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Abstract: Leveraging human motion data to impart robots with versatile manipu-
lation skills has emerged as a promising paradigm in robotic manipulation. Never-
theless, translating multi-source human hand motions into feasible robot behaviors
remains challenging, particularly for robots equipped with multi-fingered dex-
terous hands characterized by complex, high-dimensional action spaces. In this
paper, we introduce HERMES, a human-to-robot learning framework for mobile
bimanual dexterous manipulation. First, HERMES formulates a unified reinforce-
ment learning approach capable of seamlessly transforming heterogeneous human
hand motions from multiple sources into physically plausible robotic behaviors.
Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-
based sim2real transfer method for improved generalization to real-world sce-
narios. Furthermore, to enable autonomous operation in varied and unstructured
environments, we augment the navigation foundation model with a closed-loop
Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of
visual goals and effectively bridging autonomous navigation and dexterous ma-
nipulation. Extensive experimental results demonstrate that HERMES consis-
tently exhibits generalizable behaviors across diverse, in-the-wild scenarios, suc-
cessfully performing numerous complex mobile bimanual dexterous manipulation
tasks. Project Page https://hermes-manipulation.github.io/

Keywords: Mobile bimanual dexterous manipulation, Sim2real, Learning from
human motion.

1 Introduction

Achieving human-level dexterity for robots has long been a central challenge in robotic research.
The prospect of bimanual robotic systems with dexterous hands that mirror human physiology holds
the promise of seamlessly integrating robots into daily human activities and environments. Despite
notable progress, how to capitalize on the abundance of available human data and develop algorithms
suited to intricate and high-precision dexterous manipulation remains underexplored.

Humans continuously generate diverse bimanual manipulation data, inherently serving as natural
guidance for robots to emulate human-like behaviors. Several previous studies [1, 2, 3, 4, 5] have
attempted to extract trajectories of human hands and manipulated objects from video data, sub-
sequently applying them to robotic manipulation tasks. Nevertheless, these methods have pre-
dominantly targeted robots equipped with simple gripper-based end effectors, failing to general-
ize effectively to dexterous hands due to the vastly greater complexity of action space. Despite
recent advances that utilize kinematic retargeting approaches to produce human-like robotic mo-
tions [6, 7, 8, 9, 10], these approaches still fall short in achieving physically-aware pose retargeting
and bridging the embodiment gap to derive feasible robot actions capable of successfully accom-
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Figure 1: The main pipeline of HERMES. HERMES comprises a four-stage pipeline for achiev-
ing mobile bimanual dexterous manipulation through sim2real transfer. First, we acquire a one-shot
human demonstration drawn from diverse sources. Then, in stage 2, we train a state-based RL
teacher policy, then apply DAgger to distill into a vision-based student policy. Following this, HER-
MES execute long-horizon navigation using ViNT, followed by real-time PnP to finely adjust the
robot’s pose and achieve precise alignment in stage 3. Once localization is achieved, the student
policy is deployed in a zero-shot fashion directly in the real world.

plishing the intended tasks. A critical limitation lies in the omission of explicit modeling of interac-
tions between robotic hands and manipulated objects, a fundamental component of manipulation
tasks. Consequently, neglecting these interactions undermines the robot’s ability to fully understand
and adapt to the dynamics of manipulation scenarios.

Therefore, in an attempt to address the aforementioned challenges, recent approaches have begun
leveraging Reinforcement Learning (RL) paradigms [11, 12, 13], allowing robots to autonomously
explore feasible motion strategies under the guidance of kinematic reference trajectories. These
methods commonly design general reward functions encompassing object tracking, hand configu-
rations, and collision dynamics. Maximizing such rewards drives the robot toward successful ex-
ecution of complex manipulation tasks. Nonetheless, existing works [12, 13] typically draw on
limited human motion data sources and some have not transferred the trained robot behaviors to
the physical world. Such limitations not only hinder the evaluation of whether the learned policies
exhibit behaviorally plausible performance in the real world, but also preclude the integration of
sim2real methodologies necessary for enabling closed-loop policy control and deploying in vari-
ous environmental conditions. Motivated by these challenges, we propose HERMES, a versatile
human-to-robot embodied learning framework tailored for mobile bimanual dexterous hand manip-
ulation. HERMES offers the following three advantages: 1. Diverse sources of human motion:
Our framework supports several human motion sources, including teleoperated simulation data, mo-
tion capture (mocap) data, and raw human videos. We also provide corresponding approaches for
data acquisition, enabling HERMES to efficiently transform varied human motion data into robot-
feasible behaviors through RL. Furthermore, these tasks share a uniform set of reward terms, ob-
viating the necessity of designing intricate and task-specific reward functions. In contrast to the
methods that depend on collecting a large amount of demonstrations, we can achieve generalizable
policy by editing a single reference human motion trajectory coupling with RL training. 2. End-
to-end vision-based sim2real transfer: HERMES facilitates robust vision-based sim2real transfer
by employing DAgger distillation, which converts state-based expert policies into vision-based stu-
dent policies. Moreover, we introduce a generalized, object-centric depth image augmentation and
hybrid control approach, effectively bridging the perception and dynamic sim2real gap. 3. Mobile



