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Abstract
Modern large language models (LLMs) achieve001
impressive performance on some tasks, while002
exhibiting distinctly non-human-like behaviors003
on others. This raises the question of how well004
the LLM’s learned representations align with005
human representations. In this work, we intro-006
duce a novel approach to the study of represen-007
tation alignment: we adopt a method from re-008
search on activation steering to identify neurons009
responsible for specific concepts (e.g., “cat”)010
and then analyze the corresponding activation011
patterns. Our findings reveal that LLM repre-012
sentations closely align with human represen-013
tations inferred from behavioral data. Notably,014
this alignment surpasses that of word embed-015
dings, which have been center stage in prior016
work on human and model alignment. Addi-017
tionally, our approach enables a more granular018
view of how LLMs represent concepts. Specif-019
ically, we show that LLMs organize concepts020
in a way that reflects hierarchical relationships021
interpretable to humans (e.g., “animal”-“dog”).022

1 Introduction023

Large language models (LLMs) exhibit impressive024

performance on a variety of tasks from text sum-025

marization (Basyal and Sanghvi, 2023; Jin et al.,026

2024) to zero-shot common-sense reasoning (Park027

et al., 2024; Shwartz et al., 2020), and are increas-028

ingly deployed as a human proxy (Just et al., 2024;029

Klissarov et al., 2023; Cui et al., 2024; Peng et al.,030

2024). At the same time, there is a growing body031

of evidence suggesting that LLMs exhibit patterns032

of behavior distinctly different from humans — for033

instance, hallucinating information (Bubeck et al.,034

2023; Lin et al., 2022) or memorizing complex pat-035

terns to solve reasoning tasks (Ullman, 2023). Such036

behaviors raise the question of how closely the con-037

ceptual representations learned by these models038

align with the conceptual representations in hu-039

mans as safe and trustworthy deployment of LLMs040

requires such alignment. Overall, unveiling aspects041

of representation alignment and understanding how 042

to foster it can help us identify and mitigate mis- 043

aligned LLM behaviors, thus increasing trust in 044

and safety of models (OpenAI et al., 2024; Shen 045

et al., 2024). 046

Prior work has examined the relationship be- 047

tween human-perceived similarity among concepts 048

(i.e., word/image meaning) and various LLM- 049

derived measures of similarity, such as confidence 050

(Shaki et al., 2023) or the embedding distance 051

(Bruni et al., 2012; Digutsch and Kosinski, 2023; 052

Muttenthaler et al., 2023). While these approaches 053

have significantly advanced our understanding of 054

how conceptual representations align between hu- 055

mans and models, they suffer from a major limi- 056

tation: they do not reveal where in the model the 057

concepts are stored and make it difficult to draw 058

conclusions beyond coarse alignment. For exam- 059

ple, the cosine distance between embeddings might 060

indicate that “animal” and “dog” are more similar 061

than “animal” and “daffodil”, but it can not tell 062

us if “dog” and “animal” are processed with sim- 063

ilar neural pathways or architectural components, 064

limiting our ability to understand the existence of 065

structures such as hierarchical relationships in the 066

model. 067

Here, we propose a novel way to study human 068

- LLM alignment in concept representation. We 069

borrow a method from activation steering (Suau 070

et al., 2023, 2024; Rodriguez et al., 2025), to iden- 071

tify which neurons are most responsible for pro- 072

cessing and understanding of a particular concept, 073

so-called expert neurons. This approach enables 074

us not only to measure alignment between human 075

and model representations, but also to explore ad- 076

ditional questions, such as whether LLMs organize 077

concepts in a hierarchy interpretable to humans 078

(e.g., “dog”, “cat”, and “cheetah” being categorized 079

as “animal”). We also track how alignment evolves 080

during training for different model sizes, shedding 081

light on the impact of model capacity on the de- 082
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velopment of aligned representations — an aspect083

