
Published as a conference paper at ICLR 2021

PERSONALIZED FEDERATED LEARNING WITH
FIRST ORDER MODEL OPTIMIZATION

Michael Zhang∗
Stanford University
mzhang@cs.stanford.edu

Karan Sapra
NVIDIA
ksapra@nvidia.com

Sanja Fidler
NVIDIA
sfidler@nvidia.com

Serena Yeung
Stanford University
syyeung@stanford.edu

Jose M. Alvarez
NVIDIA
josea@nvidia.com

ABSTRACT

While federated learning traditionally aims to train a single global model across
decentralized local datasets, one model may not always be ideal for all participat-
ing clients. Here we propose an alternative, where each client only federates with
other relevant clients to obtain a stronger model per client-specific objectives. To
achieve this personalization, rather than computing a single model average with
constant weights for the entire federation as in traditional FL, we efficiently calcu-
late optimal weighted model combinations for each client, based on figuring out
how much a client can benefit from another’s model. We do not assume knowl-
edge of any underlying data distributions or client similarities, and allow each
client to optimize for arbitrary target distributions of interest, enabling greater
flexibility for personalization. We evaluate and characterize our method on a va-
riety of federated settings, datasets, and degrees of local data heterogeneity. Our
method outperforms existing alternatives, while also enabling new features for
personalized FL such as transfer outside of local data distributions.

1 INTRODUCTION

Federated learning (FL) has shown great promise in recent years for training a single global model
over decentralized data. While seminally motivated by effective inference on a general test set sim-
ilar in distribution to the decentralized data in aggregate (McMahan et al., 2016; Bonawitz et al.,
2019), here we focus on federated learning from a client-centric or personalized perspective. We
aim to enable stronger performance on personalized target distributions for each participating client.
Such settings can be motivated by cross-silo FL, where clients are autonomous data vendors (e.g.
hospitals managing patient data, or corporations carrying customer information) that wish to collab-
orate without sharing private data (Kairouz et al., 2019). Instead of merely being a source of data
and model training for the global server, clients can then take on a more active role: their federated
participation may be contingent on satisfying client-specific target tasks and distributions. A strong
FL framework in practice would then flexibly accommodate these objectives, allowing clients to
optimize for arbitrary distributions simultaneously in a single federation.

In this setting, FL’s realistic lack of an independent and identically distributed (IID) data assumption
across clients may be both a burden and a blessing. Learning a single global model across non-IID
data batches can pose challenges such as non-guaranteed convergence and model parameter diver-
gence (Hsieh et al., 2019; Zhao et al., 2018; Li et al., 2020). Furthermore, trying to fine-tune these
global models may result in poor adaptation to local client test sets (Jiang et al., 2019). However,
the non-IID nature of each client’s local data can also provide useful signal for distinguishing their
underlying local data distributions, without sharing any data. We leverage this signal to propose
a new framework for personalized FL. Instead of giving all clients the same global model average
weighted by local training size as in prior work (McMahan et al., 2016), for each client we compute

∗Corresponding author; work done while interning at NVIDIA

1

Published as a conference paper at ICLR 2021

a weighted combination of the available models to best align with that client’s interests, modeled by
evaluation on a personalized target test distribution.

Key here is that after each federating round, we maintain the client-uploaded parameters individ-
ually, allowing clients in the next round to download these copies independently of each other.
Each federated update is then a two-step process: given a local objective, clients (1) evaluate how
well their received models perform on their target task and (2) use these respective performances to
weight each model’s parameters in a personalized update. We show that this intuitive process can
be thought of as a particularly coarse version of popular iterative optimization algorithms such as
SGD, where instead of directly accessing other clients’ data points and iteratively training our model
with the granularity of gradient decent, we limit ourselves to working with their uploaded models.
We hence propose an efficient method to calculate these optimal combinations for each client, call-
ing it FedFomo, as (1) each client’s federated update is calculated with a simple first-order model
optimization approximating a personalized gradient step, and (2) it draws inspiration from the “fear
of missing out”, every client no longer necessarily factoring in contributions from all active clients
during each federation round. In other words, curiosity can kill the cat. Each model’s personalized
performance can be saved however by restricting unhelpful models from each federated update.

We evaluate our method on federated image classification and show that it outperforms other meth-
ods in various non-IID scenarios. Furthermore, we show that because we compute federated updates
directly with respect to client-specified local objectives, our framework can also optimize for out-
of-distribution performance, where client’s target distributions are different from their local training
ones. In contrast, prior work that personalized based on similarity to a client’s own model parameters
(Mansour et al., 2020; Sattler et al., 2020) restricts this optimization to the local data distribution. We
thus enable new features in personalized FL, and empirically demonstrate up to 70% improvement
in some settings, with larger gains as the number of clients or level of non-IIDness increases.

Our contributions

1. We propose a flexible federated learning framework that allows clients to personalize to
specific target data distributions irrespective of their available local training data.

2. Within this framework, we introduce a method to efficiently calculate the optimal weighted
combination of uploaded models as a personalized federated update

3. Our method strongly outperforms other methods in non-IID federated learning settings.

2 RELATED WORK

Federated Learning with Non-IID Data While fine-tuning a global model on a client’s local data
is a natural strategy to personalize (Mansour et al., 2020; Wang et al., 2019), prior work has shown
that non-IID decentralized data can introduce challenges such as parameter divergence (Zhao et al.,
2018), data distribution biases (Hsieh et al., 2019), and unguaranteed convergence Li et al. (2020).
Several recent methods then try to improve the robustness of global models under heavily non-IID
datasets. FedProx (Li et al., 2020) adds a proximal term to the local training objective to keep
updated parameter close to the original downloaded model. This serves to reduce potential weight
divergence defined in Zhao et al. (2018), who instead allow clients to share small subsets of their
data among each other. This effectively makes each client’s local training set closer in distribution
to the global test set. More recently, Hsu et al. (2019) propose to add momentum to the global
model update in FedAvgM to reduce the possibly harmful oscillations associated with averaging
local models after several rounds of stochastic gradient descent for non-identically distributed data.

While these advances may make a global model more robust across non-IID local data, they do
not directly address local-level data distribution performance relevant to individual clients. Jiang
et al. (2019) argue this latter task may be more important in non-IID FL settings, as local training
data differences may suggest that only a subset of all potential features are relevant to each client.
Their target distributions may be fairly different from the global aggregate in highly personalized
scenarios, with the resulting dataset shift difficult to handle with a single model.

