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ABSTRACT

Efficient processing of high-resolution images is crucial for real-world vi-
sion–language applications. However, existing Large Vision-Language Models
(LVLMs) incur substantial computational overhead due to the large number of vi-
sion tokens. With the advent of “thinking with images” models, reasoning now
extends beyond text to the visual domain. This capability motivates our two-stage
“coarse-to-fine” reasoning pipeline: first, a downsampled image is analyzed to
identify task-relevant regions; then, only these regions are cropped at full res-
olution and processed in a subsequent reasoning stage. This approach reduces
computational cost while preserving fine-grained visual details where necessary.
A major challenge lies in inferring which regions are truly relevant to a given
query. Recent related methods often fail in the first stage after input-image down-
sampling, due to perception-driven reasoning, where clear visual information is
required for effective reasoning. To address this issue, we propose ERGO (Effi-
cient Reasoning & Guided Observation) that performs reasoning-driven percep-
tion—leveraging multimodal context to determine where to focus. Our model can
account for perceptual uncertainty, expanding the cropped region to cover visu-
ally ambiguous areas for answering questions. To this end, we develop simple yet
effective reward components in a reinforcement learning framework for coarse-to-
fine perception. Across multiple datasets, our approach delivers higher accuracy
than the original model and competitive methods, with greater efficiency. For
instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points
while using only 23% of the vision tokens, achieving a 3× inference speedup.

1 INTRODUCTION

High-resolution image processing is crucial to achieve strong performance in real-world applica-
tions with large vision–language models (LVLMs) (Liu et al., 2024a; Wang et al., 2024a; Vasu et al.,
2025). Recent reinforcement learning (RL)-based post-training approaches (Wang et al., 2025a;
Zheng et al., 2025b) have explored the idea of “thinking with images” (OpenAI, 2025), enabling
LVLMs to reason not only through text, but also within the visual modality itself. By reason-
ing over cropped image features with bounding-box coordinates, these models can attend to local
high-fidelity objects and capture fine-grained details, leading to significant improvements in high-
resolution benchmarks.

Despite these advances, processing high-resolution input remains a major challenge. LVLMs must
handle a massive number of vision tokens, resulting in prohibitive computational costs. A straight-
forward solution (Zhou et al., 2025; Yang et al., 2025), is to reduce the input resolution, which
results in fewer vision tokens but inevitably discards fine-grained details critical to reasoning. The
two-stage “coarse-to-fine” pipeline embodies this principle: it first queries the model with a coarse-
grained image for initial reasoning over task-relevant regions; and then selectively localizes and re-
encodes sub-images at higher resolution with finer granularity for subsequent reasoning. Crucially,
discovering relevant regions from downsampled image input is fundamental to overall performance,
as it guides the model to focus its capacity on informative areas.

Fig. 1 illustrates this challenge and our solution. In Fig. 1(a), Zheng et al. (2025b) performs
well when the target object remains clearly visible (i.e., correctly identifying a straw in the high-
resolution image), but it requires processing a large number of vision tokens. Relevant models
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The zoom-in tool confirms that the straws
are indeed white... The color of the straw
is white.

What is the color of the straw?

What is the color of the straw?

Looking at the image, we focus on the coffee cups
and straws.

The signs are colorful, and there are straws
visible in the image. The straws appear to
be white.

What is the color of the straw?

... The straws are likely located near the
coffee cups on the table ...
Zoom in the region near the coffee cups ...

... the image shows that the straws are black.

The straw is visible in the enlarged sub-
image near the coffee cup on the table. The
straw appears to be black...

Powerful, but too much of computation cost from
massive image tokens.

The  reasoning led to where the straws is.

Crop at high-resolution

The straw is indiscernible by downsamplingThe straw is tiny but still discernible.

The model used coarse cues (coffee
cup, table) to locate the straw.

Successfully located the straw

(a) 
Accurate Reasoning
Vision Token Efficiency (b) Vision Token Efficiency

Accurate Reasoning
(c) Vision Token Efficiency

Accurate Reasoning

The model fails to find the straw
and reasons over false object.

Failed to solve the task with
downsampled image.

Crop at high-resolution

Figure 1: Comparison with prior work on high-resolution visual reasoning. The yellow box
marks the target object, which becomes indiscernible after input-image downsampling. (a) Zheng
et al. (2025b) succeeds when the object remains discernible, but at the cost of a large number of
vision tokens. (b) Zheng et al. (2025b) fails when the object is indiscernible at low resolution, where
fewer vision tokens are available. (c) Our ERGO performs reasoning-driven perception, correctly
answering the question even on low-resolution images.

(Wang et al., 2025a; Su et al., 2025a; Zheng et al., 2025b) are typically designed in this perception-
driven reasoning paradigm, where the model first localizes a tightly bounded target and then reasons
over it. As a result, their training tends to overlook downsampled visual inputs. While effective at
full resolution, this paradigm becomes a bottleneck in efficiency-oriented scenarios.

After input-image downsampling for a smaller number of vision tokens (see Fig. 1(b)), the straw
becomes indistinguishable, causing Zheng et al. (2025b) to miss it and incorrectly focus on more
discernible objects. In contrast, under such pixel-constrained conditions, our approach (Fig. 1(c))
highlights that reasoning-driven perception (i.e., including contextually inferable regions such as
straws near coffee cups on tables) is far more beneficial, since selecting the correct region enables
recovery of the original resolution in that area.

