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ABSTRACT

Collecting annotated data for semantic segmentation is time-consuming and hard
to scale up. In this paper, we propose a unified framework, termed as Multi-
Dataset Pretraining, to efficiently integrate the fragmented annotations of different
datasets. The highlight is that the annotations from different datasets can be shared
and consistently boost performance for each specific one. Towards this goal, we
propose a pixel-to-prototype contrastive learning strategy over multiple datasets
regardless of their taxonomy labels. In this way, the pixel level embeddings with the
same labels are well clustered, which we find is beneficial for downstream tasks. In
order to model the relationship among images and classes from different datasets,
we extend the pixel level embeddings via cross-dataset mixing and propose a
pixel-to-prototype consistency regularization for better transferability. MDP can
be seamlessly extended to semi-supervised setting and utilize the widely available
unlabeled data to further boost the feature representation. Experiments conducted
on several benchmarks demonstrate its superior performance, and MDP consistently
outperforms the pretrained models over ImageNet by a considerable margin.

1 INTRODUCTION

As a basic computer vision task, semantic segmentation has experienced remarkable progress over the
past decades, mainly benefiting from the growth of the available annotations. However, annotating
images at pixel level granularity is time-consuming and difficult to scale up. In order to alleviate
the dense annotation requirement, semantic segmentation is usually fine-tuned based on a pretrained
model, e.g., training on a large-scale ImageNet classification dataset (Russakovsky et al., 2015).
While ImageNet pretraining can de facto lead to performance gain, it suffers from the task gap that
the pretraining is based on global classification while the downstream task is for local pixel level
prediction. In this paper, we arise a critical issue, can we solve the task gap via making use of the
available annotations off-the-shelf from diverse segmentation datasets for better performance?

Though promising it is, a major challenge of unifying multi-datasets for training is to tackle the label
inconsistency, where taxonomy from different datasets differs, ranging from class definition and class
granularity. For example, the classes ’wall-brick’, ’wall-concrete’ and ’wall-panel’ in COCO-Stuff
(Caesar et al., 2018) are simply labeled as ’wall’ in ADE20K (Zhou et al., 2019), and as ’background’
in Pascal VOC (Everingham et al., 2015). This makes integrating different datasets into a common
taxonomy time-consuming and error-prone. In this paper, we propose a novel training framework
that is able to directly unify different datasets for training regardless of its taxonomy labels. In Fig. 1,
we illustrate several typical settings for semantic segmentation. The advantage of MDP is that we are
able to conveniently combine multiple datasets for jointly training without any human intervention,
and the pretrained model can be used as a backbone for downstream fine-tuning as usual.

Towards this goal, we rely on contrastive loss that is widely used in self-supervised learning (Chen
et al., 2020a; He et al., 2020) for pretraining. The core idea is to aggregate semantically similar pixel
level embeddings via contrastive clustering. In particular, we adjust the global contrastive loss to a
supervised pixel level one and construct a pixel-to-prototype contrastive mapping such that the pixel
embeddings with the same labels enjoy better intra-class compactness and inter-class separability.
Here, the prototype denotes the embedding of each specific class. Considering that classes from
different datasets may share similar embeddings, we extend the pixel-to-prototype mapping in two
folds: first, we enrich the pixel level embeddings via cross-dataset mixing to bridge different datasets;
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(a) Standard pipeline (b) Multi-dataset training (c) Multi-dataset pretraining

Figure 1: Typical settings for semantic segmentation. a) The standard pipeline, which performs
supervised or self-supervised pretraining on ImageNet, and trains segmentation models over specific
datasets. b) A simple multi-dataset training method that manually unifies label spaces of different
datasets. c) Our proposed MDP, which automatically integrates multiple datasets for pretraining.

second, we extend the pixel-to-prototype contrastive mapping, which can be treated as hard encoding
with the ground truth labels, with consistency regularization, i.e., the pixel-prototype similarity of a
pixel should be consistent with its corresponding pixel on another view. We find that such consistency
regularization is beneficial for better transferability.

Benefit from the pixel-to-prototype mapping, MDP can be seamlessly extended to unlabeled data
to further boost the feature representation for pretraining. In this setting, the pixel level labels of
the unlabeled data are simply replaced with pseudo labels obtained with the current model, and
followed by the same learning procedure. Note that different from traditional semi-supervised settings
that require the unlabeled data come from the same domain with the labeled one, MDP can take
advantage of the available unlabeled data from diverse domains, which is widely applicable and
importantly, MDP transfers most of the computation budget to the pretraining stage, while is able
to avoid cumbersome data mining for each downstream task and is beneficial for fast deployment.
Experiments conducted on several widely used semantic segmentation benchmarks demonstrate the
effectiveness of our proposed multi-dataset pretraining mechanism.
In a nutshell, this paper makes the following contributions:

• We propose a novel pretraining framework to make use of the available annotations from
diverse datasets. As far as we know, we are the first to unify multiple semantically labeled
datasets for pretraining, while not be bothered by the chaotic labels from diverse datasets.