Personalized Federated Learning Given the challenges above, other approaches train multiple
models or personalizing components to tackle multiple target distributions. Smith et al. (2017) pro-
pose multi-task learning for FL with MOCHA, a distributed MTL framework that frames clients as
tasks and learns one model per client. Mixture methods (Deng et al., 2020; Hanzely & Richtárik,

2

Published as a conference paper at ICLR 2021

2020; Mansour et al., 2020) compute personalized combinations of model parameters from training
both local models and the global model, while Peterson et al. (2019) ensure that this is done with
local privacy guarantees. Liang et al. (2020) apply this mixing across network layers, with lower
layers acting as local encoders that map a client’s observed data to input for a globally shared clas-
sifier. Rather than only mix with a shared global model, our work allows for greater control and
distinct mixing parameters with multiple local models. Fallah et al. (2020) instead optimize the
global model for fast personalization through meta-learning, while T Dinh et al. (2020) train global
and local models under regularization with Moreau envelopes. Alternatively, Clustered FL (Sattler
et al., 2020; Ghosh et al., 2020; Briggs et al., 2020; Mansour et al., 2020) assumes that inherent
partitions or data distributions exist behind clients’ local data, and aim to cluster these partitions to
federate within each cluster. Our work does not restrict which models are computed together, allow-
ing clients to download suitable models independently. We also compute client-specific weighted
averages for greater personalization. Finally, unlike prior work, we allow clients to receive person-
alized updates for target distributions different from their local training data.

3 FEDERATED FIRST ORDER MODEL OPTIMIZATION

We now present FedFomo, a personalized FL framework to efficiently compute client-optimizing
federated updates. We adopt the general structure of most FL methods, where we iteratively cycle
between downloading model parameters from server to client, training the models locally on each
client’s data, and sending back the updated models for future rounds. However, as we do not compute
a single global model, each federated download introduces two new steps: (1) figuring out which
models to send to which clients, and (2) computing their personalized weighted combinations. We
define our problem and describe how we accomplish (1) and (2) in the following sections.

Problem Definition and Notation Our work most naturally applies to heterogeneous federated
settings where participating clients are critically not restricted to single local training or target test
distribution, and apriori we do not know anything about these distributions. To model this, let C be a
population with |C| = K total clients, where each client ci ∈ C carries local data Di sampled from
some distribution D and local model parameters θ`(t)i during any round t. Each ci also maintains
some personalized objective or task Ti motivating their participation in the federation. We focus on
supervised classification as a universal task setting. Each client and task are then associated with
a test dataset Dtest

i ∼ D∗. We define each Ti := minL(θ
`(t)
i ;Dtest

i), where L(θ;D) : Θ 7→ R is
the loss function associated with dataset D, and Θ denotes the space of models possible with our
presumed network architecture. We assume no knowledge regarding clients and their data distribu-
tions, nor that test and local data belong to the same distribution. We aim to obtain the optimal set
of model parameters {θ∗1 , . . . , θ∗K} = arg min

∑
i∈[K] LTi(θi).

3.1 COMPUTING FEDERATED UPDATES WITH FOMO

Unlike previous work in federated learning, FedFomo learns optimal combinations of the available
server models for each participating client. To do so, we leverage information from clients in two
different ways. First, we aim to directly optimize for each client’s target objective. We assume
that clients can distinguish between good and bad models on their target tasks, through the use
of a labeled validation data split Dval

i ⊂ Di in the client’s local data. Dval
i should be similar in

distribution to the target test dataset Dtest
i . The client can then evaluate any arbitrary model θj on this

validation set, and quantify the performance through the computed loss, denoted by Li(θj). Second,
we directly leverage the potential heterogeneity among client models. Zhao et al. (2018) explore
this phenomenon as a failure mode for traditional single model FL, where they show that diverging
model weights come directly from local data heterogeneity. However, instead of combining these
parameters into a single global model, we maintain the uploaded models individually as a means to
preserve a model’s potential contribution to another client. Critically, these two ideas together not
only allow us to compute more personal model updates within non-IID local data distributions, but
also enable clients to optimize for data distributions different from their own local data’s.

Federated learning as an iterative local model update The central premise of our work
stems from viewing each federated model download−and subsequent changing of local model
parameters−as an optimization step towards some objective. In traditional FL, this objective in-
volves performing well on the global population distribution, similar in representation to the union
of all local datasets. Assuming N federating clients, we compute each global model θG at time t as:

3

Published as a conference paper at ICLR 2021

θG(t) =
∑N
n=1 wn · θ

`(t)
n , where wn = |Dtrain

n |/
∑N
j=1 |Dtrain

j | . If client ci downloads this model,

we can view this change to their local model as an update: θ`(t+1)
i ← θ

`(t)
i +

∑N
n=1 wn·

(
θ
`(t)
n −θ`(t)i

)
since

∑
n wn = 1. This then updates a client’s current local model parameters in directions speci-

fied by the weights w and models {θn} in the federation. A natural choice to optimize for the global
target distribution sets wn as above and in McMahan et al. (2017), e.g. as an unbiased estimate of
global model parameters. However, in our personalized scenario, we are more interested in comput-
ing the update uniquely with respect to each client’s target task. We then wish to find the optimal
weights w = 〈w1, . . . , wN 〉 that optimize for the client’s objective, minimizing Li(θ`i).

Efficient personalization with FedFomo Intuitively, we wish to find models {θ`(t)m : m ∈ [N]\i}
such that moving towards their parameters leads to better performance on our target distribution, and
accordingly weight these θ higher in a model average. If a client carries a satisfying number of local
data points associated with their target objective Li, then they could obtain a reasonable model
through local training alone, e.g. directly updating their model parameters through SGD:

θ
`(t+1)
i ← θ

`(t)
i − α∇θLi(θ`(t)i) (1)

However, without this data, clients are more motivated to federate. In doing so they obtain useful
updates, albeit in the more restricted form of fixed model parameters {θn : n ∈ N}. Then for
personalized or non-IID target distributions, we can iteratively solve for the optimal combination of
client models w∗ = arg minLi(θ) by computing:

θ
`(t+1)
i ← θ

`(t)
i − α1>∇wLi(θ

`(t)
i) (2)

where 1 is a size-N vector of ones. Unfortunately, as the larger federated learning algorithm is
already an iterative process with many rounds of communication, computing w∗ through Eq. 2 may
be cumbersome. Worse, if the model averages are only computed server-side as in traditional FL,
Eq. 2 becomes prohibitively expensive in communication rounds (McMahan et al., 2017).

