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Abstract. Existing 3D medical image segmentation methods are of-
ten constrained by a fixed set of predefined classes or by reliance on
manually defined prompts such as bounding boxes and scribbles, which
are often labor-intensive and prone to ambiguity. To address these lim-
itations, we present a framework for 3D medical image segmentation
across diverse modalities guided solely by free-text descriptions of target
anatomies or diseases. Our solution is built on a multi-component ar-
chitecture that integrates efficient feature encoding via decomposed 3D
convolutions and self-attention, multi-scale text-visual alignment, and
a SAM-inspired mask decoder with iterative refinement. The model is
further conditioned through a prompt encoder that transforms language
and intermediate visual cues into spatially aligned embeddings. To train
and evaluate our model, we used a large-scale dataset of over 200,000 3D
image-mask pairs spanning CT, MRI, PET, ultrasound, and microscopy.
Our method achieved an average Dice of 0.609 and F1 score of 0.113 on
the open validation set, outperforming baselines such as CAT (Dice 0.532,
F1 0.194) and SAT (Dice 0.557, F1 0.096). It showed strong generaliza-
tion across modalities, with particularly high performance on ultrasound
(Dice 0.829) and CT (Dice 0.672). These results confirm the feasibility of
free-text-guided 3D segmentation and establish our approach as a strong
foundation model for general-purpose medical image segmentation. Our
code is publicly available at: https://github.com/mirthAI/Text3DSAM/.

Keywords: Text-guided segmentation · 3D medical imaging · Vision-
language models.

1 Introduction

Medical image segmentation is essential for clinical tasks such as diagnosis, treat-
ment planning, and quantitative analysis. Traditional models rely on supervised
learning with fixed class labels and voxel-wise manual annotations, which are
costly to obtain, difficult to scale, and unable to generalize to new tasks or un-
seen structures without retraining. These challenges are compounded by the high
variability in medical images due to differences in scanners, acquisition proto-
cols, and patient anatomy, as well as the limited size and diversity of labeled
datasets. Moreover, producing accurate annotations requires expert knowledge,
adding further barriers to scalability in real-world clinical settings.
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To address the limitations of traditional segmentation methods, prompt-
based approaches have emerged as a more flexible alternative. Instead of predict-
ing all classes at once, these models can segment a specific structure based on user
input. This focused interaction improves accuracy and enables a single model to
adapt to a variety of tasks without retraining. Foundation models like the Seg-
ment Anything Model (SAM) [6] and its successor SAM2 [12] enable prompt-
based segmentation in natural images using minimal supervision via points or
boxes. Inspired by these advances, medical adaptations such as MedSAM [8]
and MedSAM2 [10] have extended these architectures to 3D medical imaging
data. However, these models rely heavily on spatial prompts, limiting their us-
ability in clinical workflows where generating such inputs is labor-intensive or
ambiguous. Moreover, they lack support for more expressive and intuitive forms
of interaction, such as natural language. To address these issues, recent efforts
have introduced text-guided segmentation frameworks such as BioMedParse [17],
CAT [4], and SAT [18], which leverage descriptive textual prompts for semantic
control.

We propose Text3DSAM, a text-guided segmentation framework for 3D
medical images across diverse modalities. Rather than relying on spatial prompts
like bounding boxes or points, Text3DSAM accepts natural language descrip-
tions to define target anatomies or pathologies, enabling more intuitive interac-
tion, reduced annotation effort, and zero-shot generalization to unseen classes.
The architecture integrates decomposed 3D convolutions and self-attention for
efficient image encoding, multi-scale alignment between textual and visual fea-
tures, and a SAM-inspired mask decoder for high-quality segmentation. Trained
on a large-scale dataset of over 200,000 3D image-mask pairs spanning CT, MRI,
PET, ultrasound, and microscopy, our model demonstrates strong generalization
and outperforms state-of-the-art baselines such as CAT and SAT, particularly
on CT and ultrasound.

2 Method

We propose Text3DSAM, a text-guided segmentation framework for 3D med-
ical imaging across multiple modalities. Given a volumetric scan and a natural
language prompt (e.g., “liver in abdominal CT”), our model outputs a high-
quality segmentation mask for the specified region. As illustrated in Fig. 1,
Text3DSAM comprises four core components: an 3D image encoder for volu-
metric feature extraction, a text encoder for semantic embedding, a prompt en-
coder for segmentation-aware conditioning, and a SAM-inspired mask decoder
for mask generation and refinement.
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Fig. 1. Overview of Text3DSAM.

