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Abstract

Neural architecture search (NAS) is a framework for automating the design process of a
neural network structure. While the recent one-shot approaches have reduced the search
cost, there still exists an inherent trade-off between cost and performance. It is important
to appropriately stop the search and further reduce the high cost of NAS. Meanwhile, the
differentiable architecture search (DARTS), a typical one-shot approach, is known to suffer
from overfitting. Heuristic early-stopping strategies have been proposed to overcome such
performance degradation. In this paper, we propose a more versatile and principled early-
stopping criterion on the basis of the evaluation of a gap between expectation values of
generalisation errors of the previous and current search steps with respect to the architec-
ture parameters. The stopping threshold is automatically determined at each search epoch
without cost. In numerical experiments, we demonstrate the effectiveness of the proposed
method. We stop the one-shot NAS algorithms and evaluate the acquired architectures on
the benchmark datasets: NAS-Bench-201 and NATS-Bench. Our algorithm is shown to
reduce the cost of the search process while maintaining a high performance.

1 Introduction

Deep learning (Goodfellow et al., 2016), the driving force of artificial intelligence which relies on stacked
layers of operation units called neural networks, has made a paradigm shift from handcrafting good features
to designing good neural architectures (combinations of operations) to extract good features. The success
of such representation learning has been driven by improvements in neural architectures. However, limits
to the heuristic designing of neural architectures remain. Neural architecture search (NAS) is designed to
automate such architecture engineering of neural network models (Elsken et al., 2019; Ren et al., 2021).
Early work on NAS adopted evolutionary computation (Angeline et al., 1994; Stanley & Miikkulainen, 2002;
Floreano et al., 2008; Stanley et al., 2009; Jozefowicz et al., 2015), Bayesian optimisation (Bergstra et al.,
2013; Domhan et al., 2015; Mendoza et al., 2016), and reinforcement learning (Baker et al., 2017; Zoph & Le,
2017; Zhong et al., 2018; Zoph et al., 2018) approaches to achieve state-of-the-art performance for various
tasks. These methods, however, entail immense computational costs, requiring up to thousands of GPU
days. Strubell et al. (2020) reported that a single NAS of the Transformer type (a large neural architecture)
can produce as much carbon emission as five cars in their lifetime. The mainstream of NAS research is
dedicated to reducing computational costs.

In the present research, we propose a stopping criterion for NAS. One can simply reduce extra search costs
by stopping the search at an appropriate time. While early-stopping strategies have been proposed as a
powerful solution to both reduce costs and improve performance (Baker et al., 2018; Li & Talwalkar, 2019),
when to stop the search remains an important question to be addressed. We aim to early-stop NAS while
maintaining its generalisation performance.

Our criterion particularly targets one-shot NAS, a prospective approach for reducing the cost of NAS, by
customising the search strategy. One-shot NAS (Saxena & Verbeek, 2016; Brock et al., 2018; Pham et al.,
2018; Bender et al., 2018) substantially reduces search costs by optimising a single redundant supernetwork,
known as a one-shot model, representing all possible architectures in the search space as its sub-networks,
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which share weights in common. More recent works combine this weight-sharing scheme with a continuous
relaxation (Liu et al., 2019) or a stochastic relaxation (Xie et al., 2019; Akimoto et al., 2019) of the search
space, which enables the use of gradient-based optimisation methods. These approaches, designated as
differentiable NAS, have shown promising results while reducing the search costs. DARTS (Liu et al., 2019),
a representative of differentiable NAS, has been successful at improving the search efficiency substantially
and expanding the possibility of using NAS for more expensive tasks. Nevertheless, DARTS is well known
to severely suffer from degenerated performance, which is sometimes worse than a random search (Yu et al.,
2020; Yang et al., 2020). Parameter-less operations such as skip connections have been observed to dominate
the generated architecture (Liang et al., 2019; Chu et al., 2020; Zela et al., 2020). Wide and shallow structures
are preferred by DARTS (Shu et al., 2020). It has been demonstrated that failures of DARTS have been
attributed to the discretisation of the architecture parameters fitted in the sharp minimum (Zela et al.,
2020).

RobustDARTS (Zela et al., 2020) mitigates this degeneration of performance by monitoring the dominant
eigenvalue of the Hessian matrix of validation loss w.r.t. the architectural parameters, which is correlated
with the sharpness of the loss landscape. The search should be stopped before the eigenvalue increases
excessively so that flat minima and the generalisation are expected. According to Liang et al. (2019),
the over-parameterised weights of the model are overfitted to the training data and the less-parameterised
architecture parameters are underfitted to the validation data, resulting in a gap between the training and
validation errors. To prevent this, Liang et al. (2019) proposed DARTS+ as an early-stopping scheme.

Both Zela et al. (2020) and Liang et al. (2019) performed an empirical study to determine a handcrafted
stopping criterion. RobustDARTS uses a fixed value of the ratio of the smoothed maximum eigenvalue of the
Hessian as the threshold. This heuristic criterion is underpinned by an empirical study on the relationship
between the generalisation performance and the Hessian eigenvalues and said to have been worked well for
several types of tasks and search spaces; however, the versatility among other search spaces and other types
of tasks is still unknown. Moreover, Hessian/eigenvalue computation has a high cost.

