of the problem. This should be a description of
your reasoning and how you think about the problem.
    - "reason": a short reason why you think this reasoning is needed.
### Response to this action: The user will acknowledge your reasoning and asks you to continue with the next step.
## action Name: "answer"
### Definition: In this action, you can provide the final answer to the problem. This answer includes the final code you want to provide as the response
to the problem and the breaking down of the problem into subtasks and how you solved each subtask. This action stops the process, thus, you should
only use this action when you have the final answer to the problem.
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "answer"
    - "code": a valid python code that can be used to solve the problem. This code should be the final code that you want to provide as the response to
the problem. It should load the data, preprocess it, and provide the final answer to the problem. In this code, you should include the response to each
subtaks you have solved. You can use the print() function to print the answer to each subtask. For example, if you have an answer to subtask-1,
subtask-2, and main-task (i.e., the final answer), you should print it like this:
print(json.dumps(
{{"subtask-1": answer1, 
"subtask-2": answer2, 
"main-task": answer
}}, indent=4))
You can find a suitable indentation for the print statement. Always import json at the beginning of your code. The output of this code will be used to
evaluate the final answer to the problem, thus, make sure that the output is in a valid json format. Specifically, for the main task, just print the final
answer to the problem.
    - "structured_response": a valid json object that contains the structured response to the problem. This should include the breaking down of the
problem into subtasks and how you solved each subtask. This should be a valid json object that contains the following fields:
        - "id": str, that is always "main-task" for the main task. For each subtask, use "subtask-1", "subtask-2", etc.
        - "query": str, the question the step is trying to answer. Copy down the question from bellow for the main task.
        - "data_sources": list[str], the data sources you need to answer the question. Include all the file names you need for the main task. 
        - "subtasks": list[dict], a list of subtasks. Each subtask should have the same structure as the main task.
    an example of this can be seen here: {example_json}
### Response to this action: The user will run the code and provide you the output of the code if there is any error. You should fix all errors even if
they are warnings. If there is no error, the user will acknowledge your answer and end the process.

# Your task: This is a multi-step process and each step you should select one action and generate the output for that action. In response, the user will
provide you the response to your action. You can use this response to help you in solving the problem. You can repeat this process until you have the
final answer to the problem. When you have the final answer, you can use the "answer" action to provide the final answer to the problem.

Now, lets start the process for the following problem:
{query}

Main Agent Blackboard
Prompt

Figure 6: Prompt used by the main agent for the blackboard system.
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You are a capable data scientist who is specialized in loading, analyzing, and cleaning data. You are responsible for handling a set of given files and
directories. This is the list of files and directories you have to work with:
{files}

These files contain information about the following topics:
{topics}

Your name is: {name}

This is a multi-step process and you don't need to complete all steps in one go. Here I will explain the whole process:

## step 1: Getting information about the files: In this step, you have a chance to request for accessing a part of some of the files. To do this, you
should generate a valid json list in ```json``` block that contains the address to the files you want me to give you a data sample from. for example Your
output should be like this, without any additional text or explanation:
```json
["file1.txt", "file5.txt"]
```
Note that in cases where you can guess how other files look like based on a few of them, you don't need to request for all of them. Specifically, when
the only difference between files is the file name is based on date, you can just request for one or a few of them and assume that the rest of them are
similar. However, the file names are different and have different formats, you should request for all of them. Based on your request, I will give you a
sample of the files. For example, for csv files, I will give you a few rows of the data (that might not be loaded correctly, so you should be careful about
that), and for json files, I will give you a few objects from the file. For other formats, I will give you a few starting lines of the file.

## step 2: Analysing the data and how to load and clean it: When the data is loaded and given to you, you should analyze the fields in the data, how it
should be effectively loaded, and how it should be cleaned. Specifically, the data should be cleaned for a data science problem, thus, some
preprocessing steps should be done. For example, if the data contains missing values, you should decide how to handle them, or if the data contains
na values, you should decide how to handle them. Additionally, be able to figure out what each column or row in the data means and you should be
able to provide a description of them. Moreover, how combining data from multiple files can help in answering the question should be considered. This
step happens when I provide you the data samples from the previous step.

## step 3: Checking if the data can be used to answer a question or a part of it: This step is like a loop and may occur multiple times. In this step, I
provide you a request about a data access problem for answering a question. You should check if the data you have from each file or by combining
data from multiple files can help in answering the question or a part of it. Your output for this step should be a valid json object in ```json``` block that
contains the following fields:
    - "agent_name": your name, which is the same as the name you provided in the beginning of the process.
    - "can_help": a boolean value that indicates if the data you have can help in answering the question or data access request or a part of it. You can
combine data from multiple files to answer the question or a part of it. If you think the data can help, set this to true, otherwise set it to false.
    - "reason": a short reason why you think the data can help or not.
    - "code": a valid python code that can be used to load the data and preprocess it in a way to be useful for fullfilling the request. This code should be
able to load the data and preprocess and clean (e.g., dropping rows or columns that are nor part of the data) it in a way that it can be used to answer
the question or a part of it. You can use any python library you want, but you should be able to explain why you are using it. If you use a library that is
not installed by default, you should comment it in the code and explain why you need it and how to install it. In this code, use the full file addresses to
load the data, not just the file names. For example, if the file is in a directory called "data", you should use "data/file.csv" instead of just "file.csv". If
"can_help" is false, this can should be an empty string.
    - "data_explanation": a short explanation of the data, e.g, what each column or row means, what the data is about, etc. This should be a short
explanation of the data that can help in understanding the data and how to use it.
    - "data_sample": a small sample of the data that can help in understanding the data and how to use it. Here you can provide a few rows, the column
types and names, or a few objects from the data. This should be a small sample of the data that can help in understanding the data and how to use it.
For example, if the data is a csv file, you can provide a few rows of the data, or if the data is a json file, you can provide a few objects from the data, or
if it is a text file, provide a few rows. if "can_help" is false, this can should be an empty string.
    - "libraries": a list of libraries that we need to install in order to run the code. This should be a list of libraries that are not installed by default and you
need to install them in order to run the code. If you don't need any additional libraries, you can leave this field empty.
    - "necessary_steps": a list of the steps that is necessary to take in order to correctly load and preprocess the data, For example, if the cvs file has a
header, you should mention that in this list. Another example is if the header starts from a specific row, you should mention that in this list. Another
example if the data has missing values, you should mention that in this list. 