2.1 Efficient Image Encoder

Our image encoder builds on DCFormer [1], an efficient 3D encoder architecture
based on decomposed 3D convolutions. DCFormer has demonstrated superior
performance over standard 3D vision transformers in tasks such as zero-shot
disease detection [1], image-text retrieval [1,15], radiology report generation, and
visual question answering [15]. While DCFormer uses large convolutional kernels
to capture global context, we further enhance its feature modeling by appending
a standard 3D transformer layer after the final decomposed convolution block.
The modified image encoder is illustrated in Fig. 2.
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Fig. 2. Architecture of the proposed 3D Image Encoder.

2.2 Prompt Encoder

The Prompt Encoder (see Fig.3) transforms user-provided text prompts and
optional visual hints into sparse and dense embeddings that guide the segmenta-
tion process. It comprises a positional encoding module, a 3D convolution-based
mask encoder, and a sparse embedding aggregator. This design is inspired by
the prompt encoding mechanisms in SAM [6] and SegVol [3], which encode both
semantic and spatial cues to enhance downstream mask prediction.

During the initial forward pass, the encoder operates using only the input
text embeddings. A learnable no-mask embedding is used to construct the dense
embedding, which is broadcast to align with the spatial dimensions of the image
features. This setup enables the model to produce a coarse segmentation predic-
tion based solely on the semantic intent of the text, without relying on any spatial
guidance. In subsequent refinement stages, the Prompt Encoder incorporates two
additional inputs: a rough segmentation mask and SAM tokens generated by the
previous Mask Decoder. The rough mask is processed by a lightweight 3D con-
volutional encoder composed of DecompConv blocks from DCFormer [1], which
extract multiscale spatial features and produce a dense embedding aligned with
the image feature space. At the same time, the sparse embedding is updated by
concatenating the previous SAM tokens with the text embedding, allowing the
model to integrate both semantic intent and visual feedback.

This two-stage design supports iterative, coarse-to-fine refinement of the pre-
dicted masks. Early stages depend primarily on semantic guidance from the text
prompt, while later stages progressively incorporate spatial and contextual cues
from intermediate outputs. This approach enhances the model’s ability to pro-
duce accurate and contextually aligned segmentations across diverse anatomical
and imaging scenarios.

To maintain spatial consistency during these stages, all dense embeddings
are augmented with positional encodings generated by a randomized Fourier-
based module. These encodings are shared across the batch and passed to the
Mask Decoder to guide attention computations within the transformer. This
mechanism ensures that the embeddings preserve spatial alignment throughout
the segmentation pipeline.
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Fig. 3. Architecture of the proposed prompt encoder.

2.3 Mask Decoder

The Mask Decoder predicts segmentation masks conditioned on both visual fea-
tures and prompt embeddings. As illustrated in Fig. 4, it consists of a transformer-
based core and a two-stage mask generation pipeline that enables semantic-
region alignment in volumetric space. The design draws inspiration from SAM [6]
for token-based decoding and SegVol [3] for multimodal feature alignment, while
incorporating high-resolution skip connections similar to U-Net [14] and SAM2 [12].

At each refinement stage, the decoder receives image embeddings, sparse and
dense prompt embeddings, and positional encodings generated by the Prompt
Encoder. A set of learnable mask tokens is concatenated with the sparse prompt
tokens and passed into a transformer, which jointly processes the token sequence
and image features through attention. The transformer outputs updated mask
tokens and refined spatial features, which serve as the basis for generating the
segmentation masks.

To reconstruct high-resolution masks, the spatial features are upsampled in
two stages using trilinear interpolation and lightweight 1×1×1 convolutions.
When available, high-resolution features are fused with the upsampled features
via residual addition and shallow convolutions. This design—combining U-Net-
style skip connections and SAM2-inspired feature fusion—enhances both bound-
ary localization and volumetric continuity, especially for fine anatomical struc-
tures.

Each mask token is passed through a lightweight MLP-based hypernetwork
that generates dynamic convolution kernels, which are used to project the refined
spatial features into binary mask logits. To further enhance semantic alignment,
a cross-modal similarity mechanism inspired by SegVol [3] is introduced. Specifi-
cally, the text embedding is linearly projected and compared against the upsam-
pled feature volume, and the resulting similarity map is added to each predicted
mask to guide the model toward regions matching the semantic prompt.
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Only the first predicted mask is retained as the final output at each stage,
and its associated token is returned to the Prompt Encoder for the next refine-
ment step. This iterative process allows the model to progressively improve its
segmentation predictions in a coarse-to-fine manner, integrating feedback from
earlier stages to refine both spatial precision and semantic consistency.
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Fig. 4. Architecture of the proposed mask decoder.

