
000 CODESENSE: A REAL-WORLD BENCHMARK AND 001 002 DATASET FOR CODE SEMANTIC REASONING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Understanding and reasoning about code semantics is essential for enhancing code
012 LLMs' abilities to solve real-world software engineering (SE) tasks. Although sev-
013 eral code reasoning benchmarks exist, most rely on synthetic datasets or educational
014 coding problems and focus on coarse-grained reasoning tasks such as input/output
015 prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts.
016 To bridge this gap, we propose CodeSense , the first benchmark that makes available
017 a spectrum of fine-grained code reasoning tasks concerned with the software engi-
018 neering of real-world code. We collected Python, C and Java software projects from
019 real-world repositories. We executed tests from these repositories, collected their
020 execution traces, and constructed a ground truth dataset for fine-grained semantic
021 reasoning tasks. We then performed comprehensive evaluations on state-of-the-art
022 LLMs. Our results show a clear performance gap for the models to handle fine-
023 grained reasoning tasks. Although prompting techniques such as chain-of-thought
024 and in-context learning helped, the lack of code semantics in LLMs fundamentally
025 limit models' capabilities of code reasoning. Besides dataset, benchmark and
026 evaluation, our work produced an execution tracing framework and tool set that
027 make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a
028 strong basis for future benchmark construction and model post training. Our code
029 and data are located at <https://codesense-bench.github.io/>.
030

031 1 INTRODUCTION

032 Semantic code reasoning—the capacity to understand and predict the behavior of software—is a core
033 requirement underpinning a wide range of complex software engineering (SE) tasks, including test
034 input generation, vulnerability detection, fault localization, bug repair, refactoring, and functional
035 verification. Unlike syntactic pattern matching, which may rely on token-level similarity or statistical
036 regularities, semantic reasoning ("codesense") entails a deep, execution-oriented understanding
037 of how software operates. Although code semantics can be expressed in many ways, in practice,
038 developers engage in semantic reasoning through tasks like predicting a function's input-output
039 behavior, tracing variable values, analyzing control flow paths, identifying loop invariants, etc. This
040 form of reasoning aligns with formal definitions from programming language theory—particularly
041 operational semantics, which models step-by-step execution, and axiomatic semantics, which uses
042 logical assertions to describe program properties. Such reasoning tasks also reflect the real-world
043 demands placed on developers and provide a natural grounding for their day-to-day work.
044

045 Recent years have witnessed the emergence of numerous benchmarks for evaluating coding-related
046 tasks. However, the majority of these efforts have focused on code generation using synthetic or
047 narrowly scoped data—for example, HumanEval+ (Liu et al., 2023), LiveCodeBenchmark (Jain et al.,
048 2024), Bigcodebench (Zhuo et al., 2024), and CodeBenchGen (Xie et al., 2024)—often extracted
049 from isolated competitive programming problems. Consequently, they fail to capture the complexity
050 and structure of real-world software development. Other benchmarks that incorporate real-world code,
051 such as SWE-Bench (Jimenez et al., 2024), SWE-PolyBench (Rashid et al., 2025), and KGym (Mathai
052 et al., 2024), tend to evaluate only task-specific performance (e.g., patch generation for GitHub issues),
053 making it difficult to assess whether models exhibit generalizable semantic understanding. Finally,
054 reasoning-focused benchmarks, such as CruxEval (Gu et al., 2024), primarily target function-level
055 input/output prediction over short and synthetic code fragments involving random string operations.
056 Such settings neglect the fine-grained semantic reasoning about internal program behavior and

```

054
055     1 void foo(int input){
056     2     int n = input * 23;
057     3     if (3465>=n>=2287){
058     4         //dangerous code need to be tested
059     5     }
060     6 }

