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Abstract
This paper studies a pure exploration problem
with linear bandit feedback on continuous arm
sets, aiming to identify an ε-optimal arm with
high probability. Previous approaches for continu-
ous arm sets have employed instance-independent
methods due to technical challenges such as the
infinite dimensionality of the space of probability
measures and the non-smoothness of the objective
function. This paper proposes a novel, tractable
algorithm that addresses these challenges by lever-
aging a reparametrization of the sampling distribu-
tion and projected subgradient descent. However,
this approach introduces new challenges related
to the projection and reconstruction of the distri-
bution from the reparametrization. We address
these by focusing on the connection to the ap-
proximate Carathéodory problem. Compared to
the original optimization problem on the infinite-
dimensional space, our method is tractable, requir-
ing only the solution of quadratic and fractional
quadratic problems on the arm set. We establish
an instance-dependent optimality for our method,
and empirical results on synthetic environments
demonstrate its superiority over existing instance-
independent baselines.

1. Introduction
The stochastic linear bandit problem (Dani et al., 2008;
Jedra & Proutiere, 2020) is a well-studied online decision-
making problem that has been widely applied to real-world
problems (Lattimore & Szepesvári, 2020). While most re-
search focuses on minimizing cumulative regret, this paper
considers a pure exploration problem, specifically the ε-BAI
(best arm identification) problem. Unlike regret-minimizing
algorithms, optimal pure exploration algorithms achieve
an exponentially decaying probability of misidentifying
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an ε-optimal arm (cf. (Bubeck et al., 2011, Theorem 1),
Lemma 4.1, (Banerjee et al., 2023, Theorem 2.2)), where
ε > 0 is a given error tolerance. Furthermore, this paper
considers a continuous arm set X ⊂ Rd (a compact subset
of Rd) and aims to optimize sampling distributions to mini-
mize the posterior probability of misidentification under a
Bayesian reward model. Despite extensive existing research
on BAI problems, as we detail below, the ε-BAI problem on
continuous arm sets is an open problem.

The pure exploration problem with linear bandit feedback
in the finite-armed setting has been extensively studied,
with instance-optimal algorithms proposed for the (ε, δ)-
PAC learning setting (Jourdan & Degenne, 2022), aiming
to identify an ε-optimal arm with probability at least 1− δ.
These algorithms typically solve an optimization problem
over the probability simplex ∆K−1 ⊂ RK , where K is the
number of arms; for example, Lazy Track-and-Stop (Je-
dra & Proutiere, 2020) employs the Frank-Wolfe algorithm.
Naively applying these finite-armed algorithms to the con-
tinuous arm setting via discretization of the arm set X is
computationally intractable, as the number of discretization
points K can grow exponentially with the dimension d.

Although most existing works for pure exploration problems
focused on the finite-armed setting, there are few notable
exceptions. Jedra & Proutiere (2020) studied a linear pure
exploration problem with the fixed confidence setting and
proposed an (order-wise) optimal algorithm when the arm
set X is the unit sphere (along with the case of the finite-
armed setting). However, their analysis shows that a uni-
form exploration is an (order-wise) optimal sampling rule
and such an exploration would not be optimal for general
continuous arm sets. Bhat & Amballa (2022) also studied
the (ε, δ)-PAC learning problem with the linear bandit set-
ting for general continuous arm sets. However, their method
is also a uniform exploration and theoretical result (Bhat
& Amballa, 2022, Theorem 4.4, Eq. (10)) shows an upper
bound of the sample complexity involves the dimension d
and ε rather than a problem instance, i.e., their analysis is
instance-independent. Therefore, even in the case of linear
bandits, to the best of our knowledge, it is an open problem
to develop a trackable algorithm for a pure exploration prob-
lem with linear bandit feedback with an instance-dependent
optimality.
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As we detail in Section 4, developing a tractable ε-BAI
algorithm is challenging because finding an optimal sam-
pling strategy requires optimization over the space P(X )
of probability measures on X . This optimization problem
(defined as Eq. (4)) is highly non-trivial to solve due to
(i) the infinite-dimensionality of P(X ) when the arm set X
is continuous, and (ii) the non-smoothness of the objective
function (4) due to the inner supremum. Furthermore, ban-
dit feedback obscures the true objective function. This paper
addresses these challenges by reparameterizing π 7→ V (π)
for π ∈ P(X ), where V (π) = Ex∼π

[
xx>

]
∈ Rd×d is

the covariance matrix, and adapting a projected subgradient
descent (PSGD) method (cf. (Bubeck, 2015, Chapter 3.1)).
This approach updates a symmetric matrix Vt ∈ Rd×d such
that Vt = V (πt), where πt is an arm’s sampling distribution
at round t. However, it introduces new challenges: (iii)
projecting onto the space V(X ) := {V (π) : π ∈ P(X )},
and (iv) reconstructing a distribution πt from a given ma-
trix Vt. We address these by leveraging a connection to the
approximate Carathéodory problem (Combettes & Pokutta,
2023), which seeks a convex combination approximating a
given point in a convex set. Analogously to the approximate
Carathéodory problem, we resolve (iii) and (iv) using an
adapted Frank-Wolfe method (Algorithm 2).

To summarize our contributions, we briefly describe the
problem setting (a more formal description is given in Sec-
tion 3). We assume a Bayesian linear reward model, i.e.,
for each t = 1, 2, . . . , for a selected arm xt ∈ X , a learner
observes a noisy reward yt = f(x) +ωt, where ωt is a zero-
mean noise, f(x) is an unknown random function given as
f(x) = θf ·x and θf is an unknown random vector sampled
from a prior distribution N (θ0,Σ0) with θ0 ∈ Rd,Σ0 ∈
Rd×d when the round starts. The learner samples an arm xt
using a distribution πt ∈ P(X ), where πt is a distribution
computed using observations up to round t− 1, and we call
(πt)t≥1 a sampling rule. For each round t ≥ 1, after observ-
ing yt, a learner recommends an arm ζt ∈ X that estimates
an ε-optimal arm. The objective of the learner to minimize
the posterior probability Pt(ζt 6∈ X ∗ (ε)) of misidentifica-
tion, where X ∗ (ε) is the set of ε-optimal arms given as
{x ∈ X : f(x) > supξ∈X f(x) − ε} and Pt denotes the
posterior probability given observations up to round t. For
conciseness, we provide informal theoretical statements of
our theoretical results and refer to Lemma 4.1 and Theo-
rem 6.2 for more formal statements (All the omitted proofs
can be found in Appendix F).

1. Formalization of the objective. To formalize our op-
timization objective regarding sampling rules, we show
that limt→∞

1
t logPt(ζt 6∈ X ∗ (ε)) can be written as a

function of π∞ = limt→∞ πt and ζ∞ = limt→∞ ζt,
where πt := 1

t

∑t
s=1 πs (Lemma 4.1).

2. A trackable algorithm. We propose a novel, tractable

algorithm termed PMCA in Section 5.1; a method for
Posterior error Minimization for a general Continuous
Arm set based on the PSGD (projected subgradient
descent method) that has an interesting connection to
the Approximate Carathéodory problem. More pre-
cisely, our algorithm assumes computation oracles for
quadratic and fractional quadratic objectives on the
arm set X , which can be implemented by standard
optimization library unlike the original optimization
problem on P(X ).

3. An instance-dependent (or asymptotic) optimality
of the sampling strategy. We show that our pro-
posed method is asymptotically optimal (Theorem 6.2),
i.e., for any given recommendation rule (ζt)t≥1, the
sampling rule (πt)t≥1 of PMCA minimizes the pos-
terior probability asymptotically, i.e., it minimizes
limt→∞

1
t logPt(ζt 6∈ X ∗ (ε)).

4. Experiments. To demonstrate the effectiveness of
our method, in simple, synthetic environments, we
empirically compare our method with baselines (in-
cluding MVR (Vakili et al., 2021), which is instance-
independent optimal) and the empirical results demon-
strate its superiority over existing instance-independent
baselines (Section 7).

As we shall clarify in Section 6, we provide our main the-
oretical result (Theorem 6.2) for a given recommendation
rule (ζt)t≥1 satisfying Eq. (7). Our analysis implies that a
pair ((πt)t≥1, (ζt)t≥1) is (asymptotically) instance-optimal
if the recommendation rule (ζt)t≥1 is asymptotically opti-
mal (we refer to Section 4.3 for more details for choices of a
recommendation rule). In this work, assuming a recommen-
dation rule (ζt)t≥1 is given, we focus on the optimization of
a sampling rule (πt)t≥1, which we believe is the most chal-
lenging aspect in the continuous arm setting. Nevertheless,
we emphasize that our analysis is instance-dependent unlike
existing pure exploration methods for the continuous arm
setting (such as MVR Vakili et al. (2021)).

2. Related Work
This paper studies the ε-BAI problem with linear bandit feed-
back on a continuous arm set X ⊂ Rd and our objective
is to minimize the posterior probability Pt(ζt 6∈ X ∗ (ε)) of
misidentification under a Bayesian linear reward model. As
we mentioned in the introduction, Bhat & Amballa (2022)
studied a (ε, δ)-PAC learning problem with linear bandit
feedback on a continuous arm set, where the objective is
to minimize the stopping time of an algorithm that returns
an ε-optimal arm with confidence 1 − δ. The (ε, δ)-PAC
learning problem with linear bandit feedback has been well-
studied especially for the finite-armed setting (Jourdan &
Degenne, 2022; Jedra & Proutiere, 2020; Soare et al., 2014;
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Xu et al., 2018; Fiez et al., 2019; Degenne et al., 2019; Mo-
hammadi Zaki & Gopalan, 2022). Specifically, Jourdan &
Degenne (2022) studied the transductive linear bandits (a
more general setting than linear bandits), proposed an (ε, δ)-
PAC learning algorithm, and discussed asymptotic optimal-
ity as δ → 0 (i.e., a limit to the case of 100% confidence).
Although our objective is to minimize Pt(ζt 6∈ X ∗ (ε)), our
theoretical analysis is parallel to that of the (ε, δ)-PAC learn-
ing setting, i.e., we discuss asymptotic optimality of our
algorithm as t → ∞ (Lemma 4.1, Theorem 6.2) and dis-
cuss a stopping rule that ensures the posterior probability of
misidentification is less than δ (Section 3, Lemma 4.2). We
also note that an asymptotic analysis of the posterior prob-
ability of misidentification is standard in the finite-armed
setting (Li et al., 2024; Russo, 2016).

Despite extensive existing research for pure exploration
problems with linear bandit feedback, most papers focus on
the case of finite-armed settings due to the difficulties men-
tioned in the introduction. To the best of our knowledge, it is
an open problem to develop a trackable algorithm for a pure
exploration problem on a general continuous arm set with
an instance-dependent optimality. Other than linear bandit
literature, Vakili et al. (2021) proposed an optimal algorithm
pure exploration (simple regret minimization) called MVR
(maximum variance reduction) for Gaussian process bandits
(or Bayesian optimization). However, their analysis is also
an instance-independent analysis, and MVR is non-adaptive
and selects an arm that minimizes the posterior variance
σt. Shekhar & Javidi (2022) provided instance-dependent
analysis of kernelized bandits, however, they focused on
cumulative regret minimization. We discuss more related
works in Appendix C.

3. Problem Formulation
Bayesian Linear Reward Model. We assume that X is a
compact subset of Rd and consider a Bayesian linear re-
ward function f : X → R. We suppose k > 0 satisfies
supx∈X ‖x‖2 ≤ k. More formally, the random linear func-
tion f is defined as f(x) = θf ·x, where a · b is the standard
Euclidean inner product, and θf is a random vector that fol-
lows a prior distribution θf ∼ N (θ0,Σ0), where θ0 ∈ Rd
and Σ0 ∈ Rd×d is a positive definite symmetric matrix.
By applying an affine transformation of X , without loss of
generality, we may assume θ0 = 0d and Σ0 = 1d, where
0d and 1d are the zero vector and identity matrix of size d,
respectively. In the rest of the paper, we assume that the
prior distribution of θf is given to be N (0d, 1d).

Sampling Rule. For each time step t = 1, 2, . . . , a learner
selects an arm xt ∈ X , where xt is sampled from a probabil-
ity distribution πt = πt(·|x1, y1, x2, y2, . . . , xt−1, yt−1) ∈
P(X ). Then, after committing an action xt the learner ob-
serves a random reward yt = f(xt) + ωt and where for

a positive constant λ > 0, {ωt}t is an i.i.d sequence of
noise random variable with ωt ∼ N (0, λ), which is inde-
pendent of f . We denote by Ft the σ-algebra generated by
x1, y1, . . . , xt, yt. The posterior reward function ft condi-
tioned on Ft is given as ft(x) = θft · x, where θft follows
a normal distribution θft ∼ N (µt,Σ

−1
t ), and Σt and µt are

given as Σt = λ1d +
∑t
s=1 xsx

>
s , µt := Σ−1

t

∑t
s=1 ysxs

(this is a special case of (Kanagawa et al., 2018, Theorem
3.1)). We denote by Pt the posterior probability measure
conditioned on Ft.
Recommendation Rule and Objective of the Learner. In
each round t, after observing yt, the learner recommends
an arm ζt ∈ X that estimates ζt an ε-optimal arm at
time step t. More formally, ζt is a Ft-measurable ran-
dom variable. Here, the set of ε-optimal arms X ∗ (ε) is
defined as {x ∈ X : f(x) > supξ∈X f(ξ) − ε}. For
example, the greedy recommendation rule is defined by
ζt = argmaxx∈X µt(x), where µt is the posterior mean of
f . This recommendation rule is used for an existing method
for simple regret minimization (Vakili et al., 2021).