Following this line of reasoning however, we thus derive an approximation of w∗ for any client:
Given previous local model parameters θ`(t−1)i , set of fellow federating models available to down-
load {θ`(t)n } and local client objective captured by Li, we propose weights of the form:

wn =
Li(θ`(t−1)i)− Li(θ`(t)n)

‖θ`(t)n − θ`(t−1)i ‖
(3)

where the resulting federated update θ`(t)i ← θ
`(t−1)
i +

∑
n∈[N] wn(θ

`(t)
n −θ`(t−1)i) directly optimizes

for client ci’s objective up to a first-order approximation of the optimal w∗. We default to the original
parameters θ`(t−1)i if wn < 0 above, i.e. wn = max(wn, 0), and among positive wn normalize to
get final weights w∗n = max(wn,0)∑

n max(wn,0)
to maintain w∗ ∈ [0, 1] and

∑
n=1 w

∗
n ∈ {0, 1}.

We derive Eq. 3 as a first-order approximation of w∗ in Appendix A.1. Here we note that our
formulation captures the intuition of federating with client models that perform better than our own
model, e.g. have a smaller loss on Li. Moreso, we weigh models more heavily as this positive
loss delta increases, or the distance between our current parameters and theirs decreases, in essence
most heavily weighing the models that most efficiently improve our performance. We use local
parameters at t-1 to directly compute how much we should factor in current parameters θ`(t)i , which
also helps prevent overfitting as Li(θ`(t−1)i)− Li(θ`(t)i) < 0 causes “early-stopping” at θ`(t−1)i .

Communication and bandwidth overhead Because the server can send multiple requested mod-
els in one download to any client, we still maintain one round of communication for model down-
loads and one round for uploads in between E local training epochs. Furthermore, because w in
Eq. 3 is simple to calculate, the actual model update can also happen client-side, keeping the total
number of communications with T total training epochs at b 2TE c, as in FedAvg.

However FedFomo also needs to consider the additional bandwidth from downloading multiple
models. While quantization and distillation (Chen et al., 2017; Hinton et al., 2015; Xu et al., 2018)
can alleviate this, we also avoid worst case N2 overhead with respect to the number of active clients

4

Published as a conference paper at ICLR 2021

N by restricting the number of models downloaded M . Whether we can achieve good personaliza-
tion here involves figuring out which models benefit which clients, and our goal is then to send as
many helpful models as possible given limited bandwidth.

To do so, we invoke a sampling scheme where the likelihood of sending model θj to client ci re-
lies on how well θj performed regarding client ci’s target objective in previous rounds. Accord-
ingly, we maintain an affinity matrix P composed of vectors pi = 〈pi,1, . . . , pi,K〉, where pi,j
measures the likelihood of sending θj to client ci, and at each round send the available uploaded
models corresponding to the top M values according to each participating client’s p. Initially we set
P = diag(1, . . . , 1), i.e. each model has an equal chance of being downloaded. Then during each
federated update, we update p← p + w from Eq. 3, where w can now be negative. If N � K, we
may benefit from additional exploration, and employ an ε-greedy sampling strategy where instead of
picking strictly in order of p, we have ε chance to send a random model to the client. We investigate
the robustness of FedFomo to these parameters through ablations of ε and M in the next section.

4 EXPERIMENTS

Experimental Setup We consider two different scenarios for simulating non-identical data distri-
butions across federating clients. First we evaluate with the pathological non-IID setup in McMahan
et al. (2016), where each client is randomly assigned 2 classes among 10 total classes. We also use a
latent distribution non-IID setup, where we first partition our datasets based on feature and semantic
similarity, and then sample from them to setup different local client data distributions. We use num-
ber of distributions ∈ {2, 3, 4, 5, 10} and report the average Earth Mover’s Distance (EMD) between
local client data and the total dataset across all clients to quantify non-IIDness. We evenly allocate
clients among distributions and include further details in Appendix A.5. We evaluate under both
setups with two FL scenarios: 15 and 100 clients with 100% and 10% participation respectively, re-
porting final accuracy after training withE = 5 local epochs per round for 20 communication rounds
in the former and 100 rounds in the latter. Based on prior work (McMahan et al., 2016; Liang et al.,
2020), we compare methods with the MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al.,
2009), and CIFAR-100 datasets. We use the same CNN architecture as in McMahan et al. (2016).

Federated Learning Baselines We compare FedFomo against methods broadly falling under two
categories: they (1) propose modifications to train a single global model more robust to non-IID local
datasets, or (2) aim to train more than one model or model component to personalize performance
directly to client test sets. For (1), we consider FedAvg, FedProx, and the 5% data-sharing strat-
egy with FedAvg, while in (2) we compare our method to MOCHA, LG-FedAvg, Per-FedAvg,
pFedMe, Clustered Federated Learning (CFL), and a local training baseline. All accuracies are re-
ported with mean and standard deviation over three runs, with local training epochsE = 5, the same
number of communication rounds (20 for 15 clients, 100% participation; 100 for 100 clients, 10%
participation) and learning rate 0.01 for MNIST, 0.1 for CIFAR-10). We implemented all results1.

Pathological Non-IID We follow precedent and report accuracy after assigning two classes out of
the ten to each client for the pathological setting in Table 1. Across datasets and client setups, our
proposed FedFomo strongly outperforms alternative methods in settings with larger number clients,
and achieves competitive accuracy in the 15 client scenario. In the larger 100 client scenario, each
individual client participates less frequently but also carries less local training data. Such settings
motivate a higher demand for efficient federated updates, as there are less training rounds for each
client overall. Meanwhile, methods that try to train a single robust model perform with mixed
success over the FedAvg baseline, and notably do not perform better than local training alone.
Despite the competitive performance, we note that this pathological setting is not the most natural
scenario to apply FedFomo. In particular when there are less clients, each client’s target distribution
carries only 2 random classes, there is no guarantee that any two clients share the same objective
such that they can clearly benefit each other. With more clients however, we can also expect higher
frequencies of target distribution overlap, and accordingly find that we outperform all other methods.

