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Abstract
Feature attribution methods aim to explain the
predictions of machine learning models by as-
signing importance scores to input features. Re-
cent work has highlighted the importance of de-
veloping attribution methods that respect causal
structures. Furthermore, they showed that exist-
ing approaches can assign significant importance
to variables outside the Markov boundary, even
though these variables provide no additional pre-
dictive information when the Markov boundary is
observed. To address these limitations we design
a new attribution method that accounts for both
predictive power and causal structure of the fea-
tures. Our method does not assume access to the
structure and achieves balanced attributions using
properly defined characteristic function. We show
that our method provably assigns high attribu-
tions to the variables in the Markov boundary and
experimentally evaluate it in a fairness inspired
setting.

1. Introduction
Feature attribution methods aim to explain the predictions
of machine learning models by assigning importance scores
to input features. In high-stakes domains such as health-
care and finance, such explanations are crucial for ensuring
transparency and accountability.

The intersection of feature attribution and causal inference
has emerged as a critical area of research in explainable AI.
Recent work has highlighted the importance of developing
attribution methods that respect causal structures, moving
beyond purely correlational approaches to explainability.
Several approaches have been proposed to align feature
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attributions with causal principles. Frye et al. (2020) in-
corporate causal relationships by modifying the standard
Shapley framework to respect the directionality of effects.
Similarly, Causal Shapley Values (Heskes et al., 2020) adapt
the value function to reflect causal rather than purely statis-
tical contributions. The work of Janzing et al. (2024) offers
another insightful perspective on how variables contribute
to predictions through causal mechanisms.

Our work is motivated by a key limitation in existing attri-
bution approaches. Ma & Tourani (2020) demonstrated that
standard Shapley values are inconsistent with respect to the
Markov boundary of the target variable. Specifically, they
showed that Shapley values can assign significant impor-
tance to variables outside the Markov boundary, even though
these variables provide no additional predictive information
when the Markov boundary is observed.

We consider problem of attributing nodes in a structural
causal model (SCM). From causal theory, variables in the
Markov boundary are sufficient for optimal prediction of
the target variable. However, variables outside the Markov
boundary still exhibit predictive power when considered
individually.

This creates a tension: while Markov boundary variables are
theoretically sufficient when observed together, non-Markov
boundary variables retain predictive utility. Thus we argue
that complete exclusion of these variables from attribution
would ignore their actual predictive contribution. A princi-
pled attribution method should therefore satisfy two proper-
ties: non-Markov boundary variables can receive positive
attribution when they contribute predicatively, but the sum
of attributions to Markov boundary variables should exceed
the sum of attributions to variables outside the boundary.

Our approach bridges the gap between causal inference
and feature attribution, providing explanations that are both
predicatively relevant and causally meaningful. Specifically,
our contributions include:

• We design a new attribution method based on explained
variance that has desirable properties with respect to
the Markov boundary of the explained variable.

• We show that our method provably attributes higher
scores to Markov boundary of the explained variable
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in linear models with additive gaussian noise.

• We demonstrated desirable properties of our method
on a synthetic dataset motivated by fairness analysis
use case.

2. Preliminaries
2.1. Causal Models

Additive noise models (ANM). Consider a directed
acyclic graph (DAG) G = (V,E) representing the causal
structure among variables. A structural additive noise model
over graph G is defined by a set of equations:

Xi = f(PaG(Xi)) + ϵi, (1)

where PaG(Xi) denotes the set of parents of Xi in the
graph G, ϵi ∼ Ni is a noise term of node i, and Ni are
independent noise distributions. When f is linear and Ni

are gaussian we call such setup a linear model with additive
gaussian noise.

Markov Boundary When predicting random variable
based on other variables in the graph usually only a subset
of the variables is required. We can formalize this observa-
tion. When predicting variable Y in a random variable set
X = {Xi, ..., Xn}, there exists a set S ⊆ X that renders all
others variables independent from Y : Y ⊥⊥ X \ S |S. The
minimal of such sets is called the Markov boundary (Pearl,
2009).