manipulation capability: Our method endows robots with mobile manipulation skills. Building
upon ViNT [14], we develop a RGB-D based module for precise localization wherein the task is
modeled as a Perspective-n-Point (PnP) problem and addressed through an iterative process. This
ensures seamless integration with subsequent manipulation tasks and unlock the policy’s capacity to
operate autonomously across a broad spectrum of real-world environments.

2 Method

2.1 Collect One-shot Human Motion

To validate the effectiveness and robustness of HERMES, we employ three distinct sources of human
motion: teleoperation in simulation, motion capture data obtained from public datasets, and hand-
object poses extracted from raw videos. Moreover, by leveraging merely a single human reference
trajectory in conjunction with RL training, we are able to derive the generalizable robot policy
without the need for collecting extensive demonstrations.

Teleoperation in simulation: We provide access to the pre-configured simulation that enables direct
teleoperation of the robot for collecting demonstrations. The Apple Vision Pro is utilized to extract
hand poses and arm movements, with data captured at a frequency of 75 Hz.

Mocap data: In contrast to direct teleoperation in simulation, retargeting mocap data to robotic
hands presents significant challenges due to the embodiment gap between human and robotic hand
structures. This discrepancy renders the retargeted trajectories from mocap data unsuitable for direct
replay in simulation. Consequently, RL is often employed to enable robots to learn the desired
behaviors from reference trajectories. In our study, we utilize the OakInk2 mocap dataset [15] to
acquire human motion data for this purpose.

Extracted arm and hand poses
from videos: Leveraging video data
holds considerable promise for un-
locking vast quantities of informa-
tion to facilitate robot learning. To
this end, we also provide a pipeline
for extracting human hand poses and
object trajectories directly from raw
video. To acquire the hand poses, we first employ WiLoR [16] to detect the hands in each video
frame and extract 2D hand keypoints along with their corresponding 3D counterparts. We then se-
lect a relatively stable subset of keypoints for the subsequent estimation, specifically those located
at the wrist and the metacarpophalangeal joints. The spatial translation of the wrist in the camera
coordinate system is estimated by solving a Perspective-n-Point (PnP) problem [17] based on the
2D-3D correspondences, while the palm’s orientation is derived by fitting a plane to the selected
3D keypoints. Regarding the manipulated objects, we employ FoundationPose [18] to estimate the
object poses directly from video frames, and utilize ARCode [19] scanning to reconstruct the ob-
ject mesh. By leveraging the aforementioned procedures, we can align the hand and object poses
extracted from the video with the robot’s frame to facilitate the subsequent learning process.

Figure 2: Pose extraction from videos.

Synthesize multiple trajectories: To obtain a more generalizable policy, we perform the trajectory
editing for the one-shot human motion reference by randomizing the object’s position and orientation
in a predefined range. The hand and object poses across the augmented trajectories are transformed
as follows:

Apose [Tk] — trans | A pose [Tk] ) (1)

For any given frame k in the trajectory 7, we apply a transformation matrix TY" to alter its
pose, where AP°%¢ may represent either the object pose or the hand pose. By editing the reference
trajectory, we enable spatial generalization from a single human motion demonstration, obviating
the need to manually collect large numbers of teleoped demonstrations.



Upon obtaining synthesized object and hand trajectories from various data sources, we initially em-
ploy the DexPilot retargeting method [20] to map the captured human hand poses onto corresponding
robot hand configurations. Subsequently, reinforcement learning is leveraged to refine and adapt the
initialized robot behaviors.

