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ABSTRACT

While the recent advances in automatic emotion recognition with human physical
signals such as audio, visual and textual inputs have been remarkable, research on
emotion recognition with internal physiological signals has received considerable
attention only in recent years, and most of the studies focused on feature engineer-
ing and traditional machine learning algorithms. In this study, we propose an ad-
vanced domain alignment transformer (DATransformer) framework that addresses
the major challenges of physiological signals based emotion recognition–the do-
main inconsistency and sample rate difference between the multivariate physio-
logical signals and emotional states. Our proposed DATransformer framework
does not require any preprocessing on the raw physiological signal inputs, but can
obtain comparable or even better emotion recognition performance than the pre-
processed signals. We evaluate the proposed DATransformer on the Continuously
Annotated Signals of Emotion (CASE) dataset and achieve the state-of-the-art
(SOTA) performance.

1 INTRODUCTION

Emotions are essential to human life. They directly influence human perception and behaviors, and
have big impacts on our daily tasks, such as learning, rational decision-making, and social interac-
tion. Positive emotions can improve human health and lead to greater job satisfaction and produc-
tivity, while negative emotions may cause health problems and reduce the general life satisfaction.
Automatic emotion recognition has found applications in many domains, including smart healthcare
and human-computer interaction. For instance, a smart health system can sense the affective states
based on multimodal and multidimensional data collected with mobile and wearable devices. Such
a system can then track the change of affect over time and create emotion evolution profiles, which
can be used to detect the negative feelings and monitor the mental health condition.

The emotional states of people usually change accompanied by external physical changes includ-
ing voice, facial expressions, body gestures, etc., as well as the internal changes relevant to human
organs and tissues, which usually can be captured by physiological signals such as electroencephalo-
gram (EEG), temperature (T), electrocardiogram (ECG), electromyogram (EMG), galvanic skin re-
sponse (GSR), respiration (RSP), etc. (Zhang et al., 2023; Kim & Lee, 2023; Ahmad & Khan,
2022). While the recent advances in automatic emotion recognition with human physical signals
such as audio, visual and textual inputs have been remarkable, research on emotion recognition with
internal physiological signals has received considerable attention only in recent years. Most of the
studies still focused on feature engineering and traditional machine learning algorithms, which did
not benefit from the recent development of the deep-learning and large machine learning models.

There are several challenges in the recognition of emotion from physiological signals: 1. Due to the
complexities of the physiological signals, the conventional solution requires handcrafted features
that are heavily dependent on the level of experience for each signal. Lack of domain knowledge
can result in inappropriate features. (Han et al., 2023) 2. Due to different collection conditions
among different datasets, the preprocessing setting need to be optimized for each individual dataset.
3. The domain inconsistency and sample rate difference between the physiological signals and
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emotional states make the physiological signal based emotion recognition more challenging than
the traditional time series prediction task.

To address these challenges, we proposed an advanced end-to-end domain alignment transformer
(DATransformer) framework. We first normalize both the physiological signals and emotional state
signals to a similar distribution via instance normalization (Liu et al., 2022; Kim et al., 2021). A
constant standard deviation and mean will be calculated for both signals separately, and the final out-
put will be denormalized back to the emotional signal distribution based on the calculated standard
deviation and mean. This normalization and denormalization process effectively solves the domain
inconsistency between the physiological signal and emotional state. To tackle the sample rate dif-
ference between the physiological signal and the emotional state, we introduce the patch embedding
(Zhang & Yan, 2022; Nie et al., 2022), which embeds the signals as fix length windows sliced from
the complete time steps. It is easy to align the physiological signals with the emotional states by
setting the patch size to match with their correspondent sample rate difference. In addition, patch
embedding further allows the model to utilize channel information via transposing the embedding
dimension from channel to time step. The model dynamically assigns the weights to each channel
based on their decoder’s cross attention score, and sum up all the channel representations to gener-
ate the final prediction. Moreover, the experimental results show that our solution doesn’t require
preprocessing on the physiological signals. The raw physiological signals can generate comparable
or even better results than the preprocessed signal inputs. To summarize, our contributions lie in
three folds:

• We propose a generic solution that tackle the domain inconsistency and sample rate differ-
ence of the input and target signal, which are the two major challenges of the physiological-
based emotion recognition.