In case of additive noise models the Markov boundary con-
sists of: parents of Y , children of Y , and other parents of
the children of Y . Please see Figure 1.

Y

P1 P2

C1 C2 PC

N

■ Target node
■ Markov boundary
□ Outside MB

Figure 1: Example of a Markov boundary for node Y , in-
cluding parents (P1, P2), children (C1, C2), and parents of
children (PC). Node N is outside the Markov boundary.

2.2. Cooperative Game Theory

Characteristic Function The feature attribution prob-
lem is often formulated within the framework of cooper-
ative game theory. (Lundberg & Lee, 2017) (Štrumbelj &

Kononenko, 2011) In this setting attributions are obtained
as a solution to the game defined by:

• A set of players N = {1, 2, . . . , n}

• A characteristic function v : 2N → R that assigns a
real value to each coalition S ⊆ N , with v(∅) = 0

In the feature attribution context, players N correspond
to the random variables X , and the characteristic function
measures the predictive power of subsets of X . Intuitively,
v(S) represents the sum of attributions that subset S ∈ X
can achieve. The precise definition of the characteristic
function is one of our contributions and will be described in
the next section.

Core of the Game The core represents a set of feature
attributions where the total payoff is exactly distributed
among all variables in X and no subset S ∈ X can break
away and achieve better payoffs on their own. Intuitively the
core represents stable attribution allocations where no subset
of variables has an incentive to form their own coalition,
since each group receives at least as much attribution as they
could achieve independently.

However, the core may be empty for some games. The
existence of the core depends on properties of the charac-
teristic function. One important property that ensures a
non-empty core is game convexity. We say that a cost co-
operative game (N, v) is convex if for all i ∈ N and all
S ⊆ T ⊆ N \ {i} (Shapley, 1971):

v(S ∪ {i})− v(S) ≥ v(T ∪ {i})− v(T ) (2)

3. A New Attribution Method
In this section we describe our feature attribution method.
We begin by describing the characteristic function of the co-
operative game that provides the feature attributions. Then
we follow with theoretical results for linear models with
additive gaussian noise where we show that sum of attribu-
tions to variables in the Markov boundary of the explained
variables exceeds the sum of attributions to other variables.
We provide high-level proof sketches for theorems in the
main text. The full proofs can be found in the Appendix A.

3.1. Characteristic Function Based on Explained
Variance

We aim to explain a predictive model f that, we assume was
optimized to approximate E[Y |X]. For example for linear
gausian data such a predictive model is equivalent to the
model trained using MSE (Hastie et al., 2009).

To formulate feature attribution as a cooperative game, we
need to define a characteristic function that measures the
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contribution of each feature coalition. To do this we use two
components: (i) the explained variance and (ii) the penalty
that counts the number of supersets of S that improve the
explained variance, see Equation 5.

Variance of Expected Value For a given instance x and a
subset of features S, we describe the first part of proposed
characteristic function as a variance of expected value of Y
given xS :

Var(E[Y |xS ]) = EX−S |xS
[V ar(E[Y |xS , X−S ])] =

EX−S |xS
[f(x)] (3)

The choice of variance as our characteristic function is moti-
vated by several desirable properties like Translation Invari-
ance (is invariant to constant shifts) and symmetry (treats
positive and negative deviations equally, avoiding bias to-
ward either direction).

The penalty function We introduce a penalty function
w(S) that counts the number of supersets of S that decrease
the variance:

w(S) = |{S′ ⊆ V \ {Y } : S ⊆ S′ and (4)
Var(E[Y |xS′ ]) < Var(E[Y |xS ])}|

The penalty function ensures desirable properties of attri-
bution with respect to the Markov boundary of Y . The full
characteristic function for a coalition S is defined as:

v(S) = −Var(E[Y |xS ]) + a · w(S) (5)

where a is a penalization coefficient.

3.2. Theoretical Results

We now present the main theoretical results for our new
attribution method. First, we provide existence results for
our the valid attributions. Than, we describe the relationship
between the attributions and causal structure.