largely overlooked in previous work on text-based084

models (Shen et al., 2024; Wei et al., 2022). Ulti-085

mately, understanding these internal structures and086

factors that lead to mis-alignment can provide valu-087

able insight for designing interventions targeted at088

guiding model behaviors towards human-like solu-089

tions and enhancing their transparency (Fel et al.,090

2022; Peterson et al., 2018; Toneva, 2022).091

In our experiments, we focus on causal LLMs us-092

ing the Pythia models (70m, 1b and 12b) for which093

multiple training checkpoints are publicly available094

(Biderman et al., 2023). Given a diverse set of con-095

cepts across multiple domains (see Sec. 3.2), we096

identify each LLM’s corresponding expert neurons.097

We measure their similarity at the LLM level as the098

amount of overlap between the expert neurons. We099

then evaluate the alignment between human and100

LLM representations by testing whether the sim-101

ilarity between neural activations correlates with102

human-perceived concept similarity, and whether103

the LLMs learn hierarchical structures similar to104

those observed in human category systems (Rosch,105

1978). Finally, we identify the location of the106

model’s concept representations and the point they107

form during training.108

Our results show that LLM representations are109

generally aligned with humans. Crucially, expert110

neurons capture human alignment significantly bet-111

ter than the single word embeddings used in prior112

work. Moreover, such alignment emerges early in113

training, with model size playing only a small role:114

a 70m LLM is less aligned than a 1b or 12b LLM115

trained on the same data, but there is no differ-116

ence between the larger models. Finally, patterns117

in expert neurons reveal that the LLMs show a118

human-like hierarchical organization of concepts.119

2 Related work120

Representation alignment Studies on the kinds121

of representations used by humans and machines122

have been of interest to many fields (e.g., cogni-123

tive science, neuroscience, and machine learning;124

Hebart et al., 2020; Khosla and Wehbe, 2022; Mut-125

tenthaler et al., 2023; Tian et al., 2022). Studies on126

representation alignment (Sucholutsky et al., 2024)127

look specifically at the extent to which the inter-128

nal representations of humans and neural networks129

converge on a similar structure. Across vision and130

text domains, models show notable alignment with131

human similarity judgments —typically used as132

a window into human representational structures. 133

Peterson et al. (2018) report significant alignment 134

between human similarity judgments and repre- 135

sentations of object classification networks, while 136

Digutsch and Kosinski (2023) report similar align- 137

ment with GPT-3’s (Brown et al., 2020) embed- 138

dings. However, Shaki et al. (2023) finds that 139

GPT-3’s concept alignment is highly sensitive to 140

prompt phrasing and Misra et al. (2020) show that 141

alignment in BERT (Devlin et al., 2019) is very 142

context-dependent. Investigating general factors 143

that can cause mis-alignment, Muttenthaler et al. 144

(2023) conclude that the training dataset and ob- 145

jective function impact alignment, but model scale 146

and architecture have no significant effect. Of note, 147

alignment and performance are not inherently tied: 148

mis-aligned models can exhibit significant capabil- 149

ities (Sucholutsky and Griffiths, 2023; Dessì et al., 150

2022). 151

Activation steering refers to a class of methods 152

that intervene on a generative model’s activations 153

to perform targeted updates for controllable gen- 154

eration (Rodriguez et al., 2025; Li et al., 2024; 155

Rimsky et al., 2024). Suau et al. (2023) propose 156

a method to identify sets of neurons in pre-trained 157

transformer models that are responsible for detect- 158

ing inputs in a specific style (Suau et al., 2024, 159

e.g., toxic language) or about a specific concept 160

(Suau et al., 2023, e.g., “dog”). Intervening on 161

the expert neuron activations, successfully guides 162

text generation into the desired direction. In a sim- 163

ilar spirit, Turner et al. (2024) use a contrastive 164

prompt (one positive and one negative) to induce 165

sentiment shift and detoxification, while Kojima 166

et al. (2024) steer multilingual models to produce 167

more target language tokens in open-ended gener- 168

ation. Finally, Rodriguez et al. (2025) introduce a 169

unified approach to steer activations in LLMs and 170

diffusion models based on optimal transport theory. 171

3 Methods 172

3.1 Finding expert neurons 173

We adopt the finding experts approach introduced 174

by Suau et al. (2023) for activation steering, to 175

study representational alignment. The motivation 176

is two-fold: a) this approach has been successfully 177

applied to detect neurons responsible for everyday 178

concepts like “dog”, which is the focus of this work; 179

b) it is able to distinguish the different senses of a 180

homophone (e.g., “apple” as a fruit or company), 181
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suggesting that this method is able to pick up fine-182

