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Abstract

A syntactic language model (SLM) incremen-001
tally generates a sentence with its syntactic002
tree in a left-to-right manner. We present003
Generative Pretrained Structured Transformers004
(GPST), an unsupervised SLM at scale capable005
of being pre-trained from scratch on raw texts006
with high parallelism. GPST circumvents the007
limitations of previous SLMs such as relying on008
gold trees and sequential training. It consists of009
two components, a usual SLM supervised by a010
uni-directional language modeling loss, and an011
additional composition model, which induces012
syntactic parse trees and computes constituent013
representations, supervised by a bi-directional014
language modeling loss. We propose a rep-015
resentation surrogate to enable joint parallel016
training of the two models in a hard-EM fash-017
ion. We pre-train GPST on OpenWebText, a018
corpus with 9 billion tokens, and demonstrate019
the superiority of GPST over GPT-2 with a020
comparable size in numerous tasks covering021
both language understanding and language gen-022
eration. Meanwhile, GPST also significantly023
outperforms existing unsupervised SLMs on024
left-to-right grammar induction, while holding025
a substantial acceleration on training.026

1 Introduction027

Pre-training a Transformer architecture (Vaswani028

et al., 2017) as a large language model has dom-029

inated the field of natural language processing030

(NLP) (Devlin et al., 2019; Liu et al., 2019; Rad-031

ford et al., 2018, 2019; Brown et al., 2020; Ouyang032

et al., 2022). While Transformer language models033

have exhibited remarkable performance over var-034

ious downstream NLP tasks (Bang et al., 2023),035

the recursive compositions behind language are036

represented in an implicit and entangled form. In037

contrast, human language understanding exhibits038

explicit composition decisions, as exemplified by039

the garden path sentence (Dynel, 2009) “Time flies040

like an arrow; Fruit flies like a banana”, where dis-041

tinct syntactic configurations yield vastly divergent042

meanings1. In addition, human infants acquire such 043

compositional capability without supervision (Saf- 044

fran et al., 1996). These phenomena motivate us 045

to explore an unsupervised approach to learning 046

explicit compositions in language modeling. 047

A typical approach to achieve language mod- 048

eling with explicit composition is to model the 049

joint distribution of words and a syntactic tree 050

within the framework of syntactic language mod- 051

els (SLMs) (Dyer et al., 2016). Though there has 052

been a long line of research on SLMs, they are 053

barely exploited as the backbone in state-of-the-art 054

language modeling due to poor scalability. Re- 055

cent Transformer-based SLMs (Sartran et al., 2022; 056

Murty et al., 2023) require annotated parse trees or 057

supervised parsers as structural supervision, lead- 058

ing to limited training data scales and domain adap- 059

tion issues (McClosky et al., 2006). On the other 060

hand, in unsupervised SLMs (Kim et al., 2019b; 061

Shen et al., 2019a), non-terminal constituents are 062

composed from their sub-constituents sequentially 063

in a left-to-right manner, resulting in data depen- 064

dencies that impede training parallelism. 065

In this work, we aim to pre-train an SLM at scale 066

on raw texts. To this end, we propose Generative 067

Pretrained Structured Transformer (GPST), an un- 068

supervised SLM with the Transformer architec- 069

ture as a backbone. A common practice in exist- 070

ing unsupervised SLMs is to learn structures by a 071

uni-directional language modeling loss (LM loss). 072

However, we empirically find such an asymmet- 073

ric loss with only right-to-left feedback results in 074

branching biases in the induced parse trees. Based 075

on the insight, we propose two components in 076

GPST, a composition model performing structural 077

learning supervised by a bi-directional LM loss, 078

and a generative model for uni-directional syntac- 079

tic language modeling. Specifically, we train the 080

GPST in a fashion similar to hard-EM (Liang et al., 081

2017): in E-step, the composition model runs a 082

1(Fruit (flies (like a banana))) or ((Fruit flies) (like (a
banana)))
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pruned deep inside-outside algorithm to induce a083