2.2 Generalizable Reward Design for Manipulation

Standard reinforcement learning typically relies on hand-crafted reward functions tailored to each
specific task. However, designing such complicated reward structures often impedes scalability and
usability, particularly for the dexterous hand. To alleviate this issue, we leverage one-shot human
demonstration combined with a generalizable reward formulation, enabling the reuse of a unified
reward function across tasks and facilitating the straightforward construction of challenging, long-
horizon manipulation tasks. Specifically, we design the following three reward terms:

Object-centric Distance chain: Capturing the dynamic spatial relationships between the human
hands and the object stands as a pivotal factor in enabling the policy to acquire fine-grained hand-
object interaction skills. We designate the coordinates of the fingertips and palm of the hand, along
with the center of the object’s collision mesh, as keypoints. By modeling the temporal evolution of
vectors between these keypoints, we formulate the following reward function:
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where 7% is the vector from object center to the fingertip or palm. Furthermore, we incorporate
contact information into this reward term. Specifically, during the computation of the distance chain,
we also evaluate the number of contact points between the fingertips and palms of both hand mesh
Chana and the object’s collision mesh C,;. This reward component is activated only when the
number of contact points Neonwer €Xceeds a predefined threshold N, ensuring that the policy
attends to physically meaningful hand-object interactions.

Object trajectory tracking: For manipulation tasks which adopt human motion, a critical indicator
of policy success lies in its ability to track and follow the desired object trajectory. To this end, we
introduce an additional reward component that explicitly aligns the policy’s behavior with the target
object’s trajectory:

Tobj = €XP <_k1 ’ ||p0bj - prefH2 — ko - (dqual(qobj7 qref))Q) 3)

where k1, ko are the coefficients corresponding to the position and orientation terms in the 7gpj. Pobj
and qp; represent the current position and orientation of the object, while pf and qr denote the
position and orientation along the reference trajectory. The term d,, measures the distance between
two quaternions. We also incorporate a power-penalty term to enhance the smoothness of policy exe-
cution and to alleviate the jittering actions. By integrating all these reward components, the policy is
endowed with the capacity to tackle a wide spectrum of challenging and diverse manipulation tasks.
We adopt DrM [21], an off-policy method, leverages a dormant ratio mechanism [22] to enhance
exploration capabilities and demonstrates high sample efficiency.

3 Sim-to-real Transfer

The training of state-based RL policies typically relies on privileged information which is not ac-
cessible in real-world deployment scenarios. Consequently, it is imperative to distill the state-based
policy into a visual policy for achieving sim2real transfer.

Leveraging depth image as visual input: Prior work has explored the use of depth images for
vision-based sim2real transfer. However, they often necessitate intricate and highly customized
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Figure 3: Depth image visualization. We present a visual comparison between simulated and real-
world depth maps across two different tasks. Notably, after applying our preprocessing pipeline, the
depth representations of the hand and object exhibit a strong semantic correspondence, highlighting
the efficacy of HERMES in bridging the sim2real gap.

augmentation strategies to bridge the gap. In this work, we introduce a more versatile, manipulation-
tailored egocentric depth-image augmentation method. Specifically, we clip depth values beyond a
threshold distance d (set per task). For real depth images, missing depth values resulting from edge
capture failures are filled in with the maximum depth. To emulate real-world edge noise and blur
in simulation, we augment simulated depth images by adding Gaussian noise and Gaussian blur
during training. Additionally, to mimic missing depth values, we randomly set 0.5% of pixel values
in simulation-rendered images to the maximum depth. As illustrated in Figure 3, our augmentation
not only semantically aligns simulated renderings with real-world depth images, but also preserves
crucial depth disparity cues essential for accurate visuomotor control.

3.1 DAgger Distillation Training

In DAgger training, the state-based expert policy acts as the teacher to guide the learning of a visual
student policy. In contrast to prior approaches that distill to object masks or segmented images,
HERMES directly distills the state into raw visual observations of entire visual scenarios. This de-
sign obviates the need for explicit camera calibration and facilitates the acquisition of the robot’s in-
the-wild generalization capabilities. Furthermore, we introduce a series of auxiliary design choices
aimed at enhancing both the asymptotic performance of DAgger training.