• We propose a pixel-to-prototype contrastive learning strategy to effectively model intra-class
compactness and inter-class separability. To better make use of cross-dataset samples, we
enrich the pixel embeddings via cross-dataset mixing and extend the pixel-to-prototype hard
mapping with a smoother consistency constraint.

• MDP can be seamlessly extended to unlabeled data to further improve the feature represen-
tation, and the computation budget is transferred to the pretraining stage, which is beneficial
for fast deployment over different downstream tasks. This is different from conventional
semi-supervised settings that require data mining over each specific domain.

• MDP consistently outperforms the pretrained models over ImageNet by a considerable
margin. We hope that our findings may shed light on future research to design appropriate
pretext tasks for semantic segmentation.

2 RELATED WORK

Contrastive learning. Contrastive learning-based methods learn representations by contrasting
positive pairs against negative pairs in a discriminative fashion. Recent works mainly benefit from
instance discrimination (Wu et al., 2018), which regards each image and its augmentations as one
separate class and others are negatives (He et al., 2020; Chen et al., 2020a; Dosovitskiy et al., 2015;
Chen et al., 2020b; Hjelm et al., 2018; Oord et al., 2018; Tian et al., 2019; Grill et al., 2020). Since
using a large number of negatives is crucial for the success of contrastive loss-based representation
learning, (Wu et al., 2018) uses a memory bank to store the pre-computed representations from
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Figure 2: The pipeline of MDP. Given a labeled image xt randomly sampled from the collection
of multiple datasets D, we first obtain three different views x̂t, x̆t and x̄t (not shown in the figure)
through data augmentation as well as a mixed view x̃t through cross-dataset mixing. Then we
conduct pixel-to-prototype contrastive learning and consistency regularization to model intra-class
compactness and inter-class separability, as well as considering inter-class similarity. The right part
illustrates two components of MDP, i.e., cross-dataset mixing and online class prototype update.

which positive examples are retrieved given a query. Based on it, (He et al., 2020) uses a momentum
update mechanism to maintain a long queue of negative examples for contrastive learning. Some
recent works introduce contrastive learning for semantic segmentation (Zhao et al., 2020b; Liu et al.,
2021; Alonso et al., 2021; Wang et al., 2021; Gansbeke et al., 2021) by pulling close the pixel level
embeddings with the same labels and pushing apart the embedding of pixels with different labels.
Different from these works, our method focuses on the scenario of multi-dataset pretraining, and
proposes pixel-to-prototype loss to effectively model the intra-class and inter-class relationships.

Multiple dataset training. For recognition tasks like object detection and semantic segmentation,
training on naively combined datasets yields low accuracy and poor generalization (Lambert et al.,
2020) since different datasets have different class definitions and class granularity. Dataset unification,
which involves merging different semantic concepts, is important for multi-dataset training. Liang
et al. (2018) manually builds a semantic concept hierarchy by combining labels from all four popular
datasets and explicitly incorporates the hierarchy into network construction. Lambert et al. (2020)
manually unifies the taxonomies of 7 semantic segmentation datasets and uses Amazon Mechanical
Turk to resolve inconsistent annotations between datasets. However, these methods need heavily
manual effort. Zhao et al. (2020a) and Zhou et al. (2021) trains a universal detector by first training a
single partitioned detector on multiple datasets with shared backbone dataset-specific outputs, and
loss and then unifies the outputs of the partitioned detector in a common taxonomy. These methods
still rely on partitioned learning on their respective datasets. Unlike these works, we do not unify
their label spaces but make the pixel level features distinguishable by multi-dataset pretraining.

3 METHOD

In this section, we elaborate on our proposed multi-dataset pretraining strategy. The whole procedure
is shown in Fig. 2. The core modules consist of three parts, 1) pixel-to-prototype contrastive loss, 2)
cross-dataset learning, and 3) MDP with semi-supervised extension, which would be explained in
detail in the following sections.

3.1 PIXEL-TO-PIXEL CONTRASTIVE LEARNING

We first present a simple baseline that directly extends the contrastive learning to pixel level, guided
by the pixel level annotations. In this setting, pixels with the same label are treated as positive pairs,
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while those with different labels are regarded as negative pairs. Note that since we only constrain the
positive samples within the same label, it is conveniently applicable for multiple datasets.