grained semantic distinctions.183

To identify experts neurons for a given concept,184

each neuron is evaluated in isolation as a binary185

classifier: a neuron is considered an expert if its186

activations effectively distinguish between input187

data where the concept is present (henceforth posi-188

tive set) and input data where the concept is absent189

(henceforth negative set). The performance of each190

neuron as a classifier for the concept (i.e., its exper-191

tise) is measured as the area under the precision-192

recall curve (AP). We consider neurons with an AP193

score above a given threshold, τ , for a concept to be194

expert neurons for that concept. τ can be thought195

of as quality of an expert neuron – the larger the τ196

values the greater a neuron’s expertise for a given197

concept. In our experiments, we consider a range198

of values for τ ∈ [0.5, 0.9] ranging from a low199

(classification accuracy above chance) to a high200

level of expertise.201

3.2 Data202

To understand the alignment between human and203

model representations, we examine how patterns204

in expert neurons relate to perceived concept sim-205

ilarity in humans. We obtain human similarity206

judgments from the MEN dataset (Bruni et al.,207

2014), which contains 3, 000 word pairs annotated208

with human-assigned similarity judgments crowd-209

sourced from Amazon Mechanical Turk.210

For each concept under consideration, we gen-211

erate a set of sentences containing that concept.212

To ensure dataset diversity, half of each positive213

dataset is generated with a prompt eliciting story214

descriptions and half of the dataset is generated215

with a prompt eliciting factual descriptions of the216

target concept (the prompts, along with sample217

generations, are provided in App. A). The negative218

sets are sampled from the datasets for the remain-219

ing non-target concepts (e.g., if we are considering220

1000 concepts, one of which is “cat”, the negative221

set is sampled from 999 concepts excluding “cat”).222

To study whether the LLMs represent concepts223

hierarchically (Sec. 5), we manually generate lists224

of ten domains, organized in human-interpretable225

hierarchies with four concepts per domain (e.g., the226

domain “animal” containing concepts “cat”, “dog”,227

“cheetah”’, and “horse”; the full set of domains228

and concepts is provided in App. C). We choose229

not to use WordNet (Miller, 1994) — a lexical230

database of English annotated with a hierarchical231

structure — because of drawbacks identified in232

its hierarchical structure, which often make the 233

hierarchical relationships it presents unintuitive (for 234

a discussion, see Gangemi et al., 2001). 235

For dataset generation, we experiment with three 236

models of different performance levels: GPT-4 237

(OpenAI et al., 2024), Mistral-7b-Instruct-v0.2 238

(Jiang et al., 2023), and an internal 80b-chat model. 239

3.3 Models 240

We use GPT-2 (Radford et al., 2019) to select hyper- 241

parameters (e.g., the size of a positive and negative 242

datasets) and validate that our data identifies a sta- 243

ble set of experts (see Sec. 4 for details). For all 244

other experiments, we use models from the Pythia 245

family (Biderman et al., 2023), specifically focus- 246

ing on model sizes 70m (smallest), 1b, and 12b 247

(largest), to understand the impact of model size on 248

representational alignment. The size of each model 249

is connected to its performance. The mean accu- 250

racy and standard error across eight benchmarks 251

(Table 1) is 0.27 (0.01) for the 70m, 0.28 (0.01) for 252

the 1b model, and 0.32 (0.02) for the 12b model at 253

the end of training. 254

Benchmarks

LAMBADA – OpenAI Paperno et al. (2016)

PIQA Bisk et al. (2020)

SciQ Johannes Welbl (2017)

ARC (easy and hard) Clark et al. (2018)

WinoGrande win (2020)

MMLU Hendrycks et al. (2021)

LogiQA Liu et al. (2020)

Winograd Schema Challenge Levesque et al. (2012)

Table 1: Pythia evaluation benchmarks.

For each model, we work with checkpoints 1, 255

512, 1k, 4k, 36k, 72k, and 143k, to track how repre- 256

sentational alignment develops throughout training. 257

All Pythia models were trained on the same data 258

presented in the same order and thus allow us to 259

evaluate the impact of model size and number of 260

training steps on representational alignment while 261

controlling for the data. 262

4 Can we reliably identify experts? 263

While the success of expert-based methods at steer- 264

ing model activations is well-documented (Suau 265

et al., 2023, 2024), our interest is in studying 266

model representations through the patterns in ex- 267

perts. Given the novel application of the method, 268
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we conduct a pilot study to explore the impact of269