We introduce ERGO (Efficient Reasoning & Guided Observation), whose training objective is ex-
plicitly aligned with vision-processing efficiency in a reinforcement learning (RL) framework. It
rewards the inclusion of all task-relevant regions, while implicitly incentivizing the incorporation
of auxiliary context. This design enables the model to handle ambiguity without being restricted to
precise localization, learning that exact identification of individual objects is not always optimal and
that reasoning with contextual knowledge is often more beneficial. By aligning visual exploration
with efficiency objectives, our approach enables LVLMs to achieve improved efficiency without
sacrificing fine-grained reasoning ability. Our key contributions can be summarized as follows.

◦ Efficient coarse-to-fine pipeline. We introduce a two-stage reasoning pipeline that first pro-
cesses low-resolution inputs to identify task-relevant regions and then re-encodes them at higher
resolution. The pipeline reduces computational cost while preserving essential information.

◦ Reward for reasoning-driven perception. With our proposed reward, the policy model learns
that relying solely on accurate object localization is not always optimal and that contextual knowl-
edge can often be more beneficial. To our knowledge, we are the first to demonstrate the signifi-
cance of this insight for high-resolution visual processing in LVLMs.

◦ State-of-the-art performance with fewer vision tokens. ERGO surpasses competitive methods
(Huang et al., 2025b; Yang et al., 2025; Zheng et al., 2025b; Wang et al., 2025a; Su et al., 2025a;
Lai et al., 2025) in accuracy on multiple high-resolution benchmarks, while reducing vision token
counts and delivering practical speedups.
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Crop

Reward
Model

 is not used for the .

Policy
Model

Policy
Model

: Trainable
: Frozen

Figure 2: Overview of RL-based training pipeline. The red background highlights the components
of the proposed TCE reward. The green background highlights the conventional rewards adopted by
most reasoning LVLMs.

2 MOTIVATION

Pixel const. Task-relevant region V*

16384×28×28 ✗ 77.0
1280×28×28 ✗ 64.9
640×28×28 ✗ 56.5
640×28×28 ✓ 77.0

Table 1: Effectiveness of high-
resolution task-relevant cues. “Task-
relevant region” denotes whether the
annotated GT sub-image at original
resolution is appended to the input.
Evaluation was conducted using
Qwen2.5-VL-7B on the V* benchmark.

We examine whether appending a critical high-resolution
sub-image to a low-resolution image input can enhance
model performance. For the experiments, we used
Qwen2.5-VL (Bai et al., 2025) with pixel constraints to
resize input images. Specifically, a setting of N×28×28 in
its image processor caps the maximum number of vision
tokens at N . We varied the input resolution by controlling
N and included the ground-truth (GT) original-resolution
sub-image as an auxiliary input. Tab. 1 shows that us-
ing the GT full-fidelity sub-image does not degrade per-
formance, even when the model has not been explicitly
trained under such conditions. This finding indicates that
high-resolution access to task-relevant regions is suffi-
cient, whereas redundant tokens merely reduce efficiency.

Now that we have shown the effectiveness of task-relevant regions, the next question is whether ex-
isting models can autonomously identify such regions. A straightforward strategy might integrate a
powerful “thinking with images” model (Zheng et al., 2025b; Su et al., 2025a; Huang et al., 2025b;
Wang et al., 2025a) into the coarse-to-fine pipeline, predicting grounded coordinates and cropping
the corresponding high-resolution sub-images. However, our results show that existing RL-trained
reasoning models struggle to perform this task under low-resolution inputs (see Tab. 2). This high-
lights the need for approaches that can robustly identify informative regions even when coarse visual
cues are the only available signals, rather than relying solely on clearly discernible objects.

3 PROPOSED METHOD

Our objective is to develop remarkable reasoning-driven perception models that can reason over
where to focus. Fig. 2 presents our RL-based training pipeline, whose forward process is as follows:

◦ Given a pair of original image Iorig and text query q, the policy model πθ produces output oregion ∼
πθ(· | Iorig, q), which includes candidate bounding-box coordinates (indicating the region relevant
to the query) and a thinking trace.

◦ Next, the image Iregion corresponding to the bounding box is cropped from the original image Iorig
to feed into the reward model: Iregion ← crop(Iorig, oregion).

◦ Then, the policy πθ generates an answer oacc ∼ πθ(· | [Iregion, q], [Iorig, oregion]) in a multi-turn
conditioned setting, based on both the past interaction (i.e., original image Iorig and predicted
bounding box oregion) and the current query pair (i.e., cropped region Iregion and text query q).

The strength of ERGO lies in well-designed reward components for coarse-to-fine vision-grounded
reasoning, detailed as follows.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 REWARD DESIGN

3.1.1 PROPOSED REWARD

Region-verification reward. In many thinking-with-images studies (Huang et al., 2025b; Su et al.,
2025a; Zheng et al., 2025b), a reward model R takes the original image together with the cropped
region and query, producing its output oRM ∼ R(·|Iorig, Iregion, q) to guide the policy model. How-
ever, we argue that feeding the original image Iorig into the reward model is sub-optimal: the model
may rely on the original image instead of the cropped region, introducing unnecessary hints to the
query and thereby weakening the objective of self-contained cropping (i.e., ensuring the cropped re-
gion alone provides sufficient cues). This issue is particularly problematic for coarse-to-fine visual
grounded reasoning, which we adopt for efficiency, because low-resolution input images contain
little evidence (as target objects are often indiscernible), making self-contained crops essential for
question answering.