parse tree and compute inside and outside represen-084

tations of constituents simultaneously within log-085

arithmic steps (Hu et al., 2024); while in M-step,086

we update all parameters of GPST by minimizing087

both the bi-directional (reconstructing the sentence088

from outside representations) and uni-directional089

LM loss given the induced tree. The key in the M-090

step lies in using the inside representations of con-091

stituents computed by the composition model as a092

surrogate of inputs for the generative model, which093

enjoys two advantages. First, the representations094

of all constituents pre-computed in the E-step can095

be simultaneously fed into the generative model,096

which breaks the data dependencies and facilitates097

training parallelism. Second, with these representa-098

tions participating in generation, the uni-directional099

LM loss in the M-step could be back-propagated to100

not only the generative model but the composition101

model used in the E-step as well.102

In experiments, we pre-train GPSTs with sizes103

comparable to those of GPT-2small and GPT-2medium104

on OpenWebText (Gokaslan and Cohen, 2019)(∼ 9105

billion tokens), and evaluate the models on various106

tasks including language understanding, language107

generation, and grammar induction. GPST demon-108

strates an approximately 60-fold training accelera-109

tion and over 7% absolute increase in left-to-right110

grammar induction in comparison with existing un-111

supervised SLMs. Meanwhile, GPST also shows112

advantages over GPT-2 across almost all language113

understanding/generation benchmarks. GPST pro-114

vides constituent-level interfaces that are not in-115

herent possessed by the conventional Transformer-116

based language models, and thus exhibits great po-117

tential to enhance interpretability (Hu et al., 2023),118

support multi-modality (Wan et al., 2022), and im-119

prove dense retrieval in the future. Our contribu-120

tions are three-fold:121

• We propose a SLM consisting of a composition122

model in addition to a generative model, which123

can be trained without gold trees via a novel124

approach akin to hard-EM.125

• We propose a representation surrogate to enable126

joint parallel training of all components.127

• To the best of our knowledge, GPST is the first128

unsupervised SLM able to be pre-trained from129

scratch on billions of tokens and surpass GPT-2130

on various benchmarks. The experimental results131

demonstrate the potential of GPST as a backbone132

for large language models. The code will be133

released later.134

2 Related work 135

Syntactic Language Models. There have been 136

extensive studies on syntactic language model- 137

ing (Baker, 1979; Jelinek and Lafferty, 1991; 138

Vinyals et al., 2015; Charniak et al., 2016; Dyer 139

et al., 2016; Qian et al., 2021), in which words and 140

constituent symbols are mixed up and generated in 141

a left-to-right manner. Recent works (Sartran et al., 142

2022; Murty et al., 2023) utilize Transformers to 143

parameterize action probability distributions, but 144

relies on annotated parse trees or parsers trained 145

on gold trees as structural guidance. Besides, un- 146

supervised SLMs are also explored, by differen- 147

tiable structured hidden layers (Kim et al., 2017; 148

Shen et al., 2018, 2019a), reinforcement learning 149

approaches (Yogatama et al., 2017), or variational 150

approximations (Li et al., 2019; Kim et al., 2019b). 151

Normally, these unsupervised models are trained in 152

a sequential manner. Our model follows a similar 153

generation paradigm, but has stark differences in 154

model architecture and training approach. 155

Composition Models. A composition model 156

transforms text encoding into a combinatorial opti- 157

mization problem, learns and searches for the opti- 158

mal structure, and encodes the text in a bottom-up 159

manner along a binary tree via a composition func- 160

tion recursively. Maillard et al. (2019) proposes a 161

CKY-like (Cocke, 1969; Kasami, 1966; Younger, 162

1967) encoder, in which high-level constituents are 163

soft-weighted over composed representations of its 164

sub-constituents. Drozdov et al. (2019) proposes a 165

deep inside-outside algorithm (Baker, 1979; Lari 166

and Young, 1990), enabling the encoder to learn un- 167

derlying structures via an auto-encoding objective. 168

Recently, a series of studies (Hu et al., 2021, 2022, 169

2024) have been conducted to reduce the inside 170

algorithm complexity from cubic to linear. Our 171

SLM is built on top of state-of-the-art composition 172

modeling techniques, in which we achieve unsu- 173

pervised learning and enhance training parallelism 174

by taking advantage of the pruned inside-outside 175

algorithm (Hu et al., 2024). 176

3 Methodology 177

Given a sentence x = [x1, x2, . . . , xn] with xi 178

from a vocabulary V (1 ⩽ i ⩽ n), our goal is 179

to train an SLM without gold trees that can simulta- 180

neously generate x and its syntactic structure. We 181

first introduce the generative architecture of GPST, 182

and then elaborate on how to perform training and 183

inference with the model. 184
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3.1 Generative Model185

GPST generates a sentence and its parse tree from186

left to right via two types of actions, GEN and187

COMP, along with a stack (Dyer et al., 2015) to188

maintain partially completed sub-trees during gen-189

eration. GEN generates a word x and pushes its190

embedding into the stack. We denote such an ac-191

tion as GEN(x), with x ∈ V. COMP pops the top192

two elements off the stack, computes their com-193

posed representation, and pushes it back to the194

stack. A major difference in model architecture195

between GPST and existing unsupervised SLMs,196

such as URNNG (Kim et al., 2019b), is that GPST197

makes good use of the architecture of Transformers198

to parameterize the action probabilities and thus199

hidden states from previous actions can be directly200

accessed via self-attention during generation.201

Figure 1 illustrates the generative process of202

GPST. The generative model comprises type layers203

and token layers, both consisting of multi-layered204

Transformers. Let us denote the stack at step t205

as St, with S0
t and S1

t representing the top two206

elements, respectively. Initially, S0
0 is set to the em-207

bedding of the beginning-of-sentence token (i.e.,208

⟨bos⟩ in Figure 1). At each step t, S0
t along with a209

position ID wt is fed into the type layers, yielding210

a hidden state ht, which is then utilized to predict211

the next action type yt:212

• If yt = 0 (COMP), we set wt+1 as wt, pop off S0
t213

and S1
t from St, and compose them using a com-214

position function. The composed representation215

is then pushed back into the stack. In such a case,216

action at at time step t is set to COMP.217

• If yt = 1 (GEN), we set wt+1 as wt + 1, feed ht218

to the subsequent token layers, and get an output219

state gwt that is used to generate xwt+1. In such220

a case, we have at = GEN(xwt+1).221

Suppose that axy is the action sequence to generate222

a sentence x and its parse tree y, then the joint223

distribution of x and y can be formulated as:224

p(x,y) = p(axy) =
∏
t

p(at|a<t), (1)225

where p(at|a<t) is computed by:226

p(COMP|a<t) = p(yt = 0|a<t),

p(GEN(xwt+1)|a<t) = p(xwt+1|yt = 1, a<t)p(yt = 1|a<t),

p(xwt+1|yt = 1, a<t) = softmax(MLPx(gwt)),

p(yt|a<t) = softmax(MLPy(ht)).