DARTS+ stops the search in DARTS when the number of skip-connections becomes more than two or the
ranking of the architecture parameters becomes stable. The former criterion is motivated by P-DARTS (Chen
et al., 2019), which limits the number of skip-connects in the cell or the unit structure to be optimised of the
final architecture to two by manually cutting down and is simple and easy to implement. The latter criterion
considers the stability of the ranking of the architecture parameters over the manually determined number
of epochs. A better stopping criterion based on the selection of operations has recently been proposed by
Zhang & Ding (2021). However, both of ad hoc criteria may not be versatile among other search spaces and
may have no theoretical guarantee of generalisation performance.

ASNG-NAS (Akimoto et al., 2019) is a yet another paradigm of gradient-based one-shot NAS. In this method,
the expected value of the generalisation error w.r.t. the distribution of architecture parameters is optimised.
Whereas a sampling-based exploration method such as ASNG-NAS is promising because its performance
is superior to DARTS with a lower GPU cost, automatic termination for such a sampling-based method
has not yet been considered to this date. In this paper, on the basis of the formulation of ASNG-NAS, we
propose a stopping criterion called Automatic Termination for Neural Architecture Search (ATNAS). Unlike
a related study (Makarova et al., 2022), which considers early-stopping of BO-based NAS, or DARTS+ and
RobustDARTS, which are only suitable for DARTS, our method is not limited to any search paradigms.

Ideally, the search should be stopped by monitoring the generalisation/test performance because we want
a model with a smaller error for unknown data. During the search, generalisation errors are not directly
trackable. Instead, we consider a gap between the expectation values of generalisation errors of the previous
and current search steps w.r.t. the architecture parameters, and we evaluate and adopt the upper bound of
it as the stopping criterion. When the upper bound becomes less than the estimated standard deviation of
the generalisation error, the architecture search is terminated because we cannot expect further significant
reduction of the generalisation error.

Finally, the trade-off between cost and performance still remains a challenge for NAS. ASNG-NAS is ex-
tremely light; however, in a scenario such as multi-objective NAS, in which many trials are required to adjust
the factor of the penalty term (such as FLOPS) on the objective function, efficiency is demanded. In such
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cases, early-stopping is essential from the point of view of reducing energy consumption as well as improving
engineering efficiency. Moreover, appropriate termination sometimes contributes to improved performance,
as suggested by our experimental results. The proposed method is essentially parallel to other acceleration
and stabilisation methods, and it is expected to be effective in principle to combine them with the proposed
method to further increase efficiency. Other methodologies that reduce the computational cost only optimise
the architecture for validation data and do not consider generalisation errors. They do not necessarily give
good performance when evaluated on a test-set (after re-training).

The contributions of this study are summarised as follows:

• We propose a stopping criterion for neural architecture search based on a gap between expectation
values of generalisation errors of the previous and current search steps w.r.t. the architecture pa-
rameters. The stopping threshold is automatically determined at each search epoch. The proposed
method can reduce computational costs while considering generalisation errors.

• We conduct numerical experiments to demonstrate that the proposed method can early-stop the
search while maintaining the generalisation performance. We stop the one-shot NAS algorithms
such as ASNG-NAS and DARTS and evaluate the acquired architectures using benchmark datasets.

The rest of this paper is organised as follows. Section 2 describes the preliminaries. Section 3 summarises the
existing algorithms our method is based on. Section 4 defines our stopping criterion. Section 5 demonstrates
the effectiveness of the proposed method. Section 6 mentions some limitations of our approach. Section 7
presents our conclusions.

2 Preliminaries and problem setting

In this section, we briefly introduce the NAS framework (Elsken et al., 2019; Wistuba et al., 2019). We
consider learning a predictive model of the form fw,c : X → Y, which maps input data x ∈ X to its
corresponding output y ∈ Y, where X and Y are input and output spaces, respectively. The predictive
model has two kinds of parameters: w ∈ W is a parameter and c is a hyperparameter. Typically, c
determines the network architecture and w is the connection weight of a fixed network specified by c.

The optimisation goal is to find a set of parameters w ∈ W and hyperparameters c ∈ C that minimise the
generalisation error L of the neural network as a predictive model. For a loss function ℓ and the true data
distribution D generating a sample Sn = {(xi, yi)}n

i=1, we respectively define the generalisation error and
empirical error as

LD(w, c) := E(x,y)∼D [ℓ(y, fw,c(x))] , (1)

and
LSn(w, c) := 1

|Sn|
∑

(xi,yi)∈Sn

ℓ(yi, fw,c(xi)) (2)

where |S| is the size of the dataset S. We consider that the training, validation, and test datasets are i.i.d.
samples from D, which are denoted by Strain = {(xi, yi)}ntrain

i=1 , Sval = {(xi, yi)}nval
i=1 , and Stest = {(xi, yi)}ntest

i=1 ,
respectively.

NAS solves two nested problems: weight optimisation minimise
w∈W

LStrain and architecture optimisation
minimise

c∈C
LSval . Recent NAS approaches adopt a weight sharing strategy in which the architecture search

space C is encoded in a supernet, f(w, c). Here we note that f(w, c) is a synonym of fw,c(x). We here-
after focus on the optimisation of w and c; thus, we omit x and use this notation to make w and c
explicitly the targets of optimisation. The supernet is trained once and, as subgraphs of the supernet,
all architectures inherit their weights directly from w. Typical weight sharing approaches convert the dis-
crete architecture search space into a continuous space, i.e., c is re-parameterised as c(θ) by a real-valued
vector θ. Both the weights and the architecture parameter θ are trained via a bi-level optimisation as
θ∗ = arg min

θ
LSval(w∗

θ , c(θ)) s.t. w∗
θ = arg min

w
LStrain(w, c(θ)) .
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3 Related works

In this section, we overview the related works on which our methodology is based.

