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Abstract
Learning deep discrete latent presentations offers
a promise of better symbolic and summarized
abstractions that are more useful to subsequent
downstream tasks. Inspired by the seminal Vector
Quantized Variational Auto-Encoder (VQ-VAE),
most of work in learning deep discrete representa-
tions has mainly focused on improving the orig-
inal VQ-VAE form and none of them has stud-
ied learning deep discrete representations from
the generative viewpoint. In this work, we study
learning deep discrete representations from the
generative viewpoint. Specifically, we endow dis-
crete distributions over sequences of codewords
and learn a deterministic decoder that transports
the distribution over the sequences of codewords
to the data distribution via minimizing a WS dis-
tance between them. We develop further theo-
ries to connect it with the clustering viewpoint of
WS distance, allowing us to have a better and
more controllable clustering solution. Finally,
we empirically evaluate our method on several
well-known benchmarks, where it achieves better
qualitative and quantitative performances than the
other VQ-VAE variants in terms of the codebook
utilization and image reconstruction/generation.

1. Introduction
Learning compact yet expressive representations from large-
scale and high-dimensional unlabeled data is an important
and long-standing task in machine learning (Kingma &
Welling, 2013; Chen et al., 2020; Chen & He, 2021). Among
many different kinds of methods, Variational Auto-Encoder
(VAE) (Kingma & Welling, 2013) and its variants (Tol-
stikhin et al., 2017; Alemi et al., 2016; Higgins et al., 2016;
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Voloshynovskiy et al., 2019) have shown great success in un-
supervised representation learning. Although these continu-
ous representation learning methods have been successfully
applied to various problems, ranging from images (Pathak
et al., 2016; Goodfellow et al., 2014; Kingma et al., 2016),
video, and audio (Reed et al., 2017; Oord et al., 2016; Kalch-
brenner et al., 2017), in some contexts, input data is more
naturally modeled and encoded as discrete symbols rather
than continuous ones. For example, discrete representations
are a natural fit for complex reasoning, planning, and predic-
tive learning (Van Den Oord et al., 2017). This motivates the
need for learning discrete representations while preserving
the insightful characteristics of the input data. The Vec-
tor Quantization Variational Auto-Encoder (VQ-VAE) (Van
Den Oord et al., 2017) is a pioneering generative model
that successfully combines the VAE framework with dis-
crete latent representations. In particular, vector quantized
models learn a compact discrete representation using a deter-
ministic encoder-decoder architecture in the first stage and
subsequently apply this highly compressed representation
to various downstream tasks. Examples include image gen-
eration (Esser et al., 2021), cross-modal translation (Kim
et al., 2022), and image recognition (Yu et al., 2021).

VQ-VAE aims at learning encoder-decoder and a trainable
codebook. The codebook is formed by set of codewords
C = {ck}Kk=1 on the latent space Z ∈ Rnz (C ∈ RK×nz ).
We denote a M -dimensional discrete latent space related
to the codebook as the M -ary Cartesian power of C:
CM ∈ RM×nz with M is the number of components in
the latent space. We also denote a latent variable in CM and
its m-th component as z̄n ∈ CM and z̄mn ∈ C respectively.
The encoder fe : Rnx → RM×nz first map the data exam-
ples xn ∈ Rnx to the latent zn ∈ RM×nz (zmn = fm

e (xn) is
the m-th component of zn), followed by a quantization QC

projecting zn onto CM : z̄n = QC(zn). The quantization
process is modelled as a deterministic categorical poste-
rior distribution such that: z̄mn = argminkρz (f

m
e (xn) , ck)

where ρz is a metric on the latent space. The decoder
fd : RM×nz → Rnx reconstructs accurately the data exam-
ples from the discrete latent representations.

The objective function of VQ-VAE is as follows:

Ex∼Px

[
[dx (fd (QC(fe (x))) , x)

+dz (sg (fe (x)) , z̄) + βdz (fe (x) , sg (z̄))

]
,
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where Px = 1
N

∑N
n=1 δxn

is the empirical data distribution,
sg specifies stop gradient, dx is a distance on data space, and
β is set between 0.1 and 2.0 (Van Den Oord et al., 2017).

While VQ-VAE has been widely applied to representation
learning in many areas (Henter et al., 2018; Baevski et al.,
2020; Razavi et al., 2019; Kumar et al., 2019; Dieleman
et al., 2018; Yan et al., 2021; Hu et al., 2023), it is known to
suffer from codebook collapse, which has a low codebook
usage, i.e. most of embedded latent vectors are quantized to
just few discrete codewords, while the other codewords are
rarely used, or dead. This issue arises due to the poor ini-
tialization of the codebook, which reduces the information
capacity of the bottleneck (Roy et al., 2018; Takida et al.,
2022; Yu et al., 2021).

To mitigate this issue, several additional training heuristics
were proposed, such as the exponential moving average
(EMA) update (Van Den Oord et al., 2017; Razavi et al.,
2019), soft expectation maximization (EM) update (Roy
et al., 2018), codebook reset (Dhariwal et al., 2020; Williams
et al., 2020). Notably, the soft expectation maximization
(EM) update (Roy et al., 2018) connects the EMA update
with an EM algorithm and softens the EM algorithm with a
stochastic posterior. Codebook reset randomly reinitializes
unused or low-used codewords to one of the encoder outputs
(Dhariwal et al., 2020) or those near codewords of high us-
age (Williams et al., 2020). Takida et al. (2022) extends the
standard VAE by incorporating stochastic quantization and
a trainable posterior categorical distribution. Their findings
demonstrate that annealing the stochasticity of the quantiza-
tion process leads to a significant improvement in codebook
utilization.

Recently, Wasserstein (WS) distance has been applied suc-
cessfully to generative models and continuous representa-
tion learning (Arjovsky et al., 2017; Gulrajani et al., 2017;
Tolstikhin et al., 2017) owing to its nice properties and
theory. It is natural to ask: ”Can we take advantages of intu-
itive properties of the WS distance and its mature theory for
learning compact yet expressive discrete representations?”

Towards addressing this question, in this paper, we develop
solid theories by connecting the theory bodies and view-
points of the WS distance, generative models, and deep
discrete representation learning. In particular, we establish
theories for the real and practical setting of learning discrete
representation in which a data example X is mapped to a
sequence of M latent codes Z = [Z1, . . . ,ZM ] correspond-
ing to a sequence of M codewords C = [C1, . . . ,CM ]
via an encoder fe. Our theory development pathway is
as follows. We first endow M discrete distributions over
C1, . . . ,CM , sharing a common support set as the set of
codewords C = [ck]

K
k=1 ∈ RK×nz . We then use a joint

distribution γ, admitting these discrete distributions over
C1, . . . ,CM as its marginal distributions to sample a se-

quence of M codewords C = [C1, . . . ,CM ]. From the
generative viewpoint, we propose learning a decoder fd to
minimize the codebook-data distortion as the WS distance:
Wdz

(fd#γ,Px) (cf. (1)).

Subsequently, we develop rigorous theories to equivalently
turn the formulation in the generative viewpoint to a train-
able form in Theorem 2.3, engaging the deterministic en-
coder fe to minimize the reconstruction error and a WS
distance between the distribution over sequences of latent
codes [Z1, . . . ,ZM ] and the optimal γ over [C1, . . . ,CM ].
Additionally, this WS distance is further proven to equiva-
lently decompose into the sum of M WS distances between
each Zm and Cm,m = 1, . . . ,M . Interestingly, in Corol-
lary 2.5, we prove that when minimizing the WS distance
between the latent code Zm and codeword Cm, the code-
words tend to flexibly move to the clustering centroids of
the latent representations with a control on the proportion of
latent representations associated to a centroid. We argue and
empirically demonstrate that using the clustering viewpoint
of a WS distance to learn the codewords, we can obtain
more controllable and better centroids than using a simple
k-means as in VQ-VAE (cf. Sections 2.1 and 4.2).