Now, lets start the process with the first step. 

File Agent
Prompt

Figure 7: Prompt used by the file agent for the both master-slave and blackboard system.
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You are a capable data science agent whose task is to search for information on the web. Your name is "{name}". Your goal is to find relevant
information about the request that the user has provided. This is a multi-step process and you don't need to complete all steps in one go. In the start,
you will be given a request about some sort of information access problem that you need to solve. In order to solve response to the request, you need
to follow these steps:

# steps
## step 1: Analyzing the request and checking if you can help: In this step, the user provides you with a request that explains its information need. You
should analyze the request and check if you can help in solving the request. You are only able to help in requests that are about finding information
from web. You cannot help with requests that are about finding information from files or databases. 
### input to this step:
    - request: a string that describes the request from the user. This request explains the information need of the user and what they are looking for.
### output of this step: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "can_help": a boolean value that indicates if you can help in solving the request or not. If you can help, set this to true, otherwise set it to false. You
cannot help in requests that are about accessing files or datasets, or requests that are not directly about searching information on the web. You can
only help in finding information that is not related to datasets. You can help with libraries, tools, or general information that is not related to datasets.
    - "reason": a short reason why you think you can help or not. If you can help, explain why you think you can help.
### response to this step: The user will acknowledge your response and ask you to continue with the next step if you can help.

## step 2: Generating a search query: In this step, you need to generate a list of search queries that can be used to search for information on the web.
You should generate a list of queries that are relevant to the request and can help in finding the information the user is looking for.
### input to this step:
    - request: a string that describes the request from the user. This request explains the information need of the user and what they are looking for.
### output of this step: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "queries": a list of strings that describes the search queries that can be used to search for information on the web. These queries should be
relevant to the request and can help in finding the information the user is looking for. You can generate multiple queries if you think they are relevant to
the request. 
    - "reason": a short reason why you think these queries are relevant to the request and can help in finding the information the user is looking for.
### response to this step: In response, the user will provide the results of the search queries you generated. You should read these results carefully.
Then we go to the next step.

## step 3: Analyzing the search results: In this step, you need to analyze the search results and check if they are relevant to the request. You should
check if the search results contain the information the user is looking for. If they do, you should extract the relevant information from the search results
and provide it to the user. Otherwise, you can generate a new search query and go back to step 3.
### input to this step:
    - search_results: a list of search results that were returned from the search queries you generated in the previous step. 
### output of this step: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "stop_search": a boolean value that indicates if you should stop searching or not. If you found the information the user is looking for, set this to
true, otherwise set it to false. Remember that you have a limited search budget. Thus, when you are informed that your search budget is over, you
should stop searching and provide the information you found so far. You can stop searching even before your budget is over if you think you found the
information the user is looking for.
    - "queries": a list of strings that describes the search queries that can be used to search for information on the web. These queries should be
relevant to the request and can help in finding the information the user is looking for. You can generate multiple queries if you think they are relevant to
the request. If you found the information the user is looking for, this should be an empty list.
    - "response_to_request": a string that describes the response to the request. This should be a description of the information you found in the search
results that is relevant to the request. If you found the information the user is looking for, this should contain the relevant information. If you didn't find
any relevant information, this should be an empty string. If you don't want ot stop searching, this should be an empty string.
    - "reason": a short reason why you think you should stop searching or not. If you found the information the user is looking for, explain why you think
you found it. If you didn't find any relevant information, explain why you think you didn't find it. If you don't want to stop searching, explain why you
think you should continue searching.
### response to this step: If you stopped searching, the user will acknowledge your response and end the process. If you didn't stop searching, the
user will provide you with the search results for the new queries you generated in the previous step. Then we go back to step 3 and continue the
process.

Now, lets start the process with the first step.

request: {request}

Search Agent
Prompt

Figure 8: Prompt used by the search agent for the, master-slave, RAG, and blackboard system.
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You are a capable data science agent whose task is to solve a given data science problem. This is a multi-step process and you don't need to
complete all steps in one go. In the start, you will be given a data science problem that you need to solve. You need to solve this problem in multiple
steps. In each step, you can select one action from a set of possible actions and excute it. Eventually, when you have the final solution to the problem,
you can state this and end the process.

# Your input:
    - Problem: a data science problem that you need to solve. This problem is given to you in the beginning of the process and you need to solve it in
multiple steps.