227

MLPy(·) and MLPx(·) convert inputs to a 2-dim228

vector and a |V|-dim vector, respectively. By pre-229

dicting action types through shallow layers and230

tokens through deep layers, we can keep the total231

Figure 1: An illustration of the generative process of GPST.
xi:j denotes the sub tree representation spanning from i to j.
As we use Transformers as the backbone, all previous hidden
states are leveraged. At step t, the length of historical hidden
states is t for the type layers and wt for the token layers as
illustrated with dotted lines for step 3.

computational cost close to that of vanilla Trans- 232

formers. 233

3.2 Unsupervised Training 234

How to train an unsupervised SLM effectively and 235

efficiently has always been a challenge. Existing 236

methods suffer from two issues: asymmetric feed- 237

back and inability to train in parallel. The former 238

arises from the uni-directional LM loss, and the 239

latter stems from the inherent data dependency of 240

each composition step on the representations of 241

its sub-constituents from previous steps. We tackle 242

both issues with an approach similar to hard-EM. In 243

E-step, we employ a composition model to induce 244

a parse tree through a pruned deep inside-outside 245

algorithm. In M-step, we update both the composi- 246

tion model and the generative model by optimizing 247

a joint objective based on the induced tree. Below 248

we present details of the two steps and explain how 249

they tackle the issues mentioned above. 250

E-step. During the E-step, the composition 251

model searches for the best parse tree and com- 252

poses representations through a deep inside-outside 253

algorithm (Drozdov et al., 2019), as shown in 254

Figure 2(a). In the inside pass, we compute the 255

composed representation īki,j and the compatibil- 256

ity score aki,j for each span (i, j) with a split at k 257

(i ≤ k < j) via function fα and ϕα, respectively, 258

which are formulated in Appendix A.2. We then 259

compute each internal span representation ii,j and 260

its compatibility score ai,j as a weighted average 261

over all possible īki,j and aki,j : 262

āk
i,j = ϕα(ii,k, ik+1,j) , a

k
i,j = āk

i,j + ai,k + ak+1,j ,

īki,j = fα(ii,k, ik+1,j) , ŵ
k
i,j =

exp(ak
i,j)∑j−1

k′=i exp(a
k′
i,j)

,
263
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Figure 2: Illustration of the training process. “)” denotes the COMP action. (a) In the E-step, we induce a parse tree and
compute constituent representations. (b)(i) Data dependencies within inputs of the generative model. (b)(ii) Illustration of the
representation surrogate. xi,j denotes the original input representation spanning over (i, j) composed from left to right.

264

ii,j =

j−1∑
k=i

ŵk
i,j ī

k
i,j , ai,j =

j−1∑
k=i

ŵk
i,ja

k
i,j .265

Analogously, the outside pass computes each266

outside representation oi,j in a top-down man-267

ner based on bi-directional information outside268

span (i, j). To accelerate computation, we use the269

pruned deep inside-outside algorithm (Hu et al.,270

2024) which achieves linear space complexity and271

approximately logarithmic parallel time complex-272

ity. The details of the algorithm and the complete273

outside pass are presented in Appendix A.1.274

Note that for a given span (i, j), the best split275

point is k with the highest aki,j . Thus, to derive a276

parse tree, we can recursively select the best split277

points top-down starting from the root span (1, n).278

The outside representations of tokens can be279

used to define an auto-encoding loss (i.e., predict-280

ing each token from its outside representation) for281

the composition model, which is optimized in the282

M-step:283

Lae = − 1

n

n∑
i=1

log
exp(oT

i,iexi)∑|V|
k=1 exp(o

T
i,iek)

,284

where ek is the embedding of the k-th token in the285

vocabulary. As the auto-encoding loss provides286

feedback to each token representation from both287

sides of the token, the asymmetric feedback issue288

is addressed.289

M-step. With the induced tree y, we update290

the parameters of the composition model and291

the generative model in a joint manner. De-292

note the sequence of node spans in post-order as293

[(i0, j0), (i1, j1), ..., (i2n−1, j2n−1)]. The action se-294

quence can be formulated as:295

at =

{
COMP
GEN(xit)

, for
it < jt
it = jt

.296

297 An auto-regression loss can be defined as:298

Lar = − log p(x,y) = − 1

2n− 1

2n−1∑
t=0

log p(at|a<t).299

However, even though the action sequence is 300

given, there are still two challenges. First, there are 301

data dependencies within the inputs for the genera- 302

tive model as mentioned earlier and shown in Fig- 303

ure 2(b), which impedes parallel training. Second, 304

there are no feedforwards from the composition 305

model to the generative model, so the two mod- 306

els are disconnected and hence cannot be trained 307

jointly. To address these challenges, we employ 308

the internal span representations computed by the 309

composition model as a surrogate for the input rep- 310

resentations of the generative model. Note that 311

internal span representations do not contain any in- 312

formation outside spans, so there is no information 313

leakage in the uni-directional generative model. As 314

illustrated in Figure 2(b)(i), using the same com- 315

position function fα, representations composed 316

from left to right are equivalent to those composed 317

bottom-up following the same binary tree. Thus 318

we can use the internal span representations in the 319

induced tree traversed in post-order as an approxi- 320

mation2 of the inputs for the generative model as 321

depicted in Figure 2(b)(ii). The key lies in the 322

generative model sharing the same composition 323

function as used in the composition model. As the 324

internal span representations are already computed 325

in the E-step, they can be fed into Transformers 326

seamlessly at once to fully leverage the parallel 327

training ability of the architecture. Moreover, the 328

surrogate enables the representations computed by 329

the composition model to participate in the genera- 330

tive model, and thus the two models can be jointly 331

optimized via the auto-regression loss. 332

The final training loss for the M-step combines 333

the auto-regression and auto-encoding losses as: 334

L = Lae + Lar. 335

2It is an approximation because ii,j is soft-weighted over
all īki,j with the best split-point at k, while xi,j is supposed
to be composed by xi,k and xk+1,j in a hard manner during
inference. However, our experimental results indicate that
such an approximation approach has minimal impact on actual
inference.
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We empirically find that the combined loss leads336