3.1 Stopping methods for other machine learning problems

Early stopping of learning is an important issue, and there are several studies in contexts other than NAS.
Hyperparameter optimisation is usually structured as an “outer-loop” for hyperparameter searches, and an
“inner-loop” for optimisation of the parameters of the predictive model with the hyperparameters. Methods
for early stopping of the learning of predictive model parameters in the inner-loop, such as the connection
weights of a neural network, have been studied for a long time (Prechelt, 1996). In the context of Bayesian
optimisation, several methods have been proposed to increase the overall efficiency by scheduling the search
while stopping the inner-loop in each hyper-parameter early (Swersky et al., 2014; Li et al., 2017; Falkner
et al., 2018; Dai et al., 2019). In contrast, there are few methods to appropriately stop the outer-loop. Some of
them are specific to acquisition functions (Lorenz et al., 2015; Nguyen et al., 2017), such as the probability of
improvement (Kushner, 1964) and expected improvement (Mockus et al., 1978). There is a recently proposed
method which is more general with an automatic thresholding mechanism (Makarova et al., 2022), which
is also referred to in this paper. In addition, several optimal stopping methods for active learning (Settles,
2009) have been studied, ranging from heuristic methods (Bloodgood & Vijay-Shanker, 2009; Altschuler &
Bloodgood, 2019; Kurlandski & Bloodgood, 2022) to that based on learning theory (Ishibashi & Hino, 2020),
but the problem is different from hyper-parameter searches such as NAS.

There are only few criteria for optimal stopping methods equipped with NAS algorithms. We describe these
methods in some detail hereinafter.

3.2 DARTS

The search space of DARTS (Liu et al., 2019) is represented as cells defined by a directed acyclic graph
(DAG) of N -nodes. In the DAG, a node i ∈ 0, . . . , N − 1 is a latent expression similarly to a feature map
in the convolution architecture. The edge (i, j)(i < j) is a flow or a transformation between feature maps
from a node i to a node j. A set O of K operations is expressed as O = {o0, o1, . . . , oK−1} and each
operation oν(ν ∈ {1, . . . , K − 1}) includes trainable weights w

(i,j)
ν such as weights of convolution. A set of

operations O and its elements are defined in common for all edges (i, j), while the weights w(i,j) used in the
operations are provided separately for each edge. The architecture parameter α

(i,j)
ν is the appropriateness

of the ν-th operation at the edge between the node i and the node j and introduced as the weight after
applying the operation o

(i,j)
ν . For i < j, the calculation from the node i to the node j is expressed as∑K−1

ν=0
exp(α(i,j)

ν )∑K−1
ν′=0

exp(α
(i,j)
ν′ )

· oν(xi).

Stopping criterion: DARTS+ Liang et al. propose two stopping criteria for DARTS (Liang et al.,
2019). One of the criteria explicitly limits the number of skip-connects. The search process is terminated
whenever there are two or more skip-connections in one normal cell. Another criterion monitors the ranking
of architecture parameters α for learnable operations and when it becomes stable for 10 epochs the search is
terminated, since the stable ranking of the architecture parameter α for the learnable operations indicates a
saturated search procedure in DARTS.

Stopping criterion: RobustDARTS Zela et al. have carried out exploratory research to investigate
the correlation between the generalisation performance and the dominant eigenvalue of the Hessian of the
validation loss w.r.t. the architectural parameters over search time (Zela et al., 2020). The large eigenvalue
of the Hessian correlates with the performance degradation. In order to avoid the large dominant eigenvalue
serving as a proxy for the sharpness of loss landscape, they propose to stop search when λ̄α

max(i−k)/λ̄α
max(i) <

0.75. Here, λ̄α
max(i) is the dominant eigenvalue of the Hessian of validation loss w.r.t. the parameters averaged

over k = 5 epochs around i and return the architecture at i − k.
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3.3 ASNG-NAS

In ASNG-NAS (Akimoto et al., 2019), optimisation of the expected value of the generalisation error L with
respect to pθ, where pθ is a distribution on the categorical space C, is considered as

J(w, θ) :=
∫

c∈C
L(w, c)pθ(c)dc = Epθ

[L(w, c)], (3)

where w, c, L represent connection weights, architecture parameters, and the generalisation error, respec-
tively. The architecture parameter c ∼ pθ(c) is a one-hot vector sampled from a categorical distribution
pθ(c), which determines the neural architecture.

The single search iteration of ASNG-NAS includes: (1) The sampling of an architecture: c ∼ pθ(c), (2) The
update of w: wt+1 = wt + ηw∇wJθ(wt, θt), (3) The update of θ: θt+1 = θt + ηt

θ∇̃θJθ(wt+1, θt), and (4)
The adaptation of step-size, where ∇̃θ = F (θt)−1∇θ is the natural gradient (Amari, 1998). Note that the
gradients are approximated by Monte-Carlo method in practice.