The objective of the learner is to minimize the posterior
probability of misidentification Pt(ζt 6∈ X ∗ (ε)), which de-
pends on the sampling rule (πt)t≥1 and recommendation
rule (ζt)t≥1. In this paper, for any given recommenda-
tion rule (ζt)t≥1, we aim to seek an optimal sampling rule
(πt)t≥1. As we discuss in Section 4, the optimality involves
an optimization problem on the space of probability mea-
sures P(X ), which is a highly non-trivial problem due to
the infinite dimensionality of P(X ) and non-smoothness of
the objective (4). Moreover, we discuss choices of recom-
mendation rule (ζt)t≥1 in Section 4.3.

Stopping Rule. In the (ε, δ)-PAC learning problem, an
algorithm stops if it ensures the error probability is less
than a given threshold δ. In our problem setting (i.e., the
ε-BAI problem under a Bayesian reward model), assum-
ing observations up to round t, the posterior probability
Pt(ζt 6∈ X ∗ (ε)) of misidentification is known to the learner,
i.e., more formally it is a Ft-measurable random variable.
Therefore, instead of conducting the GLLR (generalized
log-likelihood ratio) test (Jedra & Proutiere, 2020), it is
sufficient to compute Pt(ζt 6∈ X ∗ (ε)). However, an ac-
tual computation of Pt(ζt 6∈ X ∗ (ε)) is non-trivial due to
the continuous arm set setting. Hence, we provide a com-
putable upper bound of Pt(ζt 6∈ X ∗ (ε)) that asymptotically
matches Pt(ζt 6∈ X ∗ (ε)) (Lemma 4.2). More precisely,
for any explicitly computable upper bound ut of the con-
ditional probability of misidentification and δ ∈ (0, 1), we
refer to the stopping rule by the stopping time defined as
the minimum t satisfying ut ≤ δ. In the experiment sec-
tion (Section 7), we compare algorithms in terms of this
computable upper bound.

Assumptions and Notations. For a symmetric matrix V ∈
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Rd×d, we denote V � 0 if V is positive definite. For a
symmetric matrix V , we denote by λmin(V ) the minimum
eigenvalue of V , and define ‖x‖V as

√
x>V x for x ∈ Rd if

V � 0. For a matrix V , ‖V ‖F denotes the Frobenius norm.
We denote by P(X ) the space of Borel probability measures
on X , which is a general class of probability measures. For
π ∈ P(X ), we define V (π) = Ex∼π

[
xx>

]
. The space

V(X ) is defined as {V (π) : π ∈ P(X )}. For a ∈ X , δ(a)
is the Dirac delta distribution putting all mass on {a}. We
refer to Appendix A for a notation table.

4. Posterior Probability of Misidentification
4.1. Asymptotic Bounds of the Posterior Probability

For a fixed recommendation rule (ζt)t≥1, this section in-
troduces results on (asymptotic) lower and upper bounds
of the posterior probability of misidentification in terms
of the sampling rule (πt)t≥1 in Lemma 4.1. To do so, we
introduce following notations. Here, for a positive-definite
matrix V ∈ Rd×d, ζ, ξ ∈ X , and a function µ : X → R,
we define

Γ(V, ξ; ζ, µ) :=
‖ζ − ξ‖2V −1

(ε+ µ(ζ)− µ(ξ))2
.

Then, for a probability distribution π ∈ P(X ), ζ ∈ X ,
µ : X → R, we define

Γ∗(V (π); ζ, µ) := sup
ξ∈X

Γ(V (π), ξ; ζ, µ). (1)

The following lemma provides a lower bound of the poste-
rior probability of misidentification in terms of the sampling
rule (πt)t≥1 (and recommendation rule (ζt)t≥1).

Lemma 4.1 (Asymptotic posterior probability of misidenti-
fication). Let (πt)t≥1 be a sampling rule and (ζt)t≥1 be a
recommendation rule with limt→∞ ζt := ζ∞ ∈ X ∗ (ε), a.s.,
that is, ζ∞ is the a.s. limit of the random variables (ζt)t≥1.
Suppose limt→∞ µt(x) = f(x) for any x ∈ X a.s., and
inft≥1 λmin(V (πt)) > 0, where πt := 1

t

∑t
s=1 πs. Then,

we have the asymptotic bound:

lim inf
t→∞

1

t
logPt (ζt 6∈ X ∗ (ε))

≥ −1

2
lim sup
t→∞

(Γ∗(V (πt); ζ∞, f))
−1
. (2)

Moreover, we have:

lim sup
t→∞

1

t
logPt (ζt 6∈ X ∗ (ε))

≤ −1

2
lim inf
t→∞

(Γ∗(V (πt); ζ∞, f))
−1
. (3)

Intuitively, this lemma implies that the posterior probability
Pt (ζt 6∈ X ∗ (ε)) exponentially decays as t increases, and

0 1 2 3
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Figure 1. A numerical example of (Γ(V (π), ξ; ζ, f))−1 for X ⊂
R2 and f(x) := µ∗ · x with a fixed reward vector µ∗ ∈ R2.
An arm in X is parametrized by x(θ) = (cos(θ), sin(θ)) with
0 ≤ θ ≤ π. The x-axis represents the parameter θ and the y-
axis represents r(x(θ)) := (Γ(V (π), x(θ); ζ∞, µ

∗))−1, where
µ∗ is a fixed reward vector in R2, ζ∞ = argmaxx∈X µ

∗ · x,
ε = 10−2. We compare r(x(θ)) with a sampling rule obtained by
our algorithm and that of MVR (Vakili et al., 2021).

its decay rate is given as limt→∞ (Γ∗(V (πt); ζ∞, f))
−1,

assuming the limit exists. We note that similar results are
well-known in the finite-armed setting (Li et al., 2024, The-
orem 2.1), (Russo, 2016, Theorem 1). Lemma 4.1 general-
izes these results to general continuous arm sets and general
recommendation rules (ζt)t≥1. In the proof, since we can-
not compute Pt(ζt 6∈ X ∗ (ε)) directly, we rewrite it using
supξ∈X Pt(f(ζt) ≤ f(ξ)− ε), and we further rewrite it to
a value of the function Γ∗.

Optimization Objective. Lemma 4.1 indicates that if
(πt)t≥1 is an asymptotically optimal sampling rule and πt
converges to π∞ ∈ P(X ), then π∞ should be a solution of
the following optimization problem:

τ∗X (f ; ζ∞) := inf
π∈P(X )

Γ∗(V (π); ζ∞, f) (4)

= inf
π∈P(X )

sup
ξ∈X

‖ζ∞ − ξ‖2V (π)−1

(ε+ f(ζ∞)− f(ξ))2
.

The optimization problem (4) is challenging to solve since
the spaceP(X ) is infinite dimensional and Γ∗(V (π); ζ∞, f)
is non-smooth due to the supremum for ξ ∈ X . In Figure 1,
we show numerical examples of (Γ(V (π), ξ; ζ∞, f))−1 for
two sampling rules (ours and MVR). Using the notation in
the figure caption, we see that with our sampling rule, the
value of infξ∈X r(ξ) = (supξ∈X Γ(V (π), ξ; ζ∞, µ

∗))−1 is
smaller than that of MVR.

4.2. Non-Asymptotic Bound and Stopping Rule

As we discussed in Section 3, Pt(ζt 6∈ X ∗ (ε)) is mathemati-
cally computable using observations up to round t, however,
an actual computation is non-trivial especially when the
arm set is continuous. The following lemma provides a
computable upper bound. For conciseness, we provide a
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brief statement here, and a detailed statement in Appendix
(Lemma D.1).

Lemma 4.2 (A computable upper bound of the posterior
probability). Suppose that the assumptions in Lemma 4.1
hold. For any c > 0 and for each t ≥ 1, there exist bt ≥ 0
with bt = O(poly(t)) and εt ≥ ε with limt→∞ εt = ε such
that

Pt(ζt 6∈ X ∗ (ε)) ≤ at + bt sup
ξ∈X

Pt(f(ζt) ≤ f(ξ)− εt),

where at = exp(−t1+c). Moreover, we have

lim sup
t→∞

1

t
log ut ≤ −

1

2
lim inf
t→∞

(Γ∗(V (πt); ζ∞, f))
−1
,

where ut := at + bt supξ∈X Pt(f(ζt) ≤ f(ξ)− εt).

We note that inequalities (2), (3) and Lemma 4.2 imply that
1
t log ut asymptotically matches 1

t logPt (ζt 6∈ X ∗ (ε)) if
V (πt) converges, which is the case for our method proposed
in Section 5.1. In Lemma D.1, the term bt is given as
(an upper bound) the cardinality of a discretization of X ,
which can be easily computed since X ⊂ Rd is compact.
Moreover, (the proof of) Lemma D.1 implies that

1

t
log ut ≤ O

(
log t

t

)
+ sup
ξ∈X

1

t
logPt(f(ζt) ≤ f(ξ)− ε),

and the latter term is dominant. By definition and noting the
monotonicity of the cumulative distribution function of the
standard normal distribution, we can rewrite the above term
as follows:

sup
ξ∈X

Pt(f(ζt) ≤ f(ξ)− εt)

= Φ

(
− inf
ξ∈X

εt + µt(ζt)− µt(ξ)
‖ζt − ξ‖Σ−1

t

)
,

where Φ is the cumulative distribution function of the stan-
dard normal distribution. Therefore, we see that we can
compute this term by optimizing a fractional quadratic ob-
jective on X , which we detail in Section 5.2.

4.3. Choices of Recommendation Rules

A simple example of a recommendation rule is given
as the maximizer of the posterior mean, i.e., ζt =
argmaxx∈X µt(x). We call this recommendation rule the
greedy recommendation rule. Existing pure exploration
methods adopt this recommendation rule (e.g., MVR (Vakili
et al., 2021)), and we use it in our experimental benchmarks
(Section 7).

Next, we assume that Γ∗(V (πt); ζ∞, f) converges to
τ∗X (f ; ζ∞) as t → ∞ (as we discuss in Section 6, our
sampling rule satisfies this property). Lemma 4.1 implies

that with an optimal recommendation rule (ζt)t, ζ∞ should
minimize τ∗X (f ; ζ∞) under the constraint ζ∞ ∈ X ∗ (ε).
We call such a recommendation rule asymptotically opti-
mal. If an estimation of limt→∞ Γ∗(V (πt); ζ, f) (and that
of the constraint ζ ∈ X ∗(ε)) is available for any ζ, one
can implement such a recommendation rule by applying
any black-box optimization algorithm (such as Bayesian
optimization algorithms (Frazier, 2018)). In practice, we
can use Γ∗(V (πt); ζ, µt) as an estimation of Γ∗(V∞; ζ, f)
and {ζ ∈ X : µt(ζ) ≥ supx∈X µt(x) − ε} as an estima-
tion of the constraint {ζ : ζ ∈ X ∗ (ε)}. We shall discuss
algorithms for computing Γ∗(V (πt); ζ, µt) in Section 5.2.
For a positive-definite matrix V ∈ Rd×d and a function
µ : X → R, we note that argminζ∈X Γ∗(V ; ζ, µ) is equiv-
alent to the furthest answer introduced in the finite-armed
setting (Jourdan & Degenne, 2022) and they assume a com-
putation oracle for the furthest answer. similarly, this paper
assumes a recommendation rule is given in our theoretical
analysis provided in Section 6.

5. A Tractable Algorithm for Minimizing the
Error Probability

5.1. Proposed Method

In Section 3, we formalized the optimization objective Eq.
(4) for an optimal sampling rule. In this section, we pro-
vide a novel tractable algorithm termed PMCA based on
the projected subgradient descent method and discuss its
connection to the approximate Carathéodory problem (Com-
bettes & Pokutta, 2023).