Theorem 3.1 (Existence of Core Solutions). Consider the
cooperative game with characteristic function v(S) =
−Var(E[Y |xS ]) + a · w(S) defined on X . There exists
a threshold a∗ ≤ 0 such that for any a < a∗, the game is
convex and therefore has a non-empty core.

This result guarantees that by appropriately choosing the
coefficient a, we can ensure that stable attributions exist for
our feature attribution problem. The convexity property en-
sures that the core is non-empty and that allocation methods
like the Shapley values lie within the core.

Proof sketch of Theorem 3.1. For a cooperative game to
have a non-empty core, convexity of the characteristic func-
tion is sufficient. We show that for sufficiently negative
values of a, our modified characteristic function becomes
convex.

Let S ⊆ T ⊆ V \{Y } and i ∈ V \{Y ∪T}. For convexity,
we need:

v(S ∪ {i})− v(S) ≥ v(T ∪ {i})− v(T ) (6)

Substituting our characteristic function v(S) =
−Var(E[Y |xS ]) + a · w(S) and rearranging:

∆S −∆T ≥ a ·∆w (7)

where ∆S = −Var(E[Y |xS∪{i}]) + Var(E[Y |xS ]), ∆T is
defined similarly, and ∆w = [w(T ∪{i})−w(T )]− [w(S∪
{i})− w(S)].

We prove that ∆S − ∆T ≤ 0 by showing that for multi-
variate Gaussian distributions, the variance reduction from
adding a new variable diminishes as the conditioning set
grows. This follows from the information chain rule and can
be expressed in terms of conditional mutual information:

∆T −∆S ∝ I(Y ;Xi|XS)− I(Y ;Xi|XT ) ≤ 0 (8)

When adding variable i to the smaller set S, we get a larger
variance reduction compared to adding i to the larger set T ,
which means more supersets will newly satisfy the condition
vS′ < vS than will newly satisfy vS′ < vT . Therefore,
the decrease in the penalty function is larger for S (i.e.,
w(S)−w(S ∪{i}) ≥ w(T )−w(T ∪{i})), which gives us
∆w = [w(T ∪ {i})− w(T )]− [w(S ∪ {i})− w(S)] ≥ 0.

Therefore, the inequality ∆S − ∆T ≥ a · ∆w is satisfied
when a ≤ 0 and |a| is sufficiently large, guaranteeing the
existence of a threshold a∗ ≤ 0 such that for all a < a∗, the
characteristic function is convex.

Theorem 3.2 (Markov Boundary Attribution Property). Let
MB ⊆ X be the Markov boundary of Y in the SCM. For
any core solution (ϕ1, ϕ2, . . . , ϕd) of the game with char-
acteristic function v(S) = −Var(E[Y |xS ]) + a ·w(S) with
appropriate a, the sum of attributions to variables in the
Markov boundary exceeds the sum of attributions to vari-
ables outside the Markov boundary:∑

i∈MB

ϕi ≥
∑

j∈V \{Y ∪MB}

ϕj (9)

The theorem shows that the method assign more importance
to the features that are in a Markov boundary.

Proof sketch of Theorem 3.2. Let MB ⊆ V \ {Y } be the
Markov boundary of Y . By the Markov property, for
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any superset S where MB ⊆ S, the explained vari-
ance Var(E[Y |XS ]) equals the Markov Variance Explained
(MVE). This implies w(MB) = 0.

For any core solution (x1, x2, . . . , xd), the sum of attribu-
tions to variables in MB satisfies

∑
i∈MB xi ≥ v(MB) =

MVE. By efficiency,
∑

i∈V \{Y } xi = v(V \ {Y }) =
MVE.

Let N = V \ ({Y } ∪ MB) be the variables outside the
Markov boundary. Since

∑
i∈MB xi +

∑
j∈N xj = MVE

and
∑

i∈MB xi ≥ MVE, we have
∑

j∈N xj ≤ 0.