Latent Distribution Non-IID We next report how each FL method performs in the latent distri-
bution setting in Table 2, with additional results in Fig. 1. Here we study the relative performance of

1LG-FedAvg and MOCHA were implemented with code from github.com/pliang279/LG-FedAvg. pFedMe
and Per-FedAvg were implemented with code from github.com/CharlieDinh/pFedMe. CFL was implemend
with code from github.com/felisat/clustered-federated-learning

5

https://github.com/pliang279/LG-FedAvg
https://github.com/CharlieDinh/pFedMe
https://github.com/felisat/clustered-federated-learning

Published as a conference paper at ICLR 2021

MNIST CIFAR-10

15 clients 100 clients 15 clients 100 clients

Local Training 99.62± 0.21 94.25± 4.28 92.73± 0.87 85.42± 4.06
FedAvg (McMahan et al., 2016) 91.97± 2.17 78.83± 9.68 57.12± 1.14 53.08± 7.40
FedAvg + Data (Zhao et al., 2018) 91.99± 2.14 78.85± 9.66 58.5± 1.67 56.62± 8.92
FedProx (Li et al., 2020) 90.94± 1.85 79.06± 10.88 54.60± 3.26 52.92± 5.56
LG-FedAvg (Liang et al., 2020) 99.79± 0.07 84.17± 1.92 92.36± 1.00 84.17± 4.45
MOCHA (Smith et al., 2017) 94.74± 2.27 84.58± 5.80 93.85± 2.04 76.09± 8.49
Clustered FL (CFL) (Sattler et al., 2020) 95.00± 3.61 92.26± 3.91 85.07± 8.16 77.75± 1.78
Per-FedAvg (Fallah et al., 2020) 92.39± 4.72 85.32± 12.93 81.96± 8.12 72.40± 4.06
pFedMe (T Dinh et al., 2020) 97.70± 1.26 88.40± 10.86 83.85± 5.11 71.75± 6.78

Ours (5 clients downloaded) 99.62± 2.91 98.81± 1.26 93.01± 0.96 92.10± 5.20
Ours (10 clients downloaded) 99.63± 0.07 98.71± 2.86 92.73± 0.96 92.67± 4.21

Table 1: Personalized FL accuracy with pathological non-IID splits. Best results in bold. FedFomo
outperforms or is competitive with prior work across settings, especially with larger populations.

FedFomo across various levels of statistical heterogeneity, and again show that our method strongly
outperforms others in highly non-IID settings. The performance gap widens as local datasets become
more non-IID, where global FL methods may suffer more from combining increasingly divergent
weights while also experiencing high target data distribution shift (quantified with higher EMD) due
to local data heterogeneity. Sharing a small amount of data among clients uniformly helps, as does
actively trying to reduce this divergence through FedProx, but higher performance most convinc-
ingly come from methods that do not rely on a single model. The opposite trend occurs with local
training, as more distributions using the same 10 or 100 classes leads to smaller within-distribution
variance. Critically, FedFomo is competitive with local training in the most extreme non-IID
case while strongly outperforming FedAvg, and outperforms both in moderately non-IID settings
(EMD ∈ [1, 2]), suggesting that we can selectively leverage model updates that best fit client objec-
tives to justify federating. When data is more IID, any individual client model may benefit another,
and it becomes harder for a selective update to beat a general model average. FedFomo also out-
performs personalizing-component and multi-model approaches (MOCHA and LG-FedAvg), where
regarding data heterogeneity we see similar but weaker and more stochastic trends in performance.

CIFAR-10 Number of Latent Distributions (EMD)

Method 2 (1.05) 3 (1.41) 4 (1.28) 5 (2.80) 10 (2.70)

Local Training 60.03± 9.22 66.61± 9.90 69.12± 12.07 76.52± 11.46 92.64± 7.32
FedAvg 38.92± 11.88 21.56± 9.14 22.34± 12.36 32.13± 1.95 10.10± 3.65
FedAvg + Data 53.43± 2.89 33.87± 2.53 65.73± 1.07 63.32± 0.49 41.61± 0.92
FedProx 66.42± 1.79 31.38± 2.54 50.61± 1.53 48.20± 0.14 13.41± 3.39
LG-FedAvg 70.87± 1.12 74.16± 2.37 67.25± 1.97 63.64± 2.52 94.42± 1.25
MOCHA 83.79± 1.54 73.68± 2.80 71.23± 4.08 69.02± 2.93 94.28± 0.81
CFL 72.58± 10.30 75.69± 1.11 78.31± 12.90 70.04± 13.56 85.22± 6.70
Per-FedAvg 63.85± 5.11 69.70± 7.27 72.60± 9.28 76.61± 6.65 93.97± 2.34
pFedMe 49.87± 3.16 66.95± 10.65 69.00± 4.97 78.66± 3.72 94.57± 1.95

Ours (n=5) 77.823± 2.24 82.38± 0.66 84.45± 0.21 85.050± 0.13 95.55± 0.26
Ours (n=10) 79.59± 0.34 83.66± 0.72 84.35± 0.38 85.534± 0.53 95.55± 0.06

Table 2: In-distribution federated accuracy with 15 clients, 100% participation, across heterogeneity
levels (measured by EMD). FedFomo performs better than or competitively with existing methods.

Personalized model weighting We next investigate FedFomo’s personalization by learning op-
timal client to client weights overtime, visualizing P during training in Fig. 2. We depict clients
with the same local data distributions next to each other (e.g. clients 0, 1, 2 belong to distribution
0). Given the initial diagonal P depicting equal weighting for all other clients, we hope FedFomo
increases the weights of clients that belong to the same distribution, discovering the underlying par-
titions without knowledge of client datasets. In Fig 2a we show this for the 15 client 5 non-IID
latent distribution setting on CIFAR-10 with 5 clients downloaded and ε = 0.3 (lighter = higher
weight). These default parameters adjust well to settings with more total clients (Fig 2b), and when
we change the number of latent distributions (and IID-ness) in the federation (Fig 2c).

6

Published as a conference paper at ICLR 2021

Figure 1: Classification accuracy of FL frameworks with 100 clients over latent distributions.

(a) Distribution discovery over time (b) Robustness to number of clients (c) Support for number of distributions

Figure 2: FedFomo client-to-client weights over time and across different FL settings. We reliably
upweight clients with the same training and target distributions.