Projected Subgradient Based Method. The optimization
objective (4) is a minimization problem over the spaceP(X )
of probability measures. One can hope to solve such an op-
timization problem by Wasserstein gradient flow (Salim
et al., 2020). However, an actual implementation of such
algorithms is highly non-trivial. More specifically, in the
framework of (Salim et al., 2020), an explicit calculation
of the proximity operator is unclear for our setting. In
this paper, focusing on the simple fact that our objective
(4) is a function of a matrix V (π), we optimize Eq. (4)
over V(X ) by the reparametrization π 7→ V (π), where
V(X ) = {V (π) : π ∈ P(X )}. Moreover, to stabilize the
optimization process, for any λV ≥ 0, for ζ ∈ X , we con-
sider the regularized objective infπ∈P(X ) Γ̃∗(V (π); ζ, f),
where

Γ̃∗(V ; ζ, f) = Γ∗(V ; ζ, f) + λV ‖V ‖2F. (5)

We prove that the function Γ̃∗(·; ζ, f) is a convex function
on V(X ) (Lemma F.2). Consequently, we design our algo-
rithm based on the PSGD (projected subgradient descent
method) (cf. (Bubeck, 2015)). For conciseness, we first
provide a slightly informal procedure of our method and a
difficulty in applying the PSGD. Since the true objective
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function is unknown, for each round t, we compute a sub-
gradient gt of an estimation of Γ̃∗(·; ζ, f) and compute an
approximate projection Π of Wt+1 = Ṽt − ηtctgt to the
space V(X ), where Ṽt ∈ V(X ) is a parameter to be updated
by the PSGD based method, ct > 0 is a normalizing factor
of the subgradient gt, and ηt is a step size.

Projection and Distribution-Reconstruction. The re-
parametrization and PSGD address challenges of the origi-
nal optimization objective (4), i.e., the infinite dimension-
ality of P(X ) and the non-smoothness of the objective.
However, this approaches introduces new challenges re-
lated to the projection onto V(X ) and reconstruction of
the sampling distribution from the reparametrization. Not-
ing that the convex closure of {xx> : x ∈ X} is dense
in V(X ), if W ∈ V(X ), then the problem of finding
π ∈ P(X ) such that V (π) is close to W is equivalent
to the approximate Carathéodory problem (Combettes &
Pokutta, 2023), i.e., a problem to seek a convex combina-
tion close to a given point in a convex set. Therefore, simi-
lar to the approximate Carathéodory problem, we compute
an approximate projection by the Frank-Wolfe algorithm
detailed in Algorithm 2. For each iteration and a matrix
W ′ ∈ Rd×d, Algorithm 2 solves a linear optimization prob-
lem argmaxX∈V(X ) TrW ′X on V(X ), which is equivalent
the quadratic optimization objective argmaxx∈X x

>W ′x
on X . This algorithm solves the aforementioned two chal-
lenges (i.e., projection and distribution-reconstruction) si-
multaneously, i.e., it returns a distribution π̃(n) such that
V (π̃(n)) is an approximate projection of an input W onto
V(X ) (Lemma F.4).

PMCA. We display pseudo code in Algorithm 1 of our
proposed method termed PMCA (a method for posterior
error Probability Minimization for Continuous Arm sets).
Each round t, we compute a subgradient gt of the function
V 7→ Γ̃∗ ((1− t−α)V + t−αV (πexp); ζt, µt), where α >
0 is a parameter of the algorithm and we consider a base
exploration distribution πexp ∈ P(X ) with V (πexp) � 0
to bound the subgradient. With notations defined in the
pseudo-code, a subgradient gt can be computed as follows:

gt : = −(1− t−α)(ε+ µt(ζt)− µt(ξt))−2vtv
>
t

+ 2λV (1− t−α)Ṽt. (6)

We denote by Ṽt ∈ V(X ) the parameter updated by PMCA.
As we explained above, we compute an approximate projec-
tion V (π̃t+1) of Wt+1 := Ṽt− ηtctgt to V(X ) by applying
Algorithm 2. Then, we define a sampling rule by the mixture
distribution πt+1 := (1− (t+ 1)−α)π̃t+1 + (t+ 1)−απexp.

5.2. Computation Oracles

For later analysis of the proposed method, we introduce
computational oracles for quadratic and quadratic fractional

Algorithm 1 PMCA: a tractable algorithm for error proba-
bility minimization

1: Input: recommendation rule (ζt)t≥1, base exploration
distribution πexp ∈ P(X ), step sizes for the PSGD
(ηt)t≥1, normalizing factors (ct)t≥1, decay rate for the
mixture coefficient α > 0, step sizes for projection
(nt)t, regularizer λV ≥ 0,

2: Initialize: π1 = πexp, Ṽ1 = V (π1).
3: for t = 1, 2, . . . , do
4: Play xt ∼ πt and observe a noisy reward yt
5: // Reparametrization πt 7→ Vt.
6: Vt = (1− t−α)Ṽt + t−αV (πexp)
7: // Computation of a subgradient gt.
8: ξt = argmaxξ∈X Γ(Vt, ξ; ζt, µt).
9: vt := (Vt)

−1 (ζt − ξt).
10: Define gt by Eq. (6).
11: // Update in the matrix space.
12: Wt+1 = Ṽt − ηtctgt.
13: // Computation of an approx. projection and

distribution-reconstruction.
14: π̃t+1 ← Algorithm 2 with W = Wt+1, n =

nt, π̃
(0) = π̃t

15: πt+1 = (1−(t+1)−α)π̃t+1+(t+1)−απexp, Ṽt+1 =
V (π̃t+1).

16: end for

Algorithm 2 Approximate Projection by the Frank-Wolfe
Algorithm

Input: W ∈ Rd×d, n ≥ 1, π̃(0) ∈ P(X ), (γi)i≥1

for i = 1, 2, . . . , n do
Ṽ (i−1) = V (π̃(i−1))

ai = argmaxx∈X x
>(W − Ṽ (i−1))x

π̃(i) = (1− γi)π̃(i−1) + γiδ(ai)
end for
Output π̃(n)

objectives on X .

Quadratic Objective. For any symmetric matrix V ∈
Rd×d (which is not necessarily definite), we assume
that an argmax oracle OQ(V ;X ) for the quadratic ob-
jective x 7→ x>V x, i.e., OQ(V ;X ) returns a point in
argmaxx∈X x

>V x. Such a computation oracle is assumed
in existing work. For instance, Vakili et al. (2021) assumes
an argmax oracle for the objective x→ xTΣ−1

t x, which is
not concave. If X is defined as linear and quadratic con-
straints, such an optimization problem is called non-convex
quadratic programming. Some problems are known to be
solvable in polynomial time, while others are NP-hard (Park
& Boyd, 2017).

For example if the arm set X is defined as an interval con-
straint l ≤ q(x) ≤ u with a quadratic function q (this
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includes the case of the unit sphere), the quadratic objec-
tive can be solved in polynomial time by the Lagrange
relaxation (Park & Boyd, 2017). The relaxed problem is a
semi-definite problem (convex problem). If we use an inte-
rior point method (barrier method), to obtain an ε′-optimal
solution, the outer loop needs O(log(1/ε′)) iterations and
the convergence rate of the inner loop is linear convergence.
Per iteration computational complexity isO(d4) withO(d2)
space complexity (Boyd & Vandenberghe, 2004, Chapter
11.8.3). In general, the problem can be NP-hard. We note
that MVR (Vakili et al., 2021) has the same problem and
similar to the MVR implementation (PosteriorStandardDevi-
ation) in the BoTorch library (Balandat et al., 2020), we use
a non-linear solver (such as L-BFGS-B) with a randomly
selected initial point in our experiment.

Quadratic Fractional Objective. Next, for V1, V2 ∈
Rd with V2 � 0, we introduce a computation ora-
cle OQF(V1, V2;X ) for quadratic fractional objectives.
We assume that OQF(V1, V2;X ) returns a point in
argmaxx∈X (x>V1x)/(x>V2x). This is known as frac-
tional programming, and it is well-studied (Dinkelbach,
1967; Shen & Yu, 2018; Schaible, 1976). For in-
stance, Dinkelbach’s algorithm iteratively solves x(n) =
argmaxx∈X A(x) − qnB(x), where A(x) = x>V1x
and B(x) = x>V2x are the numerator and denomina-
tor of the fractional objective, respectively and qn+1 =
A(x(n))/B(x(n)). It is proved that qn converges to an
optimal value q∗ and the convergence rate is superlinear
(the error goes to zero faster than any geometric sequence)
(Schaible, 1976). Then, one can obtain a solution of the
original problem by argmaxx∈X A(x) − q∗B(x). Due to
the superlinear convergence rate, we use a limited number
of iterations in our experiments.

5.3. Tractability of the Proposed Method

We discuss the tractability of PMCA (or computational
complexity in terms of the number of oracle calls). In
each round t, PMCA solves the quadratic fractional ob-
jective ξt = argmaxξ∈X Γ(Vt, ξ; ζt, µt) at line 1. This line
calls OQF once, where OQF is the computation oracle for
quadratic fractional objectives discussed in Section 5.2. At
line 1, PMCA computes an approximate projection by call-
ing Algorithm 2 and it calls the computation oracle OQ for
quadratic objectives for nt times. In the theoretical analysis
in Section 6, we assume that

∑∞
t=1 n

−1
t converges. For

instance, any u > 1, nt = tu satisfies this condition. Thus,
with this choice of nt, for each round t, the computation
oracle OQ is called for O(tu) times. For each round t ≥ 1,
we store the support of the discrete probability measure π̃t
computed by Algorithm 2. Therefore, the space complexity
up to round t is given as O(d2 +

∑t
s=1 ns).

6. Instance-Dependent (or Asymptotic)
Optimality of the Proposed Method

This section provides a theoretical analysis of the proposed
method (Algorithm 1). In Section 6.1, we introduce our
main theorem (Theorem 6.2) that assures the asymptotic
optimality of the proposed method. We derive the main
theorem by Lemma 4.1 and convergence analysis of the
algorithm, which we introduce in Section 6.2. Moreover,
we provide sufficient conditions for satisfying a non-trivial
assumption considered in the main results in Section 6.3.

6.1. Main Result

We make the following assumptions of the algorithm.

Assumption 6.1. We assume that we have access to compu-
tational oracles OQ,OQF for quadratic and quadratic frac-
tional objectives on X discussed in Section 5.2. Moreover,
we assume that the following convergence rate of the recom-
mendation rule ζ∞ = limt→∞ ζt, a.s.: for any δ ∈ (0, 1),
there exists cX ,f (δ) > 0 and constant ν > 0, such that the
following inequality holds for any t ≥ 1 with probability at
least 1− δ:

‖ζ∞ − ζt‖ ≤ cX ,f (δ)t−ν . (7)

We also assume V (πexp) � 0 and the objective Eq. (5)
is minimized at V ∈ V(X ) with V � 0. For inputs of
Algorithm 1, we assume that 0 < α < ν, take nt so that∑∞

t=1(nt + 2)−1 ≤ 1 (e.g., nt ≈ ts with s > 1). We take
an input of Algorithm 2 as γi = 2/(i+ 1).

Here, the most non-trivial assumption is that for the con-
vergence rate of the recommendation rule Eq. (7). We
note that because ζt depends on the observation history
(x1, y1), . . . , (xt, yt), ν can depend on other parameters of
the algorithm. In Section 6.3, we provide examples sat-
isfying the assumption Eq. (7) in the case when ζt =
argmaxµt. Under these assumptions, the main result of
this paper is given as follows.

Theorem 6.2 (Instance-Dependent Optimality). Suppose
Assumption 6.1 hold, and let (πt)t≥1 be the sampling rule
of Algorithm 1, and (ζt)t≥1 be a recommendation rule with
ζ∞ = limt→∞ ζt a.s. Furthermore, we assume that 0 <
α < min(ν, 1

8 ) and take ηt = t−2α−1/2, ct = 1, λV = 0.
Then, the following holds:

lim
t→∞

1

t
logPt(ζt 6∈ X ∗ (ε)) = − 1

2τ∗X (f ; ζ∞)
(8)

This theorem implies that the decay rate of the error prob-
ability of our sampling rule is given as (2 (τ∗X (f ; ζ∞)))−1,
and Lemma 4.1 and (4) imply that it is equal to the optimal
rate.
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6.2. Convergence Analysis

Theorem 6.2 can be proved by Lemma 4.1 and the results on
the convergence analysis introduced below. Since we con-
sider Gaussian posterior distributions, Lemma 4.1 requires
two conditions, i.e., limt→∞ µt(x) = f(x) and V (πt) con-
verges to an optimal matrix of our objective (4). The former
condition regarding µt is a weak requirement and satisfied
by any sampling policy with lim inft→∞ λmin(V (πt)) > 0.
The latter condition is more subtle and to satisfy the condi-
tion, we need to solve the optimization problem (5). There-
fore, we can deduce Theorem 6.2 by the following proposi-
tion:

Proposition 6.3. Suppose the same assumptions as in The-
orem 6.2 hold. For the sampling rule (πt)t≥1 of PMCA, we
have the following:

lim
t→∞

Γ∗(V (πt); ζ∞, f) = τ∗X (f ; ζ∞).

In Proposition 6.3, we assume the step sizes ηt is given
as t−2α−1/2. We shall show that a converge result can be
proved with more general (standard) choices of step sizes in
Proposition D.3.