to left-branching bias in parse trees induced by337

the composition model that is not observed when338

training with Lae alone. A possible reason is that339

left-leaning trees provide more left-side context340

for each step during generation and thus are rein-341

forced in learning. To tackle the issue, we stop gra-342

dient propagation from Lar to aki,j , which means343

only gradients from Lae are allowed to be back-344

propagated along aki,j . Note that other variables345

like ii,j still receive gradients from Lar.346

3.3 Inference347

The action space of GEN(x) is much larger than348

that of COMP, leading to an imbalance between349

their probabilities. Stern et al. (2017) point out350

that during beam search decoding, hypotheses in351

a beam should be grouped by the length of gener-352

ated tokens instead of action history, which they353

refer to as “word-level search”. However, their ap-354

proach does not guarantee that the top-k next words355

searched are the optimal ones. To address the issue,356

we propose an improved word-level search tailored357

for our generation paradigm. The core idea is to358

guarantee that all hypotheses in a beam have the359

same number of GEN(x) actions. Beams satisfy-360

ing the condition are marked as sync and otherwise361

sync. Below we depict the entire word-level search362

process through an example shown in Figure 3:363

1. Starting with a sync beam, e.g., A,B,C and364

(A,B), D, we estimate the probability distri-365

bution of the next action for each hypothesis366

within it. For each possible action, we compute367

the probability of the resulting new hypothesis368

as the product of the probabilities of the current369

hypothesis and the action. The new hypothe-370

ses are pooled and ranked, and the top-k are371

retained (e.g., A, (B,C) and (A,B), D,E).372

2. If the current beam contains hypotheses with the373

last step being COMP, e.g., A, (B,C), we con-374

tinue to explore their next actions, update their375

probabilities, pool them with other hypotheses376

in the beam, and rank the top-k, until all the top-377

k hypotheses have GEN(x) as their last action.378

3. End generation upon reaching the length limit379

or producing an end token; otherwise, go back380

to step 1.381

This method is also applicable to top-k random382

sampling (Fan et al., 2018), or parsing with a given383

input sentence by simply setting the probabilities of384

all GEN(x) actions to zeros except for the correct385

next token.386

Figure 3: An illustration of beam search decoding of size
2. For simplicity, we use “)” to denote COMP and upper
case characters to denote words generated by GEN(x). Boxes
filled in gray are hypotheses with the last action being COMP.
Grayed-out boxes are pruned out during beam search.

4 Experiments 387

To fairly compare GPST and GPT-2, we pre-train 388

both models from scratch on the same corpus with 389

the same setups and comparable parameter sizes. 390

Evaluation is conducted on various language under- 391

standing/generation tasks. Besides, we also evalu- 392

ate GPST on grammar induction to verify to what 393

extent the induced parse trees are consistent with 394

human annotation. 395

Pre-training Corpus. We pre-train models on 396

WikiText-103 (Merity et al., 2017) and OpenWeb- 397

Text (Gokaslan and Cohen, 2019), where the two 398

datasets contain 116 million tokens and 9 billion 399

tokens, respectively. The context window size in 400

pre-training is set to 1024. When a context involves 401

more than one complete sentence, parse trees are 402

induced for each sentence separately. 403

Hyper-parameters. Following GPT-2 (Radford 404

et al., 2019), we use 768/1024-dimensional em- 405

beddings, a vocabulary size of 30522, 3072/4096- 406

dimensional hidden layer representations, and 407

12/16 attention heads for the generative models 408

of GPSTsmall and GPSTmedium, respectively. To 409

align with Transformer layer counts in GPT-2, we 410

configure GPSTsmall with 3 type layers and 9 to- 411

ken layers, and GPSTmedium with 3 type layers and 412

21 token layers, respectively. We set the input di- 413

mension of the composition model to 256/512, and 414

the number of Transformer layers used in the com- 415

position function and decomposition function to 416

4 and 1, corresponding to the small and medium 417

setups. The token embeddings are down-scaled 418

before being fed into the composition model, and 419

the constituent representations are up-scaled before 420
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Models corpus SST2 COLA MRPC(f1) QQP(f1) QNLI RTE MNLI-(m/mm) average #param.
GPT-2small wiki103 88.11 27.75 80.80 85.37 83.71 53.91 75.85/75.77 71.41 1.0x
GPSTsmall w/o grad.stop wiki103 88.11 29.09 81.16 84.98 84.62 53.19 75.87/75.88 71.61 1.1x
GPSTsmall w/o surrogate wiki103 88.07 29.24 80.98 85.08 84.05 52.71 76.47/76.36 71.62 1.1x
GPSTsmall wiki103 88.34 28.41 81.21 85.33 85.08 56.08 76.60/76.46 72.19 1.1x
GPT-2small opw 90.71 40.53 83.20 86.55 85.60 58.72 79.53/79.75 75.57 1.0x
GPSTsmall opw 90.94 44.51 84.72 86.70 86.91 64.98 79.60/80.15 77.31 1.1x
GPT-2medium opw 91.10 47.55 83.68 87.17 86.64 61.49 81.35/81.05 77.50 2.7x
GPSTmedium opw 91.97 50.79 85.69 87.36 87.60 64.86 81.80/82.01 79.01 3.0x
For Reference
Ordered-Memory† – 90.40 – –/– –/– – – 72.53/73.20 –

Table 1: Evaluation results on GLUE benchmark. We mark out the best result of each group in bold. The results of Ordered-
Memory† are copied from Ray Chowdhury and Caragea (2023).

