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ABSTRACT

We address the problem of learning nonlinear dynamical systems from a single
sample trajectory. While the least squares estimate (LSE) is commonly used
for this task, it suffers from poor identification errors when the sample size is
small or the model fails to capture the system’s true dynamics. To overcome
these limitations, we propose a robust LSE framework, which incorporates robust
optimization techniques, and prove that it is equivalent to regularizing LSE using
general Schatten p-norms. We provide non-asymptotic performance guarantees

for linear systems, achieving an error rate of O(1/y/T), and show that it avoids
the curse of dimensionality, unlike state-of-the-art Wasserstein robust optimization
models. Empirical results demonstrate substantial improvements in real-world
system identification and online control tasks, outperforming existing methods.

1 INTRODUCTION

Many real-world problems require learning unknown dynamical systems from data. Examples can
be from identifying the dynamics of mechanical systems like autonomous driving, to predicting
time-series data such as climate patterns and financial trends (Ng et al.| [2006; [Hong et al., 2008
Louka et al.| |2008}; Brunton et al., 2016} |Alaskar, |2019). In the control community, the problem
of estimating the parameters of a dynamical system is referred to as system identification. System
identification is crucial since accurate estimation of underlying systems is integral to developing safe
and reliable control systems.

In this work, we propose a robust system identification method for a certain class of nonlinear
dynamical systems, assuming only a single trajectory of data is available. Specifically, the system
is expressed as a linear combination of known nonlinear functions of the state and control inputs.
Such system models have been widely applied since they accommodate a broad range of dynamic
behaviors. One of the simplest system identification algorithms is the least squares method or the least
squares estimate (LSE), which minimizes the squared prediction errors of the given samples. Due
to the stochastic nature of the data, the performance of LSE cannot be deterministically guaranteed.
Moreover, since the data comprises a single trajectory of states resulting from the evolution of the
dynamical system, the samples are non-i.i.d. Recent works (Simchowitz et al.,|2018}|Jedra & Proutierel
2020) provide a non-asymptotic analysis of LSE, specifically addressing system identification errors
with respect to a finite number of non-i.i.d. samples. They show that the error decays as fast as the
optimal rate O(1/+/T) where T denotes the number of samples.

Although these theoretical results are promising, the empirical performance of LSE may suffer,
particularly when only a few samples are available or the model is misspecified. This limitation is
critical in applications where data collection is inherently restricted, or the true dynamics are highly
complex. To address these issues, we propose a robust approach that combines robust optimization
with LSE by formulating a min-max optimization problem, referred to as the robust LSE problem.
We show that the robust LSE problem can be cast as a convex semidefinite program (SDP), making
it tractable to solve. Additionally, we provide a non-asymptotic analysis for our approach and
demonstrate that robust LSE achieves a near-optimal error rate of O(1/+/T). Interestingly, we show
that our robust LSE problem is equivalent to the LSE problem with an additional regularization term
based on the general Schatten p-norm. While a few special cases of Schatten p-norms have been used
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to regularize LSE problems (Abbasi-Yadkori & Szepesvari, 20115 Sun et al.;[2022), these methods do
not guarantee asymptotic convergence to the true system parameters under a single trajectory. To our
knowledge, our work is the first to provide a non-asymptotic analysis for LSE with general Schatten
p-norm regularization under a single trajectory.

An alternative data-driven robust approach to ours is the state-of-the-art Wasserstein robust optimiza-
tion (Mohajerin Esfahani & Kuhnl 2018), which has gained considerable attention in the machine
learning community for its promising performance (Shafieezadeh Abadeh et al., 2018 |Liu et al.,[2022;
Nietert et al.,2024; [Bai et al., | 2024). However, this approach suffers from the curse of dimensionality:
for systems with a high-dimensional state space, its error rate decays slowly.

The contributions of this paper are summarized as follows:

i. We introduce a novel system identification algorithm that combines robust optimization with
the LSE framework. Additionally, we establish the equivalence between our robust LSE
problem and the LSE problem regularized by the Schatten p-norm. This is significant for
the regularization framework because, as noted in (Abu-Mostafa et al.| [2012), “most of the
regularization methods used successfully in practice are heuristic methods.” The equivalence,
however, enables regularization to borrow a probabilistic interpretation from robust optimization,
suggesting that the regularization term should be data-dependent to ensure good out-of-sample
(i.e., test) performance.

ii. We provide a theoretical performance guarantee for our robust method, achieving an error rate of
o1/ /T). This result is notable not only as the first performance guarantee for regularized LSE
under the single trajectory setting but also because it shows that our robust LSE circumvents
the curse of dimensionality, unlike the emerging data-driven Wasserstein robust optimization
models—hence, offering new insights into the robust regression literature.

iii. We conduct numerical experiments that demonstrate substantial performance improvements in
real-world system identification tasks, such as short-term wind speed prediction and identifying
various dynamical systems. Additionally, we showcase its effectiveness in online control
tasks by integrating our robust LSE with existing online linear quadratic control algorithms,
demonstrating consistently better performance compared to existing methods.

FUTHER LITERATURE REVIEW

There has been a recent emergence of interest in deriving non-asymptotic systems identification
errors. Most works focus on analyzing performance of the standard LSE (Simchowitz et al.| 2018},
Faradonbeh et al., [2018; |Sarkar & Rakhlin, [2019; [Mania et al., [2019; [Foster et al., [2020; [Dean et al.,
2020; Jedra & Proutiere, [2020; [Sattar et al., 2021; Kowshik et al., 2021} Sattar & Oymak, [2022;
Mania et al.,|2022; L1 et al., |2023)). One advantage of analyzing the standard LSE is that the system
identification error term, which is the main interest of the analysis, can be analytically obtained using
the solution to the LSE problem. This term can then be broken down in various ways, enabling
different approaches to address the resulting components.

While theoretical guarantees for LSE appear promising, the empirical performance degrades in
real-world applications where available data is scarce, resulting in subpar estimates (Sun et al.| [2022).
We employ robust optimization techniques (Ben-Tal et al.,|2009) to enhance the resilience of LSE.
The key idea of robust optimization is to find solutions that perform optimally against the worst-case
realizations of uncertain data. (Dean et al., 2020) assume i.i.d. samples and utilize the standard LSE
for system identification. They construct an uncertainty set of system parameters around the resulting
estimate. They then solve a min-max problem, referred to as the robust LQR problem, to determine
the best control input against the worst-case system parameter in the uncertainty set. In contrast, our
approach directly formulates a min-max problem for system identification, seeking the best system
parameter against the worst-case realizations of the data. To the best of our knowledge, no prior work
has proposed a robust LSE problem formulation presented in this paper.