For any variable k ∈ N , the core property requires∑
i∈MB xi + xk ≥ v(MB ∪ {k}) = MVE. Since∑
i∈MB xi ≥ MVE, this implies xk ≥ 0. The only way

to satisfy both constraints is if
∑

j∈N xj = 0 and xk = 0
for all k ∈ N . Therefore, all attributions go to the Markov
boundary variables.

4. Experimental demonstration

X1

X2 X3

Y

Figure 2: Directed graph representation. X1– Gender, X2–
Test Score, X3 – Department. In fair case, there is not direct
link between X1 and Y , while in the unfair case the edge
X1 → Y exists.

We evaluate our method using the college admission sce-
nario from Frye et al. (2020). This setup involves predicting
college admission based on three variables: gender, test
score, and department. In the fair scenario, gender influ-
ences admission only indirectly through the number of ap-
plications to department (no direct causal path), while in the
unfair scenario, gender has an effect on admission decisions,
see Figure 2.

We implement the egalitarian least core solution with L2

norm minimization (Benmerzoug & de Benito Delgado,
2023), incorporating a small numerical relaxation for com-
putational stability. A small neural network was trained on
synthetically generated data following the causal structure
described in Frye et al. (2020). Similar to (Lundberg &
Lee, 2017) we sampled dropped features from independent
marginal distributions for simplicity.

Attributions of our new method are shown in Fig. 3. In
the fair scenario, the attributions for gender, test score, and
department are 0.182, 0.431, and 0.387 respectively, and
0.320, 0.363, and 0.316 in the unfair scenario. In the fair

X
Gender

X
Test Score

X
Department

0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
tri

bu
tio

n

Fair data w/o X
Unfair data w/ X

Figure 3: Attributions assigned by our method averaged
across dataset.

scenario, attribution to the Markov boundary variables (test
score and department) exceeds the attribution to the non-
Markov boundary variable (gender). In the unfair scenario,
gender’s attribution increases substantially from 0.182 to
0.320, reflecting its direct causal role. Notably, even in
the fair case, gender is assigned non-zero attribution due
to statistical imbalances in the data, correctly capturing its
predictive utility.

5. Discussion and Future Work
Applications to models Our method demonstrates how to
perform causal attribution in linear SCMs. We provided a
small demonstration using a machine learning model in a
simple case, assuming the model correctly learned the under-
lying distribution. However the connection between our the-
oretical framework and machine learning model predicting
some values remains unclear and needs a further exploration
and discussion. Additionally, although our theory is stated
for linear models with additive Gaussian noise, the method
can potentially be extended to nonlinear cases through piece-
wise linear approximation around local regions.

Multiple Attribution Solutions The core is a convex
set rather than a single vector, allowing practitioners to
choose any point within it. The Shapley value provides
a natural default as it lies in the core for convex games
(Madiman, 2008). Alternatively, practitioners can select
core solutions that minimize attribution outside the Markov
boundary, enforce sparsity, or minimize the L2 norm via the
egalitarian least-core (Benmerzoug & de Benito Delgado,
2023). This flexibility enables tailored attributions while
preserving stability and causal-structure guarantees.
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A. Proofs
Proof of Variance Reduction Inequality in Multivariate Gaus-
sian Distributions

Theorem A.1. Let X = (X1, X2, . . . , Xn, Y ) be a mul-
tivariate Gaussian random vector with covariance ma-
trix Σ. For any sets S ⊆ T ⊆ V \ {Y } and variable
i ∈ V \ {Y ∪ T}:

[Var(Y |S)−Var(Y |S∪{i})] ≥ [Var(Y |T )−Var(Y |T∪{i})]
(10)

Proof. We will approach this proof in multiple steps. First,
we establish that the inequality stated in the theorem is equiv-
alent to an inequality involving explained variances, then
we prove the main result using properties of multivariate
Gaussian distributions.