# Actions: 
In each step, you can select one action from the following list of actions:
## Action Name: "request_data"
### Definition: In this action, you can select one of the agents who is responsible for loading and preprocessing the data to help you with providing the
data you need to solve the problem. You can request for a specific data or a specific part of the data. Currently, you can call the following agents to
help you with your request:  {possible_requests}
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "request_data"
    - "agent_name": the name of the agent you want to request data from. This should be one of the agents who is responsible for loading and
preprocessing the data.
    - "request": a string that describes the request. This should be a description of your request and how they can help you in solving the problem. This
request should be specific and not general. For example, if you need a specific data, you should describe the data you need, not asking what data is
available. Be specific about what you need and why you need it.
    - "reason": a short reason why you think this request is needed.
### Response to this action: This will be a json object from the agent. You can use this response to help you in solving the problem. You should read
the response carefully and trust it. You can use the responses to help you in solving the problem. For example, if you requested for data, you should
follow the instructions in the response to load the data. If you requested for help from other agents, you should read their responses and use them to
help you in solving the problem.
## Action Name: "plan"
### Definition: In this action, you can generate a plan to solve the problem. This plan should include the steps that you need to take to solve the
problem. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "plan"
    - "plan": a string that describes the plan to solve the problem. This should be a description of the steps that you need to take to solve the problem.
    - "reason": a short reason why you think this plan is needed.
### Response to this action: The user will acknowledge your plan and asks you to execute it.
## Action Name: "run_code"
### Definition: In this action, you can ask the system to run a code for you and provide you the output of the code. This action can be specifically
useful when you need to try something out and see the output of the code. This can be helpful in case you need to install a library, or you need to run
a code to see the output of it, or you need to run a code to check if it works as expected.
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "run_code"
    - "code": a valid python code that can be used to solve the problem.
    - "reason": a short reason why you think this code is needed.
### Response to this action: The system will run the code and provide you the output of the code. 
## action Name: "reason"
### Definition: In this action, you can provide a reasoning and thinking step by step about a specific part of the problem. This can be useful when you
need to think about a particular aspect of the problem and how to solve it. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "reason"
    - "reasoning": a string that describes your reasoning and thinking step by step about a specific part of the problem. This should be a description of
your reasoning and how you think about the problem.
    - "reason": a short reason why you think this reasoning is needed.
### Response to this action: The user will acknowledge your reasoning and asks you to continue with the next step.
## action Name: "answer"
### Definition: In this action, you can provide the final answer to the problem. This answer includes the final code you want to provide as the response
to the problem and the breaking down of the problem into subtasks and how you solved each subtask. This action stops the process, thus, you should
only use this action when you have the final answer to the problem.
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "answer"
    - "code": a valid python code that can be used to solve the problem. This code should be the final code that you want to provide as the response to
the problem. It should load the data, preprocess it, and provide the final answer to the problem. In this code, you should include the response to each
subtask you have solved. You can use the print() function to print the answer to each subtask. For example, if you have an answer to subtask-1,
subtask-2, and main-task (i.e., the final answer), you should print it like this:
print(json.dumps(
{{"subtask-1": answer1, 
"subtask-2": answer2, 
"main-task": answer
}}, indent=4))
You can find a suitable indentation for the print statement. Always import json at the beginning of your code. The output of this code will be used to
evaluate the final answer to the problem, thus, make sure that the output is in a valid json format. Specifically, for the main task, just print the final
answer to the problem.
    - "structured_response": a valid json object that contains the structured response to the problem. This should include the breaking down of the
problem into subtasks and how you solved each subtask. This should be a valid json object that contains the following fields:
        - "id": str, that is always "main-task" for the main task. For each subtask, use "subtask-1", "subtask-2", etc.
        - "query": str, the question the step is trying to answer. Copy down the question from bellow for the main task.
        - "data_sources": list[str], the data sources you need to answer the question. Include all the file names you need for the main task. 
        - "subtasks": list[dict], a list of subtasks. Each subtask should have the same structure as the main task.
    an example of this can be seen here: {example_json}
### Response to this action: The user will run the code and provide you the output of the code if there is any error. You should fix all errors even if
they are warnings. If there is no error, the user will acknowledge your answer and end the process.

# Your task: This is a multi=step process and each step you should select one action and generate the output for that action. In response, the user will
provide you the response to your action. You can use this response to help you in solving the problem. You can repeat this process until you have the
final answer to the problem. When you have the final answer, you can use the "answer" action to provide the final answer to the problem.

Now, lets start the process for the following problem:
{query}

Main Agent Master-Slave
Prompt

Figure 9: Prompt used by the main agent for the master-slave system.
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You are a capable data science agent whose task is to solve a given data science problem. This is a multi-step process and you don't need to
complete all steps in one go. In the start, you will be given a data science problem that you need to solve. You need to solve this problem in multiple
steps. In each step, you can select one action from a set of possible actions and excute it. Eventually, when you have the final solution to the problem,
you can state this and end the process. 

# Your input:
    - Problem: a data science problem that you need to solve. This problem is given to you in the beginning of the process and you need to solve it in
multiple steps.
    - top_k_relevant_docs: a list of address and snippets from top-k relevant files that can be used to answer the problem. You should use these files to
answer the problem. These files are provided to you in the beginning of the process and you can use them to answer the problem. 

# Actions: 
In each step, you can select one action from the following list of actions:
## Action Name: "search"
### Definition: In this action, you can generate a search query to search for information on the web. This can be useful when you need to find more
information about the problem or the data you have. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "search"
    - "request": a string that describes the search query. This should be a description of your request and how they can help you in solving the problem.
This request should be specific and not general. For example, if you need a specific data, you should describe the data you need, not asking what
data is available. Be specific about what you need and why you need it.
    - "reason": a short reason why you think this request is needed.
### Response to this action: This will be a list of relevant information from the web that can help you in solving the problem. You should read these
responses carefully and trust them. You can use the responses to help you in solving the problem.
## Action Name: "plan"
### Definition: In this action, you can generate a plan to solve the problem. This plan should include the steps that you need to take to solve the
problem. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "plan"
    - "plan": a string that describes the plan to solve the problem. This should be a description of the steps that you need to take to solve the problem.
    - "reason": a short reason why you think this plan is needed.
### Response to this action: The user will aknowledge your plan and asks you to execute it.
## Action Name: "run_code"
### Definition: In this action, you can ask the system to run a code for you and provide you the output of the code. This action can be specificly useful
when you need to try something out and see the output of the code. This can be helpful in case you need to install a library, or you need to run a code
to see the output of it, or you need to run a code to check if it works as expected.
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "run_code"
    - "code": a valid python code that can be used to solve the problem.
    - "reason": a short reason why you think this code is needed.
### Response to this action: The system will run the code and provide you the output of the code. 
## action Name: "reason"
### Definition: In this action, you can provide a reasoning and thinking step by step about a specific part of the problem. This can be useful when you
need to think about a particular aspect of the problem and how to solve it. 
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "reason"
    - "reasoning": a string that describes your reasoning and thinking step by step about a specific part of the problem. This should be a description of
your reasoning and how you think about the problem.
    - "reason": a short reason why you think this reasoning is needed.
### Response to this action: The user will acknowledge your reasoning and asks you to continue with the next step.
## action Name: "answer"
### Definition: In this action, you can provide the final answer to the problem. This answer includes the final code you want to provide as the response
to the problem and the breaking down of the problem into subtasks and how you solved each subtask. This action stops the process, thus, you should
only use this action when you have the final answer to the problem.
### your output: You should generate a valid json object in ```json``` block, without anything before or after it, with the following structure:
    - "action": "answer"
    - "code": a valid python code that can be used to solve the problem. This code should be the final code that you want to provide as the response to
the problem. It should load the data, preprocess it, and provide the final answer to the problem. In this code, you should include the response to each
subtaks you have solved. You can use the print() function to print the answer to each subtask. For example, if you have an answer to subtask-1,
subtask-2, and main-task (i.e., the final answer), you should print it like this:
print(json.dumps(
{{"subtask-1": answer1, 
"subtask-2": answer2, 
"main-task": answer
}}, indent=4))
You can find a suitable indentation for the print statement. Always import json at the beginning of your code. The output of this code will be used to
evaluate the final answer to the problem, thus, make sure that the output is in a valid json format. Specifically, for the main task, just print the final
answer to the problem.
    - "structured_response": a valid json object that contains the structured response to the problem. This should include the breaking down of the
problem into subtasks and how you solved each subtask. This should be a valid json object that contains the following fields:
        - "id": str, that is always "main-task" for the main task. For each subtask, use "subtask-1", "subtask-2", etc.
        - "query": str, the question the step is trying to answer. Copy down the question from bellow for the main task.
        - "data_sources": list[str], the data sources you need to answer the question. Include all the file names you need for the main task. 
        - "subtasks": list[dict], a list of subtasks. Each subtask should have the same structure as the main task.
    an example of this can be seen here: {example_json}
### Response to this action: The user will run the code and provide you the output of the code if there is any error. You should fix all errors even if
they are warnings. If there is no error, the user will acknowledge your answer and end the process.