As stated in our contributions, the non-asymptotic analysis proposed in this paper is not limited
to our robust LSE. It can be extended to the regularized LSE problem, where the regularization
term is defined as the Schatten p-norm of a quadratic function of system parameters multiplied by
a user-defined (scalar) tuning parameter—henceforth referred to as the regularization parameter.
Special cases of the Schatten p-norm regularization are proposed in the literature (Abbasi-Yadkori
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& Szepesvari, 2011; |Sun et al.,[2022). In (Abbasi-Yadkori & Szepesvari, |2011), they introduce the
squared Frobenius norm of system parameters with the regularization parameter set to a some small
fixed value, hence the convergence of their estimate to the true system parameter is not guaranteed. In
(Sun et al.l[2022), they consider systems with limited state observations, i.e., states cannot be directly
observed. They introduce the nuclear norm of the Hankel matrix to their LSE problem and derive the
non-asymptotic impulse response estimation errors only for the MISO (multi-input single-output)
system under the assumption that i.i.d. samples are available. These papers do not provide guidance
on how to adjust the regularization parameter as a function of the number of available samples.

NOTATION

Bold lower-case letter = and upper-case letter X represent a vector and a matrix, respectively, while
regular font x indicates a scalar. An n x n dimensional identity matrix is denoted as I,,. For any
real-valued n x m matrix X € R"*™, || X ||, represents the Schatten p-norm of the matrix, which
is defined as || X ||, = (tr(X " X)P/2)1/P. For several special cases of the Schatten p-norm, we
may interchangeably use the following notations: nuclear norm || - ||, = || - ||1, Frobenius norm
|- I|7 = || - |2, and operator norm || - || = || - ||co- In the entire paper, we will not use matrix norms
induced by vector norms to prevent any confusion. We may use ||| for the Euclidean norm (i.e., /2
norm). In this case, the notation should be still clear since the norm is taken on a bold lower-case.
For any square matrix X € R™*", the trace operation is denoted as tr(X). The spectral radius
denoted p(X) is the largest absolute value of the eigenvalues of X. To denote an n X n positive
(semi)definite matrix X, we may interchangeably use X € S, (X € §%})and X > 0 (X = 0).

We use the standard O(-) notation. In addition, O(-) is used to suppress multiplicative terms with
logarithmic dependence.

2 PROBLEM STATEMENT

Consider the following class of nonlinear dynamical system models
Tit1 :9*¢(mt7ut)+wta tZO,,T—l (1)

Let x; € R”, uy € R™, and w; € R"™ represent the state, control input, and noise at time ¢,
respectively. The feature map ¢ : R™ x R™ — RP is an arbitrary, known nonlinear function. To
simplify notation, we use the feature map interchangeably as ¢(x;, u;) and ¢(z;), where z; =
[z u/]T € R"*™ is the augmented vector of the state and control input.

Our goal is to recover the unknown parameters 8* € R™*P from a single trajectory of data. The
model (I)) is versatile enough to capture a broad range of real-world applications, from mechanical
systems like autonomous helicopters and bipedal robots to time-series models commonly used in
financial markets, weather prediction, and epidemiology for modeling disease spread (Ljung} 1998
Ng et al.,|2006; |[Hong et al., 2008; Louka et al., 2008; Brunton et al., 2016; |Alaskar, 2019).

2.1 LEAST SQUARES ESTIMATE

The least squares estimate (LSE) is widely used for system identification. Given a single trajectory
({z:}/=', @), the LSE denoted as @7 minimizes the sum of the squares of the residuals:
=
Or = argmin > s — 06(z)]l5 - 2)
6 t=0

Let us refer to the minimization in (2)) as the LSE problem. Note that the objective function in (Z)) is
quadratic in 8. Therefore, we can rewrite the LSE problem as

min lg [xt‘*l}T { L, _9] [$t+1} = min tr (G(O)QT) 3)
0" T 2 |o(z)| |-67 070] [6(=0)] ~ " :

where G(0) = { In _0] and O = sz_:l [$t+1:| |:mt+1]—r @)
= 1| _pT 0T0 T — T vt ¢(zt) QZ)(zt) .
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We can express the frue LSE problem by substituting ﬁT in with its expectation, namely,
Q% = E[Q7]. Then, one can obtain the system parameter by solving the true LSE problem:

0* = argmin tr (G(0)Q7). 5)
0

From (E]) it is clear that obtaining the true system parameter requires knowledge of €2%., while the
empirical estimate (27 inherently contains estimation errors that depend on the available data. In

other words, a poor estimate 27 may lead to inferior performance, which is commonly the case
when the sample size 7" is small or, in our context, a short trajectory of data.

3 ROBUST LEAST SQUARES ESTIMATE

As mentioned earlier, the estimate ﬁT based on 7" non-i.i.d. samples may fail to accurately capture
Q% when T is small. Even with a sufficiently large 7', the standard LSE @ in (2) may still perform
poorly in practical applications where the model (I)) does not adequately reflect the true behavior of
the dynamical system. To address this issue, we formulate a robust version of the LSE problem to

obtain a robust estimate, denoted as O

Or = argmin max tr(G(6)2) where Uy = {Q € Si’”m Q= ﬁT”p < 6} . (6)
6 Qeulc

The proposed approach (E)]) first constructs the uncertainty set 7' which contains all positive

semidefinite matrices {2 that are within a distance of € > 0 from the estimate Q in the Schatten
p-norm. Then, it seeks a minimizer 1 that performs best under the worst-case matrix €2 in L[é’is.
However, the min-max problem in () is difficult to solve directly since the objective function involves
a maximization problem. In the following, we introduce an equivalent semidefinite program (SDP)
for the robust LSE problem. To our knowledge, the proposed formulation has not been derived in the
literature of robust regression problems.