Convergence of θ The original paper of ASNG-NAS does not automatically stop the search; instead, the
search runs for the fixed epochs, e.g., 100 epochs. The convergence of θ, 1

d

∑d
i=1 maxj [θ]i,j , where d is the

cell index and j is the operation index, is monitored. It is the average value of the probability vector θ of the
categorical distribution which converges to a certain category. In the paper by Akimoto et al. (2019), it is
argued that it reaches 0.9 in about 50 epochs and thus the convergence is fast. Nevertheless it is not trivial
to use this convergence of θ as a stopping criterion. In the supplementary material, we compare our metric
(the upper bound of the gap of the expected generalisation errors) with the convergence of θ and discuss
that our metric reflects the generalisation performance better than the convergence of θ.

4 Proposed method

This section presents the Automatic Termination for Neural Architecture Search (ATNAS), a stopping
criterion based on the evaluation of the gap between expected generalisation errors with previous and current
hyperparameter distributions.

4.1 Upper bound for gap between expected values of generalisation errors

The aim of NAS is to find the neural architecture which minimises the generalisation error defined in
equation 1. So, it is natural to focus on the gap between the generalisation errors with hyperparameter
distributions searched at previous and current step. Adopting the stochastic relaxation, neural architecture
is sampled from distribution pθ(c). We consider the gap of the expected values of generalisation errors with
respect to pθt

(c) and pθt−1(c):

∆L = J(wt, θt) − J(wt−1, θt−1) = Epθt
[L (wt, c)] − Epθt−1

[L (wt−1, c)] ,

which is the gap between the objective function of ASNG-NAS, equation 3, hence expected to converge to
zero when search is sufficiently progressed.

The gap between the generalisation errors with hyperparameter distributions searched at previous and cur-
rent step is not directly computable, because the generalisation error is not available during the architecture
search. Our strategy is to estimate the upper bound of the gap ∆L and determine the termination timing
of the search process by comparing the upper bound with the threshold. So as to evaluate the upper bound
rt ≥ ∆L of the gap, we consider the Pinsker’s inequality below (Theorem 4.1).
Theorem 4.1 ((Russo & Roy, 2016), Fact 9). Let pθt

(c) and pθt−1(c) be arbitrary probability distributions
of a vector valued random variable c. The following inequality holds for an arbitrary measurable function
L ∈ [a, b]

Epθt (c)[L(w, c)] − Epθt−1 (c)[L(w, c)] ≤ (b − a)
√

1
2DKL(pθt

(c)∥pθt−1(c)),
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where a, b are the maximum and minimum values of L, and DKL(p∥q) is the Kullback–Leibler (KL) divergence
between distributions p and q.

We note that pθ(c) is a discrete distribution in ASNG-NAS, hence it is easy to calculate the KL divergence.

We can calculate the upper bound via the above theorem when wt+1 = wt. However, the weights w are
updated in the NAS procedure; hence, the theorem (4.1) is not directly applicable. We approximate it via
Taylor series expansion.

Let n-th Taylor expansion of J(w, θ) around wt with respect to w as Tn(w, θ), and its reminder term as
Rn(w) := J(w, θ) − Tn(w, θ). We define T ′

n(w, θ) as Tn(w, θ) without the 0-th term. That is, T ′
n(wt, θt) =

Tn(wt, θt) − T0(wt, θt) = Tn(wt, θt) − J(wt−1, θt). Then, we have

J(wt, θt) − J(wt−1, θt−1) = Tn(wt, θt) + Rn(wt, θt) − J(wt−1, θt−1) (4)
= J(wt−1, θt) − J(wt−1, θt−1) + T ′

n(wt, θt) + Rn(wt, θt). (5)

Therefore, we apply the theorem 4.1 to the 1st and the 2nd term of equation 5 to obtain the following
inequality:

J(wt, θt) − J(wt−1, θt−1) ≤ (b − a)
√

1
2DKL(pθt(c)∥pθt−1(c)) + T ′

n(wt, θt) + Rn(wt, θt).

We then remove the residual term Rn(w, θ). Let J as Cn-class with respect to w. Assume that J(w, θ) ≤ M
for all w ∈ [wt−1, wt−1 + d] with ∥wt − wt−1∥ < d. Then we obtain the following inequality:

J(wt, θt) − J(wt−1, θt−1) ≤ (b − a)
√

1
2DKL(pθt(c)∥pθt−1(c)) + T ′

n(wt, θt) + M

n! ∥wt − wt−1∥n.

T ′
n is the n-th degree Taylor polynomials without the 0-th term and J(w, θ) ≤ M .

Assuming that the range of the generalisation error L is L ∈ [a, b], we consider L̂ := L − a. In this case, the
difference between expectation values of L̂ are the same as that of expected values of L̂, so the upper bound
remains unchanged. We consider the upper bound of L̂. Because L̂ ∈ [0, b − a], defining M = (b − a), we
can use the Taylor’s inequality. Concrete forms of the upper bound rt of ∆L with 1st and 2nd order Taylor
expansion are given as

r1
t =(b − a)

√
1
2DKL(pθt

(c)∥pθt−1(c)) + ∇wJ(wt−1, θt) · (wt − wt−1)

+ (b − a)∥wt − wt−1∥, (6)

r2
t =(b − a)

√
1
2DKL(pθt(c)∥pθt−1(c)) + ∇wJ(wt−1, θt) · (wt − wt−1)

+ 1
2(wt − wt−1)T∇2

wJ(wt−1, θt)(wt − wt−1) + (b − a)
2 ∥wt − wt−1∥2. (7)

In general, we do not have access to the range of L nor the range of loss function is unbounded. One
possibility is to use the bounded loss function such as a bi-tempered logistic loss (Amid et al., 2019), which
is a common loss function for practitioners to deal with noisy labels (see supplementary material for details).
Another practical approach is assuming the range of a loss function. From our experimental results, we see
that both approaches work well.