# Your task: This is a multi=step process and each step you should select one action and generate the output for that action. In response, the user will
provide you the response to your action. You can use this response to help you in solving the problem. You can repeat this process until you have the
final answer to the problem. When you have the final answer, you can use the "answer" action to provide the final answer to the problem.

Now, lets start the process for the following problem:
{query}

Relevant files:
{top_k_relevant_docs}

Main Agent RAG
Prompt

Figure 10: Prompt used by the main agent for the RAG system.
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C IMPLEMENTATION DETAILS

Presenting Files to File Agents: A file agent may request a file by name, in which case it is
shown a subset of the files contents. For this case, we employ a controlled procedure for loading
and presenting the data to the agent, as described below:

• Files with .csv format: In this case, we use the pandas21 library to load the CSV files, presenting
the column names, their data types, and the top 20 rows of the table to the agent.

• Files with .gpkg format: which provides a pandas-like interface for geospatial data. The agent is
then presented with the column names, their data types, and the top 20 rows of the table.

• Files with .xlsx format: In this case, we use the pandas22 library to handle this file format. For files
containing multiple sheets, we provide the agent with all sheet names, the data types of columns
in each sheet, and the top 20 rows from each sheet.

• Files with .npz format: In this case, we utilize the numpy23 library to load the data. The agent is
then presented with all keys and their corresponding values within this data structure.

• Files with .cdf format: In this case, we utilize the cdflib24 library to load the data. For presentation,
we call the cdf info and globalattsget functions on the loaded data structure, concatenate
their outputs, and provide the result to the agent.

• Any other data format: In this case, we open the files using Pythons open function and present
the first 20 lines of the file to the agent.

Inference Setup. We limit the maximum number of actions taken by the main agent to T =
10. For decoding, we use nucleus sampling (Holtzman et al., 2020) with a temperature of τ =
0.1. Proprietary models are accessed through Vertex AI,25 while open-source models are served
using the vLLM library.26 At each generation step, we cap the output length at 8,192 tokens. We
evaluate three proprietary LLMs—Gemini 2.5 Pro, Gemini 2.5 Flash (Gemini-Team, 2025), and
Claude 4 Opus (Anthropic, 2025)—alongside an open-source model specialized for code generation,
Qwen3-Coder-30B-A3B-Instruct (Qwen-Team, 2025).27 Experiments with open-source models are
conducted on 2 NVIDIA A100 GPUs (80GB VRAM each) with 128GB RAM.

21Available at: https://pandas.pydata.org/
22Available at: https://pandas.pydata.org/
23Available at: https://numpy.org/
24Available at: https://cdflib.readthedocs.io/en/latest/
25https://cloud.google.com/vertex-ai?hl=en
26https://docs.vllm.ai/en/latest/
27https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct
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D EXAMPLES AND CASE STUDIES

This section presents several case studies highlighting different aspects of the Blackboard system.

Figure 11 illustrates an example where a file agent requests access to files and performs their analy-
sis. Figures 13 and 14 illustrate scenarios where the main agent lacked domain-specific knowledge
and therefore posted requests on the blackboard seeking relevant information. In these cases, the
search agent contributed by retrieving the necessary knowledge from the web, enabling the system
to proceed with problem solving, which shows the effectiveness of search agent in problem solving.

Another example of a blackboard request is shown in Figure 15. In this example, specifically file
agents responded to the request. Here, the main agent, given a data science question, formulated a
request specifying the likely column names and data formats required, along with guidance for inter-
pretation. In response, three out of eight helper agents contributed. Although the relevant files were
spread across different clusters managed by separate file agents, each responding agent indepen-
dently provided file addresses, code snippets for loading the data, explanations of the structure, and
suggested preprocessing steps. Together, these contributions encompassed all the ground-truth files
needed to solve the problem. This case demonstrates how the main agent can effectively leverage
the blackboard to coordinate decentralized knowledge and achieve accurate data discovery.