Hybrid Sim2real Control: To

mitigate the gap between simu- & Simulation
lation and real-world dynamics <

as well as proprioceptive infor-

mation, we adopt a hybrid con-  Policy

trol strategy: real-world visual
observations are used to infer
the actual action, which is then
applied to the simulation envi- real observation

ronment to perform a forward Figure 4: Hybrid Sim2real Control.

step. The updated joint positions of the simulated robot are subsequently transferred to the real
robot for execution. By sharing the same Inverse Kinematics (IK) method and dynamic parameters
across simulation and the real world, this approach not only enables the policy to adapt its behavior
based on real-world environmental variations but also effectively narrows the sim2real discrepancy.
The pipeline is shown in Figure 4.
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4 Navigation Methodology

To endow the trained visuomotor policy with navigation capabilities, HERMES integrates an image-
goal navigation foundation model [14, 23, 24] that operates solely on RGB inputs and supports
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Figure 5: The pipeline of closed-loop PnP localization. We first employ the efficient LoFTR to
extract dense visual features, followed by estimating the transformation between the current frame
and the goal location via solving the PnP problem. Subsequently, we use PID controller to execute
the action. This entire process is executed in a closed-loop manner and continues iteratively until the
spatial discrepancy between the robot’s current pose and the goal falls below a predefined threshold.

long-horizon, in-the-wild navigation. This framework allows for a seamless and low-cost fusion of
manipulation and navigation modules, without necessitating additional fine-tuning of either compo-
nent. We choose VINT [14] for achieving image-goal robotic navigation. We deploy ViNT on our
customized robotic system, operating at a frequency of 7.6 Hz. The action space is the relative way-
points so that VINT can own the cross-embodiment property. ViNT not only enables long-range,
in-the-wild navigation but also demonstrates effective zero-shot generalization capability without
necessitating model fine-tuning.

For our mobile manipulation tasks, even moderate discrepancies between the robot’s final pose and
the target pose can lead to the manipulation policy failing to finish the task. However, VINT does
not guarantee termination within a sufficiently tight error bound. To address this, we introduce
a local refinement step after VINT completes navigation: a closed-loop Perspective-n-Point (PnP)
localization algorithm is employed to adjust the robot’s pose, ensuring closer alignment with the
goal image pose.

As shown in Figure 5, we first utilize the neural feature matching module Efficient LoFTR [25] to
detect the correspondence between the current robot captured image I. and the goal image I,. Then
the detected features are lifted to 3D space with respect to the robot’s current coordinate frame by
leveraging the camera intrinsic matrix and the depth map. Next, we leverage the RANSAC PnP [26]
and refine PnP algorithm [27, 28] to compute the relative rotation and translation between the robot’s
current viewpoint and the goal pose that can minimize the reprojection error. By leveraging real-
time feedback from PnP as the robot incrementally converges toward the target pose, we are able
to iteratively refine the pose estimation, thereby attaining more accurate visual correspondence.
After getting the target pose calculated by our closed-loop PnP localization algorithm, we utilize a
Proportional-Integral-Derivative (PID) controller [29] to adjust the pose of our robot. The input of
the controller is the instantaneous position and orientation error between the robot’s desired state
and its actual state.

5 Experiments

In this section, we perform an extensive series of experiments aimed at evaluating the capabilities
of HERMES across various aspects, including navigation and manipulation. Specifically, our pri-
mary experiments are designed to: (1) verify the efficacy of HERMES in efficiently and robustly
transforming diverse human motion data into robot-plausible behaviors; (2) exhibit the effective-
ness of our method in sim2real transfer; (3) quantify the accuracy and reliability of our navigation
localization approach; (4) demonstrate the effectiveness of HERMES in mobile manipulation.
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Figure 6: The training curve of HERMES. The horizontal axis denotes the training steps, while
the vertical axis represents the normalized task length successfully accomplished by the policy.
Teleop refers to one-shot human motion teleoperation in simulation, Human video denotes trajecto-
ries extracted from video data, and Mocap corresponds to motion derived from mocap datasets. All
results are evaluated across 3 seeds.

Table 1: Real-world manipulation evaluation results. Across 6 real-world bimanual dexterous ma-
nipulation tasks, HERMES obtains +54.5% performance gains on average.

Method \ Tasks | bottlehandover cleantable scanbottle putoffburner cleanplate pourteapot | Average
HERMES 66.7 60.0 73.3 66.7 66.7 73.3 67.8+5.0
raw depth 6.7 0.0 0.0 20.0 13.3 40.0 13.3+15.2

5.1 Sample Efficiency of HERMES

We evaluate the training sample efficiency of HERMES across seven tasks. For each task, the source
of the one-shot human motion demonstration is indicated in the title of each sub-figure in Figure 6.
The vertical axis in the figure represents the proportion of the trajectory length successfully executed
by the current policy relative to the total length of the trajectory. As demonstrated in Figure 6,
regardless of the origin of the human motion data, HERMES reliably succeeds in converting human
hand and arm actions into generalizable robot-executable behaviors.