To address this issue, we propose the region-verification reward rregion, where task performance is
evaluated using only the cropped region and the query, without access to the original image. We
reframe the complex task of locating the optimal region into the simpler task of answering the
question with a single cropped image. If the reward model’s prediction matches the GT answer oGT,
the policy model receives a reward:

oRM ∼ R(·|Iregion, q), rregion = ⊮[match(oRM, oGT)] . (1)

This design encourages the policy model to identify informative, task-relevant regions that preserve
sufficient information for accurate reasoning, without the need for additional annotations. In prac-
tice, we use a frozen reward model, Qwen2.5-VL-72B-Instruct (Bai et al., 2025).

Box adjustment reward. Although the region reward effectively encourages task-guided cropping,
a key challenge emerges during early training: the policy model may exploit a trivial strategy by
consistently selecting the entire image. While this would be a reasonable shortcut for maximum
region reward, since the whole image is necessarily self-contained for the task, it limits efficient
inference due to excessive token costs from processing the full-resolution image.

To mitigate this issue, we introduce a complementary reward signal that regularizes the size of the
selected region. Specifically, the box adjustment reward rbox is computed with a step function that
penalizes overly large crops based on the area ratio of the selected region to the original image; it
effectively prevents the model from consistently grounding the entire image:

rbox = ⊮
[
Area(Iregion)

Area(Iorig)
≤ γ

]
. (2)

Figure 3: Analysis of query-relevant GT
regions in training data. Most GT regions
span less than 60% of the full image area.

Determining an ideal value of γ is crucial for our ap-
proach: low enough to prevent degenerate solutions
(e.g., selecting the full image as the crop) during
training, yet high enough to allow flexibility in re-
gion selection. To this end, we examined the training
split of popular LVLM reasoning-related datasets
with answer-aligned bounding box annotations (e.g.,
TreeVGR (Wang et al., 2025a), VisCoT (Shao et al.,
2024a), V* (Wu & Xie, 2023), VGR (Wang et al.,
2025b)). Fig. 3 shows that most GT regions relevant
to question answering occupy less than 60% of the
full image. Based on this analysis, we set γ = 0.6
for efficient and effective bounding box adjustment.

Task-driven contextual exploration (TCE) re-
ward. Based on the collaborative nature of the re-
gion reward and box adjustment reward, we combine
them to form our main reward rTCE:

rTCE = α · rregion + β · rbox. (3)
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Here, α and β are weighting coefficients, set to α = 1 and β = 0.5. This enables the policy model
to learn robust and efficient region selection strategies for vision-grounded reasoning.

3.1.2 CONVENTIONAL REWARD

Accuracy reward. The TCE reward is effective to guiding the policy model to select task-relevant
regions. However, it only indirectly promotes correct question-answering, creating a potential mis-
match between the training objective and the final evaluation. To bridge this gap, we use an accuracy
reward (DeepSeek-AI et al., 2025), which is assigned when the policy model’s output oacc matches
the GT answer: racc = ⊮[match(oacc, oGT)]. This component complements the TCE reward by
directly optimizing for question-answering accuracy.

Format reward. This reward enforces the adhesion to a predefined output structure us-
ing special tags (DeepSeek-AI et al., 2025). A reward is given if the reasoning is correctly
enclosed within <think></think> tags, the final answer within <answer></answer>
tags, and a <zoom></zoom> tag is included when region selection is performed: rformat =
⊮[ oregion, oacc follow expected format ]. This mechanism encourages the model to maintain well-
formed outputs that can be reliably parsed and evaluated throughout training and inference.

3.1.3 FINAL REWARD FORMULATION

The overall reward function is defined as a linear combination of three components (i.e., the TCE
reward, the accuracy reward, and the format reward):

R = rTCE + racc + rformat. (4)

3.2 LEARNING ALGORITHM

We adopt Grouped Reward Policy Optimization (GRPO) (Shao et al., 2024b) as our RL framework,
leveraging its sample-efficient optimization in grouped feedback settings (see the pseudo-code in
Sect. A for details). Through this effective RL training, ERGO acquires reasoning-driven perception
capabilities when presented with low-resolution, target-indiscernible inputs.

4 EXPERIMENTAL SETUP

Training setup. We use Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as the policy model and
Qwen2.5-VL-72B-Instruct (Bai et al., 2025) as the frozen reward model. Our training data con-
sists of a subset of ArxivQA (Li et al., 2024) and the V* training set (Wu & Xie, 2023), following
Zheng et al. (2025b). Training was conducted with a global batch size of 128, using 8 rollouts per
example on 4 H100 GPUs. See Sect. B for full details.

Baselines. We compare our approach against two categories of RL-based post-training methods:

◦ Efficiency-oriented models share our objective of efficient high-resolution vision–language un-
derstanding. MGPO (Huang et al., 2025b) directly leveraged the multi-turn pipeline but with a
single reasoning stage. VisionThink (Yang et al., 2025) does not select a sub-region of the orig-
inal image; instead, it employs a mechanism whereby the model, given a downsampled image,
determines whether the full high-resolution image should be processed for the task.

◦ Non-efficiency-oriented models are considered due to their strong grounding capabilities, which
could still benefit the coarse-to-fine pipeline. DeepEyes (Zheng et al., 2025b), PixelReasoner (Su
et al., 2025a) and MiniO3 (Lai et al., 2025) are not trained for efficiency, but can be adapted to
coarse-to-fine scenarios. Though TreeVGR (Wang et al., 2025a) is inherently incompatible with
coarse-to-fine settings, as it performs text-only reasoning over bounding-box coordinates rather
than visual re-encoding, we include it as a baseline for its strong grounding performance.