6.3. Sufficient Condition for the Assumption Eq. (7)

In subsection, we provide examples of X satisfying the as-
sumption Eq. (7) in the case of the greedy recommendation
rule ζt = argmaxµt. First, we introduce the following
sufficient condition for Eq. (7).

Proposition 6.4 (Sufficient Condition for Eq. (7)). We as-
sume that for any vector µ ∈ Rd with µ 6= 0 argmaxx∈X µ ·
x is singleton (an optimal arm is unique) and denote
ζ∗µ = argmaxx∈X µ · x. We further assume that for any
µ with µ 6= 0 there exist constants c′X ,µ, κX > 0 such that
the following inequality holds :

‖x− ζ∗µ‖κX ≤ c′X ,µ
∣∣µ · ζ∗µ − µ · x∣∣ . (9)

Let ζt = argmaxµt the greedy recommendation rule and
(xt)t≥1 be a sampling rule with λmin(Vt) & t−α. Then, the
inequality (7) holds with ν = 1−α

2κX
.

Since the condition λmin(Vt) & t−α holds for the sampling
rule of Algorithm 1, if the inequality (9) is satisfied, then the
assumption (7) is satisfied. We also note that the condition
α < min(1/3, ν) is satisfied if α < min(1/3, 1/(2κX+1))
in the setting of Proposition 6.4.

It is easy to see that the unit sphere X = {x ∈ Rd : ‖x‖ =
1} satisfies the condition (9). More generally, we can show
that if X is a hypersurface with a “positive curvature”, then
X satisfies the condition.

Proposition 6.5 (Examples of X satisfying Eq. (7)). We
assume that ζ∗µ := argmaxx∈X µ · x is unique for any

µ ∈ Rd with ‖µ‖ 6= 0. If for any x0 ∈ X there ex-
ists a neighborhood Ux0 ⊂ Rd of x0 and an analytic
function φx0 : Ux0 → R such that X ∩ Ux0 is given as
{x ∈ Ux0

: φx0
(x) = 0}, ‖∇φx0

(x)‖ is bounded on Ux0
,

and the minimal eigenvalue of the Hessian of φx0
at x0 is

larger than a positive constant c > 0 independent of x0,
then X satisfies the condition (9) with κX = 2.

We note that an existing work also assumed arm sets with
positive curvature (Banerjee et al., 2023, Definition 2.1).

7. Experiments
We coduct experiments in simple synthetic environments
for the case X ⊂ R2, and empirically demonstrate that
our proposed method outperforms existing pure exploration
algorithms for continuous arm sets.

Motivation. Jedra & Proutiere (2020) proposed a pure
exploration algorithm in the case when the arm set X is
the unit sphere, and they showed that an optimal sampling
policy is the round-robin manner using the orthonormal
basis. Due to the symmetry of the arm set (unit sphere), this
uniform exploration distribution is in fact optimal; however,
if the arm set is a more general set, then this distribution may
not be optimal. Therefore, we compare our algorithm with
existing methods in several (synthetic) problem instances
with X ⊂ R2.

Setup of the experiments. In this simple setting, X is
defined as a subset {(cos(θ), sin(θ)) : θ ∈ [θ0, θ1]} of
the unit circle in R2, and f(x) = (cos(θf ), sin(θf )) · x,
λ = 10−2, ε = 10−2. Here, for simplicity, we consider a
deterministic function f and we understand that f is sam-
pled before the round starts. Specifically, in this section,
we consider the case when θf = aπ, θ0 = 0, θ1 = bπ. We
have conducted experiments for a = 0.0, 0.2, . . . , 1.8 and
b = 0.0, 0.2, . . . , 1.8 with a < b. In this section, we only
show the case when a = 0.2, b = 0.4, 0.6, 0.8, 1.0. We
refer to Appendix G for further experimental results.

Evaluation metric. For all Sampling rules, we
use the same recommendation rule defined as ζt =
argmaxx∈X µt(x). For a sampling rule (πt)t≥1, we let
pt := supξ∈X Pt(f(ζt) ≤ f(ξ)− ε) and use pt as an eval-
uation metric (the lower is the better). By Lemma 4.2, as-
suming εt ≈ ε, this corresponds to the computational upper
bound of Pt(ζt 6∈ X ∗ (ε)) since at and bt are independent
of sampling rules.

Baselines. We compare our method PMCA to the uniform
random policy and MVR (Vakili et al., 2021), where the
uniform random policy is a strong baseline in a pure explo-
ration problem (as we discussed above, Jedra & Proutiere
(2020) proved a uniform exploration is optimal in the case
of the unit sphere). MVR is an optimal method for any arm
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Figure 2. Comparison of our method to existing pure exploration methods in several problem instances.

sets for a pure exploration problem (simple regret minimiza-
tion), however, as we discussed in the introduction, their
method is instance-independent.

Results. Figure 2 shows the experimental results for several
problem instances, where the error bands represent 95%-
confidence interval over 10 repetition. MVR outperforms
Uniform, but, is sub-optimal for some problem instances.

We provide more details of the experiments, experimental
results, and CPU time for each method in Appendix G.

8. Concluding Remarks
8.1. Conclusion

We proposed a pure exploration algorithm for general con-
tinuous arm sets that is tractable and achieves an instance-
dependent optimality. Moreover, we empirically show that
our method outperforms baselines in terms of the computa-
tional upper bound of the non-asymptotic error probability.

8.2. Limitations and Future Work

A limitation of this study is the asymptotic nature of the
optimality result. Developing a finite-time analysis for a
practical algorithm would be an important direction for fu-
ture research. In addition, we focus on the optimization of a
sampling rule and assume a recommendation rule is given.
As discussed in Section 4.3, an (asymptotically) optimal
method requires both optimal sampling and an optimal rec-
ommendation rule and we only discuss an optimal sampling
rule in this study. Moreover, some of our theoretical results
(those provided in Section 6.3) and experimental results
focus only on the greedy recommendation rule.

A generalization to the Gaussian process reward model
would be an important future work since it would enable the
development of a practical Bayesian optimization algorithm
with instance-dependent optimality. However, existing anal-
ysis (Vakili et al., 2021) indicates that exponential decay of
the error probability may not be guaranteed depending on
kernel smoothness, necessitating new theoretical analysis.
Therefore, we leave it as a future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, especially for the area of the online
optimization with bandit feedback. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. Annals of statis-
tics, pp. 1302–1338, 2000.

Li, Z., Jamieson, K., and Jain, L. Optimal Exploration is
no harder than Thompson Sampling. In International
Conference on Artificial Intelligence and Statistics, pp.
1684–1692. PMLR, 2024.

Mohammadi Zaki, A. M. and Gopalan, A. Improved pure
exploration in linear bandits with no-regret learning. In
Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, IJCAI-22, pp. 3709–3715,
2022.

Park, J. and Boyd, S. General heuristics for nonconvex
quadratically constrained quadratic programming. arXiv
preprint arXiv:1703.07870, 2017.

Qin, C., Klabjan, D., and Russo, D. Improving the expected
improvement algorithm. Advances in Neural Information
Processing Systems, 30, 2017.

Russo, D. Simple bayesian algorithms for best arm identi-
fication. In Conference on Learning Theory, pp. 1417–
1418. PMLR, 2016.
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Table 1. List of Notations
Symbol Description
X the arm set
f the reward function
ft f conditioned on Ft
P(X ) the space of probability measures on X
(ζt)t≥1 recommendation rule
ζ∞ limt→∞ ζt (a.s. convergence)

(πt)t≥1 sampling rule
(ωt)t≥1 the noise stochastic process
V(X ) {V (π) : π ∈ P(X )}
µt,Σt the posterior mean and covariance matrix

Γ∗(V (π); ζ, f) the objective function for an optimal allocation π (Eq. (1))
Γ̃∗(V (π); ζ, f) the regularized objective with a regularizer λV (Eq. (5))

Γ(V, ξ; ζ, µ)
‖ζ−ξ‖2

V−1

(ε+µ(ζ)−µ(ξ))2

Pt a posterior probability distributions of random rewards ft
πt

1
t

∑t
s=1 πt

‖V ‖F Frobenius norm
√

TrV V > of a matrix V
Sd the space of symmetric matrices in Rd×d
δ(a) Dirac delta supported on a singleton {a}, where a ∈ X
Φ the cumulative distribution function of the standard normal distribution

V (π) Ex∼π
[
xx>

]
A. Notation Table
We provide the list of notations in Table 1.

B. Another Interpretation of the Objective
To provide another interpretation of τ∗X (f ; ζ), we introduce known results on characteristic time (Jourdan & Degenne, 2022)
for the BAI problem in the case of the finite-armed setting. In this subsection, we consider a non-random linear reward
function f : X → R and a finite discretization X̂ of X . For simplicity, we assume argmaxx∈X̂ f(x) is unique. Let A be
a (ε, δ)-PAC strategy consisting of sampling rule for selecting arms xt ∈ X̂ for each round t, and recommendation rule
ẑ ∈ X̂ , and stopping time τδ such that P (τδ <∞, ẑ 6∈ X̂ ∗(ε)) ≤ δ. An (ε, δ)-PAC strategy is called asymptotically greedy
if limδ→0 P (τδ <∞, ẑ 6= argmaxx∈X̂ f(x)) = 0.

Proposition B.1 ((Jourdan & Degenne, 2022), Theorem 2.1, Lemma 2.2, Lemma C.1). (i) For any asymptotically greedy
(ε, δ)-PAC strategy with stopping time τδ , we have

lim inf
δ→0

E [τδ]

log 1/δ
≥ inf
π∈P(X̂ )

sup
ξ∈X̂

2
‖ζ∗ − ξ‖2V †(π)

(ε+ f(ζ∗)− f(ξ))2
. (10)

Here, ζ∗ = argmaxx∈X̂ f(x) and V †(π) denotes the Moore-Penrose pseudo inverse of V (π). (ii) For any (ε, δ)-PAC
strategy with stopping time τδ , we have

lim inf
δ→0

E [τδ]

log 1/δ
≥ inf
ζ∈X̂∗(ε)

inf
π∈P(X̂ )

sup
ξ∈X̂

2
‖ζ − ξ‖2V †(π)

(ε+ f(ζ)− f(ξ))2
. (11)

The LHS of Eq. (11) (resp. Eq. (10)) is called characteristic time (resp. greedy characteristic time) and any optimal strategy
should minimize characteristic time. For instance, Lazy Track-and-Stop (Jedra & Proutiere, 2020) minimizes characteristic
time over the probability distribution on a finite arm sets for f(x) = µt(x), where µt is an estimation of the reward function.
LεBAI (Jourdan & Degenne, 2022) requires a computation oracle for the optimization problem (11) that returns an optimal
ζ and π for f(x) = µt(x).
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We note that one can take any fine discretization X̂ of X in Proposition B.1. However, taking a fine discretization could
hurt the performance of an algorithm. If X̂ is a sufficiently fine discretization of X so that we can identify X̂ with the
continuous arm set X and if V (π∗) is positive definite for any optimal allocation π∗, then we can apply our algorithm to the
characteristic time minimization in the problem setting in Proposition B.1.

Intuitively, an asymptotically greedy strategy corresponds to a recommendation rule (ζt)t≥1 satisfying limt→∞ ζt =
argmaxx∈X f(x) in our setting. In this case, our objective τ∗X (f ; ζ) corresponds to the minimization of greedy characteristic
time (10). Next, we assume that a recommendation rule (ζt)t≥1 satisfies limt→∞ ζt ∈ argminζ∈X τ

∗
X (f ; ζ). One could

construct such a recommendation rule if we have an estimation of τ∗X (f ; ζ) for ζ ∈ X in each time step t, and apply any
black-box optimization methods (such as Bayesian optimization) to the estimated objective for ζ. Then, the objective
τ∗X (f ; ζ) corresponds to the minimization of characteristic time (11).

C. Related Work (Extended)
This paper studies a pure exploration problem with linear bandit feedback on a continuous arm set X ⊂ Rd and our objective
is to minimize the posterior probability Pt(ζt 6∈ X ∗ (ε)) of misidentification under a Bayesian linear reward model. As we
mentioned in the introduction, Bhat & Amballa (2022) studied a (ε, δ)-PAC learning problem with linear bandit feedback
on a continuous arm set, where the objective is to minimize the stopping time of an algorithm that returns an ε-optimal
arm with confidence 1− δ. The (ε, δ)-PAC learning problem with linear bandit feedback has been well-studied especially
for the finite-armed setting (Jourdan & Degenne, 2022; Jedra & Proutiere, 2020; Soare et al., 2014; Xu et al., 2018; Fiez
et al., 2019; Degenne et al., 2019; Jedra & Proutiere, 2020; Mohammadi Zaki & Gopalan, 2022). Specifically, Jourdan &
Degenne (2022) studied the transductive linear bandits (a more general setting than linear bandits), proposed an (ε, δ)-PAC
learning algorithm, and discussed asymptotic optimality as δ → 0 (i.e., a limit to the case of 100% confidence). Although
our objective is to minimize the posterior probability Pt(ζt 6∈ X ∗ (ε)), our theoretical analysis is parallel to that of the
(ε, δ)-PAC learning setting, i.e., we discuss asymptotic optimality of our algorithm as t→∞ (Lemma 4.1, Theorem 6.2)
and discuss a stopping rule that ensures the posterior probability of misidentification is less than δ, where δ ∈ (0, 1) is given.
We also note that an asymptotic analysis of the posterior probability of misidentification is standard in the finite-armed
setting (Li et al., 2024; Russo, 2016).