Preliminary: Equivalence via Law of Total Variance

We first show that for a multivariate Gaussian distribution,
the following inequalities are equivalent:

[Var(Y |S)− Var(Y |S ∪ {i})] ≥ [Var(Y |T )− Var(Y |T ∪ {i})]
(11)

[VarE(Y |S ∪ {i})− VarE(Y |S)] ≥ [VarE(Y |T ∪ {i})− VarE(Y |T )]
(12)

where VarE(Y |S) = Var(E[Y |S]) denotes the variance of
the conditional expectation.

By the law of total variance:

Var(Y ) = E[Var(Y |S)] + Var(E[Y |S]) (13)

For Gaussian distributions, the conditional variance
Var(Y |S) is constant (does not depend on the specific values
of S), so:

E[Var(Y |S)] = Var(Y |S) (14)

Therefore:

Var(Y |S) = Var(Y )− Var(E[Y |S]) (15)

Similarly for S ∪ {i}:

Var(Y |S ∪ {i}) = Var(Y )− Var(E[Y |S ∪ {i}]) (16)

Taking the difference:

Var(Y |S)− Var(Y |S ∪ {i}) = Var(E[Y |S ∪ {i}])− Var(E[Y |S]) =
(17)

VarE(Y |S ∪ {i})− VarE(Y |S)

The same relationship holds for set T . Since VarE(Y |S) =
Var(E[Y |S]) for Gaussian distributions, the equivalence
between inequalities equation 11 and equation 12 follows
immediately.
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Prove the Main Inequality

For the main inequality, we need to show:

[Var(Y |S)−Var(Y |S∪{i})] ≥ [Var(Y |T )−Var(Y |T∪{i})]
(18)

Using our established relationship multivariate Gaussian
distribution :

Var(Y |S) · ρ2Y,i|S ≥ Var(Y |T ) · ρ2Y,i|T (19)

We need to establish two facts:

1. Var(Y |S) ≥ Var(Y |T ) (since S ⊆ T )

2. ρ2Y,i|S ≥ ρ2Y,i|T

The first fact follows directly from the properties of condi-
tional variance: conditioning on more variables (or informa-
tion) reduces variance.

For the second fact, we use information theory. For Gaus-
sian random variables, the conditional mutual information
can be expressed as:

I(Y ; i|Z) = −1

2
log(1− ρ2Y,i|Z) (20)

A fundamental property of mutual information is that for
S ⊆ T :

I(Y ; i|S) ≥ I(Y ; i|T ) (21)

This is the data processing inequality: conditioning on more
variables can only reduce the dependency between Y and i.

From this inequality:

−1

2
log(1− ρ2Y,i|S) ≥ −1

2
log(1− ρ2Y,i|T ) (22)

Since logarithm is a monotonically increasing function and
the negative sign reverses the inequality:

log(1− ρ2Y,i|S) ≤ log(1− ρ2Y,i|T ) (23)

Again, due to monotonicity of logarithm:

1− ρ2Y,i|S ≤ 1− ρ2Y,i|T (24)

Rearranging:
ρ2Y,i|S ≥ ρ2Y,i|T (25)

Now, combining our two established facts:

Var(Y |S) ≥ Var(Y |T ) (26)

ρ2Y,i|S ≥ ρ2Y,i|T (27)

Therefore:

Var(Y |S) · ρ2Y,i|S ≥ Var(Y |T ) · ρ2Y,i|T (28)

Which is equivalent to:

[Var(Y |S)−Var(Y |S ∪ {i})] ≥ (29)
[Var(Y |T )−Var(Y |T ∪ {i})] (30)

This completes the proof, showing that the reduction in vari-
ance when adding variable i decreases as we condition on
more variables, which is a ”diminishing returns” property
of conditional variance in multivariate Gaussian distribu-
tions.