Benchmarks. We utilize high-resolution visual question answering (VQA) benchmarks including
V* (Wu & Xie, 2023), HR-Bench (Wang et al., 2024b), MME-RWL (Zhang et al., 2024), TreeBench
(Wang et al., 2025a) and VisualProbe (Lai et al., 2025), as our objective is efficient high-resolution
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Pixel Const. Model V* Bench HR Bench4K HR Bench8K MME-RWLite TreeBench VisualProbe Average

16384×28×28 Qwen2.5-VL-7B-Inst. 77.0 71.1 67.1 46.7 40.0 29.2 52.4

1280×28×28

Qwen2.5-VL-7B-Inst. 64.9 65.6 56.5 42.6 40.0 15.2 44.8

Non-efficiency-oriented Post Training Methods

PixelReasoner (Su et al., 2025a) 74.5 66.9 61.3 49.8 40.4 31.8 52.1
DeepEyes (Zheng et al., 2025b) 78.5 66.0 60.0 48.9 40.2 39.0 52.5
TreeVGR‡ (Wang et al., 2025a) 76.4 66.4 60.4 47.5 48.2 26.6 53.1
MiniO3 (Lai et al., 2025) 81.2 70.0 65.9 36.7 36.3 39.0 52.2

Efficiency-oriented Post Training Methods

MGPO† (Huang et al., 2025b) 77.5 69.8 61.1 44.4 39.3 33.4 52.6
VisionThink‡ (Yang et al., 2025) 73.8 66.1 65.8 49.0 41.0 17.3 49.4
ERGO 83.8 73.0 69.9 52.6 41.7 42.7 58.4

640×28×28

Qwen2.5-VL-7B-Inst. 56.5 57.0 49.9 40.3 40.2 10.9 40.3

Non-efficiency-oriented Post Training Methods

PixelReasoner (Su et al., 2025a) 67.2 66.5 59.9 47.7 42.3 23.9 48.9
DeepEyes (Zheng et al., 2025b) 64.9 64.4 58.3 48.9 38.5 26.8 48.1
TreeVGR‡ (Wang et al., 2025a) 67.0 62.4 54.4 47.5 49.1 24.1 49.2
MiniO3 (Lai et al., 2025) 74.9 62.8 57.3 34.4 36.0 31.7 48.2

Efficiency-oriented Post Training Methods

MGPO† (Huang et al., 2025b) 67.5 62.8 57.3 44.4 42.0 29.7 48.7
VisionThink‡ (Yang et al., 2025) 61.8 66.9 60.1 46.6 39.5 17.9 45.9
ERGO 81.7 67.1 66.1 49.6 43.2 35.0 55.2

Table 2: Performance comparison under efficiency-considered scenarios with pixel constraints.
ERGO outperforms the original model and post-training methods across all benchmarks. † denotes
reproduction with their code using our data, while ‡ denotes inference with their original pipeline.

Figure 4: Performance-efficiency trade-off on the
V* benchmark. The total number of vision tokens
is the sum of the tokens from the downsampled origi-
nal image and those from the high-resolution cropped
image.

Pixel Const. Model # of vision tokens V*

16384×28×28 Qwen2.5-VL-7B 4,471 77.0

1280×28×28

PixelReasoner 1,563 74.3
DeepEyes 1,374 75.9
TreeVGR 1,244 76.4
MGPO 1,315 77.5
VisionThink 1,749 73.8
MiniO3 1,981 81.2

ERGO 1,632 83.8

640×28×28 ERGO 1,025 81.7

Table 3: Comparison of vision token
counts in coarse-to-fine reasoning.

Pixel Const. Model Max. tool cnt V* Latency (s)
16384×28×28 Qwen2.5-VL-7B – 77.0 4.89

640×28×28 DeepEyes
4 64.9 3.42
2 63.9 3.07
1 64.4 2.18

640×28×28 MiniO3
4 74.9 5.35
2 61.8 3.87
1 41.4 2.03

640×28×28 ERGO 1 81.7 1.61

Table 4: Latency comparison with models
that leverage multiple tool calls on V* us-
ing the vLLM engine. Latency represents
the average duration to produce a final an-
swer for each image–query pair.

image understanding. To assess potential trade-offs introduced by training, we also consider con-
ventional multimodal benchmarks: CV-Bench (Tong et al., 2024a) and MMVP (Tong et al., 2024b)
as vision-centric benchmarks; Hallusion-Bench (Guan et al., 2024), POPE (Li et al., 2023), and
MMBench (Liu et al., 2024b) as general-purpose VQA tasks; and AI2D (Kembhavi et al., 2016)
and ChartQA (Masry et al., 2022) for chart understanding.

5 RESULTS AND ANALYSIS
5.1 MAIN RESULTS

High-resolution reasoning with efficient visual processing. To measure performance under
efficiency-considered scenarios, we considered two different pixel constraints—640×28×28 and
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1280×28×28—corresponding to vision token limits of 640 and 1280, respectively. Since our goal is
efficiency, ERGO was trained to perform reasoning with a single tool call, similar to other efficiency-
oriented methods. As tool calls naturally increase latency, some methods that do not prioritize effi-
ciency may make multiple tool calls. For a fair comparison, we constrained the maximum number
of tool calls to four during all evaluations. Tab. 2 shows that, because the average resolution of input
images exceeds these limits, many baseline models cannot accurately reason over images, leading to
performance degradation. In contrast, ERGO consistently outperforms all baselines across bench-
marks. In particular, compared to Qwen2.5-VL-7B, only ERGO achieves a higher score for every
benchmark we evaluated, even under the strictest 640×28×28 pixel constraint. Qualitative results
are presented in Fig. 1 and Sect. D.