• Experimentally, our proposed end-to-end solution does not require any preprocessing on
the input physiological signals.

• Our proposed DATransformer framework achieve the state-of-the-art (SOTA) results on the
real-world physiological signal emotion recognition dataset.

2 RELATED WORK

Physiological signals are the signals that carry physiological arousal information from the central
nervous system (CNS) and autonomic nervous system (ANS) (Arya et al., 2021). Common phys-
iological signals include electroencephalogram (EEG), electrocardiogram (ECG), electromyogram
(EMG), galvanic skin response (GSR), skin temperature (SKT), respiration (RSP), etc. Previous
studies have shown the effectiveness of physiological signals on prediction of discrete emotions,
including basic emotions such as anger, fear, happy, sad, as well as the affective states like va-
lence, arousal and dominance (Ahmad & Khan, 2022). Compared with conventional models relied
on hand-crafted features, signal preprocessing and feature engineering, deep learning models can
extract and select features automatically and dynamically. As a result, the deep learning methods
are less dependent on experience and domain knowledge, which make them widely applied to many
industrial applications (Han et al., 2023). Recently, several studies have investigated the transformer-
based framework for physiological based emotion recognition (Vu et al., 2023; Vazquez-Rodriguez
et al., 2022b;a; Yang et al., 2022). However, most of the works are focusing on the discrete emo-
tion detection task. The more challenged continuous affective states prediction task still need to be
further explored. In this paper, we aim to develop an advanced deep-learning framework that can
predict continuous affective states based on raw physiological signals.

Transformer and its variants have dominated time series prediction. Previous studies have explored
different model architecture, and attention selection.(Zeng et al., 2023; Zhou et al., 2022; Wu et al.,
2021) Recently, several works emphasized the importance of the embedding design (Zhang & Yan,
2022; Nie et al., 2022; Liu et al., 2023) and the efficiency of normalization (Kim et al., 2021; Liu
et al., 2022). In this paper, we focus on the embedding design and normalization technique and
further investigate how they will benefit the physiological-based emotion recognition. Details of our
model implementation will be discussed in the following section.
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Figure 1: Overall Framework of the model

3 METHODOLOGY

To better reveal the contribution of the embedding design and normalization method, we used the
conventional vanilla transformer as our model backbone in our proposed domain alignment trans-
former (DATransformer). The raw physiological signals are feed into the model as the input for
the encoder, and the past time-step of emotional states are feed into the model as the input for the
decoder. Both of the encoder and decoder inputs are normalized and embedded, and then further
processed by the model. The final output will be denormalized back to the domain on the emotional
states. The overall structure of the model is presented in Figure 1, where µ and σ denote mean and
standard deviation of the series, y−t denotes the past t time-step of the target signal where t is the
label length, and x′, y′ denotes the normalized signals.

3.1 NORMALIZATION

Reversible instance normalization (RevIN) (Kim et al., 2021) proposed an instance normalization
that ensure the series will follow a similar distribution. It has a symmetric structure that contains
the normalization and denormalization process. It defines an unsupervised normalization based on
statistics (mean and standard deviation) of the input and learnable affine parameters. It shows that
the normalization applies on the I/O process is better than that on the intermediate process. Non-
stationary Transformer (NSTransformer) (Liu et al., 2022) proposed series stationarization normal-
ization, which drops the learnable affine parameters of RevIN and adapt it to a more straightforward
implementation.

In this work, we adopt the NSTransformer implementation. Unlike the traditional time series pre-
diction task in which model inputs and targets are in the same domain, the input and target signals
are in totally different domains in the physiological-based emotion recognition. Therefore, we first
normalize both of the input and target signals to stationary. The normalization process ensures that
the input and target signals will follow a similar distribution, and the stationarization will further
help the model to better align the input and target signals in the time domain. The final output of the
model will be de-stationarized back to the target domain.