Moreover, we leverage the developed theory to propose a
practical method called Vector Quantized Wasserstein Auto-
Encoder (VQ-WAE), which utilizes the WS distance to
learn a more controllable codebook, resulting in improved
the codebook utilization. We conduct comprehensive exper-
iments to demonstrate our key contributions by comparing
with VQ-VAE (Van Den Oord et al., 2017) and SQ-VAE
(Takida et al., 2022) (i.e., the recent work that can improve
the codebook utilization). The experimental results show
that our VQ-WAE can achieve better codebook utilization
with higher codebook perplexity, hence leading to lower
(compared with VQ-VAE) or comparable (compared with
SQ-VAE) reconstruction error, with significantly lower re-
constructed Fréchlet Inception Distance (FID) score (Heusel
et al., 2017). Generally, a better quantizer in the stage-1 can
naturally contribute to stage-2 downstream tasks (Yu et al.,
2021; Zheng et al., 2022). To further demonstrate this, we
conduct comprehensive experiments on four benchmark
datasets. The experimental results indicate that from the
codebooks of our VQ-WAE, we can generate better images
with lower FID scores.

Our contributions in this paper can be summarized:

• We are the first work that studies learning discrete
representations from the generative viewpoint. Sub-
sequently, we develop rigorous and comprehensive
theories that equivalently transform the formulation in
the generative viewpoint into another trainable form
involving a reconstruction term and a WS distance
alignment between the latent representations and learn-
able codewords.
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• We harvest our theory development to propose the prac-
tical method, namely VQ-WAE, that can learn more
controllable codebook for improving the codebook uti-
lization and reconstruct/generate better images with
lower FID scores.

2. Vector Quantized Wasserstein
Auto-Encoder

We present the theoretical development of our VQ-WAE
framework, which connects the viewpoints of the WS dis-
tance, generative models, and deep discrete representation
learning in Section 2.1. It is important to note that our theo-
ries are specifically developed for the real setting of discrete
representation learning, where a deterministic decoder maps
a data example to a sequence of latent codes correspond-
ing to a sequence of codewords. This poses a significant
challenge in theory development. Based on the theoretical
development, we devise a practical algorithm for VQ-WAE
in Section 2.2. All proofs can be found in Appendix A.

2.1. Theoretical Development

Given a training set D = {x1, ..., xN} ⊂ Rnx , we wish
to learn a set of codewords C = {ck}Kk=1 ⊂ RK×nz on a
latent space Z and an encoder to map each data example
to a sequence of M codewords, preserving insightful char-
acteristics carried in the data. We now endow M discrete
distributions:

Pc,πm =

K∑
k=1

πm
k δck ,m = 1, . . . ,M

with the Dirac delta function δ and the weights πm ∈
∆K−1 = {α ≥ 0 : ∥α∥1 = 1} in the (K − 1)-simplex.

We denote Γ = Γ(Pc,π1 , ...,Pc,πM ) as the set of all joint
distributions over sequences of M codewords, admitting
Pc,π1 , . . . ,Pc,πM as its marginal distributions. Let also de-
fine π = [π1, . . . , πM ] as the set of all weights.

From the generative viewpoint, we propose to learn a de-
coder function fd : ZM → X (i.e., mapping from ZM

with the latent space Z ⊂ Rnz to the data space X ), the
codebook C, and the weights π, to minimize:

min
C,π

min
γ∈Γ

min
fd

Wdx (fd#γ,Px) , (1)

where Px = 1
N

∑N
n=1 δxn

is the empirical data distribution
and dx is a cost metric on the data space.

We interpret the optimization problem (OP) in Eq. (1) as
follows. Given discrete distributions Pc,π1:M , we employ a
joint distribution γ ∈ Γ as a distribution over sequences of
M codewords in CM . We then use the decoder fd to map
the sequences of M codewords in CM to the data space and

consider Wdx
(fd#γ,Px) as the codebook-data distortion

w.r.t. fd and γ. We subsequently learn fd to minimize
the codebook-data distortion given γ and finally adjust the
codebook C, π, and γ to minimize the optimal codebook-
data distortion. To offer more intuition for the OP in Eq. (1),
we introduce the following lemma.
Lemma 2.1. Let C∗ = {c∗k}k , π

∗, γ∗, and f∗
d be the opti-

mal solution of the OP in Eq. (1). Assume KM < N , then
C∗ = {c∗k}k , π

∗, and f∗
d are also the optimal solution of

the following OP:

min
fd

min
π

min
σ1:M∈Σπ

N∑
n=1

dx
(
xn, fd

(
[cσm(n)]

M
m=1

))
, (2)

where Σπ is the set of assignment functions σ :
{1, ..., N} → {1, ...,K} such that for every m the
cardinalities

∣∣σ−1
m (k)

∣∣ , k = 1, ...,K are proportional
to πm

k , k = 1, ...,K. Here we denote σ−1
m (k) =

{n ∈ [N ] : σm (n) = k} with [N ] = {1, 2, ..., N}.

Lemma 2.1 states that for the optimal solution C∗ =
{c∗k} , π∗, σ∗

1:M , and f∗
d of the OP in (1), each xn is as-

signed to the centroid f∗
d ([cσ∗

m
(n)]Mm=1) which forms opti-

mal clustering centroids of the optimal clustering solution
minimizing the distortion. We establish the following theo-
rem to engage the OP in (1) with the latent space.
Theorem 2.2. We can equivalently turn the optimization
problem in (1) to

min
C,π,fd

min
γ∈Γ

min
f̄e:f̄e#Px=γ

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

, (3)

where f̄e is a deterministic discrete encoder mapping data
example x directly to a sequence of M codewords in CM .

Theorem 2.2 can be interpreted as follows. First, we learn
both the codebook C and the weights π. Next, we glue
the codebook distributions Pc,πm ,m = 1, . . . ,M using the
joint distribution γ ∈ Γ. Subsequently, we seek a deter-
ministic discrete encoder f̄e mapping data example x to
sequence of M codewords drawn from γ, concurring with
vector quantization and serving our further derivations. Fi-
nally, we minimize the reconstruction error of the sequence
of M codewords corresponding to f̄e(x) and x.

Additionally, f̄e is a deterministic discrete encoder mapping
a data example x directly to a sequence of codewords. To
make it trainable, we replace f̄e by a continuous encoder
fe : X → ZM with fe(x) = [fm

e (x)]Mm=1 (i.e., each fm
e :

X → Z) in the following theorem.
Theorem 2.3. If we seek fd and fe in a family with infinite
capacity (e.g., the family of all measurable functions), the
the two OPs of interest in (1) and (3) are equivalent to the
following OP

min
C,π

min
γ∈Γ

min
fd,fe

{
Ex∼Px

[dx (fd (QC (fe (x))) , x)]
+λWdz

(fe#Px, γ)

}
, (4)
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where QC (fe (x)) = [QC(f
m
e (x))]Mm=1 with

QC(f
m
e (x)) = argminc∈Cρz (f

m
e (x) , c) is a quanti-

zation operator which returns the sequence of closest
codewords to fm

e (x) ,m = 1, . . . ,M and the parameter
λ > 0. Here we overload the quantization operator for
both fe(x) ∈ ZM and fm

e (x) ∈ Z . Additionally, given
z = [zm]Mm=1 ∈ ZM , z̄ = [z̄m]Mm=1 ∈ ZM , the distance
between them is defined as

dz (z, z̄) =
1

M

M∑
m=1

ρz (z
m, z̄m) ,

where ρz is a distance on Z .

Particularly, we rigorously prove that the OPs of interest in
(1), (3), and (4) are equivalent under some mild conditions in
Theorem 2.3. This rationally explains why we could solve
the OP in (4) for our final tractable solution. Moreover,
the OP in (4) conveys important meaningful interpretations.
Specifically, by minimizing Wdz

(fe#Px, γ) w.r.t. C, π
where γ admits Pc,π1:M as its marginal distributions, we
implicitly minimize Wρz (f

m
e #Px,Pc,πm),m = 1, . . . ,M

due to the fact that the former is an upper-bound of the latter
as in Lemma 2.4. Furthermore, in Lemma 2.4, we also
develop a close form for the WS distance of interest, hinting
us a practical method.

Lemma 2.4. The Wasserstein distance of interest
minπ minγ∈Γ Wdz

(fe#Px, γ) is upper-bounded by

1

M

M∑
m=1

Wρz
(fm

e #Px,Pc,πm) . (5)

According to Lemma 2.4, the OP of interest in (4) can be
replaced by minimizing its upper-bound as follows

min
C,π

min
fd,fe

{
Ex∼Px

[dx (fd (QC (fe (x))) , x)]

+ λ
M

∑M
m=1 Wρz

(fm
e #Px,Pc,πm)

}
. (6)

We now interpret the WS term Wρz
(fm

e #Px,Pc,πm) in
Corollary 2.5.