Despite extensive existing research for pure exploration problems with linear bandit feedback, most papers focus on the
case of finite-armed settings due to the difficulties mentioned in the introduction. To the best of our knowledge, it is an
open problem to develop a trackable algorithm for a pure exploration problem on a general continuous arm set with an
instance-dependent optimality. Other than linear bandit literature, in general (not necessarily linear) Gaussian process
bandits, (Vakili et al., 2021) proposed an optimal algorithm pure exploration (simple regret minimization). However, their
analysis is also instance-independent.

In the finite and discrete armed setting (i.e., there is no structural reward model), the BAI problem has been extensively
studied. Since the objective introduced in Section 3 is closely related to the characteristic time in the fixed confidence
setting (Jourdan & Degenne, 2022; Jedra & Proutiere, 2020), we mainly restrict our attention to the setting. In the finite
and discrete armed setting, Glynn & Juneja (2004) derived a condition for an asymptotically optimal allocation. More
recent papers provided more fine-grained analysis and optimal algorithms; Track-and-Stop (Garivier & Kaufmann, 2016),
Frank-Wolfe based method (Wang et al., 2021), Top-Two algorithms (Russo, 2016; Qin et al., 2017; Shang et al., 2020;
Jourdan et al., 2022; You et al., 2023). Track-and-Stop and the Frank-Wolf-based method iteratively optimize a sampling
distribution. However, unlike their setting, our probability space P(X ) is infinite-dimensional, so it is highly non-trivial to
generalize these existing results. Moreover, due to the correlation between arms, it is not trivial to generalize some existing
algorithms such as top-two algorithms. The BAI problem has been extended to the linear bandit setting. However, most
existing works focus on the finite armed setting (Soare et al., 2014; Xu et al., 2018; Fiez et al., 2019; Degenne et al., 2019;
Jedra & Proutiere, 2020; Mohammadi Zaki & Gopalan, 2022; Li et al., 2024). Therefore, similarly to the discrete finite case,
it is non-trivial to generalize these existing algorithms to the case of continuous arm sets.

D. Additional or Detailed Theoretical Results
Lemma D.1 (A computable upper bound of the posterior probability). For any h > 0, let X̃h ⊂ X be a finite subset
satisfying the following condition: for ant x ∈ X , there exists x′ ∈ X̃h such that ‖x − x′‖ ≤ h. For any δ′ ∈ (0, 1), we
take B′δ > 0 so that P (d/2, B′2δ /2) ≥ 1 − δ′, where P is the regularized gamma function (i.e., x 7→ P (d/2, x/2) is the
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cumulative distribution function of the chi squared distribution χ2
d).

1. Then, for each ε > 0, we let

ut(δ
′, h; X̃h) = δ′ + |X̃h| sup

ξ∈X
Pt(f(ζt) ≤ f(ξ)− ε− hBt,δ′).

where Bt,δ′ is given as Bt,δ′ = ‖µt‖ + ‖Σ−1/2
t ‖FBδ′ . Then, we have the following non-asymptotic upper bound:

Pt(ζt 6∈ X ∗ (ε)) ≤ ut(δ′, h; X̃h).

2. Moreover, let c > 0 be any positive number. For each t ≥ 1, if we take take δ′t = exp(−t1+c), then there exists a
sequence of finte sets (Xht)t≥1 with |Xht | = O(poly(t)) and (ht)t≥1 such that

lim sup
t→∞

1

t
log ut(δ

′
t, ht;Xht)

≤ −1

2
lim inf
t→∞

(Γ∗(V (πt); ζ∞, f))
−1
. (12)

Remark D.2. Assuming X ⊂ [0, 1]d, we make the statement of the lemma more explicit. Using notation of 2 of D.1, by the
tail probability of chi squared distribution, we can take ht = t−(1+c) and |Xh| is given as (

√
dh−1)d. Then, ut(δ′t, ht,Xht)

gives an explicit upper bound.

Proposition D.3. Suppose Assumption 6.1 hold. Furthermore, we let λV = 0, assume that 0 < α < min(ν, 1
3 ), ct > 0 is

given as ct = 1
max(c,‖gt‖F) with a constant c > 0, (ηt)t≥1 satisfies limt→∞ ηt = 0, and

∑∞
t=1 ηt =∞. Let (πt)t≥1 be the

sampling rule defined by Algorithm 1. Then, we have the following a.s., lim inft→∞ Γ∗(V (πt); ζ∞, f) = τ∗(f ; ζ∞).

E. Some Measure Theoretic Details
We provide some measure theoretical details omitted in Section 3. We assume that f , (ωt)t and randomness of the
algorithm are defined on a probability space (Ω,F , P ) and the probability space is the product of two probability spaces
(Ωgp,Fgp, Pgp) and (Ωn,Fn, Pn), where the Gaussian process f (resp. the i.i.d noise process (ωt)t and randomness of the
algorithm) is defined on (Ωgp,Fgp, Pgp) (resp. (Ωn,Fn, Pn)).

F. Proofs
F.1. Overview of the Proofs

In Appendix F.2, we provide a proof of Lemmas 4.1 and D.1. In Appendix F.3, we shall see that functions Γ(·; ξ; ζ, f) and
Γ∗(·; ζ, f) is convex on V(X ). In Appendix F.4, we introduce some lemmas required for the proofs of Proposition D.3
and Theorem 6.2. More specifically, we introduce results for subgradients, an approximate projection, an error analysis of
an estimated objective function of Γ∗(·; ζ, f). Using these lemmas, we prove Proposition D.3 in Appendix F.5, and prove
Theorem 6.2 (and Proposition 6.3) in Appendix F.6. Finally, we prove Proposition 6.5 in Appendix F.7.

F.2. Proofs of Lemmas 4.1 and D.1

In this section, first, we proof the inequality (2), and Lemma D.1, then we prove the inequality (3). For the proof, we
introduce the following lemma:

Lemma F.1. Let (ζt)t≥1 be a recommendation rule. Then, the following holds for any t ≥ 1:

sup
ξ∈X

Pt (f(ζt) ≤ f(ξ)− ε) ≤ Pt
(
f(ζt) ≤ sup

ξ∈X
f(ξ)− ε

)
.

Proof. For any ξ, we see that the event f(ζt) ≤ f(ξ) − ε implies f(ζt) ≤ supξ∈X f(ξ) − ε. Therefore,
supξ∈X Pt (f(ζt) ≤ f(ξ)− ε) ≤ Pt

(
f(ζt) ≤ supξ∈X f(ξ)− ε

)
.
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Proof of (2). Let (πti)i≥1 be any convergence subsequence of (πt)t≥1 and put V = limi→∞ V (πti). Then, the assumption
of the lemma, we have λmin(V ) > 0. To show (2), it is enough to prove

lim
i→∞

1

i
logPi(ζi 6∈ X ∗(ε)) ≥ −

1

2
(Γ∗(V ; ζ∞, f))

−1
.

In the rest of the proof, by abuse of notation, we assume (πt) converges, limt→∞ V (πt) = V , and prove the following:

lim
t→∞

1

t
logPt(ζt 6∈ X ∗(ε)) ≥ −

1

2
(Γ∗(V ; ζ∞, f))

−1
. (13)

Let ξ is a Ft-measurable random variable. For t ≥ 1, we let Xt := ε+ ft(ζt)− ft(ξ). Then conditioned on Ft, Xt follows
the normal distribution:

Xt ∼ N
(
ε+ µt(ζt)− µt(ξ), (ζt − ξ)>Σ−1

t (ζt − ξ)
)
. (14)

Thus, we have

Pt(f(ζt) ≤ f(ξ)− ε) = P (Xt ≤ 0) = Φ

(
−t1/2 ε+ µt(ζt)− µt(ξ)

‖ζt − ξ‖(Σt/t)−1

)
, (15)

where Φ is the cumulative distribution function of the standard normal distribution. Using the asymptotic formula of the
complementary error function for sufficiently large x > 0,

erfc(x) =
exp(−x2)

x
√
π

(
1 +O(x−2)

)
,

we have the following for sufficiently large x > 0,

log Φ(−x) = log erfc(x/
√

2)− log 2

= −x
2

2
− log x

√
2π + log

(
1 +O(x−2)

)
.

We let rt := ε+µt(ζt)−µt(ξ)
‖ζt−ξ‖(Σt/t)−1

, Then, by assumptions, we have limt→∞ rt = ε+f(ζ)−f(ξ)
‖ζ−ξ‖V−1

> 0. Therefore, by Eq. (15), for
sufficiently large t, we have the following:

1

t
logPt(f(ζt) ≤ f(ξ)− ε) = −rt

2
− 1

t
log rt

√
2πt1/2 +

1

t
log
(
1 +O(t−1r−2

t )
)
. (16)

Thus, it follows that

lim
t→∞

1

t
logPt(f(ζt) ≤ f(ξ)− ε) = −1

2

(ε+ f(ζ)− f(ξ))2

‖ζ − ξ‖2V −1

. (17)

The above argument holds for any ξ even on the event ξ = ζ (if ξ = ζ, then limt→∞ rt =∞ and the both sides of Eq. (16)
tend to −∞ and we understand both sides of the equation above represent −∞). Since limξ→ζ

(ε+f(ζ)−f(ξ))2

‖ζ−ξ‖2
V−1

=∞, for

any small open neighborhood U of ζ, we have infξ∈X
(ε+f(ζ)−f(ξ))2

‖ζ−ξ‖2
V−1

= infξ∈X\U
(ε+f(ζ)−f(ξ))2

‖ζ−ξ‖2
V−1

. Thus, by (17), we have

sup
ξ∈X\U

lim
t→∞

1

t
logPt(f(ζt) ≤ f(ξ)− ε) = −1

2
(Γ∗(V ; ζ∞, f))

−1
. (18)

Since ζt → ζ∞, for sufficiently large t, convergence of t in LHS of (18) is uniform w.r.t ξ ∈ X \ U . Therefore, we can
exchange limt→∞ and supξ∈X\U and it follows that

lim
t→∞

1

t
sup

ξ∈X\U
logPt(f(ζt) ≤ f(ξ)− ε) = −1

2
(Γ∗(V ; ζ∞, f))

−1
. (19)

By (16) with rt = ε+µt(ζt)−µt(ξ)
‖ζt−ξ‖(Σt/t)−1

and limt→∞ rt = ε+f(ζ∞)−f(ξ)
‖ζ∞−ξ‖V−1

, we can take a neighborhood U of ζ∞ and a sufficiently

large t0 ≥ 1 such that supξ∈X\U logPt(f(ζt) ≤ f(ξ) − ε) = supξ∈X logPt(f(ζt) ≤ f(ξ) − ε) for any t ≥ t0, i.e., the
supremum is not attained for ξ ∈ U . Thus, we see that the following holds:

lim
t→∞

1

t
sup
ξ∈X

logPt(f(ζt) ≤ f(ξ)− ε) = −1

2
(Γ∗(V ; ζ∞, f))

−1
. (20)

The inequality (13) follows from (20) and Lemma F.1. This completes the proof.
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Next, we provide proofs of Lemma D.1 and the inequality (3).

Proof of Lemma D.1 and (3). Let X̃ ⊂ X be any finite subset and define

X ∗(ε; X̃ ) =

{
x ∈ X : f(x) > sup

ξ∈X̃
f(ξ)− ε

}
.

We define pt(ε; X̃ ) by

pt(ε; X̃ ) := Pt

(
ζt 6∈ X ∗(ε; X̃ )

)
.

Then, by a union bound, we have

log pt(ε; X̃ ) = logPt

⋃
ξ∈X̃

{f(ζt) ≤ f(ξ)− ε}


≤ log

∑
ξ∈X̃

Pt (f(ζt) ≤ f(ξ)− ε)


≤ log

∣∣∣X̃ ∣∣∣+ sup
ξ∈X

logPt (f(ζt) ≤ f(ξ)− ε) . (21)

Next, we consider the second assertion. By definition of Bδ′ and θt ∼ N (µt,Σ
−1
t ), we have

Pt(‖θt‖ ≤ Bt,δ′) ≤ 1− δ′.

Thus, we have

Pt(ζt 6∈ X ∗ (ε)) ≤ δ′ + Pt(ζt 6∈ X ∗ (ε) , ‖θt‖ ≤ Bt,δ′)
≤ δ′ + Pt(ζt 6∈ X ∗(ε+ hBt,δ′ ; X̃h)).