4.2 Automatic determination of threshold

We propose to stop architecture search when the upper bound rt becomes less than the threshold λt. In
our setting, or a typical NAS, validation data are available and it motivates us to auto-tune the termination
threshold using training/validation data. In a recent work (Makarova et al., 2022), the early stopping
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criterion is presented to mitigate the issue of overfitting in tuning hyperparameters of predictive models by
Bayesian optimisation. The termination is triggered once the upper bound of a simple regret becomes less
than the standard deviation of the generalisation error, which can be estimated from k-fold cross validation
of training and validation data as

λt =

√
1
k

+ |Sval|
|Strain|

ŝt, (8)

where ŝ2
t is the estimated sample variance of k-fold cross-validation (Nadeau & Bengio, 1999) w.r.t. the

predictive model at the t-th epoch of NAS. In the ASNG-NAS case, ŝ2
t is calculated by, instead of performing

cross-validation, we split the validation data (5-fold) and calculate the standard deviation of validation errors,
with the hyperparameter c independently sampled from pθ at each epoch. Our proposed criterion is based
on the gap between (expected) generalisation errors, and it is natural to compare it with the estimated
standard deviation of the generalisation error. Here we note that the estimated standard deviation λt is easy
to compute for each epoch of architecture search in ASNG-NAS without undue overhead. We benchmark
the computational time required for the each stopping algorithm in the supplementary material.

4.3 Application to DARTS

The proposed method uses the ASNG-NAS setting for formulating a stopping criterion and hence is not
directly applicable to DARTS. In particular, in DARTS, the optimisation target is not the expected value
of the generalisation error, and the architecture parameter is not based on the stochastic relaxation but the
continuous relaxation. We interpret the softmax exp(α(i,j)

ν )∑K−1
ν′=0

exp(α
(i,j)
ν′ )

as the multinomial parameter distribution

and compare it with the distribution at the previous search epoch. The pt and pt−1 in the definition of rt that
we use as a stopping criterion are the posterior distributions calculated by the softmax. For the automatic
determination of the threshold, a one-hot discretisation is performed and the the threshold is automatically
calculated by the equation 8 at the end of each epoch.

5 Experiments

To evaluate the efficiency of ATNAS, we conducted numerical experiments1. The architecture search is
carried out by DARTS or ASNG-NAS. For the stopping criterion, we evaluate the upper bound via equation 6.
The termination threshold is calculated by equation 8. For the loss function, we adopt the bi-tempered logistic
loss, of which the upper bound is defined, to satisfy the assumptions of the theorem. We also investigate the
commonly used cross-entropy loss. We evaluate the results on the basis of search cost (number of epochs)
and test accuracy.

5.1 Dataset

We use benchmark datasets including NAS-Bench-201 database (Dong & Yang, 2020) and NATS-Bench
database (Dong et al., 2021) constructed on CIFAR-10/CIFAR-100 (Krizhevsky, 2009) and ImageNet (Deng
et al., 2009), and adopt the standard preprocessing and data augmentation following the previous works.

5.2 Implementation details

We use the original implementations of DARTS, ASNG-NAS, NAS-Bench-201 and NATS-Bench. We use
the bi-tempered logistic loss or the cross entorpy loss for the loss function. Experiments are performed on
a single NVIDIA QUADRO RTX 6000 GPU. For the cross entropy loss, we assume the upper bound b in
Theorem 4.1 to be the loss value of the first epoch, and the lower bound a to be zero. For the stopping
criterion, we adopt the 1st order expansion given by equation 6. We note that the 2nd order expansion offers
tighter upper bound, but calculation of Hessian w.r.t. parameter w requires heavy computation burden.

1The source code can be found in the supplementary material.
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5.3 Results

All of the experiments are repeated for five trials and the mean values and standard deviations are reported.
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Figure 1: Automatic termination of ASNG-NAS:
CIFAR-10 accuracy curves vs. upper bound rt.
Red dashed lines represent one terminated timing
by ATNAS. BLL: Bi-tempered logistic loss, CEL:
Cross entropy loss.
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bound rt of the gap between generalisation errors
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5.3.1 Automatic termination of ASNG-NAS

We conduct experiments to establish whether the proposed method can reasonably halt ASNG-NAS. Figure 1
shows the training/validation/test accuracy of ASNG-NAS for CIFAR-10, and the stop timing determined
by ATNAS. The bi-tempered logistic loss and the cross-entropy loss are used. We confirm that there is no
significant difference between the cases for the bi-tempered logistic loss and the cross entropy loss. The solid
lines are the mean values, and the shaded areas are the standard deviations. The blue cross mark and red
vertical line represent the terminated timing for one trial (note that for the five trials, there is only minor
difference in the determined stop time, hence we only show the stop time for the first trial). While the test
accuracies appear to continue improving slightly, the improvement is considered to be saturated and hence
the further search is questionable from the cost-effectiveness point of view. Thus, the determined termination
is at a reasonable timing. A comparison of the proposed criteria and the convergence of θ is shown in the
supplementary material.