Corollary 2.5. Given m ∈ [M ], consider minimizing the
term: minfe,C Wρz

(fm
e #Px,Pc,πm) in (4), given πm and

assume K < N , its optimal solution f∗m
e and C∗are also

the optimal solution of the OP:

min
fe,C

min
σ∈Σπ

N∑
n=1

ρz
(
fm
e (xn) , cσ(n)

)
, (7)

where Σπ is the set of assignment functions σ :
{1, ..., N} → {1, ...,K} such that the cardinalities∣∣σ−1 (k)

∣∣ , k = 1, ...,K are proportional to πm
k , k =

1, ...,K.

Corollary 2.5 indicates the aim of minimizing the second
term Wρz (f

m
e #Px,Pc,πm). By which, we adjust the en-

coder fe and the codebook C such that the codewords of
C become the clustering centroids of the latent represen-
tations {fm

e (xn)}n to minimize the codebook-latent dis-
tortion. Additionally, at the optimal solution, the optimal
assignment function σ∗, which indicates how latent repre-
sentations (or data examples) associated with the clustering
centroids (i.e., the codewords) has a valuable property, i.e.,
the cardinalities

∣∣(σ∗)−1 (k)
∣∣ , k = 1, ...,K are propor-

tional to πm
k , k = 1, ...,K.

Remark: Recall the codebook collapse issue, i.e. most of
embedded latent vectors are quantized to just few discrete
codewords while the other codewords are rarely used. Corol-
lary 2.5 give us important properties: (1) we can control the
number of latent representations assigned to each codeword
by adjust πm, guaranteeing all codewords are utilized, (2)
codewords become the clustering centroids of the associated
latent representations to minimize the codebook-latent dis-
tortion, to develop our VQ-WAE framework. Particularly,
we propose adding the regularization terms DKL(π

m,UK)
as the Kullback-Leibler divergence between πm and the
uniform distribution UK = [ 1K ]K to regularize πm.

2.2. Practical Algorithm for VQ-WAE

We now harvest our theoretical development to propose
a practical method named Vector Quantized Wasserstein
Auto-Encoder (VQ-WAE). Particularly, we combine the
objective function in (6) with the regularization terms
DKL(π

m,UK),m = 1, . . . ,M and UK =
[
1
K

]
K

inspired
by Corollary 2.5 to arrive at the following OP:

min
C,π,fd,fe


Ex∼Px [dx (fd (QC (fe (x))) , x)]

+ λ
M ×

∑M
m=1 Wρz (f

m
e #Px,Pc,πm)

+λr

∑M
m=1 DKL(π

m,UK)

 , (8)

where λ, λr > 0 are two trade-off parameters.

To learn the weights πm, we parameterize πm =
πm(βm) = softmax(βm),m = 1, . . . ,M with βm ∈ RK .
Additionally, in order to optimize (8), we have to deal with
M WS distances Wρz

(fm
e #Px,Pc,πm) with m = 1, ...,M .

Therefore, we proposed to use entropic dual form of optimal
transport (Genevay et al., 2016) which enable us to compute
these WS distances in parallel by matrix computation from
current deep learning framework.

At each iteration, we sample a mini-batch x1, ..., xB and
then solve the above OP by updating fd, fe and C, β1..M

based on this mini-batch as follows. Let us denote

PB =
1

B

B∑
i=1

δxi

as the empirical distribution over the current batch.
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For each mini-batch, we replace Wρz
(fm

e #Px,Pc,πm) by
Wρz (f

m
e #PB ,Pc,πm) and approximate it with entropic

regularized duality form Rm
WS (see Eq. (27) in Appendix

B) as follows:

Rm
WS = max

ϕm

{
1

B

B∑
i=1

[
−ϵ log

(
K∑

k=1

πm
k

[
exp

{
−ρz(f

m
e (xi), ck) + ϕm (ck)

ϵ

}])]
+

K∑
k=1

πm
k ϕm(ck)

}
(9)

where ϕm is the Kantorovich potential network.

Substituting (9) into (8), we reach final OP to update
fd, fe, C, {βm}Mm=1 for each mini-batch:

min
C,{βm}M

m=1

min
fd,fe


1
B

∑B
i=1 dx (fd (Q (fe (xi))))

+ λ
M

∑M
m=1 Rm

WS

+λr

∑M
m=1 DKL (πm (βm) ,UK)

 .

(10)

We use the copy gradient trick (Van Den Oord et al., 2017)
to deal with the back-propagation from decoder to encoder
for reconstruction term. The pseudocode of our VQ-WAE
is summarized in Algorithm 1.

Algorithm 1 VQ-WAE

1: Initialize: encoder fe, decoder fd, codebook C and
{πm = softmax(βm), ϕm}Mm=1.

2: for iter in batch-iterations do
3: Sample a mini-batch of samples x1, ..., xB forming

the empirical batch distribution PB .
4: Encode: z1...B = fe(x1...B)
5: Quantize: z̄1..B = QC(z1...B)
6: Decode: x̄1...B = fd(z̄1...B)
7: for iter in ϕ-iterations do
8: Optimize {ϕm}Mm=1 by maximizing the objective

in (9).
9: end for

10: Optimize fe, fd, {βm}Mm=1 and C by minimizing the
objective in (10).

11: end for
12: Return: The optimal fe, fd and C.

3. Related Work
The Variational Auto-Encoder (VAE) was initially intro-
duced by Kingma & Welling (2013) for learning continuous
representations. However, learning discrete latent represen-
tations has proven to be much more challenging due to the
difficulty of accurately evaluating the gradients required for
training the models. To make the gradients tractable, one

possible solution is to apply the Gumbel Softmax reparam-
eterization trick (Jang et al., 2016) to VAE, which allows
us to estimate stochastic gradients for updating the models.
Although this technique provides gradients with low vari-
ance, it introduces a high-bias gradient estimator. Another
possible solution is to employ the REINFORCE algorithm
(Williams, 1992), which is unbiased but has a high variance.
Furthermore, these two techniques can be combined in a
complementary manner (Tucker et al., 2017).

To facilitate the learning of discrete latent codes, VQ-VAE
(Van Den Oord et al., 2017) employs a deterministic en-
coder/decoder architecture and encourages the codebooks
to represent the clustering centroids of the latent represen-
tations. Additionally, the copy gradient trick is utilized to
back-propagate gradients from the decoder to the encoder
(Bengio, 2013). Several subsequent works have extended
VQ-VAE, notably Roy et al. (2018); Wu & Flierl (2020).Par-
ticularly, Roy et al. (2018) uses the Expectation Maximiza-
tion (EM) algorithm in the bottleneck stage to train the
VQ-VAE for improving the quality of the generated images.
However, to maintain the stability of this approach, we need
to collect a large number of samples on the latent space. Wu
& Flierl (2020) imposes noises on the latent codes and uses
a Bayesian estimator to optimize the quantizer-based rep-
resentation. The introduced bottleneck Bayesian estimator
outputs the posterior mean of the centroids to the decoder
and performs soft quantization of the noisy latent codes
which have latent representations preserving the similarity
relations of the data space. Recently, Takida et al. (2022)
extends the standard VAE with stochastic quantization and
trainable posterior categorical distribution, showing that the
annealing of the stochasticity of the quantization process
significantly improves the codebook utilization.

Wasserstein (WS) distance has been widely used in various
problems (Zhao et al., 2021; Nguyen et al., 2021a;b; Le
et al., 2021; Bui et al., 2022), especially in generative mod-
els (Arjovsky et al., 2017; Gulrajani et al., 2017; Tolstikhin
et al., 2017; Dam et al., 2019). In their work, Arjovsky et al.
(2017) utilized a dual form of the WS distance to develop
the Wasserstein generative adversarial network (WGAN).
Subsequently, Gulrajani et al. (2017) introduced the gra-
dient penalty trick to enhance the stability of WGAN. In
terms of theory development, mostly related to our work is
Wasserstein Auto-Encoder (Tolstikhin et al., 2017), which
focuses on learning continuous latent representations while
preserving the characteristics of the input data.

4. Experiments

Datasets: We empirically evaluate the proposed VQ-WAE
in comparison with VQ-VAE (Van Den Oord et al., 2017)
that is the baseline method, VQ-GAN (Esser et al., 2021)
and recently proposed SQ-VAE (Takida et al., 2022) which
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is the state-of-the-art work of improving the codebook us-
age, on five different benchmark datasets: CIFAR10 (Van
Den Oord et al., 2017), MNIST (Deng, 2012), SVHN (Net-
zer et al., 2011), CelebA dataset (Liu et al., 2015; Takida
et al., 2022) and the high-resolution images dataset FFHQ.