Here, the second inequality follows from the Lipchitz condition of the (posterior) reward function x 7→ θt · x and the
definition of X̃h. Noting that by Eq. (21), we have pt(ε′; X̃ ) ≤ |X̃ | supξ∈X Pt (f(ζt) ≤ f(ξ)− ε′), we have Pt(ζt 6∈
X ∗ (ε)) ≤ ut(δ′, h; X̃h) (i.e., the first assertion of Lemma D.1).

Next, we prove the second assertion of Lemma D.1 and inequality (3). For each t ≥ 1, we let ht > 0 and X̃ht ⊂ X be a
finite set with |X̃ht | = Õ(poly(t)) (we choose ht and X̃ht later in the proof). For simplicity, we denote X̃ht by X̃t. We also
let δ′t ∈ (0, 1) so that δ′t ≤ supξ∈X Pt (f(ζt) ≤ f(ξ)− ε) holds for sufficiently large t and − log(δ′t) = O(poly(t)). Since
by Eq. (20) and our assumption of the covariance matrices, we have

− sup
ξ∈X

log(Pt (f(ζt) ≤ f(ξ)− ε)) = Θ(t)

for example δ′t = exp(−t2) satisfies these condition. By the tail probability of the chi square distribution (c.f., (Laurent &
Massart, 2000, Lemma 1)) and the definition of Bt,δ′ , we have Bt,δ′t = O(poly(t)). Therefore, if we take sufficiently large
m ≥ 1, we have

lim
t→∞

htBt,δ′t = 0,
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with ht = t−m. By the first assertion of Lemma D.1, we have the following:

lim sup
t→∞

1

t
logPt(ζt 6∈ X ∗ (ε))

≤ lim sup
t→∞

1

t
log (ut(δ

′
t, ht;Xht))

≤ lim sup
t→∞

1

t
log

(
|Xt| sup

ξ∈X
Pt (f(ζt) ≤ f(ξ)− ε) + δ′t

)

≤ lim sup
t→∞

1

t
log |Xt|+ lim sup

t→∞

1

t
sup
ξ∈X

logPt (f(ζt) ≤ f(ξ)− ε)

= lim sup
t→∞

1

t
sup
ξ∈X

logPt (f(ζt) ≤ f(ξ)− ε) .

Here, the first and second inequalities follow from the first assertion of Lemma D.1, the third inequality follows by the
condition of δ′t (i.e., δ′t ≤ supξ∈X Pt (f(ζt) ≤ f(ξ)− ε)), the last equality follows from log |Xt| = O(poly(log t)). Our
assertion Eq.(3) follows from this inequality and Eq. (20). We also have the second assertion of Lemma D.1. This completes
the proof.

F.3. Convexity of the Objective Function

The convexity of the function Γ(·; ξ; ζ, f) follows from the lemma below. Since the function Γ∗(·; ζ, f) is defined as the
supremum of functions (Γ(·; ξ; ζ, f))ξ, we see that Γ∗(·; ζ, f) is also convex.

Lemma F.2. For any a ∈ Rd, the function V 7→ a>V −1a defined on Sd�0 is convex.

Proof. We note that the following holds.

sup
λ∈Rd

a>λ− 2−1λ>V λ = 2−1a>V −1a.

As a function of V , the LHS is a supremum of affine functions. Therefore, it is a convex function with respect to V .

F.4. Some Lemmas for the Convergence Analysis

F.4.1. SUBGRADIENT

Since the function Γ∗(V ; ζ, µ) is the (pointwise) supremum of a collection of differentiable functions, we can compute its
subgradient as follows (cf. (Hiriart-Urruty & Lemaréchal, 2004, Chapter D, Section 4.4)).

Lemma F.3. Let ζ ∈ X , µ : X → R, V ∈ Sd>0 be a symmetric positive semi-definite matrix, and ξ =
argmaxξ∈X Γ(V, ζ, ξ;µ). Then, the following is a subgradient of Γ∗(V ; ζ, µ) at V : sV := −(ε+µ(ζ)−µ(ξ))−2V −1(ζ −
ξ)(ζ − ξ)>V −1, that is, Γ∗(U ; ζ, µ) ≥ Γ∗(V ; ζ, µ) + Tr sV (U − V ), ∀U ∈ Sd>0.

Proof. Let ξ = argmaxξ∈X Γ(V, ζ, ξ;µ). Then, by (Hiriart-Urruty & Lemaréchal, 2004, Chapter D, Section 4.4), the
gradient of the differentiable function Γ(V, ζ, ξ;µ) at V is a subgradient of Γ∗(V ; ζ, µ). Then, the assertion of the lemma
follows from the matrix calculus.

F.4.2. APPROXIMATE PROJECTION

As we stated in Section 5.1, Algorithm 2 takes an input V ∈ Rd×d and returns a distribution π̃ on X so that V (π̃) is an
approximate projection of V to V(X ) with respect to the Frobenius norm. More formally, we have the following lemma and
we can prove it by the analysis of the Frank-Wolfe algorithm (Jaggi, 2013) applied to the function V(X ) 3 X 7→ ‖X−V ‖2F.

Lemma F.4. Let W ∈ Rd×d be a symmetric matrix. For n ≥ 2, we denote by Πn(W ) by V (π̃(n)), where π̃(n) is an output
of Algorithm 2 with input W . Then, there exists a universal constant c > 0 such that the following statement holds. For any
X ∈ V(X ), we have

‖Πn(W )−X‖2F + ‖Πn(W )−W‖2F ≤ ‖X −W‖2F +
ck

2

n+ 2
.
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Or equivalently,

(X −Πn(W )) · (Πn(W )−W ) ≥ − ck
2

2(n+ 2)
.

Proof. We define a function on V(X ) by g(X) = ‖X − V ‖2F on V(X ) for X ∈ V(X ). Then, the gradient of g
is given as 〈∇g(X), X ′〉 = 2 Tr(X − V )X ′. Since V(X ) is the convex closure of {xx> : x ∈ X}, we note that
argminX′∈V(X )〈∇g(X), X ′〉 is equivalent to

argminx∈X Tr(X − V )xx> = argminx∈X ‖x‖2X−V .

Therefore, Algorithm 2 is the Frank-Wolfe applied for minimizing the function g over X . We also note that the curvature
constant Cf (cf. (Jaggi, 2013)) is given as

Cg = 2 sup
X,X′∈V(X )

‖X −X ′‖2F ≤ 2(2k)2.

Therefore, by (Jaggi, 2013, Theorem 2), there exists a universal constant c > 0 such that the following inequality holds:

2 Tr(V (π̃(n))−X)(V (π̃(n))− V ) ≤ ck
2

n+ 2
, ∀X ∈ V(X ).

The assertion of the lemma follows from this inequality.

F.4.3. ESTIMATION ERROR

In Algorithm 1, we compute estimations of the values of f and ζ. Therefore, we introduce a concentration inequality for
µt(x). Since f is a linear function on X with probability 1, the following proposition follows from the standard result
(Abbasi-Yadkori et al., 2011). However, due to the non-standard setting (i.e., f is a random function), we apply the standard
concentration inequality (Abbasi-Yadkori et al., 2011) after sampling a random function f (more formally, we apply the
standard concentration inequality on the probability space (Ωn,Fn, Pn) for each ωgp ∈ Ωgp where notation is defined in
Appendix E). We also remark that a similar concentration inequality is proved in the Gaussian process setting (Srinivas
et al., 2010).

Lemma F.5. For any δ > 0, the following inequality holds with probability at least 1 − δ: |f(x) − µt(x)| ≤

βt(δ)σt(x), ∀x ∈ X , t ≥ 1, where σt(x) =
√
x>V −1

t x and βt(δ) =
√
λ

(√
d log

(
1+t
√
k

δ

)
+ ‖θf‖

)
.

The following lemma states that V (πt) can be approximated by the empirical covariance matrix and can be proved by the
standard concentration inequality (Abbasi-Yadkori et al., 2011).

Lemma F.6. Assume xt ∈ X is sampled from a probability kernel πt. Then, for any δ ∈ (0, 1), the following inequality

holds with probability at least 1− δ for any t ≥ 1,
∥∥∥ 1
t

∑t
s=1 xsx

>
s − V (πt)

∥∥∥
F
≤ β′t(δ)/

√
t, where πt = 1

t

∑t
s=1 πs and

β′t(δ) = d
√

(1 + t−1)
(
1 + 2 log(d2(1 + t)1/2/δ)

)
.

Proof. For each x ∈ X and 1 ≤ i, j ≤ d, the (i, j) entry of xx> is bounded as

(xx>)ij = Tr e>i xx
>ej = Trxx>eje

>
i ≤ ‖xx>‖F‖eje>i ‖F ≤ k.

Thus, for each (i, j), (xsxs)ij − V (πs)ij is conditionally 2k-subgaussian. By (Abbasi-Yadkori et al., 2011, (11)) and taking
a union bound for (i, j) ∈ [d]× [d], we have

|
t∑

s=1

xsx
>
s −

t∑
s=1

V (πs)|∞ ≤
√

(1 + t)
(
1 + 2 log(d2(1 + t)1/2/δ)

)
.
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We can deduce the following lemma by Lemma F.5.

Lemma F.7. Let (xt)t be a sequence of actions selected by Algorithm 1 and ζt, µt be as in Algorithm 1. Then, there exists
t0(δ) = t0(δ; d, α, πexp) such that, with probability at least 1− δ, we have

|f(x)− µt(x)| ≤ β′′t (δ)tα/2−1/2, (22)

if t ≥ t0, where β′′t (δ) = βt(δ/2)
√

2(1− α)λ−1
min(V (πexp)).

Proof. By Lemma F.6 and the Hoffman-Wielandt theorem (Hoffman & Wielandt, 2003), with probability at least 1− δ, we
have ∣∣∣∣∣λmin

(
1

t

t∑
s=1

xsx
>
s

)
− λmin (V (πt))

∣∣∣∣∣ ≤ β′t(δ)√t,
We put αt := 1

t

∑t
s=1 s

−α. Since V (πt) � αtV (πexp), we have

αt

(
λmin(V (πexp))− β′t(δ)α−1

t t−1/2
)
≤ λmin

(
1

t

t∑
s=1

xsx
>
s

)
.

We take t0 = t0(δ; d, α, πexp) so that β′t(δ/2)α−1
t t−1/2 < λmin(V (πexp))/2 if t ≥ t0. Then, if t ≥ t0, we have

1

2
λmin(V (πexp))αt ≤ λmin

(
1

t

t∑
s=1

xsx
>
s

)
.

Thus, for any x ∈ X , if t ≥ t0, the following inequality holds with probability at least 1− δ/2:

σt(x) ≤
√

2λ
−1/2
min (V (πexp))α

−1/2
t t−1/2 ≤

√
2
√

1− αλ−1/2
min (V (πexp))tα/2−1/2.

Then, the assertion of the lemma follows from Lemma F.5.

Finally, by above results (Lemmas F.5 to F.7), we can upper bound the estimation error of the objective function as follows.

Lemma F.8. Let (xt)t be a sequence of actions selected by Algorithm 1 and ζt, µt be as in Algorithm 1. Assume
V � t−αV (πexp). Then, there exists t1(δ) = t1(δ; ε, d, α, πexp) ≥ t0(δ) such that with probability at least 1− δ, we have

|Γ∗(V ; ζt, µt)− Γ∗(V ; ζ∞, f)|

. ε′′−2λ−1
min(V (πexp))tα

√
k‖ζt − ζ∞‖+ 2ε′′−3λ−1

min(V (πexp))ktα
(
B‖ζt − ζ∞‖+ β′′t (δ)t

α−1
2

)
.

Here, ε′′ := f(ζ∞)− supx∈X f(x) + ε > 0 and the notation . hides universal constants.

Proof. Let Eδ be an event on which the inequality (22) holds if t ≥ t0(δ). We assume that Eδ hold. Then, for ξ ∈ X , we
have

|‖ζt − ξ‖V −1 − ‖ζ∞ − ξ‖V −1 | ≤ ‖ζt − ζ∞‖V −1

≤ tα/2λ−1/2
min (V (πexp))‖ζt − ζ∞‖. (23)

For ξ, V , we define a function ϕ : R2 → R as

ϕ(p, q) =
(‖ζ∞ − ξ‖V −1 + p)

2

(ε+ f(ζ∞)− f(ξ) + q)
2 .