5.3.2 Comparison with Hessian considered in RobustDARTS

We consider terminating DARTS with the proposed criterion and RobustDARTS. We train DARTS with
CIFAR-10 and compare the dominant eigenvalues of Hessian of the validation loss, upper bound rt, and the
test accuracy values by querying NAS-Bench-201. The early stopping method equipped with RobustDARTS
monitors the Hessian eigenvalue which does not sometimes capture the performance degradation and might
fail to stop the search at the right time, as shown in Figure 2. The eigenvalues of the Hessian continue to be
lower in the early stages until when the performance degradation begins. The eigenvalues increase rapidly
after the degradation; nevertheless their response is slow and unstable. In contrast, the upper bound rt as
our stopping criterion is continuously decreasing and with the appropriate termination threshold the search
can be terminated in the early stage before the performance degradation happens.

5.3.3 Automatic termination of DARTS

Early-stopping strategies proposed for DARTS include DARTS+ and RobustDARTS. We compare our
method with these conventional methods by the stopping time and the accuracy of the obtained architec-
tures. ATNAS on DARTS is evaluated using NAS benchmarks including NAS-Bench-201 and NATS-Bench.
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(a) DARTS with bi-tempered logistic loss trained on
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(b) DARTS with bi-tempered logistic loss trained on
CIFAR-10. The baseline accuracy values are obtained by
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(c) DARTS with cross entropy loss trained on CIFAR-
10. The baseline accuracy values are obtained by querying
NAS-Bench-201.
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(d) DARTS with cross entropy loss trained on CIFAR-
10. The baseline accuracy values are obtained by querying
NATS-Bench.

Figure 3: Automatic termination of DARTS by conventional and proposed criteria.

We employ the warm-up scheme which is widely used in supernet training. The parameters are frozen at
the beginning for 10 epochs while updating weights. The accuracy of the obtained architectures and the
quantity used for our criterion are shown in Figure 3. The results are averaged for 5 trials and the solid
lines are the mean values and the shaded areas are the standard deviations. The red, blue, and green dashed
vertical lines represent the terminated timings by ATNAS, RobustDARTS, and DARTS+, respectively, for
one trial. By observation, we note that the results of the bi-tempered logistic loss and the cross entropy loss
with the empirical upper bound are essentially the same and, thus, our stopping criterion is compatible with
the standard NAS with the widely used cross-entropy loss.

While DARTS performs worse than a random search on benchmarks, ATNAS (along with other early-
stopping methods) is able to stop the search before the severe performance degradation occurs. Our early-
stopping method terminates the search surprisingly early. The threshold is automatically determined by
estimating the standard deviation of the generalisation error via the standard deviation of the 5-fold valida-
tion error. In the case where the variation of the validation error is large, the threshold value becomes high
enough to stop the search early. Particularly in the case of the DARTS, it implies that redundant search
time has been previously spent. The proposed method is not only avoiding the performance degradation but
also cost effective and environmentally friendly. Existing approaches are likely to attempt to stop for curves
after discretised. It is shown that failures of DARTS are mostly due to the discretisation (Zela et al., 2020;
Wang et al., 2021) and it is reasonable to terminate the search by monitoring the curves before discretised
which the proposed method focuses on.
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6 Limitations

The intrinsic limitation of our method is that it requires the range of loss function to be bounded and
known. We can use a popular bounded loss, and practically, the cross-entropy loss with an empirical bound
is effective, but removing this restriction is an important problem to be solved.

The computational complexity for calculating our termination metric with the 1st order Taylor expansion
is O(N + M), where N is the number of network parameters and M is the dimension of the architecture
parameters. This extra computational cost is negligible compared to those required by a standard NAS
procedure. However, when we want to improve the tightness of the upper bound by computing higher order
Taylor expansion, the cost would matter.

7 Conclusion and future direction

In this study, we proposed a stopping criterion for one-shot neural architecture search. Stopping NAS at
the appropriate time is very important for both Green-AI (Strubell et al., 2020; Schwartz et al., 2020) and
AutoML (He et al., 2021; Santu et al., 2022). The proposed criterion monitors the gap between expectation of
generalisation errors of the previous and current search steps with respect to the architecture parameters. It
is not directly computable because we do not have access to the generalisation error. To address this problem,
we derived an easy to compute upper bound. By way of experimentation, we demonstrated that the proposed
criterion is useful to terminate differential architecture searches of both types appropriately: stochastic
relaxation (ASNG-NAS) and continuous relaxation (DARTS). The architecture search is terminated with
high performance. While the conventional methods are limited to specific search spaces, the proposed
method is versatile and widely applicable to one-shot models. There are recent researches on zero-shot
approach (Mellor et al., 2020; Abdelfattah et al., 2021; Chen et al., 2021; Lin et al., 2021; Ning et al., 2021)
and extrapolation approach (Swersky et al., 2014; Domhan et al., 2015; Klein et al., 2017; Baker et al., 2018;
Rawal et al., 2019; Wistuba & Pedapati, 2020; Yan et al., 2021) to speed up NAS and it is promising to
combine these methods with our ATNAS to further improve the efficiency of NAS.
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A Appendix

A.1 Upper bound for Bi-Tempered Logistic Loss

One example of the bounded loss function is a Bi-Tempered Logistic Loss which adopts parameters to adjust
the maximum of the margins and the damping ratio of the SoftMax function (Amid et al., 2019):

∀0 ⩽ t1 < 1 < t2 : Lt2
t1

(â | y) := ∆Ft1
(a − ξt2(â)), with ξt s.t.

k∑
i=1

expt (ai − ξt(a)) = 1. (9)
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For each input x, the input to the SoftMax layer is z and the activation function as linear transformation
for each class i is defined as âi = wi · z. ∆Ft is a Bregman divergence defined by a convex function Ft.