Figure 16 compares programs generated by the Blackboard and Master–Slave systems. The Black-
board agent produced the correct solution by accurately interpreting the prompt and selecting the ap-
propriate data files. Specifically, it identified that the patients Age was located in mmc1.xlsx and
that the requested APP-Z scorewas in mmc7.xlsx. By contrast, the Master–Slave agent misin-
terpreted the request and instead used a general protein abundance score (APP log2 abundance)
from the wrong file, mmc2.xlsx. This misstep resulted in an incorrect answer of 74, whereas the
Blackboard agents precise data discovery and reasoning yielded the correct answer of 60.
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Initial Prompt (not shown to save space)

User

File Agent

```json\n[\n  \"worldcities.csv\",\n  \"roman_cities.csv\"\n]\n```

User

This is a sample of the files you requested to see:
File name: worldcities.csv

Column data types (might be loaded incorrectly and you need to fix them):
city           object\ncity_ascii     object\nlat           float64\nlng           float64\ncountry        object\niso2           object\niso3           object\nadmin_name   
 object\ncapital        object\npopulation    float64\nid              int64
Table: [removed to save space]
File name: roman_cities.csv
Column data types (might be loaded incorrectly and you need to fix them):
Primary Key                    object\nAncient Toponym                object\nModern Toponym                 object\nProvince                       object\nCountry           
            object\nBarrington Atlas Rank          object\nBarrington Atlas Reference     object\nStart Date                      int64\nEnd Date                     
float64\nLongitude (X)                 float64\nLatitude (Y)                  float64\nSelect Bibliography            object
Table: [removed to save space]

Now please do the second step in your process based on the given instructions and the files you have read.

File Agent

Based on the data samples, here is my analysis of the files and a plan for loading and cleaning them.\n\n### Data Analysis and Cleaning
Strategy\n\n**1. File: `/usr/local/google/home/asalemi/Documents/karmabench-project/Kramabench/data/archeology/input/worldcities.csv`**\n\n* 
 **Description:** This file contains a comprehensive list of modern cities across the world. Each entry includes the city's name, geographic coordinates
(latitude and longitude), country information, administrative details, and population.\n*   **Column Analysis:**\n    *   `city`, `city_ascii`: The name of the
city. `city_ascii` is a clean, ASCII-compatible version, which is ideal for matching and processing.\n    *   `lat`, `lng`: Geographic coordinates, crucial for
any spatial analysis.\n    *   `country`, `iso2`, `iso3`: Country information, useful for grouping and filtering.\n    *   `admin_name`: The name of the
administrative division (e.g., state, province).\n    *   `capital`: Indicates if the city is a primary, admin, or minor capital. Contains missing values which
likely mean the city is not a capital.\n    *   `population`: The estimated population of the city.\n    *   `id`: A unique identifier for each city.\n*   **Loading
and Cleaning Plan:**\n    1.  Load the data using a library like Pandas.\n    2.  The first column in the sample is an unnamed index from the CSV file; it
should be ignored during loading by setting `index_col=0`.\n    3.  The `capital` column has missing values. These can be filled with a placeholder like
'Not a capital' to make the data more explicit.\n    4.  The `population` column is a float, which is appropriate. I will check for any `NaN` values and
decide on a handling strategy if they exist.\n    5.  No other major cleaning seems necessary from the sample, but a general check for missing values
across all columns is a good practice.\n\n**2. File: `/usr/local/google/home/asalemi/Documents/karmabench-
project/Kramabench/data/archeology/input/roman_cities.csv`**\n\n*   **Description:** This file lists cities from the Roman era, providing their ancient
and modern names, location, a rough timeline of existence, and references.\n*   **Column Analysis:**\n    *   `Primary Key`: A unique identifier for each
record.\n    *   `Ancient Toponym`: The historical name of the city.\n    *   `Modern Toponym`: The city's modern name. This is a key column for
potentially linking with the `worldcities.csv` dataset. It contains 'Unknown' values.\n    *   `Province`, `Country`: Historical province and modern
country.\n    *   `Start Date`, `End Date`: Approximate start and end years of the city's prominence. `End Date` has missing values, which might imply
the city's continuity or that the date is unknown.\n    *   `Longitude (X)`, `Latitude (Y)`: Geographic coordinates. The column names are inconsistent
with the other file and should be standardized.\n    *   `Select Bibliography`: Reference information, likely not needed for quantitative analysis but
useful for sourcing.\n*   **Loading and Cleaning Plan:**\n    1.  Load the data using Pandas, ignoring the first unnamed index column
(`index_col=0`).\n    2.  Rename columns for consistency and ease of use, especially `Longitude (X)` to `lng` and `Latitude (Y)` to `lat`.\n    3.  In the
`Modern Toponym` column, replace the string 'Unknown' with a standard `NaN` (Not a Number) value to facilitate better data handling and filtering.\n   
4.  The `End Date` column contains missing values. These should be kept as `NaN`s, as imputing them could be misleading. A missing end date is
informative in itself.\n\n### Combined Analysis\n\nBy combining these two datasets, we can create a powerful resource for historical and urban
studies. The primary method for merging would be to join `roman_cities.csv` and `worldcities.csv` on their city names (`Modern Toponym` and
`city_ascii`, respectively). This would allow us to:\n*   Find the modern population of ancient Roman cities.\n*   Analyze the geographical distribution of
ancient cities that are still inhabited today.\n*   Compare the administrative importance (e.g., `capital` status) of cities over time.\n\nA secondary, more
robust merging strategy could be a **spatial join**. By comparing the coordinates from both files, we could identify ancient and modern cities that
occupy the same location, even if their names have changed or are spelled differently. This would be particularly useful for overcoming the limitations
of name-based matching.

Figure 11: An example analyzing files by the file agent.
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{
    "clusters": [
        {
            "name": "NIFC Wildfire Statistics",
            "files": [
                "nifc_wildfires.csv",