being fed into GPST. All models are trained on421

8 A100 GPUs with a learning rate of 5e-5/1e-4,422

8 × 32 × 1024 tokens per step, 5 billion and 15423

billion total training tokens for WikiText-103 and424

OpenWebText, respectively.425

4.1 Understanding Tasks426

Dataset. We evaluate GPST on the GLUE bench-427

mark (Wang et al., 2018), which collects tasks cov-428

ering a broad range of natural language understand-429

ing (NLU) domains.430

Evaluation Settings. We borrow and minimally431

modify the fine-tuning paradigm from Radford et al.432

(2018). Details are described in Appendix A.3. As433

the whole sentence is given, the composition model434

is utilized to induce the best tree and compose con-435

stituent representations as described in the E-step.436

The constituent representations in the induced tree437

are gathered in post-order as inputs for the gener-438

ative model. We derive two additional baselines439

GPSTw/o surrogate and GPSTw/o grad.stop for ablation440

study. In GPSTw/o surrogate, all constituent repre-441

sentations of non-terminals are replaced by em-442

beddings of a placeholder COMP as in Transformer443

Grammars (Sartran et al., 2022), and thus there is444

no interaction between the composition model and445

the generative model (i.e., they are separately opti-446

mized). In GPSTw/o grad.stop, partial gradient stop-447

ping is disabled to study the impact of left-leaning448

trees on downstream tasks. We run three rounds of449

fine-tuning with different seeds and report average450

results (accuracy by default) on the validation sets.451

Results and Discussions. Table 1 reports the452

results on the GLUE benchmark. GPST sig-453

nificantly outperforms GPT-2 in both small and454

medium setups. We find that GPSTw/o grad.stop455

and GPSTw/o surrogate underperform GPST, but are456

still better than GPT-2. The performance drop457

of GPSTw/o grad.stop indicates that poor structures 458

compromise the performance of downstream tasks. 459

GPSTw/o surrogate is better than GPT-2, implying that 460

as long as induced syntactic structures are utilized, 461

simply replacing non-terminal representations with 462

COMP embeddings is also helpful. It is, however, 463

worse than GPST, demonstrating that computing 464

representations of non-terminal constituents via an 465

explicit composition function further benefits lan- 466

guage understanding. One more interesting thing 467

we find is that GPST consistently and most signifi- 468

cantly outperforms baselines on the RTE task. One 469

possible explanation is that certain relationships 470

in RTE are predicated on negation words such as 471

“not”, which generally affects high-level semantics 472

through compositions with other phrases. Explicit 473

syntactic composition modeling contributes to a 474

better representation of such cases. 475

4.2 Generation Tasks 476

4.2.1 Abstractive Summarization 477

Datasets. We conduct experiments on three 478

summarization datasets: BBC extreme (XSum) 479

(Narayan et al., 2018), CNN and DailyMail (Nal- 480

lapati et al., 2016), and Gigaword (Napoles et al., 481

2012) to assess the performance of GPST in terms 482

of language generation abilities. Statistics of the 483

datasets are presented in Table 6 in Appendix A.4. 484

Evaluation Settings. For XSum and CNN/Dai- 485

lyMail, we truncate the documents and their sum- 486

maries to 900 and 100 tokens respectively, and con- 487

catenate them with short prompt Summary:. For 488

Gigaword, the truncating thresholds of documents 489

and summaries are set to 400 and 120 respectively, 490

following the settings of Rothe et al. (2020). Con- 491

sidering the complexity of the generation task, 492

we primarily evaluate the models pre-trained on 493

OpenWebText. More details are described in Ap- 494

pendix A.5. We apply the word-level search de- 495
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Models XSum CNN/DailyMail Gigaword
R-1 R-2 R-L R-AVG R-1 R-2 R-L R-AVG R-1 R-2 R-L R-AVG

GPT-2small 29.78 9.43 23.56 20.92 35.54 14.45 24.76 24.92 32.45 14.84 30.37 25.88
GPSTsmall-w/o sync 29.44 9.09 23.20 20.58 35.63 14.57 24.93 25.04 32.34 14.69 29.98 25.67
GPSTsmall 29.86 9.51 23.70 21.02 35.52 14.65 25.01 25.06 32.53 14.76 30.37 25.89
GPT-2medium 31.91 11.11 25.28 22.76 37.18 15.23 25.59 26.00 33.13 15.27 30.85 26.42
GPSTmedium w/o sync 31.66 10.91 25.16 22.58 37.07 15.45 25.69 26.07 32.83 15.06 30.59 26.16
GPSTmedium 31.96 11.31 25.58 22.95 37.18 15.69 26.00 26.29 33.19 15.27 30.91 26.46

Table 2: Abstractive summarization results.

Models Agr. C.E. G.P.E. C.S.E. Lcs. L.D.D. avg
WikiText-103
GPT2small 50.88 73.21 77.88 97.83 33.95 65.98 66.62
GPSTsmall 59.65 73.21 87.10 97.83 57.89 64.78 73.41
OpenWebText
GPTsmall 78.95 87.50 85.22 97.83 71.58 78.65 83.29
GPSTsmall 77.19 85.71 94.54 96.74 68.95 72.38 82.59
GPTmedium 64.91 94.64 86.41 98.91 73.42 79.38 82.95
GPSTmedium 85.96 85.71 95.04 94.57 83.68 78.17 87.19
For Reference (Models with gold trees)
TG 69.7 88.4 90.4 95.6 78.1 77.9 83.35
Pushdown Layers 79.0 92.0 84.2 100.0 77.8 77.5 85.08

Table 3: Syntactic generalization results. For reference, we
list the results of models with gold trees from Sartran et al.
(2022) and Murty et al. (2023).