Letting pt = ‖ζt − ξ‖V −1 − ‖ζ∞ − ξ‖V −1 , qt = µt(ζt)− f(ζ∞)− µt(ξ) + f(ξ) and the Taylor theorem, we have

Γ(V, ξ; ζt, µt) = ϕ (pt, qt)

= Γ(V, ξ; ζ∞, f) +
∂φ

∂p
(p̃t, q̃t)pt +

∂φ

∂q
(p̃t, q̃t)qt,
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where (p̃t, q̃t) = (lpt, lqt) with 0 ≤ l ≤ 1. We take t1(δ) = t1(δ; ε′′, ν, B, d, α, πexp) ≥ t0(δ) so that |qt| ≤ B‖ζt − ζ∞‖+
β′′t (δ)t(α−1)/2 < ε′′/2 if t ≥ t1(δ), where ε′ is defined as

Then, if t ≥ t1(δ), we have |qt| ≤ ε′′/2, and∣∣∣∣∂φ∂p (p̃t, q̃t)

∣∣∣∣ . ε′′−2λ
−1/2
min (V (πexp))tα/2

(√
k + ‖ζt − ζ∞‖

)
. ε′′−2λ

−1/2
min (V (πexp))tα/2

√
k,∣∣∣∣∂φ∂q (p̃t, q̃t)

∣∣∣∣ . ε′′−3λ−1
min(V (πexp))tα

(√
k + ‖ζt − ζ∞‖

)2

. ε′′−3λ−1
min(V (πexp))tαk

Here, notation . hides universal constants. Thus, we have

|Γ∗(V ; ζt, µt)− Γ∗(V ; ζ∞, f)|

. ε′′−2λ
−1/2
min (V (πexp))tα/2

√
k|pt|+ ε′′−3λ−1

min(V (πexp))tαk|qt|

. ε′′−2λ−1
min(V (πexp))tα

√
k‖ζt − ζ∞‖

+ 2ε′′−3λ−1
min(V (πexp))ktα

(
B‖ζt − ζ∞‖+ β′′t (δ)t

α−1
2

)
.

F.5. Proof of Proposition D.3

Proof of Proposition D.3. We follow the standard proof of the (projected) subgradient method (Ruszczyński, 2006, Chapter
7). However, in our setting, we only have an estimation of the objective function, and we can compute the projection only
approximately. Thus, we provide a proof for completeness. In the proof, we define

Γ
∗
t (V ) := Γ∗((1− t−α)V + t−αV (πexp); ζt, µt),

Γ∗t (V ) := Γ∗(V ; ζt, µt).

for any V ∈ V(X ). Then, by definition, we have Γ∗t (Vt) = Γ
∗
t (Ṽt). For symmetric matrices A,B ∈ Rd×d, we denote

TrAB by A ·B. We assume the event Eδ on which Lemma F.8 holds. Let V ∗ ∈ argminV ∈P(X ) Γ∗(V ; ζ, f). We let

dt := gt · (Ṽt − V ∗)/‖gt‖F, Ut := V ∗ + dtgt/‖gt‖F.

‖Ṽt+1 − V ∗‖2F = ‖Πn(Wt+1)− V ∗‖2F

≤ ‖Wt+1 − V ∗‖2F +
ck

2

2(nt + 2)

= ‖Ṽt − ηtctgt − V ∗‖2F +
ck

2

2(nt + 2)

= ‖Ṽt − V ∗‖2F − 2ctηtgt · (Ṽt − V ∗) + η2
t c

2
t‖gt‖2F +

ck
2

2(nt + 2)
(24)

≤ ‖Ṽt − V ∗‖2F − 2ctηt‖gt‖(dt − ηt/2) +
ck

2

2(nt + 2)
. (25)

Here, the first inequality follows from Lemma F.4 and the second inequality follows from ct‖gt‖F ≤ 1. Since gt is a
subgradient of Γ

∗
t at Ṽt by Lemma F.3, and by definition of dt, Ut, we have

Γ
∗
t (Ut) ≥ Γ

∗
t (Ṽt) + gt · (Ut − Ṽt) = Γ

∗
t (Ṽt) = Γ∗t (Vt). (26)
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If lim inft→∞ dt = 0, then there exists a subsequence T = {tn}n≥1 such that limn→∞ tn =∞ and limn→∞ Utn = V ∗.
we have for t ∈ T ,

Γ∗(V ∗) = (Γ∗(V ∗)− Γ∗(Ut)) +
(

Γ∗(Ut)− Γ
∗
t (Ut)

)
+ Γ

∗
t (Ut)

≥ (Γ∗(V ∗)− Γ∗(Ut)) +
(

Γ∗(Ut)− Γ
∗
t (Ut)

)
+ Γ∗t (Vt)

= (Γ∗(V ∗)− Γ∗(Ut)) +
(

Γ∗(Ut)− Γ
∗
t (Ut)

)
+ (Γ∗t (Vt)− Γ∗(Vt)) + Γ∗(Vt). (27)

By α < max(1/3, ν), Lemma F.8, and the definition of Γ
∗
t , the second and third terms in (27) converge to zero since

Lemma F.8 holds uniformly for V ∈ V(X ). For t ∈ T , the first term converges zero. Thus, by inequality (27), we have
Γ∗(V ∗) ≥ lim inft∈T Γ∗(Vt). Thus, we have our assertion if lim inft→∞ dt = 0. Next, we assume lim inft→∞ dt > 0.
Since limt→∞ ηt = 0, we see that there exists a > 0 and t1 ≥ 1 such that dt − η2/2 > a for any t ≥ t1. By summing both
sides of (25) for t1 ≤ t ≤ s, where s is any integer with s ≥ t1, we see that

0 ≤ ‖Vs − V ∗‖2F ≤ ‖Vt1 − V ∗‖2F − 2a

s∑
t=t1

ct‖gt‖ηt +

s∑
t=t1

ck
2

2(nt + 2)
.

If lim inft→∞ ct‖gt‖F > 0, then we can derive a contradiction by the above inequality by taking s→∞ since
∑∞
t=1 ηt =∞

and
∑∞
t=1 1/(nt + 2) <∞. Thus, we assume that lim inft→∞ ct‖gt‖F = 0. Since gt is a subgradient of Γ

∗
t at Ṽt, we have

gt · (Ṽt − V ∗) ≥ Γ
∗
t (Ṽt)− Γ

∗
t (V

∗) = Γ∗t (Vt)− Γ
∗
t (V

∗).

Since ‖Ṽt−V ∗‖F is bounded, we have 0 ≥ lim inft→∞ Γ∗t (Vt)−Γ
∗
t (V

∗). Since Lemma F.8 holds uniformly for V ∈ V(X ),
we see that lim inft→∞ Γ∗(Vt) = lim inft→∞ Γ∗t (Vt) ≤ limt→∞ Γ

∗
t (V

∗) = Γ∗(V ∗).

Therefore, we have proved that for any δ ∈ (0, 1) there exists an event Eδ with P (Eδ) ≤ 1 − δ such that on Eδ, we have
lim inft→∞ Γ∗t (Vt) = Γ∗(V ∗).

We take a sequence (δn)∞n=1 with δn ∈ (0, 1) and limn→∞ δn = 0 and let En = Eδn . We define an event E as
lim supn→∞ En = ∩n ∪k≥n Ek. Then, by Fatou’s lemma, we have P (E) ≥ lim supn P (En) ≥ lim supn(1 − δn) = 1.
Since for any ω ∈ E , there exists n ≥ 1 such that ω ∈ En and, we see that lim inft→∞ Γ∗(V (πt); ζ, f) = τ∗(f ; ζ) holds on
En, it holds on the event E . This completes the proof.

F.6. Proof of Theorem 6.2

For the proof of the theorem, we introduce the following results (Proposition F.9, Lemma F.10). We note that Proposition 6.3
follows from Proposition F.9.
Proposition F.9. Suppose assumptions in Assumption 6.1 hold. We let

Γ̃∗(V ; ζ∞, f) = Γ∗(V ; ζ∞, f) + λV ‖V ‖2F,

and V ∗λV ∈ argmaxV ∈V(X ) Γ̃∗(V ; ζ∞, f). Then, for any δ ∈ (0, 1), we have the following for any T with probability at
least 1− δ:

Γ̃∗ (V (πT ); ζ∞, f)− Γ̃∗(V ∗λV ; ζ∞, f) ≤ ρT
T
.

Here, using notation of Lemma F.8, ρT is given as

t1(4ε−2λ−1
min(πexp)t−α1 k

2
+ λV k

2
) +

(
c′

4α+ 1
+ 2 + c

)
k

2
T 4α+1/2

+

T∑
t=t1

∣∣∣Γ̃∗t (Ṽt; ζ∞, f)− Γ̃∗t (Ṽt; ζt, µt)
∣∣∣+

T∑
t=t1

∣∣∣Γ̃∗t (V ∗λV ; ζ∞, f)− Γ̃∗t (V
∗
λV ; ζt, µt)

∣∣∣ .
and c′ = c′(ε, πexp, λV ) := (4λ−1

min(V (πexp))ε−2 + 2λV )2.

Moreover, we have the following a.s.:

lim
t→∞

Γ∗(V (πt); ζ∞, f) = τ∗X (f ; ζ∞).
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Proof. Basically, we follow the standard proof of the projected subgradient descent method (Bubeck, 2015). We
let Γ̃∗(V ; ζ∞, f) = Γ∗(V ; ζ∞, f) + λV ‖V ‖2F and Γ̃∗t (V ; ζ∞, f) = Γ̃∗ ((1− t−α)V + t−αV (πexp); ζ∞, f), V ∗λV =

argmaxV ∈V(X ) Γ̃∗(V ; ζ∞, f).

We put gt = −(1 − t−α)(ε + µt(ζt) − µt(ξt))−2vtv
>
t + 2λV Ṽt ∈ Rd×d. Since gt is a subgradient of Γ̃∗t (·; ζt, µt) at Ṽt,

we have

Γ̃∗t (Ṽt; ζt, µt)− Γ̃∗t (V
∗
λV ; ζt, µt)

≤ Tr gt(Ṽt − V ∗)

=
1

ηt
Tr(Ṽt −Wt+1)(Ṽt − V ∗λV )

=
1

2ηt

(
‖Ṽt −Wt+1‖2F + ‖Ṽt − V ∗λV ‖2F − ‖V ∗λV −Wt+1‖2F

)
=
ηt
2
‖gt‖2F +

1

2ηt

(
‖Ṽt − V ∗λV ‖2F − ‖V ∗λV −Wt+1‖2F

)
. (28)

By Lemma F.4, we have

‖V ∗λV − Ṽt+1‖2F ≤ ‖V ∗λV −Wt+1‖2F +
ck

2

nt + 2
. (29)

Since V ′t � t−αV (πexp), we see that

‖vtv>t ‖F = (ζt − ξt)>(V ′t )−2(ζt − ξt) ≤ 4λ−1
min(V (πexp))kt2α.

Thus, we have

‖gt‖2F ≤ t4αk
2
c′,

where c′ = c′(ε, πexp, λV ) := (4λ−1
min(V (πexp))ε−2 + 2λV )2. By this inequality and (28), (29), we have

T∑
t=1

(
Γ̃∗t (Ṽt; ζt, µt)− Γ̃∗t (V

∗
λV ; ζt, µt)

)
≤ 2−1c′k

2
T∑
t=1

t4αηt + 2−1η−1
T ‖Ṽ1 − V ∗λV ‖2F + η−1

T ck
2
T∑
t=1

1

nt + 2

≤ 2−1c′k
2
T∑
t=1

t4αηt + (2 + c)k
2
η−1
T .

Here, we take nt so that
∑∞
t=1 1/(nt + 2) ≤ 1 and take ηt = t−2α−1/2. Then, we have

T∑
t=1

(
Γ̃∗t (Ṽt; ζt, µt)− Γ̃∗t (V

∗
λV ; ζt, µt)

)
≤
(

c′

4α+ 1
+ 2 + c

)
k

2
T 4α+1/2. (30)
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Noting that Γ̃∗t (V ; ζ∞, f) ≤ 4ε−2λ−1
min(πexp)t−αk

2
+ λV k

2
for V ∈ Sd�0, for t ≤ t1, we have

T∑
t=1

(
Γ̃∗((1− t−α)Ṽt + t−αV (πexp); ζ∞, f)− Γ̃∗(V ∗λV ; ζ∞, f)

)
≤

T∑
t=1

(
Γ̃∗t (Ṽt; ζ∞, f)− Γ̃∗t (V

∗
λV ; ζ∞, f)

)
≤ t1(4ε−2λ−1

min(πexp)t−α1 k
2

+ λV k
2
) +

T∑
t=t1

(
Γ̃∗t (Ṽt; ζ∞, f)− Γ̃∗t (V

∗
λV ; ζ∞, f)

)
.

≤ t1(4ε−2λ−1
min(πexp)t−α1 k

2
+ λV k

2
) +

(
c′

4α+ 1
+ 2 + c

)
k

2
T 4α+1/2

+

T∑
t=t1

∣∣∣Γ̃∗t (Ṽt; ζ∞, f)− Γ̃∗t (Ṽt; ζt, µt)
∣∣∣+

T∑
t=t1

∣∣∣Γ̃∗t (V ∗λV ; ζ∞, f)− Γ̃∗t (V
∗
λV ; ζt, µt)

∣∣∣
=: ρT .