Implementation: For a fair comparison, we utilize the
same architectures and hyperparameters for all methods.
Additionally, in the primary setting, we use a codeword
(discrete latent) dimensionality of 64 and codebook size
|C| = 512 for all datasets except FFHQ, which has a code-
word dimensionality of 256 and codebook size |C| = 1024,
while the hyper-parameters {β, τ, λ} are specified as pre-
sented in the original papers, i.e., β = 0.25 for VQ-VAE
and VQ-GAN (Esser et al., 2021), τ = 1e−5 for SQ-VAE
and λ = 1e−3, λr = 1.0 for our VQ-WAE. The details of
the experimental settings are presented in Appendix D.

4.1. Results on Benchmark Datasets

Quantitative assessment: In order to quantitatively as-
sess the quality of the reconstructed images, we report
the results on most common evaluation metrics, including
the pixel-level peak signal-to-noise ratio (PSNR), patch-
level structure similarity index (SSIM), feature-level LPIPS
(Zhang et al., 2018), and dataset-level Fréchlet Inception
Distance (FID) (Heusel et al., 2017). We report the test-set
reconstruction results on four datasets in Table 1. With
regard to the codebook utilization, we employ perplex-
ity score which is defined as e−

∑K
k=1 pck

log pck where
pck =

Nck∑K
i=1 Nci

(i.e., Nci is the number of latent repre-
sentations associated with the codeword ci) is the probabil-
ity of the ith codeword being used. Note that by formula,
perplexitymax = |C| as P (c) becomes to the uniform dis-
tribution, which means that all the codewords are utilized
equally by the model.

We compare VQ-WAE with VQ-VAE, SQ-VAE and VQ-
GAN for image reconstruction in Table 1. All instantiations
of our model significantly outperform the baseline VQ-VAE
under the same compression ratio, with the same network
architecture. While the latest state-of-the-art SQ-VAE or
VQ-GAN holds slightly better scores for traditional pixel-
and patch-level metrics, our method achieves much better
rFID scores which evaluate the image quality at the dataset
level. Note that our VQ-WAE significantly improves the per-
plexity of the learned codebook. This suggests that the pro-
posed method significantly improves the codebook usage,
resulting in better reconstruction quality. which is further
demonstrated in the following qualitative assessment.

Qualitative assessment: We present the reconstructed
samples from FFHQ (high-resolution images) for qualitative
evaluation. It can be clearly seen that the high-level semantic

Figure 1: Reconstruction results for the FFHQ dataset.

features of the input image and colors are better preserved
with VQ-WAE than the baseline. Particularly, we notice that
VQ-GAN often produces repeated artifact patterns in image
synthesis (see the hair of man is second column in Figure 1)
while VQ-WAE does not. This is because VQ-GAN is lack
of diversity in the codebook, which will be further analyzed
in Section 4.2.1. Consequently, the quantization operator
embeds similar patches into the same quantization index
and ignores the variance in these patches (e.g., VQ-GAN
reconstructs the background in third column of Figure 1 as
hair of woman).

4.2. Detailed Analysis

We run a number of ablations to analyze the properties of
VQ-VAE, SQ-VAE and VQ-WAE, in order to assess if our
VQ-WAE can simultaneously achieve (i) efficient codebook
usage, (ii) reasonable latent representation.

4.2.1. CODEBOOK USAGE

We observe the codebook utilization of three methods with
different codebook sizes {64, 128, 256, 512} on MNIST and
CIFAR10 datasets. Particularly, we present the reconstruc-
tion performance for different settings in Table 2 and the
histogram of latent representations over the codebook in
Figure 2. As discussed in Section 2.1, the number of used
centroids reflects the capability of the latent representations.
In other words, it represents the certain amount of informa-
tion is preserved in the latent space.

It can be seen from Figure 2 that the latent distribution
of VQ-WAE over the codebook is nearly uniform and the
codebook’s perplexity almost reaches the optimal value (i.e.,
the value of perplexities reach to corresponding codebook
sizes) in different settings. It is also observed that as the
size of the codebook increases, the perplexity of codebook
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Table 1: Reconstruction performance (↓: the lower the better and ↑: the higher the better).

Dataset Model Latent Size SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓ Perplexity ↑
CIFAR10 VQ-VAE 8 × 8 0.70 23.14 0.35 77.3 69.8

SQ-VAE 8 × 8 0.80 26.11 0.23 55.4 434.8
VQ-WAE 8 × 8 0.80 25.93 0.23 54.3 497.3

MNIST VQ-VAE 8 × 8 0.98 33.37 0.02 4.8 47.2
SQ-VAE 8 × 8 0.99 36.25 0.01 3.2 301.8

VQ-WAE 8 × 8 0.99 35.71 0.01 2.33 508.4

SVHN VQ-VAE 8 × 8 0.88 26.94 0.17 38.5 114.6
SQ-VAE 8 × 8 0.96 35.37 0.06 24.8 389.8

VQ-WAE 8 × 8 0.96 34.62 0.07 23.4 485.1

CELEBA VQ-VAE 16 × 16 0.82 27.48 0.19 19.4 48.9
SQ-VAE 16 × 16 0.89 31.05 0.12 14.8 427.8

VQ-WAE 16 × 16 0.89 30.60 0.11 12.2 503.0

FFHQ VQ-GAN 16 × 16 0.6641 22.24 0.1175 4.42 423
VQ-WAE 16 × 16 0.6648 22.45 0.1245 4.20 1022

Table 2: Distortion and Perplexity with different codebook sizes.

Dataset MNIST CIFAR10

|C| 64 128 256 512 64 128 256 512

VQ-VAE Perplexity 47.8 70.3 52.0 47.2 24.3 44.9 85.1 69.8
rFID 5.9 6.2 5.2 4.8 86.6 78.9 73.6 69.8

SQ-VAE Perplexity 47.4 85.4 184.8 301.8 59.5 113.2 220.0 434.8
rFID 4.7 4.3 3.5 3.2 71.5 66.9 62.6 55.4

VQ-WAE Perplexity 60.1 125.3 245.0 508.4 62.2 121.4 250.9 497.3
rFID 5.6 3.9 2.8 2.3 73.5 68.2 60.5 54.3

(a) MNIST. (b) CIFAR10.

Figure 2: Latent distribution over the codebook on test-set.

7



Vector Quantized Wasserstein Auto-Encoder

of VQ-WAE also increases, leading to the better reconstruc-
tion performance (Table 2), in line with the analysis in
(Wu & Flierl, 2018). SQ-VAE also has good codebook uti-
lization as its perplexity is proportional to the size of the
codebook. However, it becomes less efficient when the code-
book size becomes large, especially in low texture dataset.
(i.e., MNIST). On the contrary, the codebook usage of VQ-
VAE is less efficient, i.e., there are many zero entries in its
codebook usage histogram, indicating that some codewords
have never been used (Figure 2). Furthermore, Table 2 also
shows the instability of VQ-VAE’s reconstruction perfor-
mance with different codebook sizes.

4.2.2. CONTROLLABILITY OF CODEBOOK

To further underscore the codebook-controllability of VQ-
WAE, we proceed to perform the following ablations. Firstly,
additional experiments are conducted involving different ini-
tializations of πm, specifically including Peaked-form (P),
Gaussian-form (G), and Uniform-form (U). Our objective
is to observe whether the latent distributions over the code-
book, obtained after training with a fixed πm configuration,
exhibit proportionality to the initial πm, thereby effectively
demonstrating the controllability. Secondly, we investigate
the implications of optimizing πm as opposed to maintain-
ing a fixed state throughout the training process.

Figure 3: Top. Different initialization of Codebook; Bottom.
Latent distribution over the codebook C with fixed πm.

Figure 3 provides evidence indicating that the latent distribu-
tions over the codebook exhibit proportionality to the initial
πm, thereby serving as a demonstration of the controllabil-
ity of VQ-WAE’s codebook. However, it is important to
note that our primary objective is to learn latent representa-
tions that accurately approximate the true underlying latent
distribution of the data. Consequently, if we have prior
knowledge of the true underlying latent distribution of the
data, it would be optimal to fix πm accordingly. Nonethe-
less, in practical scenarios, the true underlying distribution
of the data is typically unknown. If the initial πm signif-
icantly deviates from the true underlying distribution, it
can adversely affect the model’s performance. Hence, it is
imperative to optimize πm during training process.