scribed in §3.3 to top-k random sampling for GPST,496

except for models with w/o sync which only uses497

naive action-level beam search. ROUGE (Lin and498

Hovy, 2003) is employed as the evaluation metric.499

4.2.2 Syntactic Generalization500

Datasets. The syntactic generalization task (Hu501

et al., 2020) collects 34 test suites to assess syntac-502

tic generalizability of the models. The test suites503

are grouped into 6 circuits: Agreement (Agr.), Cen-504

ter Embedding (C.E), Garden-Path Effects (G.P.E),505

Cross Syntactic Expectation (C.S.E.), Licensing506

(Lcs.) and Long-Distance Dependencies (L.D.D.).507

Evaluation Settings. We evaluate models on syn-508

tactic generalization test suites by comparing sur-509

prisals (Hale, 2001) without fine-tuning, as re-510

quired by Hu et al. (2020). Surprisal: S(w|C) =511

− log2 p(w|C) is defined as negative log condi-512

tional probabilities of a sub-sentence w given the513

left-side context C. In detail, when we apply word-514

level search with beam size b to do left-to-right pars-515

ing with a given input, we temporarily store b best516

hypotheses with their probability p(x<t,y<n(t)) at517

each token position t, in which y<n(t) refers to518

the current latent structure before generating xt.519

We marginalize y<n(t) out of p(x<t,y<n(t)) by520

summing up all the probabilities of the b best hy-521

potheses. Finally, we obtain the surprisal of a sub-522

sentence with starting position s and ending posi-523

tion e as S(w|C) = − log p(x<e)+ log p(x<s−1).524

To align with Murty et al. (2023) and Sartran525

et al. (2022), we set beam size b to 300.526

4.2.3 Results and Discussions 527

Table 2 and 3 report the results of summarization 528

and syntactic generalization tasks. Overall, the 529

performance of GPST is comparable to GPT, with 530

a slight advantage. One possible reason why the 531

advantage of GPST on generalization tasks is not 532

as significant as that on GLUE is the discrepan- 533

cies between training and inference. During train- 534

ing, the constituent representations are computed 535

via the inside algorithm, where the representations 536

are soft-weighed over composed representations of 537

valid sub-constituents. However, during inference, 538

constituent representations are composed of the 539

top two elements in the stack, which is a one-hot 540

version of the inside algorithm. This issue could 541

potentially be resolved using a hard inside-outside 542

algorithm (Drozdov et al., 2020), which we may ex- 543

plore in our future work. Despite the discrepancies, 544

our performance still slightly surpasses that of GPT- 545

2, which adequately demonstrates the potential of 546

GPST in generation tasks. One more interesting 547

thing is that GPSTmedium even outperforms base- 548

lines with gold trees in the syntactic generalization 549

task, and the results of all GPSTs maintain a lead 550

on Garden-Path Effect. Note that the results have 551

a large variance due to the relatively small size 552

of the evaluation set, e.g., GPTmedium even under- 553

performs GPTsmall. However, the results still imply 554

that unsupervised syntactic LMs have reached a 555

critical point where they can surpass approaches 556

reliant on gold trees. 557

4.3 Grammar Induction 558

Baselines & Dataset. We select baselines that re- 559

port left-to-right unsupervised parsing results: Neu- 560

ral variational (NV) approaches (Li et al., 2019), 561

PRPN (Shen et al., 2018) and ON-LSTM (Shen 562

et al., 2019b). For reference, we also select some 563

baselines performing parsing through the inside 564

algorithm only: URNNG (Kim et al., 2019b), C- 565

PCFG (Kim et al., 2019a), DIORA (Drozdov et al., 566

2019) and Fast-R2D2 (Hu et al., 2022). We report 567

their performance on PTB (Marcus et al., 1993). 568
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Besides, we also report results of GPSTw/o grad.stop569

and GPSTw/o surrogate for checking the gains from570

partial gradient stopping and joint pre-training571

achieved by the representation surrogate.572

Evaluation Settings. We continue to fine-tune573

all models on the training set of PTB for 10 epochs574

with batch size set to 32 after pre-training. Since575

GPST takes word pieces as inputs, we provide576

our model with word-piece boundaries as non-577

splittable spans to align with models with word-578

level inputs. We apply different inference algo-579

rithms to grammar induction. For the inside algo-580

rithm, we directly evaluate the parse tree induced581

by the composition model. For the left-to-right582

parsing, we apply improved word-level search de-583

scribed in §3.3 with a beam size of 20 to parse the584

given text, except for GPSTw/o sync which employs585

action-level sync beam search for parsing. We586

adopt sentence-level unlabeled F1 as the evaluation587

metric, with the same setup as Kim et al. (2019a)588

where punctuations are discarded and words are589

lowercased. We evaluate the checkpoints from all590

epochs on the validation set, pick the best one, and591

then report its performance on the test set.592

Models corpus inference alg. F1
NV(unsupervised) WSJ left to right 29.0
NV(+linguistic rules) WSJ left to right 42.0
PRPN WSJ left to right 37.4
ON-LSTM WSJ left to right 47.4
GPSTsmall w/o sync wiki103 left to right 43.64
GPSTsmall wiki103 left to right 55.25
GPSTsmall w/o sync opw left to right 43.09
GPSTsmall opw left to right 51.40
GPSTmedium w/o sync opw left to right 43.37
GPSTmedium opw left to right 54.71
For Reference
GPSTsmall w/o grad.stop wiki103 inside 42.46
GPSTsmall w/o surrogate wiki103 inside 50.27
GPSTsmall wiki103 inside 57.46
GPSTsmall opw inside 53.95
GPSTmedium opw inside 56.27
URNNG WSJ inside 45.4
C-PCFG WSJ inside 55.2
DIORA WSJ inside 55.7
Fast-R2D2 wiki103 inside 57.2
Oracle — — 84.3

Table 4: Results on unsupervised left-to-right parsing.