3.2 EMBEDDING

Early studies on time series prediction with transformer-based backbone usually adopt the token
embedding, which is commonly used in natural language processing (NLP) and computer vision
(CV), and many of them focused on studying the trade off between the positional and timestamp
embedding (Zhou et al., 2021; 2022; Zeng et al., 2023). Recently, several works emphasized the
difference between the time series prediction and other tasks in NLP and CV, and proposed that
the embedding for time series signals should transpose the embedding axis from channel to time
step (Zhang & Yan, 2022; Nie et al., 2022; Liu et al., 2023). Furthermore, the PatchTST (Nie et al.,
2022) and the Crossformer (Zhang & Yan, 2022) utilized the patch segmentation, which segment the
complete time steps into several fix-length windows and further embed these segmented windows.
Both of them adopt positional embedding instead of timestamp embedding. On the other hand,
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Table 1: Physiological-based emotion recognition performance on various machine learning and
end-to-end deep learning models (RMSE)

Model Valence Arousal Average
Vanilla Transformer 3.98 2.52 3.25

Multi-scale Transformer 1.50 1.64 1.57
AutoGluon 0.95 0.91 0.93

RF / XGBoost 0.87 0.85 0.86
DATransformer (ours) 0.79 0.70 0.75

iTransformer (Liu et al., 2023) proposed the embedding design without patching, which embeds the
complete time steps. The embedding layer concatenates timestamp as an extra channel to embed
with the input rather than embed timestamp separately and summing back to the value embedding.

In this work, we transpose the embedding axis from channel to time steps, whose effectiveness has
been proven by previous studies (Liu et al., 2023; Zhang & Yan, 2022). To address the sample rate
difference between the input and the target signals, instead of embedding the complete time step,
we patch the input signals into windows with the length as the sample rate difference ∆, where
∆ = (Input sample rate)/(Output sample rate). The target signals are embedded with window
size as 1 to align the number of patches of input and target signals. For both embeddings, we
concatenate the timestamp as an extra channel to be embedded. As the timestamp contains sequential
information, we dropped the positional embedding. Meanwhile, via transposing the embedding axis,
our proposed model can further explore the channel dependencies of the physiological signals and
emotional signals. We utilize the cross attention score to generate the weight for each channel and
sum them up to generate the final prediction.

4 EXPERIMENTS & RESULTS

4.1 DATASET

The evaluation dataset used in this study is the Continuously Annotated Signals of Emotion (CASE)
dataset.(Sharma et al., 2019) It contains data from 30 participants, including 15 male and 15 female.
The continuous valence and arousal scores are reported by the participants via a joystick while they
are watching various videos. Eight raw physiological measurements are also collected simultane-
ously including electrocardiograph (ECG), blood volume pulse(BVP), electromyography(EMG) (3
channels), galvanic skin response (GSR) (or electrodermal (EDA)), respiration (RSP) and skin tem-
perature (SKT) sensors. ECG reflects the electrical signal generated by the heart muscles during
contraction. RSP reflects the expansion and contraction of the chest cavity. BVP is also known as
photoplethysmography (PPG), which changes according to the blood flowing through the vessels,
serving as a measure for the cardiac activity. GSR, also known as EDA, measures the variation in
electrical conductance resulting from sweat released by the glands on the skin. EMG measures the
surface voltage associated with muscle contractions. More details of how the physiological signals
are collected can be found in (Sharma et al., 2019). The sample rate of the physiological signals is
1000Hz and the sample rate of the emotional states (valence and arousal) is 20Hz.

4.2 EXPERIMENT SETUP

In our study, we follows the across-time scenarios experiment settings of the Emotion Physiology
and Experience Collaboration (EPiC) challenge1. The 240 data files are divided into training data
and testing data based on the timestamp. For each file the former part are selected as the training
data, and the latter part become the testing data. The sequence length of the model input is 2250
(ms). The corresponding label length and prediction length are 15 and 30 (samples with 50 ms
each). The corresponding input and output dimension will be (batch, sequence length, 8) and
(batch, prediction length, 2). Eight and two are the number of physiological signals and emotional
signals respectively.