dataset size, the model used to generate the dataset,270

and the exact sentences used to represent a concept271

on the stability of the discovered expert sets.272

For the pilot study, we sample 50 word pairs273

from the training split of the MEN dataset. For each274

concept in the word pair, we generate a positive275

set containing 7000 sentences from three models:276

GPT-4, Mistral-7b-Instruct-v0.2, and an internal277

80b-chat model. We sweep over positive set sizes278

of 100, 200, 300, 400, and 500 sentences, and nega-279

tive set sizes of 1000 and 2000 sentences. For each280

positive and negative set combination, we repeat281

expert extraction eight times (folds) with the sets282

randomly sampled from the full pool of sentences.283

We examine how sensitive the discovered ex-284

perts are to the specific slice of the positive and285

negative sets (the 8 folds). We measure sensitivity286

in terms of the stability in experts across the folds,287

where high stability occurs when there is large over-288

lap in the experts across folds. To assess overlap,289

we look at Jaccard similarity between expert sets290

across folds, using a range of thresholds τ .291

The findings are shown in Fig. 1 for each dataset292

configuration (subplot) and value of τ (x-axis). The293

expert neurons discovered across different data con-294

figurations and folds (indicated by the error bars)295

are stable as indicated by a high (∼ 0.8) overlap296

proportion and show little sensitivity to our ma-297

nipulations. Interestingly, the LLM (line color)298

used to generate the probing dataset matters lit-299

tle — while stronger models generate more diverse300

datasets (mean type/token ratio of 0.34, 0.21 and301

0.18 for GPT-4, internal 80b-chat, and Mistral-7b-302

Instruct-v0.2 respectively), resulting in a somewhat303

higher expert overlap, the gain is too small to war-304

rant their increased cost. Expert overlap increases305

with every increase in the size of the positive set but306

the increases are small beyond 300 sentences, and307

performance for 400 sentences is virtually indis-308

tinguishable from 500 sentences. Interestingly, a309

larger negative set results in lower expert overlap at310

higher τ values and an increased variability across311

folds. One reason could be that as the size of the312

negative set increases so does the probability of the313

negative set containing sentences related to the tar-314

get concept. For example, a sentence about “cats”315

may also talk about “dogs”. A second explanation316

could be that the larger negative set activates more317

polysemous neurons. Based on these findings, we318

conduct all subsequent analyses with a positive set319

of 400 sentences and a negative set of 1000 sen-320

tences, all generated with Mistral-7b-Instruct-v0.2. 321

5 Are model and human representations 322

aligned? 323

Having determined the appropriate hyper- 324

parameters to capture a stable set of experts, 325

we turn to the first main question of our study 326

— whether expert neurons capture semantic 327

information meaningful to humans. We mea- 328

sure the alignment between LLM and human 329

representations as the correlation between the 330

human versus the LLM’s similarity score for 331

a each pair of concepts in the test split of the 332

MEN data (1000 pairs). The LLM’s similarity 333

score is the Jaccard similarity between expert sets 334

for τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. In App. B, we 335

consider cosine similarity between the raw AP 336

values as an LLM similarity score, finding very 337

similar correlations to those obtained with Jaccard 338

similarity (τ = 0.5), suggesting that what matters 339

most for alignment is not the magnitude of the AP 340

value, but rather whether it is above or below 0.5 341

(i.e., whether the neuron is positively or negatively 342

associated with the concept). 343

Expert neuron overlap is highly aligned with hu- 344

man similarity judgments We find that model 345

representations are closely aligned with humans, 346

with the highest alignment occurring at τ = 0.5. 347

At the final checkpoint, the Spearman correlations 348

between expert overlap (τ = 0.5) and MEN sim- 349

ilarity are: 0.70, 0.77, 0.79 for 70m, 1b, and 12b 350

respectively. For reference, agreement between 351

humans has a Spearman correlation of 0.84. In- 352

terestingly, model size has a small impact on this 353

alignment (in line with findings from Muttenthaler 354

et al., 2023): the 1b and 12b models are virtually 355

indistinguishable, with the 70m model slightly less 356

aligned. The models start diverging in how well 357

aligned they are with humans as τ increases, with 358

larger models being more aligned. The reason for 359

this is that smaller models have fewer experts com- 360

pared to larger models (see Fig. 5) resulting in a lot 361

of empty expert set intersections for higher levels 362

of τ . 363

Word embeddings are less aligned than expert 364

sets Prior work has focused on the analysis of 365

embeddings when considering alignment in LLM 366

and human representations (Digutsch and Kosinski, 367

2023). We hypothesize that expert sets are more 368

correlated with human representations than word 369
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Figure 1: Expert discovery is relatively stable across various dataset characteristics. Points represent condition
means; error bars represent bootstrapped 95% confidence intervals. Columns represent the size of the positive set
(number of unique sentences); rows represent the size of the negative set (number of unique sentences).
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Figure 2: Model representations of similarity are closely
aligned with human ones. Points represent Spearman
correlations between the expert neuron overlap and per-
ceived human similarity in the MEN dataset; error bars
represent bootstrapped 95% confidence intervals. The
subplots are τ . The correlations are statistically (p<0.05)
at all checkpoints except for the first one.

embeddings as they disambiguate different word370

senses (Suau et al., 2023). To test this, we extract371

the embeddings for each word in the MEN test372

split from the final hidden layer of the three Pythia373

models at each checkpoint and compute cosine sim-374

ilarity between the embeddings for each word pair375

in the MEN test split. We then correlate the cosine376

similarity with the corresponding human similar-377

ity judgement (Digutsch and Kosinski, 2023). We378

find statistically significant correlations (p<0.05)379

between the cosine similarity of the embeddings 380

for a given concept pair and their similarity in the 381

MEN dataset, at all checkpoints except for the first 382

(see Fig. 3), consistent with prior work (Digutsch 383

and Kosinski, 2023). However, as expected under 384

our hypothesis, the correlations with human sim- 385

ilarity are significantly lower for single word em- 386

beddings compared to the experts neurons (highest 387

correlations are 0.25 vs. 0.79 for the embeddings 388

vs. experts). Single word embeddings exhibit more 389

variability in alignment, as indicated by larger con- 390

fidence intervals within each checkpoint, and their 391

pattern of alignment is less stable across check- 392

points compared to that of the experts. 393

6 Do models organize concepts in 394

hierarchies? 395

Some domains within the human conceptual sys- 396

tem are organized in hierarchies, where broader 397

categories include more specific categories. For 398

example, the concept “dog” falls under “animal”, 399

meaning that all dogs are animals (Graf et al., 400

2016; Murphy, 2004; Rosch, 1978). This raises 401

the question of whether models organize concepts 402

in a human-like hierarchy. We propose that, if the 403

model organizes domains in a hierarchical fash- 404

ion interpretable to humans, concepts from related 405

sub-categories should share a set of experts (e.g., 406

“dog”, “cat”, “horse”, and “cheetah” under the con- 407
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Figure 3: Spearman correlations between the cosine
similarity in the embeddings and perceived human simi-
larity in the MEN test split. Error bars represent boot-
strapped 95% confidence intervals. The correlations are
statistically (p<0.05) at all checkpoints except for the
first one.

cept “animal”). Additionally, some of these shared408

experts should also be associated with the broader409

concept (“animal” in our example), suggesting that410

the model recognizes it as an overarching concept411

that includes its sub-categories.412

To assess this, we consider the list of hierarchi-413

cally organized domains we generated (see Sec. 3.2414

and App. C), the experts associated with each con-415

cept in the list (τ=0.5), and their reciprocal overlap.416

We discuss the final training checkpoint of Pythia417

12b in the main text and present other model sizes418

and checkpoints in App. D.419

Let super be a super-ordinate concept420

(e.g.,“animal”) and let sub1, sub2, ...subi be421

sub-ordinate concepts falling under it (e.g., “dog”,422

“cat”, “horse”, “cheetah”). We call E(c) the set423

of experts specialized for a concept c. For each424

domain, Table 2 reports the percentage of experts425

shared among the sub-ordinate concepts that are426

also shared with the super-ordinate concept:427

|E(super)∩
⋂4

i=1 E(subi)|
|⋂4

i=1 E(subi)| × 100.428

For example, Table 2 indicates that 42.46% of the429

experts shared by “dog”, “cat”, “horse”, and “chee-430

tah” are also shared with “animal”.431

Our results confirm that the model captures hi-432

erarchical domain structures that characterize hu-433

man conceptual systems. Within each domain, a434

large portion of experts for sub-ordinate concepts435

is shared with the super-ordinate concept. This sug-436

gests that the model recognizes the sub-ordinate437

concepts as part of the super-ordinate concept (e.g.,438

that dogs are animals).439

Domain % overlap baseline 1 baseline 2

animal 42.46 0.58 8.31
clothes 43.07 6.67 7.84
colour 54.35 4.83 2.66
furniture 69.98 9.20 5.48
occupation 32.31 2.56 5.68
organ 57.95 7.40 8.21
sport 75.76 9.24 12.67
subject 65.77 5.44 6.27
vegetable 69.25 6.09 10.92
vehicle 73.61 6.12 14.61

Table 2: Pythia 12b. Results of our exploration of
hierarchically-organized domains at step 143k. For
each domain, we report the percentage of experts shared
among the sub-ordinate concepts that is also shared with
the super-ordinate one. Numbers in gray correspond to
our baselines. The percentage of experts shared in real
domains is significantly higher than in the baselines as
assessed via a two-sample permutation test (Virtanen
et al., 2020, p-values < 0.001).