Theorem 1. For any given uncertainty set parameters p > 1 (as in the Schatten p-norm) and € > 0,
the robust LSE problem in (6)) can be equivalently reformulated as the SDP

min  tr(TQ7) + €| T,
st. Q¢ Rnx(ner)’ Te Si”-‘rm, H e S’j_—f—m,

r=| %ow | )

I, 6
|: OT H :| = 07
where || - ||4 is the dual Schatten norm of || - ||, that is, q such that % + % =1

Note that the Schatten p-norm defined in (6)) corresponds to the Schatten g-norm in the objective
function in (7). For any ¢ > 1, the reformulation (7)) is a convex SDP. In particular, for several choices
of g such as ¢ = 1, 2, o0, it is readily solvable by off-the-shelf commercial solvers. Moreover, the
computational complexity of our approach is invariant to the number of samples 7, i.e., the size of

the SDP || remains the same regardless of 7" since the model only requires the matrix .

Interestingly, the robust LSE problem admits an equivalence to the regularized LSE problem as shown
in the following corollary.

Corollary 1. For any given uncertainty set parameters p > 1 and € > 0, the robust LSE problem ([6)
is equivalent to the LSE problem with the Schatten q-norm regularization term as follows:

min tr (G(o)ﬁT) + |G, ®)

A few remarks are in order. If the nuclear norm (i.e., ¢ = 1) is used in (8), then we have ¢||G(8)|. =
€||@]|% + en. Thus, the regularization term simplifies to a squared Frobenius norm regularization on
0, and the resulting problem constitutes a tractable quadratic program. Corollary [I|further draws
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an interesting connection between the robust LSE and the regularized LSE in (Abbasi-Yadkori &
Szepesvaril 2011)). In that work, the regularization parameter ¢ is set to a small fixed value. However,
it lacks a clear explanation of how the regularization impacts the performance of the LSE since it is
introduced merely to ensure the invertibility of the term ZtT;()l @41, | (known as the Gram matrix
as discussed in the following section). In this case, a convergence rate on the system identification
error cannot be established. Our result, therefore, not only provides a justification for the use of
squared Frobenius norm regularization but also guidance on how to control the parameter as the
sample size 7" increases. The recent work (Sun et al.| [2022)) uses a Hankel nuclear norm regularization
to identify low-order linear systems using i.i.d. trajectories. They recognize that the regularization
term yields better performance than the unregularized LSE when the number of samples is small.
However, to the best of our knowledge, there is no prior non-asymptotic analysis for the LSE with
general Schatten norm regularization under the single trajectory assumption. In Section[d] we provide
non-asymptotic analyses for the robust LSE problem, which ultimately results in system identification
errors.

4 PERFORMANCE GUARANTEES

Among the simplest examples of (IJ) is the linear system, where the feature map is defined as

é(xs, ur) = [z] u/]T. In this case, the system evolves according to x; 11 = A*xz; + B*u; + wy,
where the unknown parameters are 8* = [A* B*] € R™*(™*™) 1n fact, much of the statisti-

cal analysis concerning LSE performance focuses on understanding the sum of outer products,
Z;T:_Ol i1, 1, known as the Gram matrix. Suppose that the sequence of control inputs is gen-
erated by a Gaussian distribution, e.g., u; ~ N(0,021) fort = 0,...,T — 1. Then, the expected

Gram matrix E[ZZ:OI @12/ ], which corresponds to the first diagonal block of £2%. in li can be
nicely represented as a matrix-valued function of the unknown system parameter 60™:

T—1 T—1 T—1 t
E|> mt+1mj+1] =) T(6)=> Z(A*T)S(agB*B*T +3,) (A%, )
t=0 t=0

t=0 s=0

Of course, the expected Gram matrix @) is not accessible to us since it requires 6*.

In this section, we discuss the non-asymptotic guarantees of our robust approach for linear systems
under the single trajectory assumption. Specifically, our goal is to show that the system identification

errors of our robust method matches the near-optimal rate O(1/+/T)). This suggests that introducing
robustness incurs only negligible costs in terms of 7', while providing significant empirical improve-
ments over the unregularized LSE in ([2) (henceforth referred to as the standard LSE), as discussed in
the following section.

Asnoted in (T'siamis et al.} 2023)), despite its apparent simplicity, the linear system remains challenging
to analyze. The majority of research in statistical learning for system identification has focused on
linear systems, as this setting allows for more tractable theoretical analysis. While a few papers have
analyzed certain classes of nonlinear systems, these often sidestep the core challenges by focusing on
systems that exhibit near-linear behavior (Foster et al.| [2020; |Sattar et al.,2021; Kowshik et al., 2021}
Sattar & Oymakl2022; Mania et al., 2022).

For the standard LSE, many works have established optimal rates of convergence. A key advantage
of analyzing the standard LSE is that the system identification error can be directly derived from
the analytical solution to the LSE problem in . Specifically, the error is given by 87 — 8* =
( tT;()l wz] )(ZZ:OI z;z )71, This expression allows the error term to be decomposed in various
ways to enable different types of analysis (Simchowitz et al., [2018}; [Sarkar & Rakhlin, [2019; Jedra
& Proutiere, 2020). However, these decomposition techniques do not apply to our robust LSE, as
the error term for the robust estimator, i.e., &7 — 6*, no longer has a convenient analytical form.
Therefore, a different approach is required for our analysis.

4.1 ASSUMPTIONS
We formally state our assumptions for the analysis in this section.

Al. We consider a strictly stable system, i.e., p(A*) < 1.
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A2. The data, i.e., observed states of the system (I)), is collected in a single trajectory of length 7"+ 1
denoted as {z;}}~, € R™T+1) with the initial state o = 0.

A3. Let {F;}+>0 be a filtration and {a; },>¢ be a stochastic process such that «; is F;_1 measurable.

A4. The noise w; is a martingale difference sequence with respect to F; with E[w;|F;—1] = 0 and
Elww, | Fi_1] = 2y = 021, = 0.
2

AS. Furthermore, we assume that w; is a o, -conditionally sub-Gaussian random vector with respect
to Fy, i.e., for any unit vector v € R", the inner-product v w;isa ofu—sub—Gaussian random
variable conditionally on F;.

A6. The control input u is an i.i.d. o2-sub-Gaussian random vector with E[u;] = 0 and E[u;u/ | =
021,,. In other words, we inject sub-Gaussian exploration noise into the system to identify the
system parameter 6*.

These are standard assumptions in the literature. In particular, assumptions [A3}JA5] enable us to
utilize tools from the self-normalized process (Abbasi-Yadkori et al.,[2011). The main challenge in
our analysis arises from the single trajectory assumption made in[A2. as this trajectory consists of
non-i.i.d. samples. Due to this difficulty, some previous works rely on a more stringent assumption
that 7" multiple independent trajectories are available, taking only the last state from each trajectory to
ensure that those 7" samples are i.i.d. Our main theoretical contribution lies in deriving non-asymptotic
guarantees of the proposed method using non-i.i.d. samples.