1https://github.com/Emognition/EPiC-2023-competition
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Table 2: Emotion recognition performance with and without the data preprocessing on the raw
physiological signals (RMSE)

Model Valence Arousal Average

Preprocessing Vanilla Transformer 2.15 1.89 2.02
DATransformer (ours) 0.788 0.719 0.754

Non-
Preprocessing

Vanilla Transformer 3.98 2.52 3.25
DATransformer (ours) 0.792 0.703 0.748

Table 3: The ablation study on our proposed end-to-end domain alignment transformer (DATrans-
former) (RMSE)

Components
Encoder

Normalization
Decoder

Normalization
Series

Embedding Valence Arousal Average

✓ ✓ ✓ 0.792 0.703 0.748
✗ ✓ ✓ 0.786 0.723 0.755
✓ ✓ ✗ 0.815 0.711 0.763
✗ ✓ ✗ 0.951 0.713 0.832
✗ ✗ ✓ 1.228 1.523 1.376
✓ ✗ ✗ 2.839 1.487 2.163
✗ ✗ ✗ 3.98 2.52 3.25

4.3 RESULTS

Now we turn to discuss the physiological-based emotion recognition performance. We compared
our proposed Domain Alignment Transformer(DATransformer) with the EPiC challenge winners
and several other state-of-the-art transformer models, and the results are reported in Table 1. The
AutoGluon solution, proposed by (Dollack et al., 2023), achieves the first place in EPiC challenge.
The model focused on feature engineering and utilized the open source auto ML toolkit to explore
the best ensemble combination of models. The traditional machine learning approach, RF/XGBoost
with hand-crafted features, proposed by (D’Amelio et al., 2023), achieves the third place in the
challenge and the best performance in the across-time scenario. The multi-scale Transformer solu-
tion, proposed by (Vu et al., 2023), focuses on fusing the representations extracted from multi-scale
inputs, providing the model performance of transformer-based solution with a different model archi-
tecture. We report the results of the conventional Vanilla Transformer as well. It is worth noticing
that all the end-to-end solution including Vanilla Transformer, multi-scale Transformer, and our
proposed DATransformer do not apply any preprocessing to the raw physiological signals, while the
EPiC challenge winners such as AutoGluon and the RF/XGBoost solution apply data preprocessing
and feature engineering to the physiological signals inputs. From the results in Table 1, it’s clearly
shown that the proposed DATransformer significantly outperform the other two transformer-based
models, as well as the two EPiC challenge winners, achieves the best prediction performance on
both Arousal and Valence emotional states.

Next, we turn to discuss how the preprocessing of the physiological signal inputs would affect our
model performance, and the results are reported in table 2. For the sake of comparison, we apply the
same preprocessing techniques used in the RF/XGBoost solution from the EPiC challenge winner,
and the details of the preprocessing could be found in (D’Amelio et al., 2023). We also report
the results on Vanilla Transformer with the same setting in table 2 as well. From the results, it’s
clearly shown that our proposed DATransformer achieves comparable performance on Valence, and
even better results on Arousal without the signal preprocessing. While for Vanilla Transformer,
preprocessing is the crucial part, and it will substantially improve the model performance. This
further prove the advantage of our proposed end-to-end solution, which could extract instructive
representation directly from the raw physiological signals.

Finally, we perform the ablation study to further investigate the importance of different components
i.e., encoder normalization, decoder normalization, and series embedding, for our proposed DA-
Transformer. The results are shown in Table 3. We first noticed that each component contribute
differently to the final emotion recognition performance, and the decoder normalization seems the
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most powerful single component, which can decrease the average RMSE from 3.25 to 0.832. More-
over, the results show that all component are essential to our proposed DATransformer model, and
we can achieve the best performance with average RMSE at 0.748 when the model includes all the
three components together.

5 CONCLUSION

In this study, we proposed an end-to-end domain alignment transformer (DATransformer) frame-
work that tackle the domain inconsistency and sample rate difference of the input and target signal,
which are the two major challenges of the physiological-based emotion recognition. Our proposed
solution does not require any preprocessing on the raw physiological signal inputs, but can obtain
comparable or even better emotion recognition performance than the preprocessed signals. For fu-
ture work, we will investigate more advanced backbones, and apply various attention designs to
further improve the physiological-based emotion recognition.
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