Results and Discussions. There are several ob-593

servations from the results shown in Table 4. First594

and foremost, we find that our unsupervised left-595

to-right parsing achieves comparable performance596

with the bi-directional inside algorithm, signifi-597

cantly surpassing previous left-to-right grammar598

induction baselines. Such results indicate the struc-599

tures generated by GPST are meaningful and con-600

sistent with those from humans. Secondly, a larger 601

pre-training corpus may not necessarily bring im- 602

provement. A plausible explanation is that Open- 603

WebText, mixed with more non-natural text such 604

as URLs, introduces additional noise, leading to a 605

performance drop. The results indicate the impor- 606

tance of high-quality corpora for structural learn- 607

ing. Thirdly, the performance of GPSTw/o surrogate 608

infering with the inside algorithm drops a lot. We 609

suppose the main reason is that disabling the repre- 610

sentation surrogate prevents the composition model 611

from receiving long-term feedback from tokens on 612

the right introduced by the auto-regression loss. 613

Lastly, the performance decline of GPSTw/o grad.stop 614

corroborates the impact of asymmetric loss on 615

structural learning. We attach trees parsed by GPST 616

in Appendix A.6 for case studies. 617

4.4 Training Efficiency 618

Finally, we conduct a fair comparison of training 619

efficiency with other unsupervised SLMs. We keep 620

the model sizes and memory usage comparable 621

and the training tokens the same. We report their 622

time consumption in Table 5, from which we can 623

observe the huge advantage of GPST over the base- 624

lines in terms of efficiency.
sentence length

#param. 128 256 512 1024
GPST 24M 1x 1x 1x 1x
URNNG 23M 130.6x 955.3x n/a n/a
OM 28M 2.0x 9.2x 25.4x 63.3x

Table 5: Training acceleration on the same number of tokens.
625

5 Conclusion 626

In this paper, we propose an unsupervised approach 627

to train GPST at scale efficiently. A key insight 628

of our work is to guide the left-to-right structural 629

learning with symmetric supervision such as an 630

auto-regression loss, which can receive feedback 631

from both sides. A key technical contribution is 632

that we propose the representation surrogate which 633

enables joint training of all components in parallel. 634

Besides, the composition model of GPST can be 635

regarded as an enhancement to the conventional 636

embedding layer, which provides context-invariant 637

embeddings of various granularities beyond token 638

embeddings. Our experiment results show the su- 639

periority of GPST on language understanding, gen- 640

eration, and left-to-right grammar induction, which 641

demonstrate the potential of GPST as a founda- 642

tional architecture for large language models. 643
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6 Limitation644

Despite GPST achieving a multiple-fold accelera-645

tion compared to previous syntactic language mod-646

els, it still requires 1.5 to 5 times the training time647

compared to vanilla GPTs (the inference time can648

be comparable if well implemented). The more649

layers there are in the type/token layers, the lower650

the overall time multiplier becomes. The additional651

training time comes from the composition model652

which only accounts for one-tenth of the over-653

all model parameters. Though the pruned inside-654

outside can be completed in approximately log n655

steps, it involves significant memory transfers, thus656

making it bounded by the speed of memory swap-657

ping across hard-wares. Meanwhile, our implemen-658

tation is quite naive, without any operator fusion659

or hardware-aware implementation. Thus there660

should be multiple potential ways to further reduce661

the time consumption of the composition model in662

the future.663
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A Appendix979

A.1 Pruned inside-outside algorithm980

Fast-R2D2 (Hu et al., 2022) introduces a pruned981

variant of the inside algorithm that reduces its com-982

plexity from O(n3) to O(n) in both space and time.983

Building on this, ReCAT (Hu et al., 2024) extends984

the pruning method to the inside-outside algorithm,985

and further enables it to complete in approximate986

log n steps, whose key idea is to prune out unnec-987

essary cells in the chart-table and encode cells in988

different rows simultaneously. The main idea of989

the pruning process is to decide which two spans990

should be merged at each step during the inside991

pass and prune out cells that would break the non-992

splittable span. An unsupervised top-down parser993

is applied to determine the merge order of spans.994

Given a sentence x = [x1, x2, . . . , xn], the top-995

down parser assigns each split point a score vi996

s.t. 1 ≤ i ≤ n − 1, and recursively split the sen-997

tence into two in the descending order of the scores998

shown in Figure 4 (a). Hence, the reverse order of999

the split points could be used to decide which cells1000

to merge. Specifically, the pruned inside-outside1001

algorithm works as follows:1002

0. Prepare merge batches according to the height of1003

merge points in the induced tree, with the lowest1004

merge points in the first batch, as illustrated in1005

Figure 4(b).1006

1. Merge each pair of adjacent cells into one ac-1007

cording to the current merge batch. For example,1008

in Figure 5(b), at merge point 1, we merge x11009

and x2 into x1:2; at merge point 5, we merge x51010

and x6 into x5:6.1011

2. Remove all conflicting cells that would break1012

the now non-splittable span from Step 1, e.g.,1013

the dark cells in Figure 5(c), and reorganize the1014

chart table much like in the Tetris game as in1015

(d).1016

3. Encode the cells that just descend to height1017

m and record their valid splits in K, e.g., the1018

cells highlighted with stripes in Figure 5(d) with1019

valid splits {2, 3} for span (1, 4) and {3, 4} span1020

(3, 6). Go back to Step 1 until no blank cells are1021

left.1022

Therefore, the entire inside process can be com-1023

pleted within steps equal to the height of the tree.1024

Using the valid splits K recorded for each cell dur-1025

ing the pruning process, we now have the new in-1026

side state transition equation as:1027

āk
i,j = ϕα(ii,k, ik+1,j) , a

k
i,j = āk

i,j + ai,k + ak+1,j 1028

īki,j = fα(ii,k, ik+1,j) , ŵ
k
i,j =

exp(ak
i,j)∑

k′∈Ki,j
exp(ak′

i,j)
1029

ii,j =
∑

k∈Ki,j

ŵk
i,j ī

k
i,j , ai,j =

∑
k∈Ki,j

ŵk
i,ja

k
i,j 1030

where Ki,j is the valid splits set for span (i, j). 1031

According to K, we can obtain a mapping from 1032

a span to its immediate sub-spans. By reversing 1033

such mapping, we get a mapping from a span to its 1034

valid immediate parent spans denoted as P , which 1035

records the non-overlapping endpoint k in the par- 1036

ent span (i, k) or (k, j) for a given span (i, j). 1037

Thus, for the outside pass, we have: 1038

ōk
i,j =

{
fβ(oi,k, ij+1,k)
fβ(ok,j , ik,i−1)