We first provide the non-asymptotic coverage guarantee of our uncertainty set in (6), which is
eventually used as the main ingredient for our system identification error analysis.

Proposition 1. (Non-asymptotic coverage guarantee). For any significance level 6 € (0, 1], we have
P2 € UL(8)] > 1 -6, (10)
Here, UY.(8) is the uncertainty set for the robust LSE problem in (@) defined as follows:

UE(6) = {n €S L 10— Qr, < 6(5)} and ¢(8) = O(1/VT). (1)

Before discussing the main results, we make several comments about Proposition E} While the
upper bound ¢(9) in can be made more explicit by identifying the universal constants, it would
be an overly conservative estimate and thus lack practical usage by itself. Instead of relying on
such a conservative a priori bound, it is common practice to calibrate the regularization parameter,
using the cross-validation procedure (Arlot & Celisse, |2010; Mohajerin Esfahani & Kuhnl 2018
Shafieezadeh Abadeh et al.| [2018]; [Bachl [2024). In the following section, we will use cross-validation
to select the initial regularization parameter. In this context, Proposition [I|becomes practically useful,

as the rate (5(1 /V/T) offers guidance on how to scale the regularization parameter of the robust
LSE as the sample size increases. We believe that these results are insightful from a broad range of
perspectives, including machine learning, system identification, and robust optimization.

In the system identification literature, regularization is often applied merely to ensure strong convexity,
with the regularization parameter typically set heuristically to a small value (Abbasi-Yadkori &
Szepesvari, 20115 Sun et al.,|2022)). Our results, however, suggest that the regularization parameter
should be data-dependent to achieve good out-of-sample performance guarantees. To the best of our
knowledge, there are no existing works that provide a theoretical analysis of the regularized LSE
under a single trajectory.

In the literature on robust optimization, (Mohajerin Esfahani & Kuhnl 2018)) introduces the state-of-
the-art Wasserstein robust optimization model under the i.i.d. data setting. While their model could,
in principle, be an alternative to ours, their analysis reveals that the Wasserstein model unfortunately
suffers from the curse of dimensionality, i.e., their error rate O(1/T 2) becomes slower as the
dimension of the state space, n, increases. Although a more recent work (Gao, [2023) addresses
this challenge by deriving dimension-free non-asymptotic guarantees under the Lipschitz continuity
assumption with respect to 8, it may not easily generalize and, more importantly, it is not applicable
to our problem. While the Wasserstein model has garnered significant attention in the machine
learning community for its promising performance across various applications (Shafieezadeh Abadeh
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et al., 2018 [Liu et al.|, 2022; Bai et al.} [2024} Nietert et al. [2024)), there is still an open question
about whether the error rate can be improved. In this regard, our results provide new insights into the
open question by avoiding the curse of dimensionality, even under the more stringent assumption of
non-i.i.d. data from a single trajectory.

Building upon the insights from Proposition I} we now turn to the analysis of the non-asymptotic
system identification errors. Specifically, the following theorem applies to both the robust LSE and
the regularized LSE, due to their equivalence.

Theorem 2. (System identification errors). Suppose that €(0) is the upper bound in . Then, for
any significance level 6 € (0, 1], as long as

T=T(0)= (4?)0) (log (;) +2(n 4+ m)log <220> + logdet (f1F11)>

~ INTCA 0
Fl:[ 12)) 21,

where
n+m

} and T1 = E[z121'],

we have the following system identification errors

N §)/mi
Ple*—eTnsG” mén{n’m}<2+2||9*n+||veA<0*>|q>]zl—6, (12)

where & = i (%)Qmin{UQ o

wrru

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to evaluate the performance of our proposed method.
Both the proposed approach and benchmark models are implemented in Python 3.7. Specifically, the
neural network model is implemented using TensorFlow (Abadi et al.l 2015), while the optimization
problem @) is modeled with the CVXPY (Diamond & Boyd, 2016) interface and solved using the
commercial solver MOSEK (ApS}2024)). All experiments were conducted on a laptop equipped with
a 6-core, 2.3 GHz Intel Core i7 CPU and 16 GB of RAM. The SDP formulations for the examples in
this section can be solved in under 0.1 seconds. In the supplementary materials[A.6 we provide the
mean computational times for several example systems.

We compare our robust LSE with the standard LSE for the wind speed prediction problem and
learning synthetic dynamical systems. Additionally, we consider an online control task where we
combine our robust LSE with the existing online linear quadratic (LQ) control algorithms. We then
compare the regret of different algorithms to demonstrate how improved performance in system
identification can be translated into more reliable control systems.

As commented earlier, while the theoretical error rate (5(1 /V/T) derived in Proposition |1|is still
useful, choosing the regularization parameter directly from the theoretical upper bound €(9) leads

to a too conservative estimate @p. In fact, a similar argument is made in (Dean et al.| [2020).
Instead of adopting the theoretical guarantee, the authors use the standard bootstrap method to
obtain an empirical upper bound €(¢) on the system identification errors of the standard LSE, i.e.,
|0* — 67| < €(6). For the robust LSE, we use a 3-fold cross-validation procedure to determine an
initial value of the regularization parameter, as follows. We split the samples into three equal-sized
subsets where two of the three subsets are put together to learn the robust estimate. The resulting
estimate is then tested on the remaining set for all ¢ = (a - 10°) //T where a € {1,3,5,7,9} and
b e {-3,...,3}. This process is repeated three times for different partitions of the samples to choose
the € that performs best overall.

5.1 WIND SPEED PREDICTION

We address the wind speed prediction problem as an example of learning an underlying nonlinear
time-series model. Accurate wind speed prediction is essential for the safe integration of wind
energy into power grids. However, the nonlinear nature of wind speed makes this task particularly



Under review as a conference paper at ICLR 2025

challenging and an active research area, with various approaches being proposed, including physics-
based models and neural network-based designs (Louka et al., 2008} [Liu et al., 2018} |Chen et al.,
2021;|Cai1 et al., 20215 [Theuer et al., 2021; |Hazarika et al., 2022). A recent work (Chen et al., [2024)
decomposes the raw wind speed data into simpler nonlinear components known as intrinsic mode
functions (IMFs) using the Hilbert—-Huang transform (HHT) based on complementary ensemble
empirical mode decomposition. Neural network models are employed to learn the IMFs, and the
standard LSE is used to determine the optimal weights for these learned nonlinear functions.