Fig. 4 shows that ERGO lies in the Pareto-optimal region, achieving higher scores with fewer vision
tokens. We evaluate ERGO with multiple pixel constraints {320, 640, 1280}×28×28, corresponding
to {579, 1026, 1632} total vision tokens per sample, whereas competing baselines are evaluated
at {640, 1280, 2560, 3072}×28×28. Tab. 3 also shows that with the coarse-to-fine pipeline under
the 1280×28×28 constraint, ERGO achieves the highest score within the same constraint group.
Remarkably, at 640×28×28, ERGO outperforms all baselines while using fewer vision tokens than
others evaluated at 1280×28×28. These results demonstrate that our model achieves highly efficient
utilization of the vision token, as the pixel constraints can be flexibly regulated at test-time.

Practical latency improvements. To demonstrate that our method not only reduces vision token
usage, but also provides practical benefits in real-world deployment, we conducted a latency compar-
ison with the original Qwen2.5-VL-7B model. The evaluation was performed using the production
grade vLLM engine (Kwon et al., 2023) on a single H100 GPU with a batch size of 16, measur-
ing the time to produce a final answer for an image-query pair. Tab. 4 shows that models leveraging
multiple tool calls trade off efficiency for performance, whereas our approach achieves faster latency
while simultaneously surpassing them in accuracy on the V* benchmark.

5.2 IN-DEPTH ANALYSIS

Figure 5: Evaluation of model robust-
ness under target-object masking.

Leveraging contextual information for VQA. We show
that the superior performance of our model arises from
its ability to identify task-relevant regions even when tar-
get objects become visually indiscernible (see Fig. 1). To
quantify this ability, we analyze whether the predicted re-
gion covers the GT target object, by defining Target Cov-
erage Score.

Target Coverage Score = 1
|Bgt|

∑
bg∈Bgt

max
bp∈Bpred

Area(bp ∩ bg)

Area(bg)︸ ︷︷ ︸
fraction of GT box

covered by best matching prediction

where Bpred is the set of predicted bounding boxes per
sample and Bgt is the set of GT bounding boxes per sam-
ple. We evaluate scores separately for cases where the
object is completely masked (bounding box overlaid with
black) and where it remains discernible. Since masking removes explicit visual representations of
the object, models can only succeed by leveraging contextual information such as surrounding vi-
sual context or textual cues. Fig. 5 shows that ERGO achieves the most robust performance in the
masked condition, consistent with its stronger ability to exploit such contextual signals.

Bias-free region prediction with the box adjustment constant. We employ a fixed box adjustment
constant (i.e., γ is used in rbox of Eq. 2) to facilitate efficient training; in principle, the model could
be guided to predict the largest region permitted by the constant. However, Fig. 6 shows that ERGO
infers regions with flexible areas that reflect the underlying characteristics of the data: in MMVP
(Tong et al., 2024b), objects often occupy the full frame, whereas in MME-RWL (Zhang et al.,
2024), objects are relatively small. This indicates that the box adjustment constant does not bias
ERGO toward fixed-size predictions.

Results on conventional multimodal benchmarks. We evaluated ERGO on a broad set of multi-
modal benchmarks, including general VQA, vision-centric VQA, and document understanding. As
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Figure 6: Bias-free region prediction. ERGO adapts re-
gion sizes properly for (a) the high-resolution MME-RWL
and (b) the low-resolution MMVP, indicating that the box
adjustment constant does not bias the region predictions.

Benchmark Qwen2.5-VL ERGO
CVBench-2D 74.1 76.0
CVBench-3D 73.0 80.3
MMVP 77.0 77.7
Hallusion-Bench 47.1 52.3
POPE 86.4 87.4
MMBench 82.1 82.9
AI2D 81.3 84.7
ChartQA 86.1 85.8

Table 5: Results on conventional vi-
sion–language benchmarks. ERGO
maintains or improves the capabilities
of the base Qwen2.5-VL-7B model.

No. Method racc rregion rbox RW Avg.

Qwen2.5-VL-7B 52.4
A⃝ racc only ✓ 53.5
B⃝ rregion only ✓ 51.4
C⃝ +box adj. reward ✓ ✓ 54.9
D⃝ +reward weighting (RW) ✓ ✓ ✓ 55.3
E⃝ ERGO ✓ ✓ ✓ ✓ 58.4

(a) Reward design

No. (α, β) Avg.

(i) (1.0, 1.0) 56.2
(ii) (1.0, 2.0) 54.3

(iii) (0.5, 0.25) 56.8
(iv) (1.0, 0.5) 58.4

(b) TCE reward weight

Parameter size Average

3B 55.6
7B 56.4
72B 58.4

(c) Parameter size

Reward model Average

GLM4.5V-108B 58.2
InternVL3-78B 57.2
Qwen2.5-VL-72B 58.4

(d) Reward model

γ Function Average

0.4 step 57.8
0.8 step 56.2
0.6 step 58.4
0.6 linear anneal. 51.0

(e) Box adjustment reward

Table 6: Ablation analysis. Average performance is measured over six benchmarks in Tab. 2.

shown in Tab. 5, ERGO not only maintains the abilities of the base model but also achieves im-
provements on several benchmarks. We attribute these gains to the improved ability of the model to
reason in semantically relevant regions.