Specifically, given multiple labeled datasets D = {D1,D2, ...,DN} along with label spaces Y =
{Y1,Y2, ...,YN}, we randomly select n samples {xt}nt=1 from D regardless of which domain each
sample comes from. Denote x̂t and x̄t be two different augmented views of image xt, with ground
truth pixel level class label map Ŷ = [ŷi ∈ Y] and Ȳ = [ȳi ∈ Y], where i denotes pixel in the
image. x̂t and x̄t are separately sent to feature extractor Eq and Ek to obtain d-dimensional per-pixel
unit-normalized features F̂ = [f̂i] and F̄ = [f̄i], where Ek is a momentum update version of Eq . For
pixel i in F̂ , the pixel j in F̄ with the same class label is considered as positive sample of i, and the
pixel level contrastive loss is computed by:

Lpixel = − 1

N̄yi

N∑
j=1

1 [ŷi = ȳj ] log

 exp
(
f̂i · f̄j/τ

)
∑N

k=1 exp
(
f̂i · f̄k/τ

)
 , (1)

where N = H ×W denotes the total number of pixels in each view, H and W mean the height
and width of each view, respectively. N̄yi denotes the number of pixels with class yi in x̄t and τ
is the temperature parameter. The loss is averaged over all pixels on the first view. Similarly, the
contrastive loss for pixel j on the second view is also computed and averaged. Since the calculation
of pixel level contrastive loss is independent for each image, Eq. 1 enables multi-dataset training and
does not need to consider the label mapping. However, such a pixel-to-pixel optimization strategy
is sensitive to noisy annotations and more importantly, it does not consider the relationship across
datasets, which limits its representation ability. In the following, we extend pixel-to-pixel contrastive
loss to pixel-to-prototype one.

3.2 PIXEL-TO-PROTOTYPE CONTRASTIVE LEARNING

In this section, we adjust the pixel-to-pixel contrastive learning with more robust pixel-to-prototype
mapping. The motivation is that the class-level representation is more stable and memory-efficient
compared with pixel level embeddings. In particular, we merge the label spaces of the collection of
all datasets D and obtain class set Y = Y1 ∪ Y2 ∪ ... ∪ YN . We maintain a prototype for each class
j ∈ Y in the memory bank. Then we learn the embeddings of all the pixels in each input image by
pulling them close to the same class prototype and pushing them apart to different class prototypes.

Class prototype generation. A key component for pixel-to-prototype mapping is to maintain the
prototype for each class. Considering that the labeling granularity is at pixel level, which is huge and
memory-consuming, we propose an efficient prototype maintenance strategy to dynamically update
the class embeddings. Specifically, suppose we have a total of n training images and |Y| semantic
classes. Let Pj be the prototype of class j, we first calculate the embedding of class j for i-th image,
represented by pij , by average pooling all the embeddings of pixels labeled as j in the i-th image.
Then, Pj is obtained by averaging all embeddings among n images that contain class j:

Pj =

∑n
i=1mijpij∑n
i=1mij

, (2)

where mij ∈ [0, 1] is a binary mask indicating whether the i-th image contains pixels with class j. In
practice, in order to realize the dynamic update of Pj , we store the embedding sum of class j and
the number of images that contain pixels with class j for each batch b. Comparing with pixel level
embeddings, the benefits of utilizing class prototype are two-folds:

• Reducing the storage and GPU memory requirements. Extending the pixel-to-pixel loss across
images needs a memory bank with a size ofH×W×Nb×Dim, whereDim indicates the dimension
of pixel embedding and Nb indicates the number of image embeddings saved in the memory bank.
Its storage and GPU calculation consumption will become intolerable under the multi-dataset setting
since H ×W and Nb is large. While using the class prototype, we can reduce the storage size to
|Y| ×B ×Dim while maintaining the dynamic update of P , where B = Nb/bs is the total number
of batches and bs means the batch size, and only P is involved in the GPU calculation.

• Alleviating class imbalance especially for multiple datasets. In multiple datasets jointly training,
the categories of small-scale datasets will be obscured by the categories of large-scale ones. The
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pixel level comparison will obviously exacerbate this problem. Our method obtains one prototype
for each class j, regardless of the number of images containing j. This ensures the contribution of
small-scale datasets and classes with rare data be not ignored. Please see the appendix for category
results on ADE20k, MDP significantly benefits for rare categories.