A.1. Proof that ∆w ≤ 0

Setup and Definitions

Recall that the penalty function is defined as:

w(S) = |{S′ ⊆ V \{Y } : S ⊆ S′ and Var(E[Y |xS′ ]) < Var(E[Y |xS ])}|
(31)

We need to prove that for S ⊆ T ⊆ V \ {Y } and i ∈
V \ {Y ∪ T}:

∆w = [w(T ∪ {i})− w(T )]− [w(S ∪ {i})− w(S)] ≤ 0
(32)

For convenience, let us denote:

• vS = Var(E[Y |xS ])

• vS∪{i} = Var(E[Y |xS∪{i}])

• vT = Var(E[Y |xT ])

• vT∪{i} = Var(E[Y |xT∪{i}])

From the variance reduction property proven in the previous
section, we know:

1. vS ≥ vS∪{i} (adding variables reduces variance)

2. vT ≥ vT∪{i} (adding variables reduces variance)

3. vS ≥ vT (since S ⊆ T )

4. vS∪{i} ≥ vT∪{i} (since S ∪ {i} ⊆ T ∪ {i})

A.1.1. KEY OBSERVATION

First, observe that both w(S ∪ {i}) − w(S) and w(T ∪
{i})− w(T ) are non-positive. This is because:

• A superset S′ is counted in w(S) if S ⊆ S′ and vS′ <
vS
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• A superset S′ is counted in w(S∪{i}) if (S∪{i}) ⊆ S′

and vS′ < vS∪{i}

Since (S ∪ {i}) ⊆ S′ implies S ⊆ S′, and vS∪{i} ≤ vS ,
every superset counted in w(S ∪ {i}) is also counted in
w(S). Therefore, w(S ∪ {i}) ≤ w(S).

A.1.2. CATEGORIZATION OF SUPERSETS

Let us categorize supersets S′ based on whether they contain
i:

Type 1: Supersets without i (i.e., i /∈ S′)

• These contribute to w(S) if S ⊆ S′ and vS′ < vS

• These contribute to w(T ) if T ⊆ S′ and vS′ < vT

• These never contribute to w(S ∪ {i}) or w(T ∪ {i})
since they do not contain i

Type 2: Supersets with i (i.e., i ∈ S′)

• These contribute to w(S) if S ⊆ S′ and vS′ < vS

• These contribute to w(S ∪ {i}) if S ⊆ S′ (automatic
since i ∈ S′) and vS′ < vS∪{i}

• These contribute to w(T ) if T ⊆ S′ and vS′ < vT

• These contribute to w(T ∪ {i}) if T ⊆ S′ and vS′ <
vT∪{i}

A.1.3. COMPUTING THE DIFFERENCES

The difference w(S)− w(S ∪ {i}) counts:

1. All Type 1 supersets that satisfy S ⊆ S′ and vS′ < vS

2. Type 2 supersets where vS∪{i} ≤ vS′ < vS

Similarly, w(T )− w(T ∪ {i}) counts:

1. All Type 1 supersets that satisfy T ⊆ S′ and vS′ < vT

2. Type 2 supersets where vT∪{i} ≤ vS′ < vT

A.1.4. ESTABLISHING THE INEQUALITY

To prove ∆w ≤ 0, we need to show:

w(T )− w(T ∪ {i}) ≥ w(S)− w(S ∪ {i}) (33)

Let us denote:

• AS = Type 1 supersets contributing to w(S) but not
w(S ∪ {i})

• AT = Type 1 supersets contributing to w(T ) but not
w(T ∪ {i})

• BS = Type 2 supersets with vS∪{i} ≤ vS′ < vS

• BT = Type 2 supersets with vT∪{i} ≤ vS′ < vT

Then:

w(S)− w(S ∪ {i}) = |AS |+ |BS | (34)
w(T )− w(T ∪ {i}) = |AT |+ |BT | (35)

AT ⊆ AS

Proof. If S′ ∈ AT , then T ⊆ S′, i /∈ S′, and vS′ < vT .
Since S ⊆ T ⊆ S′, we have S ⊆ S′. Since vS ≥ vT > vS′ ,
we have vS′ < vS . Therefore, S′ ∈ AS .

BT ⊆ BS

Proof. From the variance reduction inequality proven in the
previous section, we know that:

vS − vS∪{i} ≥ vT − vT∪{i} (36)

This means the interval [vS∪{i}, vS) contains the interval
[vT∪{i}, vT ).