Exploration with ε and number of models downloaded M To further understand FedFomo’s
behavior and convergence in non-IID personalized settings with respect to limited download band-
width capability, we conduct an ablation over ε and M , reporting results on the 15 client CIFAR-10
5-distribution setting in Fig. 3 over 100 training epochs. We did not find consistent correlation be-
tween ε and model performance, although this is tied to M inherently (expecting reduced variance
with higherM). With fixed ε, greaterM led to higher performance, as we can evaluate more models
and identify the “correct” model-client assignments earlier on.

Figure 3: Ablations over ε-greedy exploration and number of models downloaded on CIFAR-10.

Out-of-local-distribution personalization We now consider the non-IID federated setting where
each client optimizes for target distributions not the same as their local data distribution. Here,
although a client may sufficiently train an adequate model for one domain, it has another target data
distribution of interest with hard to access relevant data. For example, in a self-driving scenario,
a client may not have enough data for certain classes due to geographical constraints, motivating
the need to leverage info from others. To simulate this scenario, after organizing data into latent
distributions, we randomly shuffle (Dval,Dtest) as a pair among clients. We test on the CIFAR-10
and CIFAR-100 datasets with 15 clients, full participation, and 5 latent distributions, repeating the
shuffling five times, and report mean accuracy over all clients.

7

Published as a conference paper at ICLR 2021

Figure 4: Top Personalization on target distri-
bution 6= that of local training data. Bottom
FedFomo upweights other clients with local
data ∼ target distribution (5 latent non-IID dist.)

CIFAR-10 CIFAR-100

Local Training 20.39± 3.36 7.40± 1.31
FedAvg 23.11± 2.51 13.06± 1.48
FedAvg + Data 42.15± 2.16 24.98± 4.98
FedProx 39.79± 8.57 14.39± 2.85
LG-FedAvg 38.95± 1.85 18.50± 1.10
MOCHA 30.80± 2.60 13.73± 2.83
Clustered FL 29.73± 3.67 19.75± 1.58
Per-FedAvg 39.8± 5.38 21.30± 1.35
pFedMe 43.7± 7.27 25.41± 2.33

Ours (n=5) 64.06± 2.80 34.43± 1.48
Ours (n=10) 63.98± 1.81 40.94± 1.62

Table 3: Out-of-client distribution evaluation
with 5 latent distributions and 15 clients.
FedFomo outperforms all alternatives in various
datasets.

As shown in Fig. 4 and Table 3, our method consistently strongly outperforms alternatives in both
non-IID CIFAR-10 and CIFAR-100 federated settings. We compare methods using the same train
and test splits randomly shuffled between clients, such that through shuffling we encounter poten-
tially large amounts of data variation between a client’s training data and its test set. This then
supports the validity of the validation split and downloaded model evaluation components in our
method to uniquely optimize for arbitrary data distributions different from a client’s local training
data. All methods other than ours are unable to convincingly handle optimizing for a target distribu-
tion that is different from the client’s initially assigned local training data. Sharing data expectedly
stands out among other methods that do not directly optimize for a client’s objective, as each client
then increases the label representation overlap between its train and test sets. We note that in the
2-distribution setting, where each client’s training data consists of 5 classes on average, the higher
performance of other methods may likely be a result of our simulation, where with only two distri-
butions to shuffle between it is more likely that more clients end up with the same test distribution.

To shed further light on FedFomo’s performance, we visualize how client weights evolve over time
in this setting (Fig. 4 bottom), where to effectively personalize for one client, FedFomo should
specifically increase the weights for the other clients belonging to the original client’s target distri-
bution. Furthermore, in the optimal scenario we should upweight all clients with this distribution
while downweighting the rest. Here we show that this indeed seems to be the case, denoting local
training distributions with color. We depict clients 12, 13, and 14, which all carry the same local
data distribution, but 13 and 14 optimize for out-of-local distributions. In all cases, FedFomo up-
weights clients specifically carrying the same data distribution, such that while with shuffling we do
not know apriori 13 and 14’s target distributions, FedFomo discovers these and who should federate
with whom in this setting as well. We include similar plots for all clients in Appendix A.2 (Fig. 6).

Locally Private FedFomo While we can implement FedFomo such that downloaded model pa-
rameters are inaccessible and any identifying connections between clients and their uploaded mod-
els are removed to subsequently preserve anonymity, unique real world privacy concerns may rise
when sharing individual model parameters. Accordingly, we now address training FedFomo under
(ε, δ)-differential privacy (DP). Dwork et al. (2014) present further details, but briefly DP ensures
that given two near identical datasets, the probability that querying one produces a result is nearly
the same as querying the other (under control by ε and δ). Particularly useful here are DP’s compos-
ability and robustness to post-processing, which ensure that if we train model parameters θ to satisfy
DP, then any function on θ is also DP. We then perform local training with DP-SGD (Abadi et al.,
2016) for a DP variant of FedFomo, which adds a tunable amount of Gaussian noise to each gradi-
ent and reduces the connection between a model update and individual samples in the local training

8

Published as a conference paper at ICLR 2021

CIFAR-10 CIFAR-100

Method δ σ ε Accuracy ε Accuracy

FedAvg 1× 10−5 0 ∞ 19.37± 1.42 ∞ 5.09± 0.38
FedAvg 1× 10−5 1 10.26± 0.21 17.60± 1.64 8.20± 0.69 5.05± 0.31
FedAvg 1× 10−5 2 3.57± 0.08 16.19± 1.62 2.33± 0.21 4.33± 0.27

Ours 1× 10−5 0 ∞ 71.56± 1.20 ∞ 26.76± 1.20
Ours 1× 10−5 1 6.89± 0.13 71.28± 1.06 8.20± 0.69 26.14± 1.05
Ours 1× 10−5 2 1.70± 0.04 65.97± 0.95 1.71± 0.15 15.95± 0.94

Table 4: In-distribution classification with differentially private federated learning. With DP-SGD,
FedFomo maintains high personalization accuracy with reasonable privacy guarantees.

Figure 5: Left: Even with privacy-preserving updates, FedFomo still uncovers the underlying data
distributions at large. Right We gain privacy benefits without substantial drop in performance.

data. More noise makes models more private at the cost of performance, and here we investigate if
FedFomo retains its performance with increased privacy under noisy local updates.