Table 3: Reconstruction performance with different code-
book initializations (PPL - Perplexity).

πm Metric P G U

Fixed rFID 63.77 68.87 56.06

Fixed PPL 229.4 165.1 502.6

Updated, λr = 0.0 rFID 62.04 62.16 57.49

Updated, λr = 0.0 PPL 292.5 285.6 456.5

Updated, λr = 1.0 rFID 60.60 60.31 54.30

Updated, λr = 1.0 PPL 410.0 442.8 497.3

In such cases, πm will be gradually updated to match the
latent distribution. Therefore, our intuition is to initialize
πm with a distribution that can easily adapt to arbitrary
distributions. The results presented in Table 3 indicate that
a uniform initialization is a suitable choice for πm.

It is worth noting that the motivation behind employing
KL-regularization is to encourage the utilization of every
discrete codeword, thus avoiding the occurrence of certain
πm
k values becoming zero (additional discussion regarding

the motivation of KL-regularization can be found in Ap-
pendix C). This feature of VQ-WAE is unique as it allows
for the reflection of the latent distribution and enables con-
trol over it. Consequently, the Wasserstein distance with
KL-regularization in Objective (8) serves to match the code-
book distribution with the latent data distribution, while also
ensuring the utilization of all codewords. This guarantees
the robustness of the model.

4.2.3. VISUALIZATION OF LATENT REPRESENTATION

Figure 4: The t-SNE feature visualization on the MNIST
dataset (different colors for different digits).

T-SNE visualization. To better understand the codebook’s
representation power, we employ t-SNE (van der Maaten &
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Hinton, 2008) to visualize the latent that have been learned
by VQ-VAE, SQ-VAE and VQ-WAE on the MNIST dataset
with two codebook sizes of 64 and 512. Figure 4 shows the
latent distributions of different classes in the latent space,
in which the samples are colored accordingly to their class
labels. Figure 4c shows that representations from different
classes of VQ-WAE are well clustered (i.e., each class fo-
cuses on only one cluster) and clearly separated to other
classes. In contrast, the representations of some classes in
VQ-VAE and SQ-VAE are distributed to several clusters and
or mixed to each other (Figure 4a,b). Moreover, the class-
clusters of SQ-VAE are uncondensed and tend to overlap
with each other. These results suggest that the representa-
tions learned by VQ-WAE can better preserve the similarity
relations of the data space better than the other baselines.

Single-layer Classification on latent space. We train a
separate single-layer classifier using the latent representa-
tion from auto-encoders (VQ-VAE, SQ-VAE and VQ-WAE)
as input. We did not optimize autoencoder’s parameters with
respect to the classifier’s loss to measure the unsupervised
representation learning performance of auto-encoders.

Table 4: Single-layer classification accuracy on latent space.

Dataset VQ-VAE SQ-VAE VQ-WAE

Cifar10 43.21 46.17 50.19

Mnist 95.12 94.48 95.62

SVHN 35.10 36.73 38.38

It can be seen from Table 4 that VQ-WAE obtained higher
performance compared to SQ-VAE, further demonstrating
the better quality of a learned representation of VQ-WAE.

4.2.4. IMAGE GENERATION

As discussed in the previous section, VQ-WAE is able to
optimally utilize its codebook, leading to meaningful and
diverse codewords that naturally improve the image gener-
ation. To confirm this ability, we perform the image gen-
eration on the benchmark datasets. Since the decoder re-
constructs images directly from the discrete embeddings,
we only need to model a prior distribution over the discrete
latent space (i.e., codebook) to generate images. We employ
a conventional autoregressive model, the CNN-based Pixel-
CNN (Van den Oord et al., 2016), to estimate a prior distri-
bution over the discrete latent space of VQ-VAE, SQ-VAE
and VQ-WAE on CIFAR10, MNIST, SVHN and CelebA.
The details of generation settings are presented in Section
3.2 of the supplementary material. The quantitative results
in Table 5 indicate that the codebook of VQ-WAE leads to
a better generation ability baselines.

Table 5: FID scores of unconditional (U) and class-
conditional (C) generated images.

Dataset Model Latent size U C

CIFAR10 VQ-VAE 8× 8 117.49 117.16
SQ-VAE 8× 8 103.78 90.74

VQ-WAE 8× 8 87.73 88.51

MNIST VQ-VAE 8× 8 27.01 25.56
SQ-VAE 8× 8 8.93 4.94

VQ-WAE 8× 8 8.21 3.88

SVHN VQ-VAE 8× 8 62.13 64.24
SQ-VAE 8× 8 31.26 36.41

VQ-WAE 8× 8 30.71 34.44

CELEBA VQ-VAE 16× 16 42.0 -
SQ-VAE 16× 16 29.5 -

VQ-WAE 16× 16 28.8 -

5. Conclusion
In this paper, we study discrete deep representation learning
from the generative perspective. By leveraging with the
nice properties of the WS distance, we develop rigorous
and rich theories to turn the generative-inspired formulation
to an equivalent trainable form relevant to a reconstruction
term and the WS distances between latent representations
and the codeword distributions. We harvest our theory de-
velopment to propose Vector Quantized Wasserstein Auto-
Encoder (VQ-WAE). We conduct comprehensive experi-
ments to show that our VQ-WAE utilizes the codebooks
more efficiently than the baselines, hence leading to better
reconstructed and generated image quality. Additionally, the
ablation study shows our proposed framework can optimally
utilize the codebook, resulting diverse codewords, allowing
VQ-WAE to produce better reconstructions of data examples
and more reasonable geometry of the latent manifold.

Moreover, the OP in 3 in Theorem 2.3 hints us a question
about learning the joint distribution γ over Pc,πm ,m =
1, . . . ,M , which if learned appropriately can be served as a
distribution over the sequences of codewords in a generative
model. Certainly, we can employ a learnable auto-regressive
model to characterize γ and train it together with the code-
words, encoder, and decoder. Currently, we resort a simple
solution by minimizing a relevant upper-bound. We leave
the problem of learning γ for our future research.
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Appendix
This appendix is organized as follows:

• In Section A, we present all proofs for theory developed in the main paper.

• In Section B, we present the detail of practical algorithm for VQ-WAE.

• In Section C, we delve deeper into the motivation behind KL regularization and conduct an analysis of the parameters
λ and λr.

• In Section D, we present experimental settings and implementation specification of VQ-WAE.

A. Theoretical Development
Lemma A.1. (Lemma 2.1 in the main paper) Let C∗ = {c∗k}k , π

∗, γ∗, and f∗
d be the optimal solution of the OP in Eq. (1).

Assume KM < N , then C∗ = {c∗k}k , π
∗, and f∗

d are also the optimal solution of the following OP:

min
fd

min
π

min
σ1:M∈Σπ

N∑
n=1

dx
(
xn, fd

(
[cσm(n)]

M
m=1

))
, (11)

where Σπ is the set of assignment functions σ : {1, ..., N} → {1, ...,K} such that for every m the cardinalities∣∣σ−1
m (k)

∣∣ , k = 1, ...,K are proportional to πm
k , k = 1, ...,K. Here we denote σ−1

m (k) = {n ∈ [N ] : σm (n) = k}
with [N ] = {1, 2, ..., N}.

Proof of Lemma A.1

γ ∈ Γ is a distribution over CM with γ([ci1 , . . . , ciM ]) satisfying
∑

i1,..,im−1,im=k,im+1,...,iM
γ ([ci1 , .., ciM ]) = πm

k .

fd#γ is a distribution over fd([ci1 , . . . , ciM ] with the mass γ([ci1 , . . . , ciM ]) or in other words, we have

fd#γ =
∑

i1,...,iM

γ([ci1 , . . . , ciM ])δfd([ci1 ,...,ciM ]).

Therefore, we reach the following OP:

min
C,π

min
γ

min
fd

Wdx

 1

N

N∑
n=1

δxn
,
∑

i1,...,iM

γ([ci1 , . . . , ciM ])δfd([ci1 ,...,ciM ])

 . (12)

By using the Monge definition, we have

Wdx

 1

N

N∑
n=1

δxn
,
∑

i1,...,iM

γ([ci1 , . . . , ciM ])δfd([ci1 ,...,ciM ])

 = min
T :T#Px=fd#γ

Ex∼Px
[dx (x, T (x))]

=
1

N
min

T :T#Px=fd#γ

N∑
n=1

dx (xn, T (xn)) .