Loss function. In pixel-to-prototype contrastive learning, we first update the prototype in the
memory bank using F̄ according to Eq. (2). Then, for pixel i with class j in x̂, we maximize
the agreement between its embedding f̂i and the prototype of class j. Additionally, we require a
push-force to avoid collapse in the embedding space. This can be achieved by pushing f̂i and other
class prototypes apart. The pixel-to-prototype contrastive loss for pixel i is computed by:

Lclass = −1 [ŷi = j] log

 exp
(
f̂i · Pj/τ

)
∑|Y |

k=1 exp
(
f̂i · Pk/τ

)
 (3)

The final loss is also computed for pixels from two different views and then averaged. In this way,
pixel embeddings in the current image are not only influenced by the same class pixels in other
images but also interact with the classes which do not occur in the current image, which greatly
improves the embedding quality compared to pixel-to-pixel contrastive learning.

3.3 CROSS-DATASET LEARNING

In real applications, classes from different datasets may share similar embeddings. In order to better
model the inter-class relationship defined by the provided labels, we propose two cross-dataset
interaction operations. First, we enrich the pixel level embeddings via cross-dataset mixing. Second,
we extend the pixel-to-prototype contrastive mapping with a more general consistency regularization.

Cross-image pixel representation. We adopt two different levels of data mixing methods, i.e.,
region-level mixing and pixel-level mixing, to interact representation across different datasets. These
two mixing methods alleviate the problem of input inconsistency and class inconsistency from
different perspectives, and they are complementary to improve the feature representation.

Region-level mixing. Given two labeled images {xi,yi} and {xj , yj} fromD, we conduct cross-dataset
cutmix (Yun et al., 2019) operation by:

x̃ = M � xi + (1−M)� xj
ỹ = M � yi + (1−M)� yj (4)

where M denotes a binary mask indicating where to drop out and fill in from two images, which is
obtained by uniform sampling, and � is element-wise multiplication. Region-level mixing enables
the model to see different regions of different datasets at the same time, and can reduce the domain
gap between datasets. At the same time, region-level mixing destroys the regional continuity of the
original image, making the model pay more attention to pixel level details and also increase the
diversity of features.

Pixel-level mixing. Also, given two random samples {xi,yi} and {xj , yj}, we can conduct cross-
dataset pixel-level mixing by simply using mixup (Zhang et al., 2017) operation:

x̃ = λxi + (1− λ)xj
ỹ = {λ, yi, yj} (5)

Where λ ∈ [0, 1] is uniformly sampled. It should be noted that the class label should be an integer, so
we do not mix the label but storing the set {λ, yi, yj} in ỹ. The final loss L(x̃, ỹ, P ) for pixel-level
mixing can be obtained by considering the contribution of the two groundtruth labels, yi and yj ,
using the class prototype P and weight λ:

L(x̃, ỹ, P ) = λL(x̃, yi, P ) + (1− λ)L(x̃, yj , P ). (6)

Pixel-level mixing can integrate the image information from different datasets in a more fine-grained
way. In addition, pixels will contain contents from different classes, which makes up for inconsisten-
cies across datasets at both image and class levels.
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Pixel-to-prototype consistency regularization. The pixel-to-prototype contrastive learning can
be treated as one-hot hard mapping for each pixel since it only pulling pixels close to the prototype
corresponding to their ground truth labels. However, since the labels between different datasets
may share similar semantics, it is better to model the relationships across categories. Towards this
goal, we propose a novel pixel-to-prototype consistency regularization strategy, that regularizes the
representation consistency of corresponding pixels at different views. Specifically, given x̂t as one
augmented view of xt, we generate another view of x̂t with only color transforms and denote it as
x̆t. Also, F̂ = [f̂i] and F̆ = [f̆i] are obtained by the feature extractor Eq and Ek but equipped with
different projection heads. For pixel i in F̂ , the consistency regularization constraints its similarity to
all the class prototypes be consistent with its corresponding pixel in F̆ :

Lcon = −s̆i log ŝi (7)

Where si is obtained by normalizing the similarity between fi and P with a softmax function:

sij =
exp (fi · Pj/τ)∑|Y |
k=1 exp (fi · Pk/τ)

(8)

The total loss function is a combination of Eq. (3) and Eq. (7), namely:

Ltotal = Lclass + αLcon, (9)

where α is a balancing factor that controls the contributions of the two terms.