```

((A)) Test input generation and program execution reasoning: to generate a test input that can lead to the execution of dangerous code at line 4, the model needs to find an input that can satisfy the branch condition $3465 \geq n \geq 2287$ at line 3. Understanding the semantics of operators '*' at line 2 and ' \geq ' at line 3 is needed to effectively generate an input that reaches the dangerous code, e.g., $input = 120$. The branches and arithmetic operations can be quite diverse in different programs, and it is hard to generalize patterns regarding which code text should use what kind of test input to execute.

```

1 void bar (int nbits) {
2     FFTContext *s = malloc(sizeof (* s));
3     if (s && nbits==100)
4         free(& s);
5     else ... return s;
6 }

```

((B)) Vulnerability detection, fault localization and program repair: this code has a memory leak vulnerability when the `if` condition at line 3 is false. To detect this vulnerability, the model should know that calls to `malloc` and `free` are related to the vulnerability (semantics of the API calls), and should be paired along the program paths along both branches starting at line 3 (semantics of the branch statements and control flow). Similarly, `malloc` and `free` can be located in various code contexts in different programs, and thus it is hard to generalize the patterns only from the code text, without semantic code reasoning.

FIGURE 1. Fine-grained code semantics are the keys for solving many SE tasks

properties, data dependencies, and control structures required to solve a variety of SE tasks for complex real-world software systems.

To this end, we propose CodeSense, a benchmark for fine-grained code semantic reasoning, constructed from real-world GitHub projects in Python, C, and Java (see Table 1). CodeSense introduces a spectrum of reasoning tasks at statement, code-block, and function levels, targeting essential semantic properties frequently needed across SE activities. For example, predicting loop iteration counts is critical for input/output prediction, performance analysis, and detecting infinite loops (e.g., denial-of-service vulnerabilities). Branch condition prediction and reasoning about pointers in C code are important for test input generation and memory safety assurance. As illustrated in Figures 1(a) and 1(b), fine-grained semantic reasoning about arithmetic operations, control flow, and API semantics is foundational for a variety of SE applications. Prior work (Ding et al., 2023a; 2024) has shown that incorporating semantic signals during training improves model performance on code generation, branch prediction, code clone detection, program repair and vulnerability detection tasks, motivating our design of CodeSense to comprehensively evaluate models' capabilities for semantic reasoning. Their experimental results showed that even using dynamic values collected from small implementations (<100 lines of code), the models are able to improve downstream tasks for real-world code.

TABLE 1. Optimal design space of code reasoning benchmarks (○ denotes not support, ● denotes partial support, and ●● denotes fully support)

Benchmark	Real-World Projects	Multi-lingual	Function I/O	Fine-Grained Reasoning	Exec. Steps	API Under-standing	Multi-File	Project Structure
CruxEval (Gu et al., 2024)	○	○	●	○	○	○	○	○
CruxEval-X (Xu et al., 2024)	○	●	●	○	○	○	○	○
REval (Chen et al., 2024)	○	○	●	●	○	○	○	○
CodeMind (Liu et al., 2024)	●	●	●	○	●	●	●	●
CoRe (Xie et al., 2025)	○	●	○	●	○	○	○	○
CodeSense	●	●	●	●	●	●	●	●

Using our benchmark, we evaluated 14 state-of-the-art (SOTA) LLMs and investigated six research questions regarding the models' code semantics reasoning capabilities. Previous work has shown that models did not perform well on code reasoning tasks such as input/output prediction (Gu et al., 2024) and vulnerability detection (Steenhoek et al., 2025); to understand why models fail and identify places for improvement, we investigate: **RQ1:** Does increasing code size make semantic reasoning more difficult? **RQ2:** Which types of program statements are easier or harder for models to reason about? **RQ3:** How do models perform on code properties critical for SE tasks, such as predicting pointer aliasing, loop iteration counts, and branch conditions? **RQ4:** How effective are different prompting strategies in improving semantic reasoning? **RQ5:** Can models reason approximately when exact

108 values or semantics are hard to infer? **RQ6:** Do models handle Java, C or Python real-world programs
109 better?