Here, the third inequality follows from (30). Since Γ̃∗(·; ζ∞, f) is a convex function, we have

Γ̃∗
(
(1− αT )V T + αTV (πexp); ζ∞, f

)
− Γ̃∗(V ∗λV ; ζ∞, f) ≤ ρT

T
,

where V T = 1
T

∑T
t=1 Ṽt and αT = 1

T

∑T
t=1 t

−α. Thus, we have the first assertion. Letting λV = 0, by Lemma F.8 and the
assumptions, with probability at least 1− δ, we have limt→∞ Γ∗(V (πt); ζ∞, f) = τ∗X (f ; ζ∞). By the same argument as
in the proof of Proposition D.3, we see that limt→∞ Γ∗(V (πt); ζ∞, f) = τ∗X (f ; ζ∞). holds a.s. Thus, we have the second
assertion. This completes the proof.

Lemma F.10. Let {(xt, yt)}t be a sequence by running Algorithm 1. Then, for any x ∈ X , we have limt→∞ µt(x)→ f(x)
almost surely.

Proof. This follows from Lemma F.7 and the same argument as in the proof of Proposition D.3.

Proof of Theorem 6.2. The statement of Theorem 6.2 follows from Lemma 4.1, Lemma F.10, and Proposition F.9.

F.7. Proof of Propositions 6.4 and 6.5

Proof of Proposition 6.5. Suppose X is a unit sphere and let f(x) = µ · x. Then ζ∗µ = µ/‖µ‖ and by

f(ζ∗µ)− f(x) = ‖µ‖
(

1− µ

‖µ‖ · x
)

=
‖µ‖
2

∥∥∥∥ µ

‖µ‖ − x
∥∥∥∥2

=
‖µ‖
2

∥∥ζ∗µ − x∥∥2

the assumption (9) is satisfied with κX = 2.

More generally, let us suppose that for any x0 ∈ X there exists a neighborhood Ux0 ⊂ Rd of x0 and an analytic function
φx0

: Ux0
→ R such that X ∩ Ux0

is given as {x ∈ Ux0
: φx0

(x) = 0} and the minimal eigenvalue of the Hessian of φx0
at

x0 is larger than a positive constant c > 0 independent of x0. We define a (possibly infinite) constant γ(µ) by

γ(µ) = sup
x∈X\{ζ∗µ}

‖x− ζ∗µ‖2
|µ · ζ∗µ − µ · x|

.

If γ(µ) <∞ for µ 6= 0, then we have the condition (9). We let γ(µ, x) =
‖x−ζ∗µ‖

2

|µ·ζ∗µ−µ·x|
. By assumptions there exists an open

neighborhood U 3 ζ∗µ and an analytic function φ : U → R such that locally X is given as φ(x) = 0. Since ζ∗µ is an optimal
arm, there exists a Lagrange multiplier λµ ∈ R such that µ = λµ∇φ(ζ∗µ). By ‖µ‖ 6= 0 and ‖∇φ(ζ∗µ)‖ is bounded, we see
that λµ & 1. Thus, it follows that

|µ · ζ∗µ − µ · x| = λµ|∇φ(ζ∗µ) · (x− ζ∗µ)| & |∇φ(ζ∗µ) · (x− ζ∗µ)|,
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for any x ∈ X ∩ U . By the power series expansion of φ around ζ∗µ, for each x ∈ X ∩ U , we have

0 = φ(x) = ∇φ(ζ∗µ) · (x− ζ∗µ) +
1

2
(x− ζ∗µ)>H(ζ∗µ)(x− ζ∗µ) +R3(x− ζ∗µ; ζ∗µ).

Here, H(ζ∗µ) is the Hessian of φ at ζ∗µ and R3(·; ζ∗µ) is the residual of degree greater than or equal to three of the power
series expansion. Thus, for any x ∈ X ∩ U , we have

γ(µ, x) = λ−1
µ

‖x− ζ∗µ‖2
|µ · ζ∗µ − µ · x|

.
‖x− ζ∗µ‖2

(x− ζ∗µ)>H(ζ∗µ)(x− ζ∗µ) + 2R3(x− ζ∗µ; ζ∗µ)
. (31)

By the assumption on the Hessian, we see that supx∈X∩U γ(µ, x) <∞. If x ∈ X \ U , then by the uniqueness of ζ∗µ, we
have infx∈X\U µ · (ζ∗µ − x) > 0. Therefore, supx∈X\U γ(µ, x) <∞. Thus, we have γ(µ) <∞.

Proof of Proposition 6.4. By the assumption λmin(Vt) & t−α, we see that by the same proof, statements of Lemmas F.6
and F.7 hold for the sampling rule (xt)t≥1. Let β′t(δ) and β′′t (δ) be constants defined in these lemmas. By (22) and the
definition of ζt, we have

f(ζ) ≤ µt(ζ) + β′′t (δ)tα/2−1/2 ≤ µt(ζt) + β′′t (δ)tα/2−1/2.

Similarly, we have

µt(ζt) ≤ f(ζt) + β′′t (δ)tα/2−1/2 ≤ f(ζ) + β′′t (δ)tα/2−1/2.

Thus, we have |f(ζ)− µt(ζt)| ≤ β′′t (δ)tα/2−1/2. From the assumption (9), ‖ζ − ζt‖ ≤ β
(3)
t (δ)t(α−1)/(2κX ). Here,

β
(3)
t (δ) = (c′X ,f )1/κX (β′′t (δ))1/κX . Thus, the assumption (7) holds with ν = (1− α)/(2κX ).

G. Appendix to Experiments
G.1. More Details of the Experiments

We provide more details of the experimental results in Section 7. The experiment has been conducted using AMD EPYC
7352 CPU with 64GB RAM. In the experiments, we use the following parameters of the algorithm: α = 1, ηt = cη/

√
t,

nt = 1/t2, λV = 0, where cη is defined so that Tr η1g1 = 1. We take πexp as the uniform distribution on X . For, step
sizes (γi)i for Algorithm 2, we did a line-search to minimize the objective γ 7→ ‖(1− γ)V (π̃i−1) + γa>i ai −W‖2F. We
take a larger α in Assumption 6.1 since we consider a mixture distribution with πexp to ensure V (πt) is positive definite.
If this condition is satisfied during the optimization, it is not necessary to consider a mixture distribution and taking a
smaller α makes the convergence slower. Thus, we set α a larger value in this experiment. In Algorithm 2, we break the
for loop if ‖V (π̃(i))− V (π̃(i−1))‖∞ is less than a threshold, and we take the threshold as 10−3. To optimize the fractional
objective, we used the Dinkelbach’s algorithm (Dinkelbach, 1967). In the implementation, we stop the iteration loop if
|qn − qn−1| < 10−5 or n > 30, where qn is given in Section 5.3. We empirically solved the linear and quadratic objective
on X by using the optimization library provided by the SciPy (Virtanen et al., 2020).

G.2. Additional Experimental Results

As we detailed in Section 7, we have conducted experiments in the following setting; X is defined as a subset
{(cos(θ), sin(θ)) : θ ∈ [θ0, θ1]} of the unit circle in R2, and f(x) = (cos(θf ), sin(θf )) · x, λ = 10−2, ε = 10−2,
where θf = aπ, θ0 = 0, θ1 = bπ, and a = 0.0, 0.2, . . . , 1.8, b = 0.0, 0.2, . . . , 1.8 with a < b. Due to the page limit, we
only show a subset of the experimental results. In this section, we introduce additional experimental results. In , We show
experimental results with (a, b) = (0.0, 0.2), (0.0, 0.4), (0.0, 0.6), (0.0, 0.8), (0.0, 1.0), (0.0, 1.2), (0.0, 1.4), (0.0, 1.6),
(0.0, 1.8), (0.2, 0.4), (0.2, 0.6), (0.2, 0.8), (0.2, 1.0), (0.2, 1.2), (0.2, 1.4), (0.2, 1.6), (0.2, 1.8), (0.4, 0.6) in Figure 3, that
with (a, b) = (0.4, 0.8), (0.4, 1.0), (0.4, 1.2), (0.4, 1.4), (0.4, 1.6), (0.4, 1.8), (0.6, 0.8), (0.6, 1.0), (0.6, 1.2), (0.6, 1.4),
(0.6, 1.6), (0.6, 1.8), (0.8, 1.0), (0.8, 1.2), (0.8, 1.4), (0.8, 1.6), (0.8, 1.8), (1.0, 1.2) in Figure 4, that with (a, b) =
(1.0, 1.4), (1.0, 1.6), (1.0, 1.8), (1.2, 1.4), (1.2, 1.6), (1.2, 1.8), (1.4, 1.6), (1.4, 1.8), (1.6, 1.8) in Figure 5. These figures
indicate that our proposed method overall outperforms the baselines. Although these figures shows our method overall
outperforms the baselines, we see that in some problem instances (such as (a, b) = (0.0, 1.6)), MVR outperforms our
method and we suspect that in some problem instances, MVR happens to be nearly optimal. Improving an empirical
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Table 2. CPU time of each method (including time for evaluation)
method Uniform MVR Ours

time (sec) 1.2e+00 (1.9e-02) 1.3e+00 (2.0e-02) 2.6e+00 (4.3e-02)

Table 3. CPU time of each method (excluding time for evaluation)
method Uniform MVR Ours

time (sec) 8.6e-03 (6.7e-05) 1.9e-01 (6.4e-04) 1.5e+00 (2.3e-02)

performance of our proposed method (for example, by selecting an appropriate step size ηt) is also a future work of this
study.

In Tables 2, 3, we show cpu time for each algorithm for the left most instance in Figure 2. In these tables, the number
represents time in seconds for running one experiment and shows the mean (std) over 10 repetitions. Table 2 shows the
numbers including cpu time for computing pt (the evaluation metric) and Table 3 shows the number excluding cpu time for
computing pt. These results show our method took about 1.5 seconds while MVR took 0.2 seconds. This is natural since the
instance-independent baselines (Uniform and MVR) do not solve the optimization objective over the space of probability
measures. The experimental results show our method runs in reasonable time.

25



Instance-Optimal Pure Exploration for Linear Bandits on Continuous Arms

0 20 40 60 80 100
round

12.5

10.0

7.5

5.0

2.5

lo
g(

p t
)

a, b = 0.0, 0.2

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

50

40

30

20

10

0

lo
g(

p t
)

a, b = 0.0, 0.4

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

125

100

75

50

25

0

lo
g(

p t
)

a, b = 0.0, 0.6

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

200

150

100

50

0

lo
g(

p t
)

a, b = 0.0, 0.8

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

150

100

50

0

lo
g(

p t
)

a, b = 0.0, 1.0

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

250
200
150
100

50
0

lo
g(

p t
)

a, b = 0.0, 1.2

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

400

300

200

100

0

lo
g(

p t
)

a, b = 0.0, 1.4

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

800

600

400

200

0

lo
g(

p t
)

a, b = 0.0, 1.6

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

400

300

200

100

0

lo
g(

p t
)

a, b = 0.0, 1.8

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

30

20

10

0

lo
g(

p t
)

a, b = 0.2, 0.4

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

60

40

20

0

lo
g(

p t
)

a, b = 0.2, 0.6

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

80

60

40

20

0
lo

g(
p t

)

a, b = 0.2, 0.8

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

150

100

50

0

lo
g(

p t
)

a, b = 0.2, 1.0

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

80

60

40

20

0

lo
g(

p t
)

a, b = 0.2, 1.2

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

80

60

40

20

0

lo
g(

p t
)

a, b = 0.2, 1.4

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

600

400

200

0

lo
g(

p t
)

a, b = 0.2, 1.6

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

200

150

100

50

0

lo
g(

p t
)

a, b = 0.2, 1.8

method
Ours
Uniform
MVR

0 20 40 60 80 100
round

60

40

20

0

lo
g(

p t
)

a, b = 0.4, 0.6

method
Ours
Uniform
MVR

Figure 3. Experimental Results for (a, b) = (0.0, 0.2), (0.0, 0.4), (0.0, 0.6), (0.0, 0.8), (0.0, 1.0), (0.0, 1.2), (0.0, 1.4), (0.0, 1.6),
(0.0, 1.8), (0.2, 0.4), (0.2, 0.6), (0.2, 0.8), (0.2, 1.0), (0.2, 1.2), (0.2, 1.4), (0.2, 1.6), (0.2, 1.8), (0.4, 0.6).
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Figure 4. Experimental Results for (a, b) = (0.4, 0.8), (0.4, 1.0), (0.4, 1.2), (0.4, 1.4), (0.4, 1.6), (0.4, 1.8), (0.6, 0.8), (0.6, 1.0),
(0.6, 1.2), (0.6, 1.4), (0.6, 1.6), (0.6, 1.8), (0.8, 1.0), (0.8, 1.2), (0.8, 1.4), (0.8, 1.6), (0.8, 1.8), (1.0, 1.2).
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Figure 5. Experimental Results for (a, b) = (1.0, 1.4), (1.0, 1.6), (1.0, 1.8), (1.2, 1.4), (1.2, 1.6), (1.2, 1.8), (1.4, 1.6), (1.4, 1.8),
(1.6, 1.8).
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