3.4 EXTENDING TO SEMI-SUPERVISED SETTING

Considering that obtaining pixel level annotations is time-consuming, we extend MDP to a new
semi-supervised setting that supports unlabeled data from diverse domains for pretraining. Given
a collection of labeled datasets D and widely available unlabeled data collection U , it only takes
a little effort to extend MDP to this semi-supervised setting. For labeled images sampled from D,
we use the same method for feature learning and obtain class prototype P . For unlabeled samples,
suppose xu is an image randomly selected from U , and x̂u is its augmented view, we first send x̂u to
the momentum feature extractor Ek to obtain F̂u. Then we calculate the similarity between pixel i in
F̂u and P and set its pseudo labels ŷui

to the class with the highest similarity. Since unlabeled data
has a wider range of data sources, the class prototype may not cover all pixel classes. So we only
consider the pseudo labels with similarity confidence higher than the threshold T :

ŷui = 1[fi · Pj ≥ T ] arg max
j

(fi · Pj) . (10)

Once obtaining pseudo label ŷu, the unlabeled data will follow the same pretraining procedure
as labeled ones. It should be noted that ŷu will be updated with the growth of prototype P , so
its correctness continues to improve. And other unlabeled pixels will still contribute to the MDP
framework, thanks to the consistency regularization strategy.

4 EXPERIMENTS

In this section, we evaluate MDP on several widely used benchmarks, as well as detailed ablation
studies to reveal how each module affects the final performance.

4.1 EXPERIMENTAL SETUPS

Datasets. Our experiments are conducted on four datasets, namely:

• Cityscapes (Cordts et al., 2016) has 5,000 finely annotated urban scene images, with
2,975/500/1,524 for train/val/test, respectively. The segmentation performance is reported
on 19 challenging categories, such as person, sky, car, and building etc.
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Table 1: Overall results evaluated on four different datasets: Pascal VOC, ADE20K, COCO-Stuff
and Cityscapes, using different number of datasets for pretraining.

Method Pretrained Dataset Epoch mIoU
ImageNet VOC ADE20K COCO VOC ADE20K COCO Cityscpes

Scratch - 44.78 28.67 25.02 54.27
MoCo-v2 X 800 71.59 38.29 33.64 77.52

Supervised X - 75.63 39.36 35.25 77.60
pixel-to-pixel X X 100 71.19 38.81 32.44 77.17

MDP X X 100 73.79 40.17 34.26 77.75
MDP X X 200 74.65 40.83 35.04 78.59
MDP X X X 200 78.25 42.69 38.47 80.64

• Pascal VOC 2012 (Everingham et al., 2015) consists of 10,582 training (including the
annotations provided by (Hariharan et al., 2011)), 1,449 validation, and 456 test images with
pixel level annotations for 20 foreground object classes and one background class.

• ADE20K (Zhou et al., 2019) contains around 25K images spanning 150 semantic categories,
of which 20K for training, 2K for validation, and another 3K for testing.

• COCO-Stuff (Caesar et al., 2018) is a large scale dataset, which includes 164K images
from COCO 2017 (Lin et al., 2014). Among them, 118k images are used for training and 5k
images for validation. It provides rich annotations for 80 object classes and 91 stuff classes.

Evaluation. Unless specified, we choose the training split of Pascal VOC and ADE20K for pre-
training since they are comparable at scale, and evaluate the performance on all datasets to validate
its generalization ability. For the semi-supervised setting, we choose COCO-Stuff as unlabeled data.
Following the standard, we use mean Intersection-over-Union (mIoU) for performance evaluation.

Implementation details. We choose DeepLab-v3+ (Chen et al., 2018) based on a standard ResNet-
50 as backbone (He et al., 2016). We employ a momentum key encoder and adds two 3-layer
projection heads after the ASPP layer of the DeepLab-v3+ model, which finally results in two 256-d
embedding vectors for each pixel for contrastive learning and consistency regularization, respectively.
The model is pretrained using an SGD optimizer with momentum 0.9 and weight decay 4e−5. The
batch size and the initial learning rate are set to 128 and 0.8 respectively, over 8 NVIDIA Tesla V100
GPUs. The learning rate is decayed to 0 by cosine scheduler (Loshchilov & Hutter., 2016). The
input size is set to 224× 224 for efficiency. We use the same set of augmentations as in MoCo-v2
(Chen et al., 2020b). The temperature parameter τ of contrastive loss is set to 0.07, and the size of
the memory bank is set to about half of the dataset size. For consistency regularization, inspired
by Caron et al. (2021), we set τq to 0.07 and τk to 0.04 respectively for the query encoder and the
momentum key encoder to avoid collapse. The balancing factor for the total loss is empirically set to
0.2. For the semi-supervised extension, the confidence threshold T is set to 0.8.