To rule out the possibility that expert sets over- 440

lap by chance, we compare the values we have ob- 441

tained against two baselines (see Table 2, numbers 442

in gray). In the first baseline, we randomize the 443

super-ordinate concepts in our dataset by assigning 444

each of them to N randomly selected sub-ordinates 445

(e.g., associating “animal” with a random list of 446

concepts like “jacket”, “liver”, “doctor”, and “red”). 447

In the second baseline, we shuffle the associations 448

across concept categories, assigning each super- 449

ordinate concept to a random set of internally re- 450

lated sub-ordinates (e.g., associating “animal” with 451

“sock”, “shirt”, “jeans”, and “jacket”).1 The results 452

show that, when the domain structure is random- 453

ized, no hierarchical pattern emerges, reinforcing 454

the robustness of our findings. 455

Interestingly, the patterns observed for the 456

largest model do not largely differ from those found 457

for smaller models. Additionally, the model seems 458

to converge on a stable hierarchical representation 459

around checkpoint 4k (App. D). This finding aligns 460

with our later analyses, highlighting this checkpoint 461

as a crucial transition point during training. 462

Having examined the overall structure of hierar- 463

1Of note, the randomization procedure does not prevent
us from sampling, in some of the iterations, correct super-
ordinate - sub-ordinate concept pairs (baseline 1; e.g., “animal”
and “dog”) or correct domain associations (baseline 2; e.g.,
“animal” with its sub-ordinates). Baseline values likely would
be even lower if we enforced incorrect associations only.
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chically organized domains by analyzing the rela-464

tionship between groups of sub-ordinate concepts465

and their super-ordinate counterpart, we now shift466

our focus to concept pairs. We explore how super-467

ordinate concepts relate to individual sub-ordinate468

concepts, as well as the relationship between sub-469

ordinate concept pairs. We compute the overlap470

between the expert sets of each pair of concepts in471

our domains. A subset of the results is shown in472

Fig. 4 (see App. E for full results).473

Overall, even if domain-specific differences are474

visible, concepts within the same domain, thus se-475

mantically related, tend to have a higher overlap in476

their expert sets. This is in line with the findings on477

representation alignment discussed in Sec. 5, show-478

ing that concepts perceived as similar by humans479

show high expert overlap and are also perceived480

as more similar by the LLMs. When exploring the481

internal organization of the domains, we notice that482

super-ordinate concepts have a weaker association483

with their sub-ordinate concepts compared to the484

association between pairs of sub-ordinate concepts.485

For instance, the super-ordinate concept “vehicle”486

is associated with all of its sub-ordinates, but these487

associations are weaker than those between “mo-488

torcycle” and “bicycle”. The same happens in the489

“animal” domain for “dog” and “cat”. This may490

suggest that individual sub-ordinate concept pairs491

may be distributionally more similar to each other492

than sub-ordinate - super-ordinate pairs.493

Taking stock, our results show that the model494

captures human-interpretable hierarchical struc- 495

tures in concept representations, assigning some 496

experts to be shared between sub-ordinate and cor- 497

responding super-ordinate concepts. 498

7 Characterizing model knowledge 499

We conclude by characterizing the differences in 500

experts as a function of model size and stage of 501

training by reanalyzing the data from Sec. 5. 502

Larger models have more experts Larger mod- 503

els allocate more experts to a given concept (see 504

Fig. 5; the pattern does not change after scaling the 505

raw number of experts by the number of neurons in 506

the model). As τ increases, fewer experts are iden- 507

tified and the drop is more pronounced for smaller 508

models. Overall, larger models have a greater ca- 509

pacity to learn a higher number of experts and a 510

higher number of more specialized experts. This 511

increased specialization may contribute to finer- 512

grained concept representations and ultimately bet- 513

ter performance on downstream tasks. 514
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Figure 5: Expert set size (log) by model size and check-
point. The points represent averages over all concepts.
The error bars are bootstrapped 95% confidence inter-
vals. Subplots correspond to different values of τ .

More specialized experts take longer to learn 515

We next look at the dynamics of learning experts 516

across checkpoints. We calculate expert overlap 517

(Jaccard similarity) for each concept across subse- 518

quent checkpoints in our data. As shown in Fig. 6, 519

the stability of the discovered expert set grows as 520

training progresses. Early in training (prior to step 521

36k), the expert overlap between subsequent check- 522

points is low across model sizes, suggesting that 523

semantic knowledge has not been acquired yet. The 524

more τ increases (corresponding to higher expert 525

specialization), the more checkpoints it takes for 526
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the expert set to stabilize, suggesting that higher-527

quality experts take longer to learn.528
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Figure 6: Proportion of expert overlap across subsequent
checkpoints. Points represent across concept averages;
error bars represent bootstrapped 95% confidence inter-
vals. Subplots correspond to different values of τ .