, b̄ki,j =

{
ϕβ(oi,k, ij+1,k)
ϕβ(ok,j , ik,i−1)

,

bki,j =

{
aj+1,k + b̄ki,j + bi,k,
ak,i−1 + b̄ki,j + bk,j

, for
k > j
k < i

,

w̌k
i,j =

exp(bki,j)∑
k′∈Pi,j

exp(bk
′

i,j)
,

oi,j =
∑

k′∈Pi,j

w̌k
i,j ō

k
i,j , bi,j =

∑
k′∈Pi,j

w̌k
i,jb

k
i,j .

1039

We optimize the top-down parser jointly at the 1040

M-step with GPST. Given the parse tree y induced 1041

at the E-step, we maximize p(y|x; Θ) for the top- 1042

down parser, whose parameters are denoted as Θ. 1043

As shown in Figure 4(a), at t step, the span corre- 1044

sponding to a given split at is determined, which 1045

is denoted as (it, jt). Thus we can minimize the 1046

negative log-likelihood of the parser as follows: 1047

p(at|x,Θ) =
exp(vat)∑jt−1
k=it

exp(vk)
, 1048

Lp = − log p(y|x; Θ) = −
n−1∑
t=1

log p(at|x; Θ). 1049

We notice that the steps to finish the pruned 1050

inside-outside algorithm depend on the highest tree 1051

in a batch, thus any extremely skewed tree may 1052

result in a significant increase in time consump- 1053

tion. A straightforward approach to reduce the 1054

maximum height of parse trees in a batch is to in- 1055

troduce a height penalty. During the inside pass, 1056

the weighted tree height of span (i, j) could be 1057

computed as: 1058

h̄k
i,j = max(hi,k, hk+1,j) + 1, hi,j =

∑
k∈Ki,j

ŵk
i,j h̄

k
i,j 1059

To minimize the impact of height penalties on 1060

grammar induction, we set a threshold Hthrs which 1061
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Figure 4: Fast encoding follows the order given by a top-down parser, with the merging order M being the reverse order of
the split point sequence A. xi denotes the ith token in a sentence of length 6. Numbers in A and M denote the indices of the
split/merge point between tokens. vj denotes the split score of jth split point, predicted by the top-down parser.

Figure 5: The initial step of encoding in O(logn) steps. The numbers in blue correspond to the indices of the split points
introduced in Figure 4.

is 15 by default. Only trees that exceed this thresh-1062

old will be affected.1063

Lh =
1

n
max(h1,n −Hthrs, 0)1064

Thus the final auto-encoding objective is:1065

L∗
ae = Lae + Lh + Lp1066

A.2 Composition function and score function1067

Figure 6: Model illustrations for the composition and decom-
position functions.

We borrow the idea from Hu et al. (2021) to use1068

Transformers as the backbone of the composition1069

function fα. As shown in Figure 6(a), composition1070

function fα takes left/right constituent representa-1071

tions ii,k/ik+1,j along with their role embeddings1072

[LEFT]/[RIGHT] into N-layered Transformers as1073

inputs, passes the summation of their correspond-1074

ing outputs through a layer normalization layer to1075

get the composed representation. Decomposition1076

function fβ works analogously as shown in Fig- 1077

ure 6(b) and (c), with [PRT] as the role embedding 1078

for parents. 1079

We define the score function ϕα as: 1080

ϕα(l, r) = MLPl
α(l)

T MLPr
α(r)/

√
d (2) 1081

where l and r are representations for left/right 1082

constituents. MLPl
α and MLPr

α are used to cap- 1083

ture syntactic features from the left and right in- 1084

puts, which convert inputs to d-dimensional vec- 1085

tors. Analogously, ϕβ is defined as: 1086

ϕβ(p, l) = MLPp
β(p)

T MLPl
β(l)/

√
d 1087

ϕβ(p, r) = MLPp
β(p)

T MLPr
β(r)/

√
d 1088

where p is the outside representation of a parent. 1089

MLPl
β , MLPr

β , and MLPp
β are used to capture fea- 1090

tures from left/right children and parents respec- 1091

tively. 1092

A.3 Glue fine-tuning 1093

In detail, we append a CLS token after the input 1094

sequence and then feed the hidden states of the 1095

CLS tokens to a linear layer as the logits for clas- 1096

sification. An additional cross-entropy loss along 1097

with the pre-training objective is used during fine- 1098

tuning. 1099

A.4 Summarization dataset statistics 1100

BBC extreme (XSum) comprises 204k document- 1101

summary pairs for single-sentence summarization 1102
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of long documents. CNN and DailyMail (CNN/-1103

DailyMail) contains 287k training pairs, each con-1104

sisting of a document annotated with highlights.1105

Gigaword focuses on sentence summarization with1106

3.8M sentence-summary training pairs conversely.1107

We organize the statistics in Table 6.

XSum CNN/DailyMail Gigaword
Training Set 204k 287k 3.8M
Test Set 11.3k 11.5k 1.95k

Table 6: Detailed statistics for summarization datasets.

1108

A.5 Summarization fine-tuning1109

We fine-tune for 15 epochs with a batch size of1110

16 on XSum and CNN/DailyMail datasets. For1111

Gigaword, we fine-tune for 10 epochs with a batch1112

size of 64. Top-k random sampling with k = 2 is1113

used as the basic inference method as suggested in1114

GPT-2 (Radford et al., 2019).1115

A.6 Case studies1116

Please refer to the following pages.1117

15
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