∆Ft
(y, ŷ) =

k∑
i=1

(
yi logt yi − yi logt ŷi − 1

2 − t
y2−t

i + 1
2 − t

ŷ2−t
i

)

=
k∑

i=1

(
1

(1 − t)(2 − t)y2−t
i − 1

1 − t
yiŷ

1−t
i + 1

2 − t
ŷ2−t

i

)
. (10)

expt is the inverse function of κ-deformed logarithm logt(x) := 1
1−t (x1−t − 1):

expt(x) := [1 + (1 − t)x]1/1−t
+ .

The upper bound of ∆Ft
(y, ŷ) is given as follows (Amid et al., 2019):

2B2−t

(1 − t)2 , where max(∥y∥2−t, ∥ŷ∥2−t) ⩽ B (11)

We here calculate the upper bound using the 1st order Taylor expansion.
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We here calculate the upper bound using the 2nd order Taylor expansion.

T ′
n(wt+1, θt+1) + M

n! ∥wt+1 − wt∥n

≃ ∇wJ(wt, θt+1) · (wt+1 − wt) + 1
2(wt+1 − wt)T∇2

wJ(wt, θt+1)(wt+1 − wt) + (b − a)
2 ∥wt+1 − wt∥2 (18)
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A.1.1 Comparison to the convergence of θ in ASNG-NAS

We assess criteria for terminating ASNG-NAS. We use CIFAR-10 dataset. Although ASNG-NAS does not
explicitly have the stopping scheme, the convergence of θ can be monitored. We plot it with the proposed
upper bound. The olive and green lines in Figure 4 show the convergence of θ explained in subsection 3.3 and
purple and magenta lines are the upper bound rt used for our stopping criterion. Red and orange lines are
the CIFAR-10 test errors calculated by the one-hot architectures with the inherited weights at each epoch.
The convergence of θ “converges” earlier whereas the quantities for our stopping criterion keep decreasing
so as the test errors. In general, the acquired one-hot network is retrained after the architecture search.
After the convergence of θ reaching almost 1, the apparent subsequent improvement in the test accuracy is
considered as the the learning of weights. If we are going to retrain weights, it is not efficient to wait for the
improvement in test accuracy due to learning of weights. In addition, it is well-known that the validation
accuracy during architecture search and the test performance after retraining do not correlate. Moreover,
the learning rate significantly affects the convergence speed as well as the final test performance2. For rapid
convergence, the architecture search tends to prefer simple operations which only improve the valid accuracy
in the short term. This may not always result in high test performance. Then, practitioners may want to
conduct comprehensive assessment of a few criteria. The proposed upper bound rt is a candidate for such
criterion.

We note that there is no significant difference in convergence of θ and test error between the cases for
the bi-tempered logistic loss and the cross entropy loss. Our metric for the cross entropy loss has larger
variance particularly at the early stage than the bi-tempered logistic loss, which is considered to be due to
the approximation of upper bound as explained in subsection 5.23.

A.2 Additional results

We here provide additional experimental results. We evaluate our stopping criterion on DARTS using NAS
benchmarks including NAS-Bench-201, NATS-Bench, NAS-Bench-301, and NAS-Bench-ASR.

2We choose the configuration to ensure the correlation.
3We substitute the loss value at the first epoch into the upper bound b of the cross-entropy loss. This empirical estimation

of the upper bound can be loose and introduce variance to the results.
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Figure 4: Convergence of θ equipped with ASNG-NAS, CIFAR-10 test error (included both in one plot for
convenience, corresponding to the left axis.), and our criterion.

A.2.1 Additional results on NAS-Bench-201 and NATS-Bench

The baseline accuracies of the obtained architectures are taken from benchmarks and the quantity used for
our stopping criterion are shown in Figure 5. The results are averaged for 5 trials and the solid lines are the
mean values and the shaded areas are the standard deviations. We show all of 5 trials with the red, blue,
green dashed lines representing the terminated timings by ATNAS, RobustDARTS, and DARTS+. Although
the three termination methods have different timings for different trials, RobustDARTS and DARTS+ are
successful in stopping before performance degradation possibly caused by domination of skip-connects. The
ATNAS stops the search around similar timing or earlier than the other two previous early-stopping strate-
gies. Hence, ATNAS is a strong candidate for the automatic termination method for NAS.

A.2.2 Additional results on NAS-Bench-301 and NAS-Bench-ASR

We evaluate versatility of our proposed stopping criterion using benchmarks including NAS-Bench-301 (Siems
et al., 2020) and NAS-Bench-ASR (Mehrotra et al., 2021). NAS-Bench-301 is a large benchmark which
consists of 1018 architectures and their performances on CIFAR-10. NAS-Bench-ASR is a benchmark for
automatic speech recognition tasks. The baseline errors of the obtained architectures are taken from bench-
marks (Figure 6). The results are averaged for 5 trials and the solid lines are the mean values and the
shaded areas are the standard deviations. Similarly to the NAS-Bench-201 and NATS-Bench, all of the
three termination methods are successful in stopping search before performance degradation (Figure 6a). In
particular, while DARTS+ and RobustDARTS terminate search where test errors start to increase, ATNAS
is able to terminate much earlier at plateaus with lower test errors. For NAS-Bench-ASR, the ATNAS and
the RobustDARTS stop the search when the performance saturates (Figure 6a). ATNAS terminates search
earlier than RobustDARTS. ATNAS is a versatile automatic termination method for a variety of NAS tasks.