During the fine-tuning stage, we follow the basic configuration of MMSegmentation1 except using a
standard ResNet-50 backbone and removing the auxiliary head. For Pascal VOC, we fine-tune the
pretrained model for 40k iterations using 513× 513 input size, while for ADE20K and COCO-Stuff,
the iterations are set to 80k with 512× 512 input size, and for Cityscapes, the iterations are set as
40k with 512 × 1024 input size. Note that our implementation aims to show the effectiveness of
multi-dataset pretraining and use some basic settings and structure for evaluation. While there are
several tricks that can definitively further improve the performance, such as larger resolution for
pretraining and more advanced structure with auxiliary head, this is out of the scope of this paper.

4.2 RESULTS

In this section, we report the overall results when fine-tuning on four datasets. As shown in Table 1,
for completeness, we also list the results of using other pretrained models, which includes: a) training

1https://github.com/open-mmlab/mmsegmentation
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Table 2: Ablation studies on hyper-
parameters.

Size Nb Temperatue τ mIoU
10240 0.07 71.98
2560 0.07 71.30

30720 0.07 70.96
10240 0.3 69.87
10240 0.5 68.23

Table 3: Comparisons with more baselines.

Method mIoU
pixel-to-pixel 71.17

Cross Entropy (single-head) 70.75
Cross Entropy (multi-head) 71.09

pixel-to-region (Wang et al., 2021) 71.44
pixel-to-prototype (ours) 71.98

Table 4: Comparisons of different cross-
dataset mixing strategies.

Augmentation mIoU
Region Pixel

71.98
X 72.66

X 73.00
X X 73.32

Table 5: The effects of consistent learning.

Fully Sup. No Sup. Lcon mIoU
VOC ADE20K COCO
X X 73.32
X X X 73.79
X X X 74.74
X X X X 76.57

from scratch with random initialization; b) self-supervised model based on MoCo-v2 using ImageNet
as pretraining data; c) fully supervised model on ImageNet. d) the baseline in Sect. 3.1 that simply
conducts pixel-to-pixel contrastive learning over multi-dataset. From this table we find that:

Comparing with other pretrained models. All pretraining models surpass training from scratch
by a large margin, and MDP beats both supervised and self-supervised ImageNet pretrained models.
Specifically, when using only Pascal VOC and ADE20K (around 30K images) for pretraining, we
achieve 74.65% and 40.83% accuracies on Pascal VOC and ADE20K, respectively. The performance
can be further improved by adding a large scale COCO-Stuff dataset, which surpasses the fully
supervised model by a noticeable margin, that is 2.62% performance gain (75.63%→ 78.25%) on
Pascal VOC, 3.33% gain (39.36% → 42.69%) on ADE20K. It should be noted that compared to
ImageNet pretraining, MDP only uses less than 10% samples for pretraining, which is more efficient.

Transfer ability on unseen datasets. We also evaluate the performance on Cityscapes and COCO-
Stuff, using the model that does not see any images during the pretraining stage. When only using
Pascal VOC and AED20K for pretraining, we achieve 35.04% accuracy on COCO stuff, which is
comparable to ImageNet pretraining (35.25%) while using only around 30K training images. We also
achieve 78.59% accuracy on Cityscapes, which is already 1% better than the fully supervised model
on ImageNet, and the performance on Cityscapes can be further boosted to 80.64% when adding
COCO-Stuff for pretraining. The results indicate that MDP also enjoys better transferability.

4.3 ABLATION STUDY AND DISCUSSION

In this section, we conduct extensive ablation studies as well as some detailed analysis to better
understand MDP. All models are pretrained over Pascal VOC and ADE20K for 100 epochs and
evaluated on Pascal VOC for efficiency.

Hyperparameter analysis. Table 2 studies the influence of temperature τ and memory bank size
Nb. Note that the actual size of the class prototype is Nb/bs. We conclude that too large or too
small memory bank size will cause performance degradation. This is because too old or too few
features stored in the memory bank fail to construct a representative and robust class prototype.
We also find that the temperature τ = 0.07 brings better performance under supervised pixel level
contrastive learning setting, which is different from self-supervised learning where τ is usually larger
(τ = 0.2 in MoCo-v2). The reason is that τ controls the strength for contrastive learning, with smaller
τ indicating stronger penalizing for compactness and separability. It makes sense that pixel level
contrastive learning gets better results for small τ since it is guided by ground truth labels.
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(a) (b) (c)

Figure 3: Comparisons of MDP, MoCo-V2, and supervised ImageNet pretraining on a) Pascal VOC,
b) ADE20K and c) Cityscapes at different fine-tuning iterations.