Note that the nonlinear function ¢(-) is not given explicitly in this experiment but is learned via the
neural network model, making the problem more challenging than our problem setup. We chose the
wind speed prediction problem because a successful implementation would demonstrate that complex
nonlinear systems can be effectively learned by combining machine learning and optimization
methods without extensive domain knowledge. Using the wind speed data from (fedesoriano, | 2022)),
we implemented the optimized HHT-NAR method from (Chen et al., 2024) (here simply referred
to as LSE), along with our robust version, and evaluated the prediction accuracy for the next 50
daily wind speeds. Figure[T]shows prediction results for both methods using a single trajectory of 30
sample points (i.e., T' = 30).
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Figure 1: Daily wind speed predictions for a 50-day period. The training sample size is 30 for both
LSE (red) and robust LSE (green). The predictions for the next 50 days are compared to the actual
wind speed (solid gray line).

We replicated the experiments across 20 different datasets with varying training data sizes (i.e.,
increasing 7") and recorded the root mean squared errors (RMSE) as a measure of system identification

(i.e., prediction) errors. Figure 2]shows that our approach achieves significant improvement over the
standard LSE.
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Figure 2: Mean wind speed prediction errors over 20 test datasets: mean RMSE (solid lines) on a
log scale, with the 10th and 90th percentiles represented by filled areas (left) and mean percentage
improvement of the robust LSE over the standard LSE (right)
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5.2 LEARNING DYNAMICAL SYSTEMS

Instead of focusing on particular dynamical system examples (in the upcoming online control
experiments, we will consider standard examples from the literature), we randomly generated four
sets of 500 synthetic systems 8* = [A* B*] € R5*10, each set having the same spectral radius
p(A*) ranging from 0.1 to 0.8. We compared the system identification errors of the robust LSE and
the standard LSE as we collected more samples (i.e., increasing 7") over time. We observed that the
smaller p(A*) is, the greater performance improvement the robust LSE achieves over the standard
LSE. Figure [3| shows the mean system identification errors in the operator norm when p(A*) = 0.8.

N

w
o

—=— LSE 9 \ —+— Robust LSE |
g 3.0 —— Robust LSE | ¢ 25
£ -\ =
o 2.5 g 20
€
€204+ ¢ 15
o o
c S_ \
% 1.5 £ 10
<10 & 5 .
. \-_ ()]
s *._\-\_“ s o \0\‘___‘\’_\‘—‘0
20 40 60 80 100 20 40 60 80 100
T T

Figure 3: Mean system identification errors over 500 synthetic systems with p(A*) = 0.8: mean
errors (solid lines) in the operator norm, with the 10th and 90th percentiles represented by filled areas
(left) and mean percentage improvement of the robust LSE over the standard LSE (right)

5.3 ONLINE LINEAR QUADRATIC CONTROL

To showcase how our robust LSE can be used to design reliable control systems, we performed
online LQ control tasks using standard examples in the literature: i) the longitudinal flight control
of Boeing 747 from (Ishihara et al.,|{1992), ii) a marginally unstable Laplacian system from (Dean
et al., |2020), and iii) UAV in a 2D plane from (Zhao et al., 2021). We considered several online
LQ algorithms proposed in recent years: 1) OFULQ from (Abbasi-Yadkori & Szepesvari, 201 1), 2)
STABL from (Lale et al.}2022), 3) ARBMLE from (Mete et al.,2022). Broadly speaking, these
algorithms conduct two main tasks: identifying the system and deriving the best control input. In
particular, OFULQ and STABL utilize the standard LSE for their system identification task. Hence,
we can replace the standard LSE with the robust LSE which we referred to as 4) R-OFULQ and 5)
R-STABL.

For each of the algorithms 1)-5), we ran 500 simulations over the time horizon 7' = 1000 and
recorded the mean regrets. Due to space constraints, we only present the result for the Boeing 747
example in Figure[d} the plots for the other examples are provided in the supplementary material [A.5]
Every algorithm presented in our experiments requires several parameters. We adopted the parameter
setups suggested by the corresponding papers. However, we acknowledge that their setups are not
identical to each other. For example, some papers start recording regret after £ = 50, while others
assume a tight upper bound on ||@* — 6;|| is available at each time step t. Irrespective of the choice
of the Schatten norm parameter g, our algorithms offer significant advantages over other benchmark
algorithms. The results demonstrate not only that the robust LSE can be utilized for various online
control algorithms, but also that optimizing the regularization parameter in real-time (i.e., with respect
to T') for both the robust LSE and the regularized LSE is indeed advantageous.

6 CONCLUDING REMARKS

We have presented a robust framework for system identification by leveraging robust optimization
methodology to immunize the standard LSE against small sample estimation errors and model
misspecifications. We derive non-asymptotic guarantees on the system identification errors of our
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Figure 4: Mean regret over 500 replications: i) Boeing 747

method by analyzing the concentration of a single sample trajectory of data. Notably, robustifying
the estimation achieves the near-optimal error rate and shows substantial empirical improvement.
While our analysis is based on a single trajectory, we emphasize that our framework can be applied
straightforwardly to the simpler setting where multiple trajectories are available.

Our proposed formulation constitutes a simple semidefinite program, which is easy to implement using
standard off-the-shelf solvers. In the special case when the co-norm is used in the uncertainty set, the
formulation reduces to an efficiently solvable quadratic program. The experimental results on standard
examples showcase the significant advantage of our robust model as it achieved unprecedented
performance. When further deployed in online LQ control algorithms, the robust system estimates
yield substantially lower regret than the standard LSE, demonstrating the practical advantage of our
scheme.