5.3 ABLATION STUDIES

Figure 7: Impact of box adjustment reward
on predicted regions during training.

The TCE reward is more effective than the ac-
curacy reward. In Tab. 6(a), D⃝ relies solely on
the TCE reward, without generating task answers
during training, whereas A⃝ relies solely on the ac-
curacy reward, without evaluating the quality of
the cropped region. Remarkably, although the fi-
nal performance is measured by answer accuracy,
D⃝—which was never explicitly trained to answer
the task—still outperforms A⃝. The results high-
light the effectiveness of the TCE reward design,
because improving the quality of the selected re-
gion with task-relevant evidence is critical to per-
formance in the coarse-to-fine pipeline.

The box adjustment reward is critical for effec-
tive training. In Fig. 7, removing the box regular-
ization reward drives the model toward the trivial
policy of cropping overly large regions. Evidenced by the superior performance of C⃝ compared to
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B⃝ in Tab. 6(a), the removal of the box adjustment reward not only causes inefficient inference but
also impairs effective model training.

Regularizing the prioritization of the box adjustment reward is beneficial. For C⃝ in Tab. 6(a),
we set α = 1 and β = 1 in Eq. 3. For D⃝, we reduced the weight of the box adjustment reward
to β = 0.5 to prevent the policy from overly prioritizing this term over more critical rewards. This
coordination of the weights results in higher average scores, which confirms our intended effect.
In Tab. 6(b), we further investigate multiple configurations of α and β. Configuration (ii), where
the box-adjustment weight β is larger than α, shows the lowest performance. In contrast, config-
uration (iii), which scales both α and β by a common multiplicative factor while preserving their
relative ratio, outperforms configuration (i) even when the region verification signal is weakened.
This further underscores the strength of our TCE reward formulation and validates the proposed
weighting strategy.

The accuracy reward is complementary to the TCE reward. In Tab. 6(a), while A⃝ underperforms
compared to C⃝, combining the accuracy reward with the TCE reward can yield benefits during
training. This complementary effect is particularly valuable when the model successfully selects
the task-relevant region but struggles to answer from the cropped sub-image. By leveraging both
rewards, ERGO with E⃝ can address both the quality of the cropped image and the training-test
mismatch, thereby enhancing overall performance.

Figure 8: Reward function for box adjust-
ment reward.

Figure 9: Impact of reward functionon pre-
dicted regions during training.

Our reward design plays a critical role regard-
less of size of the reward model and the model
family. We evaluate the impact of reward model
size by varying Qwen2.5-VL-Instruct (Bai et al.,
2025) from 72B to 7B and 3B. As shown in
Tab. 6(c), the performance does not collapse but
remains robust, exhibiting only limited sensitiv-
ity to the model scale. Furthermore, Tab. 6(d)
shows that performance remains stable across dif-
ferent reward model families. We attribute this
robustness to the nature of our proxy task for as-
sessing cropped image quality. Evaluating a re-
ward model’s response given an image crop and a
query is a fundamentally straightforward task, en-
abling even lower-capacity reward models to per-
form it reliably.

Data-driven selection of a γ is effective.
Tab. 6(e) supports our strategy for selecting the
box adjustment constant γ in Eq. 2. By setting γ
based on the data statistics, we effectively guide
the model’s training behavior. A large γ would
fail to penalize the trivial solution of cropping
excessively large regions. Conversely, a small
γ would restrict the model’s ability to explore
and identify the most relevant visual areas. Our
data-driven approach strikes a balance, encourag-
ing focused exploration while maintaining train-
ing stability.

Objective-aligned box adjustment reward degrades training performance. We experimented
with a linear annealing function to gradually emphasize smaller region selections, as shown in Fig. 8,
which aligns with our efficiency goal of reducing vision tokens. However, our empirical results
indicate that annealing degrades performance: the policy becomes overly incentivized to shrink
predicted regions, as illustrated in Fig. 9, because reducing region size is substantially easier than
improving the region-verification reward. Consequently, Tab. 6(e) shows that the model trained with
linear annealing fails to reason over semantically meaningful areas.
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6 RELATED WORK

LVLMs reasoning on vision spaces. The remarkable reasoning capabilities of RL post-trained
Large Language Models (LLMs) have significantly advanced problem-solving. Approaches such as
GRPO (Shao et al., 2024b) demonstrate that grouped reward signals can effectively induce complex
reasoning. Building on these advancements in text-only LLMs, substantial efforts have been made to
extend similar reasoning schemes to LVLMs. Early efforts (Shen et al., 2025; Huang et al., 2025a)
integrated vision inputs for reasoning, using GRPO-like techniques to improve LVLM reasoning
with text-only exploration. More recently, the concept of “thinking with images” (Su et al., 2025b),
exemplified by models such as OpenAI-o3 (OpenAI, 2025), has gained traction, emphasizing visual-
space reasoning. While reasoning LVLMs (Zheng et al., 2025b; Wang et al., 2025a) have been
widely studied to boost performance, their use for efficient inference remains under-explored. Our
work addresses this by showing that ERGO with grounded region supervision can achieve both
higher efficiency and greater task-solving ability.