More experts are found in MLPs and deeper529

layers Pythia models consist of intertwined self-530

attention and MLP layers (Biderman et al., 2023;531

Vaswani et al., 2023), each serving different func-532

tions (Geva et al., 2021; Jawahar et al., 2019; Liu533

et al., 2019). We analyze the distribution of experts534

within these layers. Fig. 7a shows the patterns for535

Pythia 12b (τ=0.5). Larger numbers of experts are536

located in the MLP layers compared to attention537

layers with the allocation of experts to different538

layer types stabilizing at checkpoint 4k. We see539

the same trend in smaller models (App. F.1) after540

controlling for the number of neurons in the respec-541

tive layers. Moreover, the mean number of experts542

generally increases with layer depth in MLPs, with543

checkpoint 4k again displaying the first recogniz-544

able structure (see Fig. 7b and App. F.2). For545

attention layers, high numbers of experts are lo-546

cated in deep layers and, interestingly, in the first547

layer (see App. F.3). Of note, if we focus our anal-548

ysis on highly specialized experts only (τ=0.9), we549

find higher numbers of experts in earlier layers (see550

App. F.8 and F.9), recovering the same patterns as551

identified in Suau et al. (2020). Our findings align552

with prior research on the role of layers at different553

depths, identifying deeper layers as responsible for554

processing higher-level semantic knowledge cap-555

tured by expert neurons (Geva et al., 2021; Jawahar556

et al., 2019).557

8 Conclusion558

We present a novel approach to study alignment be-559

tween human and model representations based on560

the patterns in expert neurons. Representations cap-561

tured by these neurons align with human represen-562

tations significantly more than word embeddings,563

(a)

(b)

Figure 7: Pythia 12b. (a) Total number of experts in
MLP and attention layers across checkpoints; more ex-
perts are located in MLPs; (b) Average number of ex-
perts identified in MLP layers at different depths, for
different checkpoints.

and approach the levels of alignment between hu- 564

mans. Consistent with prior work (Muttenthaler 565

et al., 2023), we find that model size has little in- 566

fluence on alignment. Moreover, our approach re- 567

veals that models generally organize concepts into 568

human-interpretable hierarchies. However, some 569

domains are more structured than others, and this 570

pattern remains consistent across model sizes. We 571

leave it to future work to investigate the factors that 572

could give rise to this pattern, such as the frequency 573

of each domain in the training data. 574

9 Limitations 575

We consider only a simple case of similarity 576

Consistent with prior work (Digutsch and Kosinski, 577

2023; Shaki et al., 2023; Misra et al., 2020), we 578

study alignment between human and model rep- 579

resentations, which we operationalize as the simi- 580

larity between two concepts. We find that model 581

size does not play a large role in alignment: even 582

models as small as 70m excel in this alignment test. 583

While this finding is consistent with previous liter- 584

ature (Muttenthaler et al., 2023), it is also possible 585

that our task is too simple to distinguish between 586

the models. This is supported by the observations 587

that semantic relationships studied here start emerg- 588

ing early in training (around checkpoint 4k out of 589

143k). Future work will consider more complex 590

cases of alignment, such as value alignment. 591
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We do not study patterns in expert neurons592

through activating these neurons Since the ap-593

proach we are using was designed for activation594

steering (Suau et al., 2023), one obvious applica-595

tion is to examine the intersections between the596

expert sets for two concepts through the lens of597

controllable generation. For instance, we could598

have activated the shared experts between “animal”599

and “dog” and examined model generations after600

the activation. We chose not to do this for the fol-601

lowing reason: the approach we are using requires602

choosing the number of experts and the original603

work (Suau et al., 2023) has shown that this choice604

impacts the quality of generations and the degree to605

which a concept is expressed — an effect that we606

also observed in our preliminary investigations. We607

leave such hyper-parameter search to future work:608

a priori, we do not have a clear hypothesis about609

whether activating more specialized experts vs less610

specialized ones within the intersection would lead611

to distinct generation patterns; or if any discernible612

pattern in those generations should be expected613

at all. Given these uncertainties, we did not feel614

confident that this analysis would yield reliable re-615

sults. Other approaches do not require choosing616

the number of experts (Rodriguez et al., 2025), but617

these approaches are designed to change the activa-618

tions of all neurons in the network and are thus not619

applicable for our use case.620

We do not have access to training data To fully621

understand how knowledge develops in LLMs, we622

need to know what the model has seen at different623

points in training. Unfortunately, the Pile (Gao624

et al., 2020) that Pythia models were trained on is625

no longer available.626

Model choice Given the nature of our research627

question, it is crucial to be able to analyze multiple628

checkpoints from models of varying sizes, prioritiz-629

ing interpretability over direct evaluations of model630

performance. For this reason, we rely on the Pythia631

family of models, publicly released in the interest632

of fostering interpretability research. We leave to633

future work the exploration of alignment and its634

emergence in alternative model families (e.g., the635

recent OLMo 2 family; Walsh et al., 2025).636
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GPT-4: Gardeners often classify poppies as easy 955

to care for due to their hardy nature. 956

Mistral-7b-Instruct-v0.2: As the farmer tended to 957

his fields, he couldn’t help but admire the poppies 958
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B Analyses of correlations between984

human similarity judgments and cosine985

similarity for the full network986
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Figure 8: Spearman correlations between human similarity judgments, cosine similarity over raw AP values,
negative-adjusted cosine similarity [abs(AP)-0.5], and the best-performing τ of Jaccard similarity (0.5). Points
represent Spearman correlations between LLM’s similarity and perceived human similarity in the MEN dataset;
error bars represent bootstrapped 95% confidence intervals.
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C List of words in988

hierarchically-organized domains989

Super-ordinate Sub-ordinates
animal cat, dog, cheetah, horse
clothes jacket, jeans, shirt,

sock
colour red, blue, green, black
furniture chair, bookshelf, table,

couch
occupation doctor, teacher, driver,

musician
organ heart, kidney, lung,

brain
sport golf, racing, gymnas-

tics, swimming
subject mathematics, geogra-

phy, biology, chemistry
vegetable carrot, potato, pump-

kin, corn
vehicle bus, tank, motorcycle,

bicycle

Table 3: List of words in our dataset of hierarchically-
organized domains.