Additionally, we compare training performances with ObjDex [11]. ObjDex defines its reward based
on the tracking of the object’s joint movement, translations, and orientations. We re-implement this
reward formulation within our own algorithmic framework. Figure 6 indicates that HERMES ex-
hibits superior performance relative to ObjDex across all tasks. In tasks such as Bottle Handover,
Flower Vase, and Putoff Burner, where interactions involve only a single object, ObjDex is able
to complete the tasks; however, HERMES can achieve higher sample efficiency during training.
Furthermore, in more intricate tasks involving multi-object interactions, ObjDex consistently fails,
irrespective of the type of human motion data provided. Contributed to our object-centric distance
chain, HERMES is capable of robustly acquiring diverse manipulation skills even in long-horizon,
multi-object environments. Moreover, HERMES demonstrates high sample efficiency and success-
fully learns policies in 3M training steps.

5.2 Real-world Manipulation Evaluation

After conducting DAgger training, we subsequently transfer the trained visual student policy to the
real world in a zero-shot manner for most tasks. It should be noted that for the tasks pour teapot and
putoff burner, the presence of substantial noise in the trajectory or transparent objects leads to exces-
sively jittering motions, along with discrepancies between simulated and real-world object shapes.
Consequently, we additionally fine-tune the policy using 5 extra real-world trajectories collected
via policy rollouts. Table 1 presents the generalization performance of the policy evaluated across
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Figure 7: The visualization of navigation results. The left two columns depict a comparison
between the target image and the terminal image achieved by our method. The right two columns

present the point clouds captured at the end of navigation by VINT and HERMES, compared against
the point cloud of the target position.

different object placements and poses, with each task assessed over 15 trials. HERMES not only
successfully achieves zero-shot transfer for diverse long-horizon or contact-rich bimanual dexterous
manipulation tasks, but also surpasses the baseline by +54.4% in success rate. These experimental
results substantiate HERMES’s capability to effectively bridge both visual and dynamic gaps, en-
abling successful sim2real transfer and demonstrating intricate manipulation skills. Moreover, for
the two tasks involving fine-tuning with real-world rollout trajectories, owing to the reduced visual

discrepancy achieved by HERMES, the trained policy exhibits enhanced generalization capabilities
compared to the raw depth baseline.

5.3 Mobile Manipulation Evaluation

To evaluate the mobile manipulation ability of HER-

Real-World Mobile Manipulation Results
MES, we integrate the entire pipeline across all S —
tasks. Each trained policy is tested over 10 runs. 70 70 INTS
As illustrated in Figure 8§, HERMES demonstrates o W ,‘ 60 60
strong real-world navigation, precise localization, § 50 ' S pAs
and dexterous manipulation capabilities. We alsoap-  « X \ |
ply the identical manipulation policy equipped with H ] \
ViINT as a baseline. Figure 8 reveals that, without @ 2 0 ‘\‘ ‘ ‘
closed-loop PnP localization, the policy cannot gen- ; ‘:-LO io
eralize or successfully complete tasks when faced \0 \0
with significant positional and rotational shifts. Con- hand clean scan clean pou‘r
versely, HERMES achieves a notable +54.0% im-

over table bottle plate teapot
provement in manipulation success rate compared o Fjgure 8: Real-world mobile manipulation

pure VINT. These findings underscore that closed- results.
loop PnP localization is the essential bridge linking navigation and manipulation, enabling both
modules to synergize for enhanced performance.
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Appendix

The visualization of real-world and simulation results are provided in Figure 9 and Figure 10.
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Figure 9: HERMES exhibits a rich spectrum of mobile bimanual dexterous manipulation
skills. The robot is able to navigate over extended distances in both indoor and outdoor environ-
ments, and effectively execute a variety of complex manipulation tasks in unstructured, real-world
scenarios, drawing upon behaviors learned from only one-shot human motion.
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Figure 10: Simulation training visualization. We visualize the majority of the training tasks.
Leveraging a single reference trajectory in conjunction with a general reward design, HERMES can
convert diverse human motion sources into robot feasible behaviors via RL training.

12



	Introduction
	Method
	Collect One-shot Human Motion
	Generalizable Reward Design for Manipulation

	Sim-to-real Transfer
	DAgger Distillation Training

	Navigation Methodology
	Experiments
	Sample Efficiency of HERMES
	Real-world Manipulation Evaluation
	Mobile Manipulation Evaluation