Efficient LVLMs with vision token pruning. The efficiency bottleneck lies in the rapid growth of
vision token count as input image resolution increases. Vision token pruning (Chen et al., 2024; Wen
et al., 2025b; Lee et al., 2025) mitigates this by selectively removing tokens to reduce computation.
However, these methods often rely on layer-specific inference schemes, making them unsuitable
for production-grade engines (Kwon et al., 2023; Zheng et al., 2024) that lack support for dynamic
sequence lengths across layers. As noted by Wen et al. (2025a), such pruning often yields theoretical
FLOPs reductions, which rarely translate into real inference-time speedups. Their focus is largely on
compensating accuracy loss rather than achieving performance gains. In contrast, ERGO provides
both performance gains and practical latency improvements within production-grade LLM engines.

Efficient LVLMs with RL. RL has been explored as a method to improve the efficiency of LVLMs.
While moderating image resolution is a straightforward approach, it comes with the trade-off of
reducing visual information. To address this, some RL-trained methods empower the model to man-
age resolution itself. For instance, VisionThink (Yang et al., 2025) trains models to request higher
resolution when an image is too ambiguous to answer a question. However, this approach remains
redundant, as it reprocesses the entire image at a higher resolution rather than focusing on task-
relevant regions. In contrast, MGPO Huang et al. (2025b) trains models with downsampled images
and high-resolution cropped regions, rewarding final answer accuracy. However, by neglecting the
quality of the selected regions, MGPO fails to surpass methods without an efficiency objective. By
assessing predicted regions with efficiency-oriented objective, ERGO achieves the best efficiency in
high-resolution visual understanding.

7 CONCLUSION

Our study reveals a critical limitation of existing perception-driven reasoning models: their per-
formance substantially degrades under low-resolution inputs in coarse-to-fine reasoning scenarios.
These models rely heavily on clearly discernible visual anchors to localize objects; when such cues
are lost due to downsampling, their ability to identify task-relevant regions deteriorates, causing
errors in reasoning and question answering. This underscores the need for approaches that cap-
ture coarse cues while selectively attending to semantically salient regions. Our ERGO conducts
reasoning-driven perception, maintaining both efficiency and accuracy even when high-fidelity ob-
ject information is lost, thereby overcoming the efficiency shortcomings of prior methods.
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Appendix — ERGO: Efficient High-Resolution Visual Understanding For
Vision-Language Models

A TRAINING ALGORITHM

Algorithm 1: Policy updates with our reward design
Input: Policy model πθ , reward modelR, train set {(Iorig,i, qi, oGT,i)}Ni=1, group size G, reward weights

α, β, box adjustment constant γ, stability constant ϵ
while training do

foreach sample (Iorig, q, oGT) in the train set do
Initialize empty lists: GroupRewards← [], GroupRollouts← []
foreach rollout g = 1, . . . , G do

oregion ∼ πθ(·|Iorig, q)
Append oregion to GroupRollouts
if oregion is not valid for crop then

// e.g. impossible to parse out the bounding-box,
// missing value at the coordinates, etc.
rTCE, racc, rformat ← 0

else
Iregion ← crop(Iorig, oregion)
oacc ∼ πθ(·|[Iregion, q], [Iorig, oregion])
oRM ∼ R(·|Iregion, q)
rregion ← ⊮[match(oRM, oGT)]

rbox = ⊮[Area(Iregion)

Area(Iorig)
≤ γ]

racc ← ⊮[match(oacc, oGT)]
rformat ← ⊮[ oregion, oacc follow expected format ]
// Task-driven Contextual Exploration (TCE) Reward
rTCE = α · rregion + β · rbox

R← rTCE + racc + rformat
Append R to GroupRewards

R̄← 1
G

∑G
g=1 GroupRewards[g]

σR ←
√

1
G

∑G
g=1(GroupRewards[g]− R̄)2

Advantages←
{

Rg−R̄

ϵ+σR

}G

g=1
for each Rg ∈ GroupRewards

// Policy update following GRPO (Shao et al., 2024b)
πθ ← update πθ using GroupRollouts and Advantages

Output: Learned policy model πθ
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B TRAINING DETAILS

Parameter Value
Base model Qwen2.5-VL-7B-Instruct
Data V* training set, ArxivQA
Hardware NVIDIA H100
Optimizer AdamW
Total training steps 250
Global batch size 128
Rollouts per sample 8
Learning rate 1× 10−6

RL algorithm GRPO
Reward model Qwen2.5-VL-72B-Instruct
GPU hours ∼150

Table 7: Training configuration.

Table 7 summarizes the training setup.

Models. We adopted Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as the base model for RL training,
owing to its strong vision–language reasoning ability and object-level referring detection, which
enable effective grounding without cold-start initialization. Moreover, Qwen2.5-VL has been widely
used in prior RL-based studies, ensuring fair comparison with related work. For the reward model,
we used Qwen2.5-VL-72B-Instruct, one of the most powerful open-sourced LVLMs, to provide a
reliable and precise reward signal.

Data. We followed the setup of DeepEyes (Zheng et al., 2025b), reusing their curated training data
for RL post-training. This choice isolates the contribution of our method from dataset curation ef-
fects, allowing us to demonstrate improvements independently of data filtering, though such filtering
remains a valid and complementary approach.