We consider the in-distribution personalization task with 5 latent non-IID distributions from the
CIFAR-10 and CIFAR-100 datasets, with 15 clients and full participation at each round, and com-
pare FedFomo against FedAvgwith varying levels of Gaussian noise, specified by σ. With all other
parameters fixed, higher σ should enable more noisy updates and greater privacy (lower ε), at the
potential cost of performance. At fixed δ, we wish to obtain high classification accuracy and low ε.
We use the Opacus Pytorch library2 for DP-SGD, and as baselines run FedFomo and FedAvg with
the library’s provided SGD optimizer with σ = 0. For DP runs, we set δ = 1× 10−5 � 3× 10−4,
the inverse of the average number of local data points of each client, to maintain reasonable privacy.

In Table 4, FedFomo is able to retain a sizeable improvement over FedAvg, even against the non-
DP FedAvg, and does so with minimal ε. As expected, greater σ leads to improved privacy (lower ε)
at the cost of decreased performance. Additionally, in Fig. 5 we show that even with noisy gradients
to protect individual data point privacy, FedFomo maintains its ability to discover the larger latent
distributions among local data (albeit with more noise initially). Most importantly, despite adding
noise that could potentially derail our federated update, we are able to substantially reduce privacy
violation risks under (ε, δ)-differential privacy while maintaining strong performance.

5 CONCLUSION

We present FedFomo, a flexible personalized FL framework that achieves strong performance
across various non-IID settings, and uniquely enables clients to also optimize for target distribu-
tions distinct from their local training data. To do so, we capture the intuition that clients should
download personalized weighted combinations of other models based on how suitable they are to-
wards the client’s own target objective, and propose a method to efficiently calculate such optimal
combinations by downloading individual models in lieu of previously used model averages. Beyond
outperforming alternative personalized FL methods, we empirically show that FedFomo is able to
discover the underlying local client data distributions, and for each client specifically upweights the
other models trained on data most aligned to the client’s target objective. We finally explore how
our method behaves with additional privacy guarantees, and show that we can still preserve the core
functionality of FedFomo and maintain strong personalization in federated settings.

2github.com/pytorch/opacus

9

https://github.com/pytorch/opacus

Published as a conference paper at ICLR 2021

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 308–318, 2016.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. arXiv preprint arXiv:2004.11791, 2020.

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient
object detection models with knowledge distillation. In Advances in Neural Information Process-
ing Systems, pp. 742–751, 2017.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. arXiv preprint arXiv:2006.04088, 2020.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Infor-
mation Systems (TOIS), 22(1):89–115, 2004.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B Gibbons. The non-iid data quagmire of
decentralized machine learning. arXiv preprint arXiv:1910.00189, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429–450, 2020.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think
locally, act globally: Federated learning with local and global representations. arXiv preprint
arXiv:2001.01523, 2020.

10

Published as a conference paper at ICLR 2021

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. CoRR, abs/1602.05629, 2016. URL http://arxiv.
org/abs/1602.05629.

Daniel Peterson, Pallika Kanani, and Virendra J Marathe. Private federated learning with domain
adaptation. arXiv preprint arXiv:1912.06733, 2019.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. CoRR, abs/1705.10467, 2017. URL http://arxiv.org/abs/1705.10467.

Canh T Dinh, Nguyen Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes. Advances in Neural Information Processing Systems, 33, 2020.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and Daniel
Ramage. Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252,
2019.

Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin, and Hongkai Xiong. Deep neural network
compression with single and multiple level quantization. arXiv preprint arXiv:1803.03289, 2018.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. CoRR, abs/1806.00582, 2018. URL http://arxiv.org/abs/
1806.00582.

11

http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1705.10467
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582

Published as a conference paper at ICLR 2021

A APPENDIX

A.1 DERIVING THE FOMO UPDATE

Recall that we can view each federated model download can be viewed as an iterative update,

θ
`(t+1)
i = θ

`(t)
i +

N∑
n=1

wn ·
(
θ`(t)n − θ`(t)i

)
(4)

where given a client’s current parameters θ`(t)i , the weights w = 〈w1, . . . , wN 〉 in conjunction with
the model deltas θ`(t)n −θ`(t)i determine how much each client should move its local model parameters
to optimize for some objective. Unlike more common methods in machine learning such as gradient
descent, the paths we can take to get to this objective are restricted by the fixed model parameters
{θ`(t)n } available to us at time t. While traditional FL methods presume this objective to be global
test set performance, from a client-centric perspective we should be able to set this objective with
respect to any dataset or target distribution of interest.

We then view this problem as a constrained optimization problem where
∑
n∈[N] wn = 1. As a

small discrepancy, if i ∈ [N], then to also calculate wi or how much client ci should weigh its own
model in the federated update directly, we reparameterize Eq. 4 as an update from a version of the
local model prior to its current state, e.g.

θ
`(t+1)
i = θ

`(t−1)
i +

N∑
n=1

wn ·
(
θ`(t)n − θ`(t−1)i

)
(5)

and again we have current budget of 1 to allocate to all weights w. Additionally, to go along with
Eq. 5, we deviate a bit from the optimal t+ 1 term in Eq. 2 and set

θ
`(t+1)
i = θ

`(t)
i ← θ

`(t−1)
i − α1>∇wLi(θ

`(t−1)
i) (6)

There is then a parallel structure between Eq. 5 and Eq. 6, and we proceed by trying to find optimal
w that would let our update in Eq. 6 closely approximate the optimal update taking the gradient∇w.
We accordingly note the equivalence from Eq. 5 and Eq. 6, where for desired wn,

N∑
n=1

wn ·
(
θ`(t)n − θ`(t−1)i

)
= −α1>∇wLi

(θ
`(t−1)
i) (7)

or in matrix form: w1

...
wN


> (θ

`(t)
1 − θ`(t−1)i)

...
(θ
`(t)
N − θ`(t−1)i)

 =

−α...
−α


>


∂
∂w1
Li(θ`(t−1)i)

...
∂

∂wN
Li(θ`(t−1)i)

 (8)

Then for each weight wn, we solve for its optimal value by equating the left and right-hand corre-
sponding vector components. We do so by deriving a first order approximation of ∂

∂wn
Li(θ`(t−1)i).