In terms of limitations, our current work focuses on fully observable systems. So, future work will
concentrate on developing a robust optimization framework to identify non-observable systems with
performance guarantees.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROOF OF THEOREMIII

Proof. Dualizing the inner maximization problem with the constraint ||Q2 — Qr ||, < € given by our
uncertainty set, we have

max min tr(G(0)2) + Ae — \[|2 — ﬁTHp

Q-0 A\>0
= max min tr(G(0)S2) + Ae — \|1I“Iﬁ?)§{>\ tr (1" (Q - QT)> (13)
= max min tr(G(0)82) + Xe + HFHHliI%)\tr (1" (QT - Q)) (14)
= min & (rQT) + A+ max tr((G(6) - D)) (15)
Tl <A
- A I, -6
- min (I‘QT) e st.T - { iy } (16)
Tl <A
. a I, -0 L, 6
~ win tr(FﬂT>+)\e s.t.1“>[6,T H}’{OT H}»o. (17)
IT]g<A,
H>0

In the first equality , we use the definition of the dual norm for A\||©Q2 — Qr||,. As in the second
equality (14), we can convert the maximization to a minimization since max f(-) = — min — f(-).
The third equality (T3) exploits strong duality by following the standard results of the convex analysis
(see Theorem 1, Chapter 8 in (Luenberger, [1997)). The feasible set of (A, T') defined in is
a convex set, and the objective function of the inner minimization problem is convex in (A, T').
Furthermore, we can show the existence of an interior point in the feasible set, that is, there always
exists some I" such that the following strict inequality holds: ||T'||, < A for any A > 0. Hence, strong
duality holds. Then, the maximization over €2 in @]) leads to a restriction of the feasible set which is
given by the constraint in (L6). In other words, (G(6) — T') in needs to be negative semidefinite.
In the last equality, we linearize the quadratic term 87 by following Lemma 4 in (Mittal et al.,
2020). Then, we can combine the minimization in with the minimization over 0 in . Finally,
reversing the epigraphic reformulation ||T'||, < A in the equality yields the problem formulation
(7), which is a semidefinite program. O

A.2 PROOF OF COROLLARY 1]

Proof. By reversing the epigraphic reformulation || L[|, < X in (16), we have

07 0760
=G(8)

Suppose that A, B,C = 0 and A > B. Then, the following is true: tr(AC) > tr(BC). Recall
that positive semidefinite inequality > implies ordering on matrices known as Loewner’s ordering.
One property of the Loewner’s ordering is that A > B = 0,(A) > o,;(B) for all i where o;(+)
denotes the -th singular value of the corresponding matrix (note that the converse is not necessarily
true). Also, by definition, the Schatten g-norm is equivalent to the ¢?-norm of the vector of singular
values, i.e., ||All, = [|[01(A), ..., 0, (A)] "]y = (X, |0s(A)|9)'/9. Using these facts, we can
conclude that I' = G(8) holds when I" and 6 are the minimizer of the problem . Hence, the
problem (T8) is equivalent to (8). O

. - I, -8
min tx (FQT) + [T, st.T = [ } . (18)
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A.3 PROOF OF PROPOSITION[]]

Proof. Proving amounts to showing that the distance between £27. and ﬁT is small w.h.p.:

1925 — Qrll, < €(d) w.p. at least 1 — §. Here, we derive the upper bound ¢(d) for p = oo, i.e.,
the case where the norm in (II) defined by the Schatten co-norm (equivalently, operator norm
[l -1l =1l - lloo)- Due to the equivalence of norms, it is easy to show similar bounds for any p > 1
with different dimensional factors.

Note that £ can be explicitly expressed as follows:

T-1[T x T
R 1 t+1 t+1
QT—TZ[ @ [ @t (19)
=0 U U
T (A*zy + B*uy + wy) ] (A" + Buy +wy) u
= — Z xy (A*x, + B uy + 'wt)T xix] xou
=0 | wy (A*x; + Bruy +wy) | e wiu,
(20)

Similarly, 27 is expectation of 1) ie, Qp = ]E[SAIT} Hence, using , we can establish the
following inequalities:

125 - Q) <2(1+ 1A% 7

T-1
E ZCtCCt — E :cta:;r
t=0

(@)

T-1 T-1
+27 Zwtwt] > wm] | +2(14 A% + HB*|| Zutwt] -y wa]
t=0 t=0
(b) (c)
+ (1+2HB*|| Zutut ] Zutut Zwtut ] Zwtut
t=0

(d) (e)
Our goal is to bound each of the terms (a)-(e), and then combine the results to complete the proof.
@)

Notice that we analyze the difference between the Gram matrix and its expectation with factor (1/7").
Similar results are discussed in (Jedra & Proutiere, 2020)). First, we introduce the preparatory result
in (Jedra & Proutiere, [2020).

Suppose p(A) < 1 for a matrix A € R"*™. Consider a t x t block Toeplitz matrix
I, 0 0o O
A I, 0

H, = € Rmtxnt, 1)

0
0
I

At.—l At.—2
Then, for any ¢ > 1, there exists a finite constant 7 (A) > 0 that only depends on A such that
[1H: || < T(A ZIIA‘SH (22)
where 7 (A) is specifically the limit of a matrix power series Y__ || A*||.
(Jedra & Proutiere, 2020) analyze the sample complexity of the unregularized LSE where an unknown

system is uncontrolled. (i.e., identifying only A*). We can derive a similar result to Lemma 2 in
(Jedra & Proutiere}, |2020).
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Under an i.i.d. sub-Gaussian exploration noise, our dynamic system can be written as ;1 = A*x;+
7 where 7); is a zero mean noise with a covariance matrix X,, := E[n;n,'] = 02B*B*T + %,,.
Then, we can define vectorized states of the system up to time 7":

T

T o Mo ¥, 0 O
=H;C,/?¢ e R"" where C,, = E : : =1 o o | s’
xT NT—1 NT-1 0o 0 X,
&o
and £ = e R"7 is isotropic, i.e., E[€€ ] = I,p (23)
Er—1

To simplify the notation, let us define the reciprocal of the square root matrix of the expected Gram
matrix as follows:

T—1 -1/2 T—1 ¢ -1/2
M := (; rt(a*)> = (Z ZO(A*T)S(agB*B*T +Zw)(A*)S> :

t=0 s=

Then, we can establish the following equalities:

T-1 T—1
||MTZ:ct:c:Mf]InH: sup |u' MTZa:t:ctTMf]In u (24)
t=0 [lul2<1 =0
T-1 )
= sup (I &) Mul} B [|SLta] Mul;] (25)
lull2<1| =g
= s [IZhn HrCl 2613 — B [I=hn HrCl €] | 6)
Ujl2>
= sw |[Z3,HrC2E)5 — 1287, Hr C? |13 @7
[lull2<1
Mu O 0
where X pr. = 0 0 € R""*T in (26)) is a block diagonal matrix.
0 0 Mu

The first equality (24) is the variational form of the operator norm. In the last equality (27), we
use the fact that E[[[D¢||3] = tr(D T DE[¢€T]) = || D||% for an isotropic vector £&. The objective
function in can be written as | |£TWE| — [E[¢T WE]| | where (€T W E€)w ey indexed by a set
of matrices WV is referred to as a chaos process.