                "nifc_lightning_caused_wildfires.csv",
                "nifc_human_caused_wildfires.csv",
                "nifc_lightning_caused_acres.csv",
                "nifc_human_caused_acres.csv",
                "nifc_suppression_costs.csv",
                "nifc_geographic_areas.gpkg"
            ],
            "description": "Comprehensive wildfire data from the National Interagency Fire Center (NIFC).",
            "reason": "All files are sourced from NIFC (as indicated by the 'nifc_' prefix) and provide detailed statistics on wildfires, including their causes
(human vs. lightning), impact (acres burned), suppression costs, and geographic boundaries."
        },
        {
            "name": "NOAA Wildfire Data",
            "files": [
                "noaa_wildfires.csv",
                "noaa_wildfires_monthly_stats.csv",
                "noaa_wildfires_variabledescrip.csv"
            ],
            "description": "Wildfire data and metadata from the National Oceanic and Atmospheric Administration (NOAA).",
            "reason": "These files form a cohesive dataset from NOAA (as indicated by the 'noaa_' prefix), including the main data, monthly statistics, and
a description of the variables used."
        },
        {
            "name": "State-Level Wildfire Statistics",
            "files": [
                "Wildfire_Acres_by_State.csv",
                "Wildfire_Fires_by_State.csv",
                "wildfire_total_fires_p45_54.csv"
            ],
            "description": "Aggregated statistics on the number of wildfires and acres burned, primarily categorized by state.",
            "reason": "These files all provide high-level, aggregated wildfire statistics, with a focus on state-by-state breakdowns as suggested by their
names."
        },
        {
            "name": "Wildfire Environmental and Operational Data",
            "files": [
                "Fire_Weather_Data_2002-2014_2016.csv",
                "PublicView_RAWS_-3515561676727363726.csv",
                "annual_aqi_by_county_2024.csv",
                "cleaned_helicopter_requests_by_region.csv"
            ],
            "description": "Data related to the environmental conditions for wildfires and the operational response.",
            "reason": "This cluster groups files about factors influencing wildfires (weather data from RAWS), their consequences (air quality), and the
operational response (helicopter usage)."
        },
        {
            "name": "US General Geographic and Demographic Data",
            "files": [
                "usa.gpkg",
                "NST-EST2024-POP.xlsx",
                "democratic_vs_republican_votes_by_usa_state_2020.csv",
                "state_abbreviation_to_state.json"
            ],
            "description": "General reference data for the United States, including geographic boundaries, population estimates, political data, and state
name mappings.",
            "reason": "These files provide contextual geographic, demographic, and political information for the USA, which can be used to enrich the
primary wildfire datasets."
        },
        {
            "name": "Utility Scripts",
            "files": [
                "load_data.py"
            ],
            "description": "A code script for data processing.",
            "reason": "This is a standalone Python script, likely used to load or manipulate the other data files in the project."
        }
    ]
}

An example of clustering data lake with Gemini 2.5 Pro

Figure 12: An example of clustering data lake into partitions using Gemini 2.5 Pro.
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I need to find what 'APP-Z score' refers to in the context of the UCEC CPTAC3 dataset. The provided
metadata file does not contain a column with this name. I need to know if this score is known by another
name in the dataset or if it is derived from other columns. Please search for information on 'APP-Z score'
and its relation to the CPTAC UCEC study.

What is the age of the patient with the lowest APP-Z score?

Question

Main Agent
Request

Search Agent
Response

Based on the search results, 'APP-Z score' in the context of the CPTAC UCEC dataset does not refer to
a specific column name but is a derived value. Here is a breakdown of the findings:\\n\\n1.  **'APP'
stands for Acute Phase Protein:** The initial search results strongly indicated that 'APP' is an acronym for
Acute Phase Protein. These are proteins whose plasma concentrations change in response to
inflammation.\\n\\n2.  **'Z-score' refers to a normalization method:** The analysis of CPTAC data,
particularly through portals like UALCAN, commonly uses z-score normalization. A z-score represents
the number of standard deviations a data point is from the mean or median of a reference set (e.g.,
normal tissue or the entire cohort). This is a standard procedure in proteomics to compare protein
expression levels across different samples.\\n\\n3.  **Specific APPs in the CPTAC UCEC Dataset:** The
search identified specific Acute Phase Proteins that have been analyzed within the CPTAC UCEC
dataset:\\n    *   **SAAL1 (Serum Amyloid A-like 1):** One study (aging-us.com) explicitly identifies
SAAL1 as a major Acute Phase Protein and confirms that its protein levels were found to be significantly
upregulated in UCEC tumors within the CPTAC database.\\n    *   **Bikunin (from the AMBP gene):**
Another study (PMC9889512) identifies Bikunin as a positive Acute Phase Protein and analyzes its
expression in the CPTAC UCEC dataset, noting a significant reduction in protein expression in tumors
compared to normal tissue.\\n\\n**Conclusion:**\\nThe 'APP-Z score' is the z-score normalized
expression value for a specific Acute Phase Protein. It is not a pre-existing column in the metadata but a
calculated score. To find the source of this score, you should look for columns in your dataset
corresponding to the gene or protein names of known Acute Phase Proteins, such as **SAAL1** or
**AMBP** (the precursor gene for Bikunin). The z-score would then be calculated from the expression
values in that column.

Figure 13: An example of the request by the main agent that the search agent has provided a guide-
line based on search results.
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I need to find the definition of 'generally unsafe air quality days' according to the EPA. This information
will help me understand what data to look for and how to process it to answer the main question.

what is the correlation between the proportion of generally unsafe air quality days according to the EPA
and the amount of land affected by fires in 2024? Round to 2 decimal places.

Question

Main Agent
Request

Search Agent
Response