Since T#Px = fd#γ, T (xn) = fd ([ci1 , . . . , ciM ]) for some i1, ..., iM . Additionally,
∣∣T−1 (fd([ci1 , . . . , ciM ]))

∣∣ , k =
1, ...,K are proportional to γ([ci1 , . . . , ciM ]). Denote σ1, ..., σM : {1, ..., N} → {1, . . . ,K} such that T (xn) =
fd([cσ1(n), . . . , cσM (n)]),∀i = 1, ..., N , we have σ1, . . . , σM ∈ Σπ . It follows that

Wdx

 1

N

N∑
n=1

δxn ,
∑

i1,...,iM

γ([ci1 , . . . , ciM ])δfd([ci1 ,...,ciM ])

 =
1

N
min

σ1:M∈Σπ

N∑
n=1

dx (xn, fd ([ci1 , . . . , ciM ])) .

13



Vector Quantized Wasserstein Auto-Encoder

Finally, the the optimal solution of the OP in Eq. (12) is equivalent to

min
fd

min
C,π

min
σ1:M∈Σπ

N∑
n=1

dx (xn, fd ([ci1 , . . . , ciM ])) ,

which directly implies the conclusion because we have

|σ−1
m (k) | ∝

∑
i1,...,im−1,im=k,im+1,...,iM

γ ([ci1 , . . . , ciM ]) = πm
k .

Theorem A.2. (Theorem 2.2 in the main paper) We can equivalently turn the optimization problem in (1) to

min
C,π,fd

min
γ∈Γ

min
f̄e:f̄e#Px=γ

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

, (13)

where f̄e is a deterministic discrete encoder mapping data example x directly to a sequence of M codewords in CM .

Proof of Theorem A.2

We first prove that the OP of interest in (1) is equivalent to

min
C,π,fd

min
γ∈Γ

min
f̄e:f̄e#Px=γ

Ex∼Px,[ci1 ,...,ciM ]∼f̄e(x) [dx (fd ([ci1 , . . . , ciM ]) , x)] , (14)

where f̄e is a stochastic discrete encoder mapping a data example x directly to sequences of M codewords. To this end, we
prove that

Wdx
(fd#γ,Px) = min

f̄e:f̄e#Px=γ
Ex∼Px,[ci1 ,...,ciM ]∼f̄e(x) [dx (fd ([ci1 , . . . , ciM ]) , x)] , (15)

where f̄e is a stochastic discrete encoder mapping data example x directly to the codebooks.

Let f̄e be a stochastic discrete encoder such that f̄e#Px = γ (i.e., x ∼ Px and [ci1 . . . . , ciM ] ∼ f̄e (x) implies
[ci1 . . . . , ciM ] ∼ γ). We consider αd,c as the joint distribution of (x, [ci1 . . . . , ciM ]) with x ∼ Px and [ci1 . . . . , ciM ] ∼ f̄e (x).
We also consider αfc,d as the joint distribution including (x, x′) ∼ αfc,d where x ∼ Px,[ci1 . . . . , ciM ] ∼ f̄e (x), and
x′ = fd ([ci1 . . . . , ciM ]). This follows that αfc,d ∈ Γ (fd#γ,Px) which admits fd#γ and Px as its marginal distribution
have:

Ex∼Px,[ci1 ....,ciM ]∼f̄e(x) [dx (fd ([ci1 . . . . , ciM ]) , x)] = E(x,[ci1 ....,ciM ])∼αd,c
[dx (fd ([ci1 . . . . , ciM ]) , x)]

(1)
= E(x,x′)∼αfc,d

[dx (x, x
′)]

≥ min
αfc,d∈Γ(fd#γ,Px)

E(x,x′)∼αfc,d
[dx (x, x

′)]

= Wdx (fd#α,Px) .

Note that we have the equality in (1) due to (id, fd)#αd,c = αfc,d.

Therefore, we reach

min
f̄e:f̄e#Px=γ

Ex∼Px,[ci1 ....,ciM ]∼f̄e(x) [dx (fd ([ci1 . . . . , ciM ]) , x)] ≥ Wdx (fd#γ,Px) .

Let αfc,d ∈ Γ (fd#γ,Px). Let αfc,c ∈ Γ (fd#γ, γ) be a deterministic coupling such that [ci1 . . . . , ciM ] ∼ γ and
x = fd ([ci1 . . . . , ciM ]) imply ([ci1 . . . . , ciM ], x) ∼ αc,fc. Using the gluing lemma (see Lemma 5.5 in (Santambrogio,
2015)), there exists a joint distribution α ∈ Γ (γ, fd#γ,Px) which admits αfc,d and αfc,c as the corresponding joint
distributions. By denoting αd,c ∈ Γ (Px, γ) as the marginal distribution of α over Px, γ, we then have

E(x,x′)∼αfc,d
[dx (x, x

′)] = E([ci1 ....,ciM ],x′,x)∼α [dx (x, x
′)] = E([ci1 ....,ciM ],x)∼αd,c,x′=fd([ci1 ....,ciM ]) [dx (x, x

′)]

= E([ci1 ....,ciM ],x)∼αd,c
[dx (fd ([ci1 . . . . , ciM ]) , x)]

= Ex∼Px,[ci1 ....,ciM ]∼f̄e(x) [dx (fd ([ci1 . . . . , ciM ]) , x)]

≥ min
f̄e:f̄e#Px=γ

Ex∼Px,[ci1 ....,ciM ]∼f̄e(x) [dx (fd ([ci1 . . . . , ciM ]) , x)] ,

14
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where f̄e(x) = αd,c(· | x).

This follows that

Wdx
(fd#γ,Px) = min

αfc,d∈Γ(fd#γ,Px)
E(x,x′)∼αfc,d

[dx (x, x
′)]

≥ min
f̄e:f̄e#Px=γ

Ex∼Px,[ci1 ....,ciM ]∼f̄e(x) [dx (fd ([ci1 . . . . , ciM ]) , x)] .

This completes the proof for the equality in Eq. (15), which means that the OP of interest in (1) is equivalent to

min
C,π,fd

min
γ∈Γ

min
f̄e:f̄e#Px=γ

Ex∼Px,[ci1 ....,ciM ]∼f̄e(x) [dx (fd ([ci1 . . . . , ciM ]) , x)] . (16)

We now further prove the above OP is equivalent to

min
C,π,fd

min
γ∈Γ

min
f̄e:f̄e#Px=γ

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

, (17)

where f̄e is a deterministic discrete encoder mapping data example x directly to the codebooks.

It is obvious that the OP in (17) is special case of that in (16) when we limit to search for deterministic discrete
encoders. Given the optimal solution C∗1, π∗1, γ∗1, f∗1

d , and f̄∗1
e of the OP in (16), we show how to construct the

optimal solution for the OP in (17). Let us construct C∗2 = C∗1, f∗2
d = f∗1

d . Given x ∼ Px, let us denote
f̄∗2
e (x) = argmin[ci1 ....,ciM ]dx

(
f∗2
d ([ci1 . . . . , ciM ]) , x

)
. Thus, f̄∗2

e is a deterministic discrete encoder mapping data
example x directly to a sequence of codewords. We define π∗m2

k = Pr
(
f̄∗2
e,m (x) = ck : x ∼ Px

)
, k = 1, ...,K where

f̄∗2
e (x) = [f̄∗2

e,m (x)]Mm=1, meaning that f̄∗2
e #Px = γ∗2, admitting Pc∗2,π∗m2 ,m = 1, . . . ,M as its marginal distributions.

From the construction of f̄∗2
e , we have

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≤ Ex∼Px,[ci1 ....,ciM ]∼f̄∗1
e (x)

[
dx
(
f∗1
d ([ci1 . . . . , ciM ]) , x

)]
.

Furthermore, because C∗2, π∗2, f∗2
d , andf̄∗2

e are also a feasible solution of the OP in (17), we have

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≥ Ex∼Px,[ci1 ....,ciM ]∼f̄∗1
e (x)

[
dx
(
f∗1
d ([ci1 . . . . , ciM ]) , x

)]
.

This means that

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

= Ex∼Px,[ci1 ....,ciM ]∼f̄∗1
e (x)

[
dx
(
f∗1
d ([ci1 . . . . , ciM ]) , x

)]
,

and C∗2, π∗2, γ∗2, f∗2
d , andf̄∗2

e are also the optimal solution of the OP in (17).