D Hierarchical structures: results for990

additional models and checkpoints991

Domain % overlap baseline 1 baseline 2

animal 0.00 0.00 0.00
clothes 0.00 0.00 0.00
colour 0.00 0.00 0.00
furniture 0.00 0.00 0.00
occupation 0.00 0.00 0.00
organ 0.00 0.00 0.00
sport 0.00 0.00 0.00
subject 0.00 0.00 0.00
vegetable 0.00 0.00 0.00
vehicle 0.00 0.00 0.00

Table 4: Pythia 70m. Results of our exploration of
hierarchically-organized domains, at step 1.

Domain % overlap baseline 1 baseline 2

clothes 0.00 0.00 0.00
colour 0.00 0.00 0.00
furniture 0.00 0.00 0.00
occupation 0.00 0.00 0.00
organ 66.67 0.00 3.81
sport 0.00 0.00 0.00
subject 57.14 0.00 5.56
vegetable 0.00 0.00 0.00
vehicle 0.00 0.00 0.00

Table 5: Pythia 70m. Results of our exploration of
hierarchically-organized domains, at step 512.

Domain % overlap baseline 1 baseline 2

animal 0.00 0.00 1.00
clothes 20.00 0.00 2.38
colour 42.86 0.00 2.12
furniture 100.00 0.00 0.22
occupation 0.00 0.00 1.11
organ 16.67 1.11 1.67
sport 100.00 0.00 3.22
subject 81.25 0.00 0.00
vegetable 66.67 0.00 0.00
vehicle 75.00 0.00 0.83

Table 6: Pythia 70m. Results of our exploration of
hierarchically-organized domains, at step 4000.

Domain % overlap baseline 1 baseline 2

animal 100.00 0.00 0.73
clothes 56.00 0.00 0.00
colour 52.00 0.00 2.30
furniture 75.00 0.00 2.80
occupation 14.29 0.00 5.34
organ 45.00 0.00 0.92
sport 85.71 0.00 1.03
subject 75.86 0.00 4.93
vegetable 68.00 0.00 0.00
vehicle 100.00 0.00 3.57

Table 7: Pythia 70m. Results of our exploration of
hierarchically-organized domains, at step 143k.
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Domain % overlap baseline 1 baseline 2

animal 0.00 0.00 0.00
clothes 0.00 0.00 0.00
colour 2.38 3.33 0.00
furniture 0.00 0.00 0.00
occupation 0.00 0.00 0.00
organ 0.00 0.00 0.00
sport 0.00 0.00 0.00
subject 0.00 0.00 0.32
vegetable 0.00 0.00 0.00
vehicle 0.00 0.00 0.24

Table 8: Pythia 1b. Results of our exploration of
hierarchically-organized domains, at step 1.

Domain % overlap baseline 1 baseline 2

animal 0.00 0.00 0.26
clothes 0.00 3.33 0.00
colour 2.56 0.00 1.07
furniture 0.00 1.67 0.00
occupation 23.08 0.00 0.15
organ 32.94 0.37 3.65
sport 0.00 0.00 0.20
subject 37.40 0.00 1.98
vegetable 0.00 0.00 0.33
vehicle 0.00 0.00 0.29

Table 9: Pythia 1b. Results of our exploration of
hierarchically-organized domains, at step 512.

Domain % overlap baseline 1 baseline 2

animal 84.06 0.00 0.98
clothes 45.78 3.33 1.08
colour 48.48 1.11 1.26
furniture 61.73 0.00 3.28
occupation 16.67 0.67 0.98
organ 45.15 4.24 2.12
sport 81.40 1.33 2.02
subject 58.26 1.67 1.68
vegetable 76.71 0.00 1.13
vehicle 82.80 4.17 1.87

Table 10: Pythia 1b. Results of our exploration of
hierarchically-organized domains, at step 4000.

Domain % overlap baseline 1 baseline 2

animal 61.09 0.00 1.47
clothes 56.67 10.37 1.04
colour 64.71 5.00 1.66
furniture 71.96 0.00 2.40
occupation 15.38 1.41 1.53
organ 55.38 0.61 2.76
sport 74.27 3.89 2.41
subject 77.54 4.44 2.04
vegetable 77.89 0.56 1.07
vehicle 83.54 0.48 2.19

Table 11: Pythia 1b. Results of our exploration of
hierarchically-organized domains, at step 143k.

Domain % overlap baseline 1 baseline 2

animal 0.00 0.00 0.00
clothes 0.00 0.18 0.20
colour 1.20 0.00 0.00
furniture 0.00 0.00 0.00
occupation 0.00 0.00 0.00
organ 0.00 0.00 0.00
sport 0.00 3.33 0.00
subject 0.00 0.00 0.48
vegetable 0.00 1.67 0.12
vehicle 0.00 0.00 8.45

Table 12: Pythia 12b. Results of our exploration of
hierarchically-organized domains, at step 1.