If S′ ∈ BT , then:

• T ⊆ S′ (which implies S ⊆ S′ since S ⊆ T )

• i ∈ S′

• vT∪{i} ≤ vS′ < vT

Since [vT∪{i}, vT ) ⊆ [vS∪{i}, vS), we have vS∪{i} ≤
vS′ < vS . Therefore, S′ ∈ BS .

A.1.5. CONCLUSION

From Claims 1 and 2:

• AT ⊆ AS implies |AT | ≤ |AS |

• BT ⊆ BS implies |BT | ≤ |BS |

Therefore:

w(T )− w(T ∪ {i}) = |AT |+ |BT | ≤ |AS |+ |BS | =
(37)

w(S)− w(S ∪ {i})

To connect this to ∆w, recall that:

∆w = [w(T ∪ {i})−w(T )]− [w(S ∪ {i})−w(S)] (38)
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We can rewrite this as:

∆w = −[w(T )−w(T ∪ {i})]− (−[w(S)−w(S ∪ {i})])
(39)

Since w(T )−w(T∪{i}) ≤ w(S)−w(S∪{i}), multiplying
by −1 gives:

−[w(T )− w(T ∪ {i})] ≥ −[w(S)− w(S ∪ {i})] (40)

Therefore:

∆w = −[w(T )− w(T ∪ {i})] + [w(S)− w(S ∪ {i})]
(41)

≥ −[w(S)− w(S ∪ {i})] + [w(S)− w(S ∪ {i})]
(42)

= 0 (43)

A.2. Detailed Proof of Theorem 2: Markov boundary
Attribution Property

Proof. Let MB ⊆ V \ {Y } be the Markov boundary of Y
in the SCM. Define the Markov Variance Explained (MVE)
as:

MVE = Var(E[Y |XMB ]) (44)

We first establish a key property: For any super set S such
that MB ⊆ S ⊆ V \ {Y }, the explained variance remains
constant:

Var(E[Y |XS ]) = MVE (45)

This follows directly from the definition of the Markov
boundary, which contains all the information necessary to
predict Y . Adding variables outside the Markov bound-
ary does not improve predictive power. As a consequence,
w(S) = 0 for all such super sets, including w(MB) = 0
and w(V \ {Y }) = 0.

Now, consider any core solution (x1, x2, . . . , xd) of our
game. By the definition of the core, for any coalition S:∑

i∈S

xi ≥ v(S) (46)

Applying this to the Markov boundary:∑
i∈MB

xi ≥ v(MB) = MVE (47)

By the efficiency property of core solutions:∑
i∈V \{Y }

xi = v(V \ {Y }) = MVE (48)

Letting N = V \ ({Y } ∪MB) represent variables outside
the Markov boundary, we have:∑

i∈MB

xi +
∑
j∈N

xj = MVE (49)

From our earlier inequality
∑

i∈MB xi ≥ MVE, we must
have: ∑

j∈N

xj ≤ 0 (50)

For any individual variable k ∈ N , consider the coalition
MB ∪ {k}. By the Markov boundary property:

v(MB∪{k}) = Var(E[Y |XMB∪{k}])+a·w(MB∪{k}) = MVE
(51)

The core property requires:∑
i∈MB

xi + xk ≥ v(MB ∪ {k}) = MVE (52)

Since we already know
∑

i∈MB xi ≥ MVE, this implies
xk ≥ 0.

Now we have two constraints:∑
j∈N

xj ≤ 0 (53)

xk ≥ 0 ∀k ∈ N (54)

The only way both can be satisfied simultaneously is if∑
j∈N xj = 0 and xk = 0 for all k ∈ N .

This means that variables outside the Markov boundary re-
ceive zero attribution, while variables in the Markov bound-
ary receive all the attribution:∑

i∈MB

xi = MVE > 0 =
∑

j∈V \{Y ∪MB}

xj (55)

This completes the proof, establishing that our attribution
method correctly identifies the Markov boundary as the
most important set of variables for predicting Y .
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