We now propose and prove the following lemma that is necessary for the proof of Theorem A.4.
Lemma A.3. Consider C, π, fd, and fe as a feasible solution of the OP in (4). Let us denote f̄m

e (x) =
argmincρz(f

m
e (x)), c) = QC(x), then f̄m

e (x) is a Borel measurable function and hence also f̄e(x) = [f̄m
e (x)]Mm=1

Proof of Lemma A.3.

We denote the set Ak on the latent space as

Ak = {z : ρz(z, ck) < ρz(z, cj),∀j ̸= k} = {z : QC(z) = ck}.

Ak is known as a Voronoi cell w.r.t. the metric ρz . If we consider a continuous metric ρz , Ak is a measurable set. Given a
Borel measurable function B, we prove that (f̄m

e )−1(B) is a Borel measurable set on the data space.

Let B ∩{c1, .., cK} = {ci1 , ..., cit}, we prove that (f̄m
e )−1 (B) = ∪t

j=1(f̄
m
e )−1

(
Aij

)
. Indeed, take x ∈ (f̄m

e )−1 (B), then
(f̄m

e )−1(x) ∈ B, implying that (f̄m
e )−1(x) = QC(x) = cij for some j = 1, ..., t. This means that fm

e (x) ∈ Aij for some
j = 1, ..., t. Therefore, we reach (f̄m

e )−1 (B) ⊂ ∪t
j=1(f

m
e )−1

(
Aij

)
.

We now take x ∈ ∪t
j=1(f

m
e )−1

(
Aij

)
. Then fm

e (x) ∈ Aij for j = 1, ..., t, hence f̄m
e (x) = QC(x) = cij for some

j = 1, ..., t. Thus, f̄m
e (x) ⊂ B or equivalently x ∈ (f̄m

e )−1 (B), implying (f̄m
e )−1 (B) ⊃ ∪t

j=1(f
m
e )−1

(
Aij

)
.

Finally, we reach (f̄m
e )−1 (B) = ∪t

j=1(f
m
e )−1

(
Aij

)
, which concludes our proof because fm

e is a measurable function and
Aij are measurable sets.
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Theorem A.4. (Theorem 2.3 in the main paper) If we seek fd and fe in a family with infinite capacity (e.g., the family of
all measurable functions), the the two OPs of interest in (1) and (3) are equivalent to the following OP

min
C,π

min
γ∈Γ

min
fd,fe

{
Ex∼Px

[dx (fd (QC (fe (x))) , x)]
+λWdz

(fe#Px, γ) ,

}
(18)

where QC (fe (x)) = [QC(f
m
e (x))]Mm=1 with QC(f

m
e (x)) = argminc∈Cρz (f

m
e (x) , c) is a quantization operator which

returns the sequence of closest codewords to fm
e (x) ,m = 1, . . . ,M and the parameter λ > 0. Here we overload the

quantization operator for both fe(x) ∈ ZM and fm
e (x) ∈ Z . Additionally, given z = [zm]Mm=1 ∈ ZM , z̄ = [z̄m]Mm=1 ∈

ZM , the distance between them is defined as dz (z, z̄) = 1
M

∑M
m=1 ρz (z

m, z̄m) where ρz is a distance on Z .

Proof of Theorem A.4.

Given the optimal solution C∗1, π∗1, f∗1
d , γ∗1, and f∗1

e of the OP in (4), we conduct the optimal solution for the OP in
(3). Let us conduct C∗2 = C∗1, f∗2

d = f∗1
d . We next define f̄∗2

e (x) = QC∗1
(
f∗1
e (x)

)
= QC∗2

(
f∗1
e (x)

)
. We prove that

C∗2, π∗2, f∗2
d , and f̄∗2

e are optimal solution of the OP in (3). Define γ∗2 = QC∗2#(f∗1
e #Px). By this definition, we yield

f̄∗2
e #Px = γ∗2 and hence Wdz

(
f̄∗2
e #Px, γ

∗2) = 0. Therefore, we need to verify the following:

(i) f̄∗2
e is a Borel-measurable function.

(ii) Given a feasible solution C, π, fd, γ, and f̄e of (3), we have

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≤ Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

. (19)

We first prove (i). It is a direct conclusion because the application of Lemma A.3 to C∗1, π∗1, f∗1
d , and f∗1

e .

We next prove (ii). We further derive as

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

+ λWdz

(
f̄∗2
e #Px, γ

∗2)
= Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

= Ex∼Px

[
dx
(
f∗1
d

(
QC∗2

(
f∗1
e (x)

))
, x
)]

= Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f∗1
e (x)

))
, x
)]

≤ Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f∗1
e (x)

))
, x
)]

+ λWdz

(
f∗1
e #Px, γ

∗1) . (20)

Moreover, because f̄e#Px = γ which is a discrete distribution over CM , we obtain QC(f̄e(x)) = f̄e(x). Note that C, π, fd,
and f̄e is also a feasible solution of (4) because f̄e is also a specific encoder mapping from the data space to the latent space,
we achieve

Ex∼Px

[
dx
(
fd
(
QC

(
f̄e (x)

))
, x
)]

+ λWdz

(
f̄e#Px, γ

)
≥ Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f̄∗1
e (x)

)
, x
))]

+ λWdz

(
f̄∗1
e #Px, γ

∗1) .
Noting that f̄e#Px = γ and QC(f̄e(x)) = f̄e(x), we arrive at

Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

≥ Ex∼Px

[
dx
(
f∗1
d

(
QC∗1

(
f̄∗1
e (x)

))
, x
)]

+ λWdz

(
f̄∗1
e #Px, γ

∗1) . (21)

Combining the inequalities in (20) and (21), we obtain Inequality (19) as

Ex∼Px

[
dx
(
f∗2
d

(
f̄∗2
e (x)

)
, x
)]

≤ Ex∼Px

[
dx
(
fd
(
f̄e (x)

)
, x
)]

. (22)

This concludes our proof.
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Lemma A.5. The WS of interest minπ minγ∈Γ Wdz
(fe#Px, γ) is upper-bounded by

1

M

M∑
m=1

Wρz
(fm

e #Px,Pc,πm) . (23)

Proof of Lemma A.5

Let α∗m ∈ Γ (fm
e #Px,Pc,πm) be the optimal coupling for the WS distance Wρz

(fm
e #Px,Pc,πm). We construct a coupling

α ∈ Γ(fe#Px, γ) as follows. We first sample X ∼ Px. We then simultaneously sample Cm ∼ α∗m(· | fm
e (X)),m =

1, . . . ,M . Let γ∗ be the law of [C1, . . . , CM ] and α∗ be the law of (fe(X), [C1, . . . , CM ]). Let define π∗m such that Pc,π∗m

is the marginal distribution of γ∗ over Cm. We then have γ∗ ∈ Γ(Pc,π1 , . . . ,Pc,πM ) and α∗ ∈ Γ(fe#Px, γ
∗). It follows

that

Wdz
(fe#Px, γ

∗) = E(Z,[C1,...,CM ])∼α∗ [dz (Z, [C1, ..., CM ])]

=E(fe(X),[C1,...,CM ])∼α∗
[
dz
(
[f1

e (X) , . . . , fM
e (X)], [C1, ..., CM ]

)]
=

1

M

M∑
m=1

E(fm
e (X),Cm)∼α∗m [ρz (f

m
e (X) , Cm)]

=
1

M

M∑
m=1

Wρz
(fm

e #Px,Pc,πm) .

min
π

min
γ∈Γ

Wdz
(fe#Px, γ) ≤ Wdz

(fe#Px, γ
∗) =

1

M

M∑
m=1

Wρz
(fm

e #Px,Pc,πm) . (24)

Corollary A.6. (Corollary 2.5 in the main paper) Given m ∈ [M ], consider minimizing the term:
minfe,C Wρz

(fm
e #Px,Pc,πm) in (4), given πm and assume K < N , its optimal solution f∗m

e and C∗are also the
optimal solution of the OP:

min
fe,C

min
σ∈Σπ

N∑
n=1

ρz
(
fm
e (xn) , cσ(n)

)
, (25)

where Σπ is the set of assignment functions σ : {1, ..., N} → {1, ...,K} such that the cardinalities
∣∣σ−1 (k)

∣∣ , k = 1, ...,K
are proportional to πm

k , k = 1, ...,K.

Proof of Corollary A.6.

By the Monge definition, we have

Wρz (f
m
e #Px,Pc,πm) = Wρz

(
1

N

N∑
n=1

δfm
e (xn),

K∑
k=1

πm
k δck

)
= min

T :T#(fm
e #Px)=Pc,πm

Ez∼fm
e #Px [ρz (z, T (z))]

=
1

N
min

T :T#(fm
e #Px)=Pc,πm

N∑
n=1

ρz (f
m
e (xn) , T (fm

e (xn))) .