First, for each wn, we define the function:

ϕn(w) := wn · θ`(t)n + (1− wn) · θ`(t−1)i (9)

as an alternate parameterization of the θ’s as functions of weights. We can see that for all n ∈ [N],

ϕn(0) = θ
`(t−1)
i

⇒ ∂

∂wn
Li(θ`(t−1)i) =

∂

∂wn
Li(ϕn(0))

12

Published as a conference paper at ICLR 2021

Then using a first-order Taylor series approximation, we also note that

Li(ϕn(w′)) ≈ Li(ϕn(0)) +
∂

∂wn
Li(ϕn(0))(w′ − 0) (10)

such that at our initial point w = 0 or θ`(t−1)i , we can approximate the derivative ∂
∂wn
Li(ϕn(0))

when w′ = 1 as:
∂

∂wn
Li(ϕn(0)) = Li(ϕn(1))− Li(ϕn(0))

⇒ ∂

∂wn
Li(θ`(t−1)i) = Li(θ`(t)n)− Li(θ`(t−1)i)

(11)

following from Eq. 9. Then for each vector element in Eq. 8, indexed by n = [N], we can plug in
the corresponding partial derivative from Eq. 11 and solve for the corresponding wn to get

wn = −α · Li(θ
`(t)
n)− Li(θ`(t−1)i)

‖θ`(t)n − θ`(t−1)i ‖
(12)

as the individual weight for client ci to weight model θn in its federated update.

We arrive at Eq. 3 by distributing the negative α to capture the right direction in each update, but
also note that the constant cancels out because we normalize to ensure our weights sum to 1, such
that the weights w∗n that we actually use in practice are given by:

w∗n =
max(wn, 0)∑N
n=1 max(wn, 0)

(13)

A.2 ADDITIONAL LATENT DISTRIBUTION NON-IID EXPERIMENTS

CIFAR-100 Here we show results on the latent non-IID in-distribution personalization setup for
the CIFAR-100 dataset. As in the CIFAR-10 setting, we compare FedFomo against various recent
alternative methods when personalizing to a target distribution that is the same as the client’s local
training data, and report accuracy as an average over all client runs. We also show results partitioning
the CIFAR-100 dataset into increasing number of data distributions for 15 clients total, and report the
increasing EMD in parentheses. In Table 5, FedFomo consistently outperforms all alternatives with
more non-IID data across different clients. We note similar patterns to that of the CIFAR-10 dataset,
where our method is more competitive when client data is more similar (lower EMD, number of
distributions), but handily outperforms others as we increase this statistical label heterogeneity.

CIFAR-100 Number of Latent Distributions (EMD)

Method 2 (1.58) 3 (1.96) 4 (2.21) 5 (2.41) 10 (2.71)

Local Training 23.36± 0.33 23.89± 2.03 28.44± 1.97 23.11± 9.44 41.26± 1.31
FedAvg 28.01± 0.74 18.95± 0.22 25.69± 0.41 21.26± 0.89 18.19± 0.987
FedAvg + Data 28.12± 0.63 19.01± 0.27 25.85± 0.27 25.18± 0.39 18.23± 0.835
FedProx 28.21± 0.79 27.78± 0.000 25.79± 0.05 24.93± 0.38 18.18± 0.82
LG-FedAvg 26.97± 7.52 24.69± 4.29 24.79± 4.50 25.62± 5.70 27.53± 9.12
MOCHA 33.66± 4.14 33.61± 7.88 29.44± 8.30 32.34± 7.09 34.72± 7.80
Clustered FL 41.50± 6.66 36.36± 10.72 37.41± 8.30 36.78± 12.05 34.43± 10.14
Per-FedAvg 32.14± 6.90 32.22± 7.37 34.50± 5.81 36.58± 6.72 38.41± 7.41
pFedMe 31.53± 3.83 32.39± 5.36 30.86± 3.75 30.86± 3.80 37.70± 2.13

Ours (n=5) 35.44± 1.91 36.21± 4.92 38.41± 2.58 42.96± 1.24 44.29± 1.22
Ours (n=10) 37.09± 1.95 37.09± 3.84 39.94± 0.74 43.06± 0.42 43.75± 1.74

Table 5: In-distribution personalized federated classification on the CIFAR-100 dataset

13

Published as a conference paper at ICLR 2021

A.3 CLIENT WEIGHTING WITH PERSONALIZATION

In-local vs out-of-local distribution personalization Following the visualizations for client
weights in the out-of-local distribution personalization setting (Fig. 4), we include additional visual-
izations for the remaining clients (Fig. 6). For comparison, we also include the same visualizations
for the 15 client 5 non-IID latent distribution setup on CIFAR-10, but when clients optimize for a
target distribution the same as their local training data’s (Fig. 7). In both, we use color to denote the
client’s local training data distribution, such that if FedFomo is able to identify the right clients to
federated with that client, we should see the weights for those colors increase or remain steady over
federation rounds, while all other client weights drop.

As seen in both Fig. 6 and Fig. 7, FedFomo quickly downweights clients with unhelpful data dis-
tributions. For the in-distribution personalization, it is able to increase and maintain higher weights
for the clients from the same distribution, and consistently does so for the other two clients that
belong to its distribution. In the out-of-local distribution personalization setting, due to our shuffling
procedure we have instances where certain clients have in-distribution targets, while others have
out-of-distribution targets. We see that FedFomo is able to accommodate both simultaneously, and
learns to separate all clients belonging to the target distributions of each client from the rest.

Figure 6: Client-to-client weights over time when personalizing for non-local target distributions.
FedFomo quickly downweights non-relevant clients while upweighting those that are helpful.

Figure 7: Client-to-client weights over time when personalizing for local target distributions.
FedFomo downweights non-relevant clients while upweighting or keeping steady helpful ones.

14

Published as a conference paper at ICLR 2021

CIFAR-10 CIFAR-100

Method δ σ ε Accuracy ε Accuracy

FedAvg 1× 10−5 0 ∞ 19.37± 1.42 ∞ 5.09± 0.38
FedAvg 1× 10−5 1 10.26± 0.21 17.60± 1.64 8.20± 0.69 5.05± 0.31
FedAvg 1× 10−5 2 3.57± 0.08 16.19± 1.62 2.33± 0.21 4.33± 0.27

Ours 1× 10−5 0 ∞ 71.56± 1.20 ∞ 26.76± 1.20
Ours 1× 10−5 1 6.89± 0.13 71.28± 1.06 8.20± 0.69 26.14± 1.05
Ours 1× 10−5 2 1.70± 0.04 65.97± 0.95 1.71± 0.15 15.95± 0.94

Ours (MA) 1× 10−5 0 ∞ 47.90± 2.79 ∞ 12.02± 1.34
Ours (MA) 1× 10−5 1 9.26± 0.19 46.33± 4.04 10.32± 0.89 11.60± 0.65
Ours (MA) 1× 10−5 2 3.20± 0.07 43.76± 3.08 3.22± 0.28 9.52± 0.72

Table 6: In-distribution classification with differentially private federated learning, with the addition
of FedFomo with a model average baseline (Ours (MA)).