2.4 Loss Function

We adopt a hybrid loss function that combines Dice loss and Focal loss to jointly
optimize region-level overlap and voxel-wise accuracy. This combination balances
precision in segmentation overlap with robustness to class imbalance, which is
especially important in volumetric medical segmentation. Dice loss encourages
accurate region-level alignment and is defined as:

LDice = 1−
2
∑

i ŷiyi + ϵ∑
i ŷi +

∑
i yi + ϵ

(1)

where ϵ is a small constant for numerical stability, ŷ ∈ [0, 1] is the predicted
probability volume, and y ∈ 0, 1 is the corresponding ground truth mask.

Focal loss emphasizes hard-to-classify voxels by down-weighting the contri-
bution of easy examples:

LFocal = −
∑
i

α(1− ŷi)
γyi log(ŷi) (2)

where α ∈ [0, 1] is a balancing factor, and γ > 0 is a focusing parameter that
reduces the relative loss for well-classified voxels.

The final loss is the sum of both terms:

Ltotal = LDice + LFocal (3)
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This combined objective promotes both global mask accuracy and fine-grained
sensitivity to subtle or underrepresented regions.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [9], including additional 3D cases from public datasets1 and covering
commonly used 3D modalities such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy. The hidden testing set was created through a community effort,
with all cases being unpublished. Annotations were either provided by data
contributors or generated by the challenge organizers using 3D Slicer [5] and
MedSAM2 [10]. In addition to the full-data track, the challenge also includes a
coreset track, in which participants may use only 10% of the training cases for
model development.

The text-guided segmentation task includes both semantic segmentation and
instance segmentation. For semantic segmentation, evaluation metrics include
the Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD),
which assess region overlap and boundary accuracy, respectively. For instance
segmentation, we compute the F1 score at an overlap threshold of 0.5 and report
the DSC for true positives. Additionally, algorithm runtime is limited to 60
seconds per class; exceeding this limit results in all DSC and NSD metrics being
set to zero for that test case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [8], all images were con-
verted to npz format and rescaled to an intensity range of [0, 255]. For CT
images, we first normalized Hounsfield units using standard window width and
level settings: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80,
L:40), and bone (W:1800, L:400). The normalized intensities were then linearly
rescaled to [0, 255]. For other modalities, intensity values were clipped between
the 0.5th and 99.5th percentiles before rescaling to the same range. If an image
was already within [0, 255], no further preprocessing was applied.

To ensure data integrity, we traversed the entire dataset to verify that each
file could be opened successfully and that every sample contained both an image
and its corresponding mask. For each valid sample, we recorded the file path
and all class IDs present in both the segmentation mask and the associated text
prompt. This metadata was stored in a JSON file and later used during dataset
construction.

Environment settings The development environments and requirements are
presented in Table 1.
1 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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Table 1. Development environments and requirements.

System RHEL 8
CPU 16×8 cores of AMD EPYC 7742 64-Core Processor
RAM 16×128GB
GPU (number and type) 16× NVIDIA A100 80GB SXM
CUDA version 12.4.1
Programming language Python 3.12
Deep learning framework torch 2.7.0, deepspeed 0.16.5, huggingface-hub 0.30.1

Training protocols All images and masks were resized to a uniform resolution
of 128×256×256 using trilinear and nearest-neighbor interpolation, respectively.
To increase spatial diversity, we applied random 90-degree rotations along in-
plane dimensions, followed by intensity perturbations using RandScaleIntensity
and RandShiftIntensity. Random flipping was intentionally excluded, as many
segmentation prompts reference anatomically lateralized organs (e.g., left/right
lung), where flipping could introduce semantic ambiguity.

For each sample, the class ID was used to retrieve corresponding natural
language descriptions from a predefined text prompt file, from which one prompt
was randomly selected at runtime to serve as the semantic query. We used a pre-
trained language model, TinyClinicalBERT [13], to encode the text prompts. The
model processes each input volume—resized to 128× 256× 256—by generating
an initial coarse prediction followed by two refinement iterations (pass_num =
2), with intermediate masks and tokens fed back into the network for progressive
improvement.

Our training pipeline was implemented using PyTorch [11] and MONAI [2],
with DeepSpeed used to support scalable, efficient model training. All experi-
ments were conducted using BF16 mixed-precision to reduce memory usage and
improve performance. The model was trained for 30 epochs using the AdamW [7]
optimizer with a base learning rate of 1× 10−4, weight decay of 1× 10−5, and a
cosine learning rate schedule with a warm-up ratio of 0.03. We used a batch size
of 16 per device and employed 8 data loader workers to optimize I/O throughput
during training.
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Table 2. Training protocols.

Batch size 16
Patch size 128×256×256
Total epochs 30
Optimizer AdamW
Initial learning rate (lr) 1× 10−4

Lr decay schedule cosine
Training time 15 hours
Loss function Dice Loss + Focal Loss
Number of model parameters 59.30 M2

Number of flops 48.34 G (inference) / 145.02 G (training)3

4 Results and discussion

We present both qualitative and quantitative results to evaluate our model’s
performance across multiple modalities and segmentation tasks, highlighting its
strengths and current limitations.