A.3 A table of final performance

The following tables 1,2,3,4 show the test CIFAR-10/CIFAR-100/ImageNet16 accuracies of the acquired
architectures at the terminated search epoch by ATNAS, RobustDARTS, and DARTS+, respectively. The
averaged values over 5 trials are shown with the standard deviations.
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(b) DARTS with bi-tempered logistic loss trained on
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(c) DARTS with cross entropy loss trained on CIFAR-
10 and NAS-Bench-201 baseline accuracy.
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(d) DARTS with cross entropy loss trained on CIFAR-
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Figure 5: DARTS with bi-tempered logistic loss and cross-entropy loss trained on CIFAR-10 and NAS-
Bench-201 and NATS baselines. All of the termination timings are shown.
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Table 1: A table of final performance. DARTS with bi-tempered logistic loss trained on CIFAR-10 and
NAS-Bench-201 baseline accuracy.

Termination epoch Test accuracy of CIFAR-10 CIFAR-100 ImageNet16
ATNAS 10 ± 7 86.67 ± 5.91 54.39 ± 21.92 31.71 ± 10.03

RobustDARTS 23 ± 7 82.84 ± 4.93 23.90 ± 20.00 25.96 ± 11.54
DARTS+ 22 ± 11 83.35 ± 5.69 41.46 ± 24.61 24.38 ± 12.01

Table 2: A table of final performance. DARTS with cross entropy loss trained on CIFAR-10 and NAS-
Bench-201 baseline accuracy.

Termination epoch Test accuracy of CIFAR-10 CIFAR-100 ImageNet16
ATNAS 16 ± 6 86.36 ± 5.49 50.73 ± 23.21 28.35 ± 10.03

RobustDARTS 22 ± 3 81.54 ± 9.31 43.56 ± 18.75 23.90 ± 9.81
DARTS+ 15 ± 5 76.61 ± 13.46 46.65 ± 21.04 24.80 ± 11.69

Table 3: A table of final performance. DARTS with bi-tempered logistic loss trained on CIFAR-10 and
NATS-Bench baseline accuracy.

Termination epoch Test accuracy of CIFAR-10 CIFAR-100 ImageNet16
ATNAS 17 ± 8 54.39 ± 21.92 41.82 ± 23.76 20.34 ± 5.26

RobustDARTS 28 ± 5 70.75 ± 10.08 23.40 ± 13.49 17.71 ± 1.21
DARTS+ 10 ± 5 61.15 ± 15.31 34.17 ± 16.69 18.68 ± 2.50

Table 4: A table of final performance. DARTS with cross entropy loss trained on CIFAR-10 and NATS-
Bench baseline accuracy.

Termination epoch Test accuracy of CIFAR-10 CIFAR-100 ImageNet16
ATNAS 19 ± 12 74.93 ± 13.40 43.96 ± 21.35 27.43 ± 10.08

RobustDARTS 32 ± 16 72.10 ± 10.79 35.37 ± 13.83 20.58 ± 4.32
DARTS+ 31 ± 11 70.81 ± 9.87 37.61 ± 15.26 19.86 ± 4.40

Table 5: A table of final performance. DARTS with bi-tempered logistic loss trained on CIFAR-10 and
NAS-Bench-301 baseline errors.

Termination epoch Test errors of CIFAR-10
ATNAS 10 ± 3 0.0574 ± 0.0057

RobustDARTS 15 ± 5 0.0585 ± 0.0039
DARTS+ 12 ± 5 0.0584 ± 0.0028

Table 6: A table of final performance. NAS-Bench-ASR baseline Average Best Test PER.

Termination epoch Average Best Test PER
ATNAS 148 ± 19 0.21487 ± 0.00061

RobustDARTS 172 ± 25 0.21476 ± 0.00048

A.4 Computational time

In this subsection we investigate the computational time of the proposed method. In particular we confirm
that the computation time for the automatic determination of the termination threshold is not dominant
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with respect to that of the architecture search. In the following table we show the computational time of
stopping criterion (equation 6), determining the threshold (equation 8) and the architecture search at each
epoch. The experimental setup follows the section 5. The search is executed with either ASNG-NAS or
DARTS. We train the model with CIFAR-10. The experiments are repeated for five trials and the mean
values and standard deviations are reported (Table 7).

Table 7: Computational time for each epoch, architecture search, stopping criterion (equation 6) and
termination threshold (equation 8) (in seconds).

Each epoch Architecture search Stopping criterion Threshold
ASNG-NAS 87.4143 ± 5.3360 73.4244 ± 3.998 8.8542 ± 0.7148 4.4021 ± 0.5232

DARTS 527.7572 ± 11.3356 500.7134 ± 6.8206 19.1664 ± 2.3588 6.4564 ± 0.6235
DARTS+ – – – N/A

RobustDARTS – – 87.5423 ± 11.4333 N/A
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