110 Our results reveal that current LLMs, including SOTA models like Claude 3.5 (Anthropic, 2024),
111 GPT-4o-mini (OpenAI, 2024), and Gemini 1.5 (Google, 2025) struggle with fine-grained code
112 semantics. They often fail to reason about even single statements from real-world code—particularly
113 arithmetic expressions and API calls—and perform poorly on tasks involving loop values and iteration
114 counts. Basic chain-of-thought prompting offers limited benefit, and few-shot prompting yields only
115 modest improvements. In-context learning is most effective when prompts define new concepts or
116 include highly relevant examples. Interestingly, models can correlate natural language code semantics
117 questions with certain code patterns. For instance, when the code contains assignments like `p = q`,
118 models correctly respond to the prompt "do `p` and `q` at <line> alias the same memory address" even
119 in zero-shot settings. Similarly, models reliably infer loop bounds in explicit cases such as `for i`
120 `in range(100) :.` Among the 14 models evaluated, Claude 3.5 consistently achieved the best
121 performance. We also observe that Java and Python code are generally easier for models to reason
122 about than C, and that input prediction (i.e., reverse semantic inference) remains among the most
123 challenging tasks.

124 **Contributions.** This work introduces CodeSense, a realistic and comprehensive benchmark for
125 evaluating LLMs' fine-grained code semantics reasoning in practical software engineering contexts.
126 We advance the state-of-the-art code reasoning benchmarks by:

- 127 1. Defining a diverse set of fine-grained semantic reasoning tasks grounded in real-world
128 software engineering needs,
- 129 2. Developing a scalable open-source framework and toolchain to automatically generate
130 execution traces and semantic annotations, enabling continuous benchmark expansion while
131 mitigating data leakage,
- 132 3. Constructing a benchmark dataset using real-world projects in Python, C, and Java,
- 133 4. Empirically analyzing six research questions across 14 state-of-the-art LLMs to assess their
134 strengths and limitations in semantic reasoning, and
- 135 5. Launching a public leaderboard to support reproducibility and accelerate progress
136 on semantic reasoning for code: [https://codesense-bench.github.io/](https://codesense-bench.github.io/leaderboard.html)
137 `leaderboard.html`

139 2 BENCHMARK CONSTRUCTION

141 2.1 DEFINING A SPECTRUM OF CODE REASONING TASKS

143 To design tasks for evaluating LLMs' capabilities of code semantic reasoning, we first considered the
144 definition of code semantics. In programming languages and software engineering, code semantics
145 —“what is the meaning of this code” — are defined as what is the output value given the input
146 of a code snippet. Such fine-grained reasoning tasks are directly related to end-tasks in software
147 engineering. For example, previous work (Ding et al., 2023a) shows that when fine-tuned with
148 statement-level values, the performance of the models improved for vulnerability detection, branch
149 prediction and code clone detection. Prior study (Steenhoek et al., 2025) reported that although
150 recent LLMs improved math reasoning and natural language reasoning significantly, they are still
151 insufficient for handling end-tasks related to code reasoning. To help locate the weakness of models'
152 code reasoning at a fine-granularity and help models to improve a variety of SE applications that are
153 linked to the fine-grained reasoning steps, we designed the following code reasoning tasks:

154 **Task 1: Block-level code semantics (RQ1):** To investigate whether a model understand a chuck
155 of code, we give a block of statements. We give input and ask the models to predict the execution
156 output; also we give output, we ask the models to predict the input. Input/output prediction of a
157 function is a special case of probing block-level code semantics. In our evaluation, we sampled a
158 block of statements from the entry of the functions and increased the sizes of blocks, including the
159 entire function.

160 **Task 2: Statement-level code semantics (RQ2):** We classified program statements based on
161 programming language semantics and evaluated models on five common statement types, including
arithmetic, boolean expression, API/Function call, variable assignment and constant assignment.