A.4 ADDITIONAL PRIVACY EXPERIMENTS

As a follow-up on the privacy experiments in Section 4, we also consider a multiple model variant
of FedFomo, where instead of a client downloading a single model θn and evaluating against its
own previous model θt−1i , the client downloads the simple average of all the uploaded models except
θn (i.e. 1

N−1
∑
j∈[N]\n θn) and compares this against the simple average of all uploaded models.

This tackles an orthogonal notion of privacy compared to the previous solution of introducing noise
to local model gradients via DP-SGD, as now individual data point membership is harder to distill
from shared parameters that come from the average of multiple local models. To calculate weights,
we note a sign change with respect to Eq. 3 and the baseline model, as now wn should be positive if
the model average without θn’s contribution results in a larger target objective loss than the model
average with θn. Given client ci considering model θn, this leads to FedFomo weights:

wn ∝ Li
(1

N − 1

∑
j∈[N]\n

θj

)
− Li

(1

N

∑
j∈[N]

θj

)
(14)

We evaluate this variant with the same comparison over (ε, δ)-differential privacy parameters on the
15 client 5 latent-distribution scenarios in our previous privacy analysis. We set δ = 1 × 10−5 to
setup practical privacy guarantees with respect to the number of datapoints in each client’s local
training set, and consider Gaussian noise σ ∈ {0, 1, 2} for baseline and (ε, δ)-differentially private
performances. At fixed δ, we wish to obtain high classification accuracy with low privacy loss (ε).

In Table 6 we include results for this model average baseline variant (Ours (MA)) on the CIFAR-10
and CIFAR-100 datasets, along with the differentially private federated classification results in Ta-
ble 4 using DP-SGD during local training for additional context. For both datasets, we still handily
outperform non-private FedAvg, although performance drops considerably with respect to the sin-
gle model download FedFomo variant. We currently hypothesize that this may be due to a more
noisy calculation of another model’s potential contribution to the client’s current model, as we now
consider the effects of many more models in our loss comparisons as well. Figuring out a balance
between the two presented weighting schemas to attain high personalization and high privacy by
downloading model averages then remains interesting future work.

15

Published as a conference paper at ICLR 2021

A.5 LATENT DISTRIBUTION NON-IID MOTIVATION AND SETUP

In this subsection, we discuss our latent distribution non-IID setting in more detail. We believe the
pathological setup though useful might not represent more realistic or frequent occurring setups. As
an example, a world-wide dataset of road landscapes may vary greatly across different data points,
but variance in their feature representations can commonly be explained by their location. In another
scenario, we can imagine that certain combinations of songs, or genres of music altogether are more
likely to be liked by the same person than others. In fact, the very basis and success of popular
recommender system algorithms such as collaborative filtering and latent factor models rely on this
scenario (Hofmann, 2004). Accordingly, in this sense statistical heterogeneity and client local data
non-IIDnes is more likely to happen in groups.

We thus propose and utilize a latent distribution method to evaluate FedFomo against other more
recent proposed FL work. To use this setting, we first compute image representations by training
a VGG-11 convolutional neural network to at least 85% classification accuracy on a corresponding
dataset. We then run inference on every data point, and treat the 4096-dimensional vector produced
in the second fully-connected layer as a semantic embedding for each individual image. After further
reduction to 256 dimensions through PCA, we use K-Means clustering to partition our dataset into
D disjoint distributions. Given K total clients, we then evenly assign each client to a distributionD.
For each client we finally obtain its local data by sampling randomly from D without replacement.
For datasets with pre-defined train and test splits, we cluster embeddings from both at the same
time such that similar images across splits are assigned the same K-means cluster, and respect these
original splits such that all Dtest images come from the original test split. (Fig. 8)

...
VGG-11

(a) Train image classification model to
learn expressive representations

(b) Extract representative feature vectors and
further reduce dimensionality with PCA

(b) Use K-Means clustering to partition into D
natural groups with unique class distributions

Figure 8: Visual overview for generating latent distributions using image classification datasets.

A.6 MODEL IMPLEMENTATION DETAILS

We train with SGD, 0.1 learning rate, 0 momentum, 1e-4 weight decay, and 0.99 learning rate decay
for CIFAR-10/100, and do the same except with 0.01 learning rate for MNIST. For FedFomo we
use n = 5 and n = 10 downloads per client, ε = 0.3 with 0.05 decay each round, and separate
Dtrain and Dval with an 80-20 split.

A.7 ADDITIONAL DESIGN ABLATIONS

In this section we present additional work on key hyperparameters or aspects of FedFomo to give
further insight into our method’s functionality and robustness to parameters. We consider key design
choices related to the size of each client’s validation split.

Size of the validation split To better organize federated uploaded models into personalized fed-
erated updates, our method requires a local validation split Dval that reflects the client’s objective or
target test distribution. Here, given a pre-defined amount of locally available data, we ask the natural
question of how a client should best go about dividing its data points between those to train its own
local model and those to evaluate others with respect to computing a more informed personalized
update through FedFomo. We use the 15 client 100% participation setup with 5 latent distributions
organized over the CIFAR-10 dataset, and consider both the evaluation curve and final test accuracy
over allocating a fraction ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9} of all clients’ local data to Dval,
and track evaluation over 20 communication rounds with 5 epochs of local training per round. On

16

Published as a conference paper at ICLR 2021

average, each client has 3333 local data points. We denote final accuracy and standard deviation
over five runs in Fig 9.

Figure 9: In-distribution accuracy over validation split ratio.

As reported in Fig. 9, we observe faster convergence to a higher accuracy when allocating under half
of all local data points to the validation split, with a notable drop-off using more data points. This
is most likely a result of reducing the amount of data available for each client to train their model
locally. Eventually this stagnates, and observe a slight decrease in performance between validation
split fraction 0.05 and 0.1.

17

	Introduction
	Related Work
	Federated First Order Model Optimization
	Computing Federated Updates with Fomo

	Experiments
	Conclusion
	Appendix
	Deriving the Fomo Update
	Additional Latent Distribution Non-IID Experiments
	Client Weighting with Personalization
	Additional Privacy Experiments
	Latent Distribution Non-IID Motivation and Setup
	Model Implementation Details
	Additional design ablations