Domain % overlap baseline 1 baseline 2

animal 0.00 0.00 0.08
clothes 0.00 0.00 0.00
colour 2.38 6.67 7.78
furniture 0.00 0.00 1.46
occupation 0.00 0.00 3.70
organ 14.28 0.00 0.00
sport 0.00 0.00 0.00
subject 33.33 0.00 0.63
vegetable 0.00 0.30 0.08
vehicle 0 0.00 0.00 0.00

Table 13: Pythia 12b. Results of our exploration of
hierarchically-organized domains, at step 512.
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Domain % overlap baseline 1 baseline 2

animal 62.81 0.30 1.05
clothes 46.76 13.94 1.42
colour 56.74 2.22 1.04
furniture 69.07 3.33 3.7
occupation 16.30 1.50 2.16
organ 44.88 4.24 2.75
sport 75.42 1.45 2.19
subject 68.39 9.44 1.84
vegetable 80.40 1.00 1.18
vehicle 79.76 2.16 2.10

Table 14: Pythia 12b. Results of our exploration of
hierarchically-organized domains, at step 4000.
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E Hierarchically-organized domains:992

additional plots993
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Figure 9: Pythia 70m. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 1. Domains can be identified based on the stronger associations among their words compared
to unrelated terms.
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Figure 10: Pythia 70m. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 512. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 11: Pythia 70m. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 4000. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 12: Pythia 70m. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 143000. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 13: Pythia 1b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 1. Domains can be identified based on the stronger associations among their words compared
to unrelated terms.
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Figure 14: Pythia 1b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 512. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 15: Pythia 1b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 4000. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 16: Pythia 1b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 143000. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 17: Pythia 12b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 1. Domains can be identified based on the stronger associations among their words compared
to unrelated terms.
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Figure 18: Pythia 12b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 512. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 19: Pythia 12b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 4000. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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Figure 20: Pythia 12b. Proportions of expert overlap between word pairs belonging to hierarchically organized
domains, at checkpoint 143000. Domains can be identified based on the stronger associations among their words
compared to unrelated terms.
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F Additional materials for layer analyses1006

F.1 Total number of experts in MLP and1007

attention layers1008

Figure 21: Pythia 70m. Total number of experts in MLP and attention layers across checkpoints

Figure 22: Pythia 1b. Total number of experts in MLP and attention layers across checkpoints
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F.2 Distribution of experts across MLP layers1010

Figure 23: Pythia 70m. Average number of experts identified in MLP layers at different depths, for different
checkpoints.

Figure 24: Pythia 1b. Average number of experts identified in MLP layers at different depths, for different
checkpoints.
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F.3 Distribution of experts across attention1012

layers1013

Figure 25: Pythia 70m. Average number of experts identified in attention layers at different depths, for different
checkpoints.

Figure 26: Pythia 1b. Average number of experts identified in attention layers at different depths, for different
checkpoints.

Figure 27: Pythia 12b. Average number of experts identified in attention layers at different depths, for different
checkpoints.
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F.4 Distribution of experts across1015

MLP.dense.h_to_4h layers1016

Figure 28: Pythia 70m. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 29: Pythia 1b. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 30: Pythia 12b. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.

1017

32



F.5 Distribution of experts across1018

MLP.dense.4h_to_h layers1019

Figure 31: Pythia 70m. Average number of experts identified in the MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 32: Pythia 1b. Average number of experts identified in thr MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 33: Pythia 12b. Average number of experts identified in the MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.
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F.6 Distribution of experts across1021

attention.query_key_value layers1022

Figure 34: Pythia 70m. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.

Figure 35: Pythia 1b. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.

Figure 36: Pythia 12b. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.
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F.7 Distribution of experts across1024

attention.dense layers1025

Figure 37: Pythia 70m. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.

Figure 38: Pythia 1b. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.

Figure 39: Pythia 12b. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.
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F.8 Distribution of highly specialized experts1027

across MLP layers1028

Figure 40: Pythia 70m. Average number of highly specialized experts (τ = 0.9) identified in MLP layers at
different depths, for different checkpoints.

Figure 41: Pythia 1b. Average number of highly specialized experts (τ = 0.9) identified in MLP layers at different
depths, for different checkpoints.

Figure 42: Pythia 12b. Average number of highly specialized experts (τ = 0.9) identified in MLP layers at different
depths, for different checkpoints.
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F.9 Distribution of highly specialized experts1030

across attention layers1031

Figure 43: Pythia 70m. Average number of highly specialized experts (τ = 0.9) identified in attention layers at
different depths, for different checkpoints.

Figure 44: Pythia 1b. Average number of highly specialized experts (τ = 0.9) identified in attention layers at
different depths, for different checkpoints.

Figure 45: Pythia 12b. Average number of highly specialized experts (τ = 0.9) identified in attention layers at
different depths, for different checkpoints.
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G Computational budget1033

The concept dataset was parallelized over 8 A1001034

GPUs (80GB). Expert extraction took about 1361035

seconds per concept for the 12b Pythia model;1036

about 27 seconds per concept for the 1b Pythia1037

model; about 8 seconds per concept for the 70m1038

Pythia model; and about 25 seconds per concept1039

for GPT-2.1040

H License and Attribution1041

The MEN dataset used in this work is released un-1042

der Creative Commons Attribute license. The pre-1043

trained models are supported by public licenses the1044

Pythia Scaling Suite (Apache), Mistral (Apache),1045

and GPT-2 (MIT). GPT-4 is supported a proprietary1046

license. We use an internal 80b-chat model and are1047

unable to provide license information on it at this1048

time.1049
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