Other training details. Training was performed on a cluster node with 4 H100 GPUs. The global
batch size was 128. For accuracy rewards, half of each mini-batch was allocated to longer rollouts
to avoid VRAM bottlenecks. Sixteen rollouts were sampled per training example. The learning
rate was fixed at 1 × 10−6 throughout training. We employed standard GRPO, as alternative vari-
ants such as DR.GRPO Liu et al. (2025) and GSPO (Zheng et al., 2025a) did not yield significant
improvements in preliminary trials.
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C ANALYZING LATENCY–PERFORMANCE TRADE-OFFS BEYOND FIXED
PIXEL CONSTRAINTS

We conducted additional experiments to broaden the scope of evaluation. Beyond the fixed
pixel-constraint setting, we evaluated two supplementary comparisons: one under performance-
constrained settings, where each model is evaluated using its native configuration, and another un-
der latency-constrained settings, where all models operate within comparable inference-time limits.
These additional tables provide a more complete view of ERGO’s performance across different
practical constraints.

Model V* Latency (s) Remarks
TreeVGR 85.3 5.3 Original setting
DeepEyes 84.3 9.4 Original setting
Mini-o3 86.8 9.0 Original setting
ERGO 85.9 5.1 Pixel constraints: 2256× 28× 28

ERGO 83.8 2.6 Pixel constraints: 1280× 28× 28

Table 8: Comparison under original baseline settings without restricting baselines’ configurations.

Table 8 shows the results under the native configurations of the models. When computational lim-
its are relaxed (e.g., through larger pixel budgets), ERGO matches or exceeds the performance of
stronger but slower baselines, while maintaining lower latency.

Model V* Latency (s) Remarks
TreeVGR 74.4 2.6 Pixel constraints: 2048× 28× 28

81.7 3.1 Pixel constraints: 2560× 28× 28

DeepEyes 64.9 3.2 Pixel constraints: 640× 28× 28
75.9 3.8 Pixel constraints: 1280× 28× 28

Mini-o3 74.4 2.6 Single tool call; Pixel constraints: 1280× 28× 28
74.4 5.0 Single tool call
83.8 7.0 Up to 6 tool calls

ERGO 83.8 2.6 Pixel constraints: 1280× 28× 28

Table 9: Performance under matched latency budgets by regularating pixel constraints or tool call
counts.

To evaluate models in latency-sensitive environments, we further cap inference time per sample
and tune pixel budgets or permissible tool-call counts accordingly. As shown in Table 9, ERGO
achieves the highest accuracy among all models when operating under comparable latency budgets,
demonstrating its efficiency–performance advantage in constrained settings.
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D QUALITATIVE RESULTS

The qualitative results indicate that ERGO effectively leverages coarse visual cues when needed.

Question
What is the color of the bottle cap?
First, consider how to zoom in on the image to include only the region
containing all the information necessary to answer the question.

Reasoning
The bottle cap is located on the water bottle next to the person reading. Upon
zooming in, the cap appears to be blue.

Reasoning
To determine the color of the bottle cap, I need to focus on the region where
the bottle is located. The bottle is visible on the table in front of the person
wearing a plaid shirt.

Zoom in on the table in front of the person wearing a plaid shirt to focus on the
bottle

Answer
Blue.

Question
What is the color of the bottle cap?

Resized from original image (Pixel Constraint : 1280 28 28) 

Cropped at original image (Pixel Constraint : 1280 28 28) 

Figure 10: ERGO utilizes coarse cues (“the region where the bottle is located”) to provide the
answer. The yellow box highlights the region linked to the answer for clear visualization.
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Question
What is the color of the pink-haired woman's handbag?
First, consider how to zoom in on the image to include only the region
containing all the information necessary to answer the question.

Reasoning
The enlarged sub-image focuses on the entrance area where a person with pink
hair is visible. The handbag she is carrying appears to be white.

Reasoning
To determine the color of the pink-haired woman's handbag, I need to focus on
the area near the entrance of the building where people are visible. The region
around the entrance contains the necessary information.

Zoom in on the entrance area to focus on the people near the building.

Answer 
White.

Question
What is the color of the pink-haired woman's handbag?

Resized from original image (Pixel Constraint : 1280 28 28) 

Cropped at original image (Pixel Constraint : 1280 28 28) 

Figure 11: ERGO leverages coarse cue (“where people are visible”) to answer the question.
The yellow box indicates the region associated with the answer to aid visualization.
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Reasoning
To determine whether the orange luggage is on the left or right side of the
purple umbrella, I need to focus on the area around the umbrella and the
luggage. The umbrella is located near the center-left of the image, and the
orange luggage is visible to the right of the umbrella.

Zoom in on the area around the purple umbrella and the orange luggage.

Question 
Is the orange luggage on the left or right side of purple umbrella?
First, consider how to zoom in on the image to include only the region
containing all the information necessary to answer the question.

Reasoning
The enlarged sub-image focuses on the area around the purple umbrella and
the orange luggage, making it clear that the orange luggage is positioned to the
right of the umbrella.

Answer 
Right.

Question
Is the orange luggage on the left or right side of the purple umbrella?

Resized from original image (Pixel Constraint : 1280 28 28) 

Cropped at original image (Pixel Constraint : 1280 28 28) 

Figure 12: ERGO can also exploit clear visual cues (the purple umbrella and the orange lug-
gage) when the object is still discernible. The yellow box highlights the region associated with the
answer for clear visualization.

E LLM USAGE DISCLOSURE

This paper utilized a large language model (LLM) solely for the purpose of checking grammar,
spelling, and typographical errors.
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