We omit the remaining steps since they are identical to the proof of Lemma 2 in (Jedra & Proutiere,
2020) once we recognize that is the supremum of a chaos process. The main idea for the remain-
ing steps is that the Hanson-Wright inequality (Hanson & Wright, [1971) provides the concentration
bound on when w is fixed. Then, we can use the e-net argument, i.e., discretizing the feasible
region U/ = {u : ||ul|2 < 1} and combining the bounds for all w € U(e) where U (€) is an e-net of
U. Following this idea, for 6 € (0, 1], we have

T-1 T-1
E :ct:c;r — E :ct:c;r
t=0 t=0

VI HL 2 1Cy | (log (2) + c2n) ([ EHp |2 [Cyll (log (2) + can) o)
\/aT ’ ClT ’

Note that || Hr|| in can be further bounded by some finite constant 7 (A*) due to the preparatory
result (22). However, we have not made the explicit dependence of €, (0) in terms of T' yet as
M1 in grows with 7. We defer the discussion to where the bounds on (b) and (c) are
established since the same issue arises.

1

Pr E

< e(a)(é)] >1—6, where

€a)(0) = o2, max {
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(b) and (c):

The same technique is applied to (b) and (c). Hence, we only show the derivation for (b). Note that

since the noise term w; is independent of x;, the expectation in (b) is a zero matrix. Hence, we only

need to analyze (1/7)]| ZZ:OI wx, ||. Assuming ZtT;()l xyx/] is invertible (at the moment), we

can break (b) into the product of two terms as follows:

1Tt s T—1 -1/2 1/2
t=0 t=0 t=0 t=0
= T—1 —1/2 T—1 1/2
< T <Z wtw:> (Z :Bﬁnj) ’ (Z wtm:> (29)
t=0 t=0 t=0

self-normalized martingale persistent excitation term

As denoted, the stochastic process in (29) is referred to as the self-normalized martingale whose
non-asymptotic bounds are already analyzed in (Abbasi-Yadkori & Szepesvari, 2011). Hence, we
can invoke the following results to obtain the bound on the self-normalized term.

Suppose that Vr = tT:_Ol xix] + V where V = ¢ |T/2| T'1(6*) is a positive definite matrix with

a universal constant ¢ > 0, ensuring the invertibility of Vir. Then, for § € (0, 1], we have

= — o det (V) 5"
T T T
P (;wtmt><;mtmt> <4 ||2w|log< det(v).5> >1-6 (30)

aslongasT > O (nlog (g) + log (m)) . (31)
1

Note that V7 in (30) is the only term that has dependence on 7" and it increases at most logarith-

mically as T' grows. We make a few comments before proceeding: i) the bound has to be

probabilistic since the invertibility (i.e., positive definiteness) of ZtT:_Ol x;z; cannot be guaranteed

deterministically; ii) the lower bound on 7" in @) i.e., the minimum number of samples that ensures
the invertibility of ZZ:OI x;x] wh.p., is called the burn-in time. Here, we use the big-O notation for
the burn-in time only because we want to streamline the exposition. We make the quantity explicit in
the proof of Theorem 2] under sufficient conditions.

Subsequently, we derive an upper bound on the persistent excitation term in (29). Note that the term
is similar to one in (28). Hence, we can establish the following inequalities:

1/2

T-1 1/2 T-1
E a:tac;r - E a:ta:;r <n
t=0 t=0

Bl

E E < ni T-E(a)((S)

T-1 T-1
E ilitllf;r — E iEt%tT
t=0 t=0

w.p. at least 1 — 4.

In the first inequality, we use the following fact: | A2 — BY/2|| < \/[|A = B|[r < ni./|[A - B]
forany A, B € S7. The second inequality follows from @ By the reverse triangle inequality, we

can further derive the following upper bound on the persistent excitation term:
T—1 1/2
1
H (Z wtth) + 0t [Toe(q)(6). (33)
t=0
|

Recall that we have not addressed the term || M ! || in €, (6). In fact, the term ||E[}", ) @,
in (33) is equivalent to || M ~!|| as denoted above. Using the definition of the expected Gram matrix

<

T—1 1/2
t=0
—_————

=M-1
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({©), we obtain the following inequalities:

S 1/2
t=0

1/2

T-1
E Ilit(l?tT
t=0

T t
— Z * O_ B*B*T"—Ew) (A*T)S

t=0 s=

+o0 1/2
< TZ (02B*B*" +%,) (A7)’

S=

12 ||£2 s
> (A

s=0

VT |r2B BT 43,

VT ||2B* BT + 5,7 (A

=0(VT).
The first equality holds since the expected Gram matrix is positive semidefinite and follows
from the preparatory result . Here, we emphasize || M ~!|| grows at the rate of O(/T'). Hence,
combining and 1} with the factor 1 /7" yields that (b) is upper-bounded by O(1/+/T"). Moreover,
since | M 1| = O(V/T), we can claim that €(,)(5) in is at most O(1/V/T).
(d) and (e):

They can be addressed by the standard concentration inequality for a covariance matrix (see Theorem
6.5 in (Wainwright, 2019)). For (d), under i.i.d. sub-Gaussian exploration noise, we can claim that
there exist universal constants c1, co, cg > 0 such that

[HE [Zt 1utut} POHRETET H < € (5)} >1-34, (35)

(A%) (34)

where €(.)() a(VE+E)+ ( % + logT(:f)> = O(1/V/T). For (e), we can

apply the same concentration inequality by defining an augmented random vector v; = [u; w, ]
since
T T
T T T
e (3w |- S| < 4 |3zt | - S
t=1 t=1
Therefore, there exists universal constants ¢, ¢z, ¢s > 0 such that
[ Z wiu, ] Z weu] || < e(d)(a)l >1-4, (36)

log( <2 log( &2
where €(4)(0) = max (02,02) - & ( nim oy %) + max (02,02) ( %f) + OgT(C)> =

O(1/VT).
Finally, combining (a)-(e) yields the claim. O]