162
163
164
165
166
167
168
169

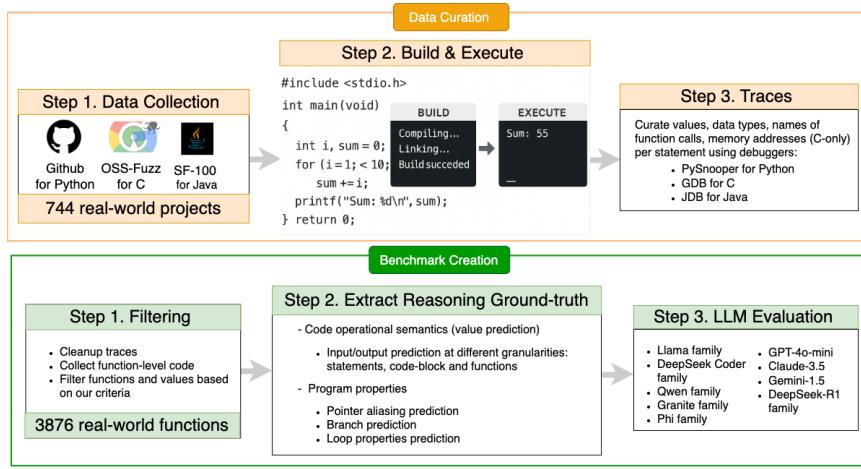


FIGURE 2. CodeSense: Data curation and benchmark creation overview.

170
171
172
173
174
175
176

Knowing code semantics at the statement level means that given an input of the statement, the models are able to produce a correct output. In our evaluation, we studied output predictions in more depth. We randomly sampled a statement from the program and asked the models to predict its output given input.

177
178
179
180
181
182
183
184

Task 3: Code properties within a function (RQ3): Code property (property regarding a particular code construct) is another aspect of code semantics. We focused on three important properties in this benchmark. Loops are related to code optimization and detecting bugs. Reasoning about pointers in C code are very important for assuring memory safety and detecting and repairing vulnerabilities. Knowing how to predict branch outcomes can help generate test inputs and parallelize code.

185
186
187
188
189

Task 3-1: Loop property. Given an input of a function, we asked models to predict the number of loop iterations, the values in the loop and the values after executing the loop. In our evaluation, we randomly sampled a loop in a function and randomly sampled variables in and after the loop.

190
191
192

Task 3-2: Pointer property. Here, we give the models a function and its input, and we ask models to predict whether the two pointers are aliased (pointing to the same memory location) at a given program point.

193
194
195
196
197
198
199

Task 3-3: Branch property. Giving a function and its input as well as the location of a conditional branch in the function, we ask the model to predict what is the outcome of the branch. In our evaluation, we randomly selected a conditional branch in the function for prediction.

200
201
202
203
204
205

Task 4: Approximation of code semantics (RQ5): Reasoning about concrete values for the above tasks is very challenging. Sometimes, to solve an SE task, we may only need an approximate value of code semantics. For example, in Fig. 1(a), the models do not have to generate a concrete number like $input=120$; it is sufficient for models to tell us that an integer input between 100-150 can trigger the dangerous code. We designed a set of *abstract values* for different data types, following prior literature (Ding et al., 2023a) and evaluate if the models can predict abstract values correctly.

206
207
208

The above tasks are also used for studying **RQ4** regarding prompting techniques and **RQ6** comparing different programming languages. We have included the prompts for all the above tasks in Appendix/data package.