4.1 Qualitative results on validation set

Figure 5 shows representative cases where the model succeeds. These typically
involve large, clearly visible, and semantically distinct regions. Predictions in
these regions closely match the prompts and demonstrate accurate shapes and
boundaries. Prompts referencing anatomically well-defined structures, such as
“liver in CT” or “ventricles in MRI,” are more reliably interpreted and lead to
better segmentation.

Figure 6 illustrates several common failure modes. In some cases, low im-
age quality or contrast—particularly in Microscopy or PET scans—prevents the
model from capturing clear boundaries. In others, very small target regions com-
bined with the limited resolution of the mask decoder result in missed predictions
or coarse approximations. Some failures occur when the segmented region does
not match the intended anatomical structure, indicating that the model misinter-
preted the text prompt. These errors highlight current limitations in multimodal
alignment and reasoning under sparse supervision.

4.2 Quantitative results on validation set

Table 3 summarizes the performance of different methods on the validation set
under the all-data track. Text3DSAM outperforms baseline methods (CAT and
SAT) across most modalities in terms of both Dice Similarity Coefficient (DSC)
and F1_50 scores.
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Ground Truth Ground TruthPrediction Prediction

Fig. 5. Qualitative examples of successful segmentations from the validation set on the
all-data track.

In semantic segmentation, Text3DSAM shows clear improvements, achieving
the highest DSC scores across all cases. This suggests our model effectively cap-
tures global context and produces spatially coherent segmentations when guided
by clear textual prompts. For example, it achieves a DSC of 0.6707 on CT and
0.8337 on Ultrasound, demonstrating strong performance on modalities with
well-defined structures.

In contrast, the model’s performance on instance segmentation remains lim-
ited. In Microscopy and PET, which require precise instance-level delineation
and boundary accuracy, SAT occasionally outperforms Text3DSAM. This sug-
gests the mask decoder still struggles with fine-grained separation of small or
overlapping structures, indicating a need for higher-resolution output and im-
proved instance-level reasoning.

4.3 Limitation and future work

While Text3DSAM achieves strong performance on many semantic segmentation
tasks, its ability to handle instance-level segmentation and small object detection
remains limited. The coarse mask resolution constrains the precision required to
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Fig. 6. Qualitative examples of failure cases from the validation set on the all-data
track.

delineate tiny regions, and the current multimodal fusion design does not always
ensure accurate interpreation of the prompt.

Future work will focus on enhancing the resolution and expressiveness of the
mask decoder to capture finer details and better resolve overlapping structures.
Improving semantic fusion between vision and language inputs will also be a pri-
ority, particularly for prompts involving complex spatial or instance-level cues.
Furthermore, adopting a multiscale decoding strategy may may improve per-
formance on targets of varying sizes, especially small or sparse regions that are
currently challenging for the model.

5 Conclusion

We propose Text3DSAM, a flexible and generalizable framework for text-
guided 3D medical image segmentation. It leverages prompt-based supervision
to generate anatomically consistent masks without requiring manual annota-
tions. The model demonstrates strong performance across multiple modalities,
particularly in semantic segmentation. Despite current limitations in instance
segmentation and small object detection, the results indicate promising gener-
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Table 3. Quantitative evaluation results of the validation set on the all-data track.

Modality Method DSC F1_50

CT
CAT 0.6035 0.2573
SAT 0.6432 0.1032
Text3DSAM 0.6707 0.1148

MRI
CAT 0.4255 0.1511
SAT 0.4526 0.0373
Text3DSAM 0.5214 0.1202

Microscopy
CAT N/A 0.0211
SAT N/A 0.2475
Text3DSAM N/A 0.0386

PET
CAT N/A 0.1106
SAT N/A 0.2623
Text3DSAM N/A 0.0886

Ultrasound
CAT 0.8180 N/A
SAT 0.7549 N/A
Text3DSAM 0.8337 N/A

Average
CAT 0.5316 0.1935
SAT 0.5573 0.0956
Text3DSAM 0.6091 0.1131

alization and multimodal reasoning capabilities. Future work will focus on im-
proving mask resolution and semantic alignment to further enhance performance
across diverse segmentation tasks.
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A pipeline/network figure is provided Figure 1, 2, 3, 4
Pre-processing Page 7
Strategies to data augmentation Page 8
Strategies to improve model inference Page 8
Post-processing None
Environment setting table is provided Table 1
Training protocol table is provided Table 2
Ablation study Page 9
Efficiency evaluation results are provided Table 3
Visualized segmentation example is provided Figure 5, 6
Limitation and future work are presented Yes
Reference format is consistent. Yes
Main text >= 8 pages (not include references and appendix) Yes
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