18



Under review as a conference paper at ICLR 2025

A.4 PROOF OF THEOREM 2]
Proof. The guarantee in Proposition [I|implies that the following holds:
P| min tr (G(0)27) < min tr (G(B)&'AZT) + 6(6)||G(0)|q] >1-4.
0 - — o
=/© —g(6)

Let f(0) and g(@) be the objective function of the true and robust LSE problems, respectively.
First, we show that g(0) is an a-strongly convex function with high probability (w.h.p.). Following
the definition of strong convexity, showing strong convexity amounts to showing that g(8) can
be rewritten as g(0) = ¢'(6) + «||@]|% where ¢/(0) is a convex function and o > 0. Note that
tr(G(6)S27) contains the convex quadratic function, i.e., tr(1/T ", z:2, 07 6). As shown in
(Tsiamis et al., 2023)), under i.i.d. exploration noise, the stochastic process of z; = [a:tT utT ]T
satisfies the block martingale small ball (BMSB) condition with parameters (k, I"|;,/2,3/20) where
parameter k can be set to a positive integer and

~ *
Likp = [ I‘Lk/%J(G ) 02(])Im ] is the covariance matrix of 2| /|-

It can be shown that the BMSB condition can guarantee the persistent excitation w.h.p. (see Proposi-
tion 2.5 in (Simchowitz et al 2018))). Therefore, by setting k = 2, we can establish the following
persistent excitation of the stochastic process z; for T' > T'(6) (defined earlier):

1 & 1 (3\%/2
P lT ;ztzt—r = aH(,L+,,L)] >1—0, where a = T <20) (3) min {03,,03 . (37)
Hence, we can claim that, for any significance level § € (0, 1], g(0) is a-strongly convex with
probability (w.p.) at least 1 — 6 when T is sufficiently large. Suppose g(@) is indeed an &-strongly
convex function. Then, we can upper-bound the system identification errors as follows:

IS 2 N 24/min{n,m N
6"~ Bellr < 2 [0g (071 < 2T 100 (g G9)

The first inequality follows from the properties of strong convexity. The second inequality holds due
to the equivalence of norms. To ease the notation, we define the following block matrix notations for

Q% and Qr : o
* W P~ w

Then, we can write the gradient in as Vg (0*) = —2W +20°ET + €(0)Vo|G(0%)4-
Subsequently, we can establish the following inequalities:

Vo9 (0°)] = | -2W +20"ET + ()7l G0,
< sw HfQ (W* — AW) + 20* (E* — AE)| + 6(5)V9||G(0*)HqH
|[awr 2] [<<o)
(40)
= sup [2AW —20*AET + €(6)Ve||G(6™)| || (41)
[[sw 3%][=®
< sup 2[|AW || +2[6* | AE|| + €(0)[I Vol G(67) ||l
[[aw 2% ] [=®
< 2¢(0) +2/[60"[[e(0) + €(d)[| Vo |G(67) |l
=€ + + 2] q
(0)(2+2(167] + Vol G(67)]|4]]) (42)

The first inequality (#0) holds due to our guarantee in Proposition 1. In the next equality (41)), we
cancel out the terms W* and E* using the optimality condition for the true LSE problem, namely,

Vof (6*) = 0= W* = 0*E*". Combining and (IVeg(0*)| in replaced by (42))
using union bound yields the claim. O
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A.6 COMPUTATIONAL TIME

T (a) Laplacian  (b) Boeing 747  (c) UAV

100 5.58E-02 6.09E-02 6.61E-02
400 5.10E-02 6.30E-02 5.20E-02
1000 6.09E-02 4.90E-02 5.08E-02

Table 1: Mean computational time (in seconds) over 100 replications for solving the example systems
in the SDP formulation; as shown here, the computational time is invariant to the sample size 7.
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A.7 SUPPLEMENTARY MATERIALS FOR THE REBUTTAL

Best Schatten norm parameter g in SDP formulation (7)

0 Uneven eigenvalues Even eigenvalues
— 124
(@)
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1.0
% 0.9 1.4
[
- 0.8 124
(G 0.7
v . : . : : 1.0 : : : :
Z 1072 107! 10° 10t 102 1072 107! 10° 10! 10?2
Radius parameter, € Radius parameter, €

—0—q=]_ +q=2 —— Q=0

Figure 7: Choosing the optimal Schatten norm parameter ¢ in our SDP formulation (7): We generate
two 3 x 3 linear systems for the experiment. The system in the left subplot has uneven eigenvalues
(A1 = 0.9 and Ay = A3 = 0.1), while the system in the right subplot has even eigenvalues
(A1 = A2 = A3 = 0.9). We conduct 300 simulations across different choices of the Schatten norm
parameter ¢ € {1,2, 00} and the radius parameter € (on the x-axis), plotting the mean norm error
(on the y-axis) to identify the optimal radius for each value of ¢q. As shown, ¢ = 1 performs the best
for the system with uneven eigenvalues, while ¢ = oo performs the best for the system with even
eigenvalues.

Boeing747: uneven eigenvalues UAV: even eigenvalues
10°4 .
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° ]
510
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Figure 8: Adaptive control tasks with different choices of ¢: i) Boeing 747 represents a system with
uneven eigenvalues, whereas iii) UAV corresponds to a system with even eigenvalues. We conducted
500 simulations to evaluate adaptive control tasks using different values of ¢ in Robust STABL
(R-STABL). The results align with our interpretation of the choice of ¢ as described in Figure m
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Comparison w/ the Wasserstein model
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Figure 9: Performance comparison between our model (green) and the Wasserstein model (blue), with
both models fine-tuned using cross-validation. The Robust LSE demonstrates superior performance
in terms of mean norm errors. Additionally, while the run time for the Wasserstein model increases
with sample size, the run time for our model remains constant regardless of sample size.

Comparison with a marginally stable system
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Figure 10: Performance comparison with a marginally stable system: we compare our proposed
method (green) with the standard LSE (red) in a marginally stable system (i.e., p(A*) = 1). The
results are based on 1000 simulations across varymg T'. In the second plot, we compute the optimal
LQ controller using the estimated system [AT BT] and show the frequency that the synthesized
controller is stable, i.e., p(A* + B*K) <
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Comparison with a large-scale system
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Figure 11: Performance comparison with a marginally stable system: we compare our proposed
method (green) with the standard LSE (red) in a large-scale linear system where 8* € R59%100 The
results are consistent with the experiment in the paper.
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