Comparing with more baselines. We now compare pixel-to-prototype loss with some other base-
lines including 1) cross-entropy loss on a concatenated label space Y (single-head), 2) cross-entropy
loss with different segmentation heads for different datasets (multi-head) and 3) pixel-to-region loss
proposed in Wang et al. (2021). The results are shown in Table 3. The single-head and multi-head
cross-entropy loss achieve lower performance (70.75% and 71.09%), for they fail to explicitly explore
the structural information of pixels and cannot effectively utilize the class relationship among datasets.
Pixel-to-region loss is a cross-image extension of pixel-to-pixel loss but also suffers from resource
constraints, which will no longer be applicable as the pre-training scale increases. We are surprised
to find that even in the small-scale ablation setting, the performance of pixel-to-region loss (71.44%)
is still weaker than our method (71.98%). We think this is because our method can better deal with
long-tail problems caused by multiple datasets and the appendix includes detailed category results.

Effects of cross-dataset learning and semi-supervised setting. Table 4 inspects the influence of
cross-dataset mixing. It can be seen that both mixing methods bring performance improvements
(0.68% gain for region-level mixing and 1.02% gain for pixel-level mixing), and combining them
brings larger improvement (1.34%). Table 5 reveals the effectiveness of pixel-to-prototype consistency
regularization as well as semi-supervised setting. Intuitively, adding COCO-stuff as unlabeled data
brings performance gain (73.32% to 74.74%). While consistency regularization module consistently
improves the results, which brings 0.47% (73.32% to 73.79%) gain under fully supervised setting,
and 1.83% (74.74% to 76.57%) gain under the semi-supervised setting. The performance gain is
much larger for semi-supervised learning even with a higher baseline. We think this is because both
pretraining and fine-tuning make use of Pascal VOC data. In this case, it may be more effective
to directly separate the label space of Pascal VOC from the label spaces of other datasets, while
consistency regularization benefits more when the labels are not confident.

Does MDP obtain more discriminative features? Fig. 3 compares the results of MDP and Ima-
geNet pretraining at different fine-tuning iterations over three datasets. It can be seen that MDP is
substantially higher than ImageNet pretrained model. It should be noted that at the beginning of
fine-tuning, MDP has achieved far better performance, even for Cityscapes that the model does not
see during the pretraining stage, which proves that MDP can obtain more discriminative features
due to pixel level learning. MoCo-v2 suffers the worst initial performance, which also indicates that
the instance level contrast learning cannot handle pixel level semantic segmentation tasks well. To
further validate the discriminative power learned by MDP, we also evaluate the performance when
the backbone is fixed during fine-tune, and the results are shown in Table 6 in the appendix.

5 CONCLUSION

This paper proposed a multi-dataset pretraining framework for semantic segmentation, which can
efficiently make use of the off-the-shelf annotations to construct a better and more general pretrained
model. The main contributions are three folds. First, we propose a pixel-to-class prototype contrastive
loss to effectively model intra-class compactness and inter-class separability of multiple datasets
regardless of their taxonomy labels. Second, we extend the pixel level embeddings via cross-dataset
mixing and pixel-to-prototype consistency regularization for better transferability. Third, we extend
MDP to semi-supervised setting, which is able to effectively make use of the vast unlabeled data
for better feature representation. Our method consistently outperforms the pretrained models over
ImageNet on several widely used benchmarks, while using much fewer samples for pretraining.
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A APPENDIX

Table 6: Results over Pascal VOC with fixed backbone.
Method Epoch mIoU

MoCo-v2 800 63.51
Supervised - 61.97

pixel-to-pixel 100 57.31
MDP 100 63.74
MDP 200 65.26

MDP (with COCO) 200 74.04

Table 7: Results of pixel-to region loss and our pixel-to prototype loss on head classes and tail
classes of ADE20k.

Method Head classes (top 5%) mIoU
wall building sky floor tree ceiling road

pixel-to-region 73.21 79.48 93.29 76.77 70.96 79.83 80.16 39.22
pixel-to-prototype 73.12 79.93 93.62 77.11 71.58 80.75 79.74 39.60

Method Tail classes (last 5%) mIoU
monitor bulletin board shower radiator glass clock flag

pixel-to-region 37.69 30.64 0.0 29.19 1.34 15.23 1.9 39.22
pixel-to-prototype 45.25 35.31 0.0 38.45 1.06 21.35 12.01 39.60

A.1 EVALUATION WITH FIXED BACKBONE

We fix the backbone and fine-tune only the segmentation head to verify the discriminability of the
features obtained by MDP. The results are shown in Table 6. MDP achieves 6.43% performance gain
comparing with the pixel-to-pixel baseline (57.31% to 63.74%), and also outperforms supervised
or self-supervised ImageNet pretraining (61.97% and 63.51%). The performance can be further
improved by a large margin by adding the COCO-Stuff dataset and prolong the pre-training epochs.
In this case, our model achieves 74.04% mIoU, which is comparable to the supervised ImageNet
pretraining that fine-tuning all layers (75.63%, shown in Table 1).