Since T#(fm
e #Px) = Pc,πm , T (fe (xn)) = ck for some k. Additionally,

∣∣T−1 (ck)
∣∣ , k = 1, ...,K are proportional to

πm
k , k = 1, ...,K. Denote σ : {1, ..., N} → {1, ...,K} such that T (fm

e (xn)) = cσ(n),∀i = 1, ..., N , we have σ ∈ Σπ. It
also follows that

Wρz

(
1

N

N∑
n=1

δfm
e (xn),

K∑
k=1

πm
k δck

)
=

1

N
min
σ∈Σπ

N∑
n=1

ρz
(
fm
e (xn) , cσ(n)

)
.

B. Practical Algorithm for VQ-WAE
We first re-introduce the entropic regularized dual form of optimal transport by (Genevay et al., 2016) which enables the
application of optimal transport in machine learning and deep learning:
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Wϵ
d (Q,P) := min

γ∈Γ(Q,P)

{
E(x,y)∼γ [d(x, y)] + ϵDKL(γ ∥ Q⊗ P)

}
(26)

where ϵ is the regularization rate,DKL(· ∥ ·) is the Kullback-Leibler (KL) divergence, an Q ⊗ P represents the specific
coupling in which Q and P are independent.

Second, using the Fenchel-Rockafellar theorem, they obtained the following dual form w.r.t. the potential ϕ:

Wϵ
d (Q,P) = max

ϕ
{EQ[ϕ

c
ϵ(x)] + EP[ϕ(y)]} (27)

where ϕc
ϵ(x) = −ϵ log

(
EP

[
exp

{
−d(x,y)+ϕ(y))

ϵ

}])
.

We now present how to develop a practical method for our VQ-WAE by entropic regularized dual form (27). We rewrite our
objective function:

min
C,π,fd,fe


Ex∼Px [dx (fd (QC (fe (x))) , x)]

+ λ
M ×

∑M
m=1 Wρz

(fm
e #Px,Pc,πm)

+λr

∑M
m=1 DKL(π

m,UK)

 (28)

where λ, λr > 0 are two trade-off parameters and and UK =
[
1
K

]
K

.

To learn the weights π, we parameterize πm = πm(βm) = softmax(βm),m = 1, . . . ,M with βm ∈ RK . At each iteration,
we sample a mini-batch x1, ..., xB and then solve the above OP by updating fd, fe and C, β1..M based on this mini-batch as
follows. Let us denote

PB =
1

B

B∑
i=1

δxi

as the empirical distribution over the current batch.

For each mini-batch, we replace Wρz (f
m
e #Px,Pc,πm) by Wρz (f

m
e #PB ,Pc,πm) and approximate it with entropic regular-

ized duality form Rm
WS (see Eq. (27)) as follows:

Rm
WS = max

ϕm

{
1

B

B∑
i=1

[
−ϵ log

(
K∑

k=1

πm
k

[
exp

{
−ρz(f

m
e (xi), ck) + ϕm (ck)

ϵ

}])]
+

K∑
k=1

πm
k ϕm(ck)

}
(29)

where ϕm is a neural net named Kantorovich potential network.

Finally, we update fd, fe, C, β
1:M by solving for each mini-batch:

min
C,β1...M

min
fd,fe

max
ϕ1...M

{
1

B

B∑
i=1

dx (fd (Q (fe (xi)))) +

M∑
m=1

(
λ

M
Rm

WS + λrDKL (πm (βm) ,UK)

)}
. (30)

Note that we can optimize M WS distances Wϵ
dz

(fm
e #PN ,Pc,πm) in parallel by matrix computation from current deep

learning framework.

C. Analysis of λ and λr

In this section, we provide further elaboration on the rationale behind employing regularization on πm to enforce a uniform
distribution, as denoted by the third term in objective 8. The first motivation stems from the desire to ensure the utilization
of every discrete codeword. Specifically, we have observed that in the absence of KL regularization (i.e., λr = 0.0), the
complexity can be reduced. This reduction occurs because during the optimization of {πm}Mm=1, certain πm

k values can
significantly decrease and converge to zero, resulting in low usage of certain codewords.
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Table 6: Reconstruction performance of VQ-WAE with different λ values on CIFAR10 dataset.

Model λr λ rFID ↓ Perplexity ↑

VQ-WAE

1e−2 55.82 504.5
1.0 1e−3 54.30 497.3

1e−4 58.96 507.9

1e−2 68.99 445.8
0.0 1e−3 57.49 456.5

1e−4 58.17 467.8

VQ-VAE 77.3 69.8
SQ-VAE 55.4 434.8

Figure 5: Training and Validation curve of CIFAR10 with different λr.

Secondly, we have observed that training VQ-WAE without KL-regularization leads to divergence after convergence
(Figure 5.a). However, the addition of a small KL-regularization term not only enhances model performance but also
stabilizes the training process (Figure 5.b and Figure 5.c). Furthermore, the results presented in Table 6 demonstrate that in
the absence of KL-regularization (λr = 0.0), performance exhibits significant variability when the value of λ changes. This
finding suggests that incorporating the KL-regularization term reduces the model’s sensitivity to variations in λ. Additionally,
we report the performance of VQ-WAE on CIFAR10 with a fixed π assumed to be a uniform distribution (Table 6). The
findings indicate that extremely high perplexity can have a detrimental impact on performance.

D. Experimental Settings
D.1. VQ-model

Implementation: For fair comparison, we utilize the same framework architecture and hyper-parameters for both VQ-VAE
and VQ-WAE. Specifically, we construct the VQ-VAE and VQ-WAE models as follows:

• For CIFAR10, MNIST and SVHN datasets, the models have an encoder with two convolutional layers of stride 2 and
filter size of 4 × 4 with ReLU activation, followed by 2 residual blocks, which contained a 3 × 3, stride 1 convolutional
layer with ReLU activation followed by a 1 × 1 convolution. The decoder was similar, with two of these residual blocks
followed by two deconvolutional layers.

• For CelebA dataset, the models have an encoder with two convolutional layers of stride 2 and filter size of 4 × 4 with
ReLU activation, followed by 6 residual blocks, which contained a 3 × 3, stride 1 convolutional layer with ReLU
activation followed by a 1 × 1 convolution. The decoder was similar, with two of these residual blocks followed by two
deconvolutional layers.

• For high-quality image dataset FFHQ, we utilize the well-known VQGAN framework (Esser et al., 2021) as the
baseline.
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Hyper-parameters: Following (Takida et al., 2022), we adopt the adam optimizer for training with: learning-rate is e−3,
batch-size of 32, embedding dimension of 64 and codebook size |C| = 512 for all datasets except FFHQ with embedding
dimension of 256 and |C| = 1024. Finally, we train model for CIFAR10, MNIST, SVHN, FFHQ in 100 epoches and for
CelebA in 70 epoches respectively.

Time Complexity: We report extra computation required by VQ-WAE on CIFAR dataset. Note that we need to trains
a kantorovich network to estimate the empirical Wasserstein distance which take extra computation for training. In our
experiments, the kantorovich network is designed with a hidden layer of M × 64 nodes where M is the number of
components of a latent while 64 is the embedding dimension. The training steps ϕ-iteration is set to 5 which is chosen for
fast computation and sufficient optimization. Precisely on the system of a GPU NVIDIA Tesla V100 with dual CPUs Intel
Xeon E5-2698 v4, training VQ-WAE takes about 64 seconds for one epoch on CIFAR10 dataset, while training a standard
VQ-VAE only takes approximately 40 seconds for one epoch. For inference, both methods take the same time.

D.2. Generation model

Implementation: It is worth to noting that we employ the codebooks learned from reported VQ-models to extract codeword
indices and we use the same model for generation for both VQ-VAE and WQ-VAE.

• CIFAR10, MNIST and SVHN contain the images of shape (32, 32, 3) and latent of shape (8, 8, 1), we feed PixelCNN
over the ”pixel” values of the 8× 8 1-channel latent space.

• CelebA contains the images of shape (64, 64, 3) and latent of shape (16, 16, 1), we feed PixelCNN over the ”pixel”
values of the 16× 16 1-channel latent space.

Hyper-parameters: we adopt the adam optimizer for training with: learning-rate is 3e−4, batch-size of 32.
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