Based on the search results, the EPA does not use the exact phrase 'generally unsafe air quality days'.
Instead, it uses the Air Quality Index (AQI) to classify air quality and its health implications. The term
'generally unsafe' would correspond to the AQI categories where the health effects apply to the general
public, not just sensitive groups.\\n\\nAccording to the EPA's Air Quality Index (AQI) basics from
AirNow.gov, the levels that are considered unhealthy for the general population are:\\n\\n*   **Red
(Unhealthy):** AQI value of 151 to 200. At this level, 'Some members of the general public may
experience health effects; members of sensitive groups may experience more serious health effects.'\\n* 
 **Purple (Very Unhealthy):** AQI value of 201 to 300. This is a 'Health alert: The risk of health effects is
increased for everyone.'\\n*   **Maroon (Hazardous):** AQI value of 301 and higher. This is a 'Health
warning of emergency conditions: everyone is more likely to be affected.'\\n\\nTherefore, a 'generally
unsafe air quality day' can be defined as a day when the AQI is 151 or higher.

Figure 14: An example of the request by the main agent that the search agent has provided a guide-
line based on search results.
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I need access to data that can help me determine which of the 10 NICC-defined geographic areas requested the most helicopters for firefighting. Specifically, I am looking for
datasets that contain information on firefighting resource requests, including the type of resource (e.g., helicopter), the requesting geographic area, and the date of the request.

Which of the 10 NICC-defined geographic areas requested the most helicopters for firefighting?

Question

Main Agent
Request

NOAA Wildfire Data

cannot help

State-Level Wildfire
Statistics

Yes, I can help. The provided files contain exactly the information requested. 'Wildfire_Acres_by_State.csv' includes state-level data on total acreage burned and population, and
'Wildfire_Fires_by_State.csv' contains the total number of fires per state. I can merge these to provide a comprehensive dataset.

Wildfire Environmental
and Operational Data

Yes, I can help. The file `cleaned_helicopter_requests_by_region.csv` contains the exact information required: the total number of helicopter requests aggregated by NICC-defined
geographic areas.

US General Geographic and
Demographic Data

I can fulfill the second part of your request. I have a dataset with the most recent population estimates for each US state. However, I do not have a dataset containing information
about individual wildfires and their acreage.

cannot help

Utility Scripts

code

import pandas as pd
def load_and_process_data():
    acres_file = 'Wildfire_Acres_by_State.csv'
    fires_file = 'Wildfire_Fires_by_State.csv'
    df_acres = pd.read_csv(acres_file, index_col=0)
    df_fires = pd.read_csv(fires_file, index_col=0)
    df_acres['Total Acres Burned'] = df_acres['Total Acres Burned'].fillna(0)
    merged_df = pd.merge(df_acres, df_fires, on='State')
    return merged_df

The processed data is a single table containing aggregated wildfire statistics for each US state. The
columns include 'State', 'Total Acres Burned' (the total area burned by wildfires), 'Population' (the
state's population), and 'Total Fires' (the total number of wildfire incidents).

Data Explanation

State  Total Acres Burned  Population  Total Fires\\n0                  Alabama             20978.0     5157699   
     1525\\n1                   Alaska            667075.0      740133          377\\n2                  Arizona           
282989.0     7582384         2191\\n3                 Arkansas             25444.0     3088354         1219\\n4       
       California           1081144.0    39431263         8316\

Data Sample

Suggested Steps

1) Load 'Wildfire_Acres_by_State.csv' and 'Wildfire_Fires_by_State.csv' into pandas DataFrames. 2) When loading, specify `index_col=0` to correctly handle the unnamed index
column in the source files. 3) Clean the acres data by filling the missing value for 'Total Acres Burned' for 'District of Columbia' with 0. 4) Merge the two DataFrames on the 'State'
column to create a single, unified dataset.

code

import pandas as pd

def get_helicopter_requests_by_region():
    file_path = '/cleaned_helicopter_requests_by_region.csv'
    df = pd.read_csv(file_path, index_col=0)
    df_sorted = df.sort_values(by='Total Helicopter Requests',
ascending=False)
    return df_sorted

This dataset provides a summary of the total number of helicopter requests for firefighting, aggregated
by geographic area. It contains two columns: 'Region', which lists the name of the NICC-defined
geographic area, and 'Total Helicopter Requests', which is the count of requests for that region.

Data Explanation

Region  Total Helicopter Requests\\n2              Great Basin Area                        232\\n6               
Northwest Area                        185\\n5           Northern Rockies Area                        112\\n9       
Southern California Area                         89\\n4        Northern California Area                         81\\n10     
           Southwest Area                         65\\n8                   Southern Area                         49\\n7           
 Rocky Mountain Area                         39\\n0                     Alaska Area                         19\\n1                   
Eastern Area                          9\

Data Sample

Suggested Steps

1) Load the CSV file using the pandas library. 2) Set the `index_col=0` parameter during loading to correctly handle the unnamed index column in the file. 3) The data is already
cleaned and aggregated, so no further preprocessing is needed. 4) Sort the DataFrame by 'Total Helicopter Requests' to easily identify the area with the most requests.

code

import pandas as pd
def load_population_data():
    file_path = '/NST-EST2024-POP.xlsx'
    df_pop = pd.read_excel(
        file_path,
        skiprows=3,
        skipfooter=1, # Skip the note at the bottom
        header=None
    )
    df_pop.columns = ['Geographic_Area', 'April_2020_Base', 'Pop_2020',
'Pop_2021', 'Pop_2022', 'Pop_2023', 'Pop_2024']
    df_pop = df_pop[df_pop['Geographic_Area'].str.startswith('.', na=False)]
    df_pop['Geographic_Area'] = df_pop['Geographic_Area'].str.lstrip('.')
    df_pop.rename(columns={'Geographic_Area': 'state'}, inplace=True)
    df_recent_pop = df_pop[['state', 'Pop_2024']].copy()
    df_recent_pop['Pop_2024'] = df_recent_pop['Pop_2024'].astype(int)
    return df_recent_pop

This dataset contains the annual resident population estimates for US states from April 1, 2020, to July