A.2 CATEGORY RESULTS

We further compare the performance of pixel-to-region loss (Wang et al., 2021) and our pixel-to-
prototype loss on ADE20K, which has more categories and more serious long-tail problems, to verify
the effectiveness of our method in dealing with rare categories. In Table 7, we respectively show
the overall performance, the head classes performance, and the tail classes performance of the two
methods. Results confirm that the performance improvement of our method mainly comes from tail
classes, with an average of 5.36% gain compared to pixel-to-region loss.

A.3 2-STAGE PRETRAINING STRATEGY

We additionally validate a 2-stage pretraining strategy, which conducts MDP on the basis of ImageNet
pretraining, and the results are shown in Table 8. We conclude that MDP can be easily combined
with ImageNet pretrained weights to further improve the results, especially for datasets such as
ADE20K that have a larger domain gap with ImageNet. Table 8 shows that 200 epochs 2-stage
pretraining outperforms ImageNet pretraining by a large margin, from 39.36% to 41.93%, when
using Pascal VOC and ADE20K for pretraining. For Pascal VOC, the 2-stage pre-training also helps
MDP (76.24%) surpass the performance of supervised ImageNet pretraining (75.63%).

12



Under review as a conference paper at ICLR 2022

Table 8: Results of 2-stage pretraining based on ImageNet pretrained weights. * means conducting
MDP on the basis of ImageNet pretraining.

Method Pretrained Dataset Epoch mIoU
VOC ADE20K

Supervised ImageNet - 75.63 39.36
MDP VOC and ADE20K 100 73.79 40.17
MDP VOC and ADE20K 200 74.65 40.83
MDP VOC, ADE20K and COCO 200 78.25 42.69

MDP* VOC and ADE20K 100 75.70 41.57
MDP* VOC and ADE20K 200 76.24 41.93

(a) Supervised ImageNet pretraining (b) Single-head cross-entropy loss

(c) Pixel-to-pixel loss (d) Pixel-to-prototype loss

Figure 4: t-sne visualization of the pixel level feature embeddings of the last layer. The model is
pretrained by a) supervised ImageNet pretraining, b) single-head cross-entropy loss, c) pixel-to-pixel
loss and d) our pixel-to-prototype loss, respectively.

A.4 TRANSFER ABILITY ON OTHER TASKS

MDP is a general framework and can be easily extended to other tasks such as classification and
detection, as long as designing a prototype for each class embedding with image-level or bounding
box level labels, and the domain gap can be relieved via cross-dataset mixing and consistency
regularization equipped in MDP. In addition to the MDP framework, our pre-trained model is also
transferable. Notably, We test the transferability of our model on COCO detection and instance
segmentation using Mask R-CNN. The results shown in Table 9 are still competitive. Although our
pre-trained model does not completely match the downstream model, our method still surpasses the
supervised and self-supervised ImageNet pretraining methods that make use of image-level features
for model pretraining, which indicates that the task gap matters when considering pretraining strategy.
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Table 9: Transferability of MDP using segmentation dataset for pretraining, and testing over COCO
detection and instance segmentation.

Method Pretrained Dataset Pretrained Task Box AP Mask AP
Supervised ImageNet Instance level 38.9 35.4
MoCo v2 ImageNet Instance level 39.3 35.7

MDP VOC, ADE20K and COCO Pixel level 39.8 36.0

A.5 FEATURE VISUALIZATION

We visualize the pixel level feature embeddings of the last layer to understand the aggregating
properties of the proposed method. Fig. 4 shows the t-sne feature visualization of different pretraining
strategies. We can conclude that: 1) Since supervised ImageNet pretraining (Fig. 4(a)) has a task
gap towards downstream, its pixel level features are not discriminable. 2) Single-head cross-entropy
loss (Fig. 4(b)) can separate some classes, but since it does not model the intrinsic structure of pixels,
features of most pixels are mixed together. 3) Pixel-to-pixel baseline (Fig. 4(c)) only distinguishes
the pixel level features in a single image, so although the features are separable to some extent, they
do not have clustering characteristics. 4) Features obtained by our pixel-to-prototype loss (Fig. 4(d))
enjoy better intra-class compactness and inter-class separability.
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