1, 2024. The provided code extracts the state name and the most recent population estimate for 2024.

Data Explanation

       state      Pop_2024\\n0    Alabama     5157699\\n1     Alaska      740133\\n2    Arizona   
 7582384\\n3   Arkansas     3088354\\n4 California    39431263

Data Sample

Suggested Steps

1) The Excel file must be loaded by skipping the first 3 rows which act as a header. 2) The footer row
containing notes should be skipped. 3) Column names need to be assigned manually as they are
spread across multiple rows in the original file. 4) Rows corresponding to national or regional
summaries (e.g., 'United States', 'Northeast') must be filtered out. 5) The state name column contains a
leading dot ('.') which must be removed for clean merging. 6) Select the state column and the column
for the most recent year's population (2024).

Suggested
Libraries

pandas, openpyxl

cannot help

Search Agent Response

cannot help

NIFC Wildfire Statistics

cannot help

NIFC Wildfire Statistics

Figure 15: An example of the generated request by the blackboard system.
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import pandas as pd
import json

# Define file paths
file_path_meta = '1-s2.0-S0092867420301070-mmc1.xlsx'
file_path_apm = '1-s2.0-S0092867420301070-mmc7.xlsx'

# --- Solution for Subtask 1: Load and merge data --- 
# Load the main metadata sheet from mmc1.xlsx which contains patient 'Age'.
meta_df = pd.read_excel(file_path_meta, sheet_name='UCEC_CPTAC3_meta_table_V2.1',
index_col=0)

# Load the APM subtypes sheet from mmc7.xlsx which contains the 'APP_Z_score'.
apm_df = pd.read_excel(file_path_apm, sheet_name='B-APM subtypes', index_col=0)

# Select only the necessary columns
patient_info_df = meta_df[['Age']]
apm_scores_df = apm_df[['APP_Z_score']]

# Merge the two dataframes based on the sample ID index
merged_df = patient_info_df.join(apm_scores_df, how='inner')
subtask1_answer = "Data loaded and merged successfully. The merged data contains 'Age' and
'APP_Z_score' for each patient."

# --- Solution for Subtask 2: Clean the data --- 
# Convert columns to numeric, coercing errors to NaN
merged_df['Age'] = pd.to_numeric(merged_df['Age'], errors='coerce')
merged_df['APP_Z_score'] = pd.to_numeric(merged_df['APP_Z_score'], errors='coerce')

# Drop rows with missing values in 'Age' or 'APP_Z_score'
cleaned_df = merged_df.dropna(subset=['Age', 'APP_Z_score'])
subtask2_answer = "Data cleaned. Rows with missing 'Age' or 'APP_Z_score' have been removed."

# --- Solution for Main Task: Find the age of the patient with the lowest APP-Z score --- 
# Find the index of the patient with the lowest APP-Z score
patient_with_lowest_score_idx = cleaned_df['APP_Z_score'].idxmin()

# Get the age of that patient
age_of_patient = cleaned_df.loc[patient_with_lowest_score_idx, 'Age']

# The final answer is the age of the patient, converted to an integer.
final_answer = int(age_of_patient)

# Print the final results in JSON format
print(json.dumps(
    {
        "subtask-1": subtask1_answer,
        "subtask-2": subtask2_answer,
        "main-task": final_answer
    }, 
    indent=4
))

import pandas as pd
import json

def get_age_and_app_scores(files):
    """
    Loads patient age and APP protein abundance scores from the supplementary files.

    Args:
        files (list): A list of all file paths in the dataset.

    Returns:
        pandas.DataFrame: A DataFrame with 'Age' and 'APP_log2_abundance' for each sample.
    """
    # Find the metadata and proteomics files from the list
    meta_file = next((f for f in files if 'mmc1.xlsx' in f), None)
    prot_file = next((f for f in files if 'mmc2.xlsx' in f), None)

    if not meta_file or not prot_file:
        raise FileNotFoundError("Required metadata (mmc1) or proteomics (mmc2) file not found.")

    # Load the clinical metadata to get patient age
    df_meta = pd.read_excel(meta_file, sheet_name='UCEC_CPTAC3_meta_table_V2.1', index_col=0)
    age_data = df_meta[['Age']]

    # Load the global proteomics data to get protein scores
    df_prot = pd.read_excel(prot_file, sheet_name='A-global-proteomics', index_col=0)

    # Check if the 'APP' protein is in the proteomics data
    if 'APP' in df_prot.index:
        # Extract the row for 'APP', transpose it to a column, and rename it
        app_scores = df_prot.loc[['APP']].T
        app_scores.rename(columns={'APP': 'APP_log2_abundance'}, inplace=True)
    else:
        # If APP is not found, create a DataFrame with NaNs to allow merging
        app_scores = pd.DataFrame(index=df_meta.index, columns=['APP_log2_abundance'])

    # Combine the age and APP score dataframes
    combined_df = age_data.join(app_scores)

    # Remove samples that are missing either Age or the APP score
    combined_df.dropna(subset=['Age', 'APP_log2_abundance'], inplace=True)

    return combined_df

# List of all available files
file_list = [
    '1-s2.0-S0092867420301070-mmc1.xlsx',
    '1-s2.0-S0092867420301070-mmc2.xlsx',
    '1-s2.0-S0092867420301070-mmc3.xlsx',
    '1-s2.0-S0092867420301070-mmc4.xlsx',
    '1-s2.0-S0092867420301070-mmc5.xlsx',
    '1-s2.0-S0092867420301070-mmc6.xlsx',
    '1-s2.0-S0092867420301070-mmc7.xlsx'
]

# Execute the function to get the data
age_app_data = get_age_and_app_scores(file_list)

# Find the patient with the lowest APP-Z score
patient_with_lowest_app = age_app_data.loc[age_app_data['APP_log2_abundance'].idxmin()]

# Get the age of that patient
age = patient_with_lowest_app['Age']

# Create the final answer dictionary
final_answer = {
    "main-task": age
}

# Print the final answer in JSON format
print(json.dumps(final_answer, indent=4))

Blackboard

Master-Slave

What is the age of the patient with the lowest APP-Z score?

Question

Ground Truth Files

1-s2.0-S0092867420301070-mmc1.xlsx
1-s2.0-S0092867420301070-mmc7.xlsx

Ground Truth
Response

60

Generated Response: 60

Generated Response: 74

Figure 16: An example of the generated program by the blackboard system and master-slave system.
The green box highlights where the blackboard system correctly selected the relevant files from the
data lake, while the red box indicates where the master–slave system made an incorrect selection.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E LARGE LANGUAGE MODEL USAGE FOR WRITING

In this paper, we employ LLMs—specifically Gemini and ChatGPT—as general-purpose writing
tools. Draft text is provided to these models, which are then asked to improve the writing by cor-
recting grammatical errors and refining the structure. The edited text is then verified and edited if
needed. The use of LLMs in this paper is limited strictly to text refinement. They were not employed
for tasks such as generating any new content or references.
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