209
210
211

2.2 COLLECTING AND TRACING REAL-WORLD MULTI-LINGUAL SOFTWARE PROJECTS

212
213
214
215

Constructing ground truth for the set of code-semantics tasks is a great challenge. We collected a total of 744 real-world software projects of Python, C and Java from GitHub. We developed a framework and tool chain to build the projects, run tests and collect the execution traces which contain values, data types, names of function calls and memory addresses (for C code) at each statement. We developed analysis tools to extract ground truth for the benchmark tasks from those fine-grained code

216 semantics data. Please check our Appendix A.5 for our language selection rationale and how our
217 framework can be easily extended to other languages.
218

219 **Python.** We collected 1489 GitHub repositories from the PyPIbugs dataset (Allamanis et al., 2021).
220 We removed projects that don't contain test cases or have not been updated in the last four years, and
221 obtained 544 projects. We first installed dependencies for each project and used `pytest` (Krekel
222 et al., 2004) to run tests, and `Pysnooper` (Rachum et al., 2019) for tracing.
223

224 **C.** We used 100 projects curated in OSS-Fuzz (Arya et al., 2023). We built and fuzzed the real-world
225 projects using the OSS-Fuzz infrastructure in the docker environment with project-wise fuzzing
226 harnesses. We developed a tracing framework built on the GNU debugger (GDB) (Free Software
227 Foundation).
228

229 **Java.** We collected 100 projects from the SF110 dataset (Fraser and Arcuri, 2012). We used
230 `EvoSuite` (Fraser and Arcuri, 2011) to generate and run test cases and developed our tracing tool on
231 top of Java Debugger (Oracle Corporation, 2025) to record the execution details of the projects.
232

233 2.3 DATA FILTERING

234 We collected whole program traces, from which we curated unique functions based on their entry
235 and exit points in the execution trace logs. We excluded functions that only contains comments, too
236 lengthy to fit into the models' context, and the functions which don't have meaningful functionality in
237 their body. For example, some functions only contain one statement like "return 0", or "printf(...)" or
238 some functions are just a wrapper for another function which we have tested, such as "void myfunc(){
239 func();}". We obtained a total of 2125 Python, 876 C and 875 Java unique functions, with the sizes
240 ranging from 3 to 516 lines of code. From these unique functions, we curated our task-specific
241 datasets.
242

243 In real-world code, we face many complexities, e.g., the input of a function and the values of a
244 variable can be complex types. As the first step of probing models to reason about fine-grained code
245 semantics for real-world code, we focus on ground truth values of primitive data types in all tasks,
246 including `int`, `float`, `str`, `bool`, `list`, `pointer`, `double`, `dictionary`, `tuple`, etc. In
247 the evaluation, we show that even for values of primitive types, the models face challenging to predict
248 them. We collected a total of 4483 samples from Python, C and Java, and constructed the ground
249 truth for the above tasks and used for evaluation. See Table 2.
250

251 TABLE 2. Number of Samples for Tasks
252

Task	Python	C	Java	Total Samples
Task 1: Block	1860	731	–	2591
Task 1: Function	308	94	74	476
Task 2/Task 4: Statement	545	485	–	1030
Task 3-1/Task 4: Loop	105	–	–	105
Task 3-2: Pointer	–	49	–	49
Task 3-3: Branch	232	–	–	232
Total Samples	3050	1359	74	4483

253 3 EVALUATION

254 We evaluate 14 SOTA LLMs, 8 reasoning models and 6 non-reasoning models (see Appendix Table 3
255 for full names and short IDs used in figures), including open-source models (Llama, phi), close-
256 source/API models (GPT-4.0 Mini, Claude 3.5 and Gemini 1.5) and distilled models (DeepSeek R1
257 series), with the model parameter sizes ranging from 7 to 14 billions. We utilized vLLM(v0.3.3) as
258 our inference engine to run the models.
259

260 We designed five different natural language prompt templates (see Appendix/data package), and ran
261 them on a sampled dataset for each model. We observed that prompt templates are model-sensitive,
262 but not task-sensitive. So we select a template for each model for all the tasks. We prompted the
263 models to give a response inside specific tags (`<ans>` `</ans>`) and considered the response inside that
264 tag to compare with the ground truth, as done in (Gu et al., 2024). For our evaluation metrics, we
265 used accuracy (exact matching of the generated outputs of the models and the ground truth label).
266

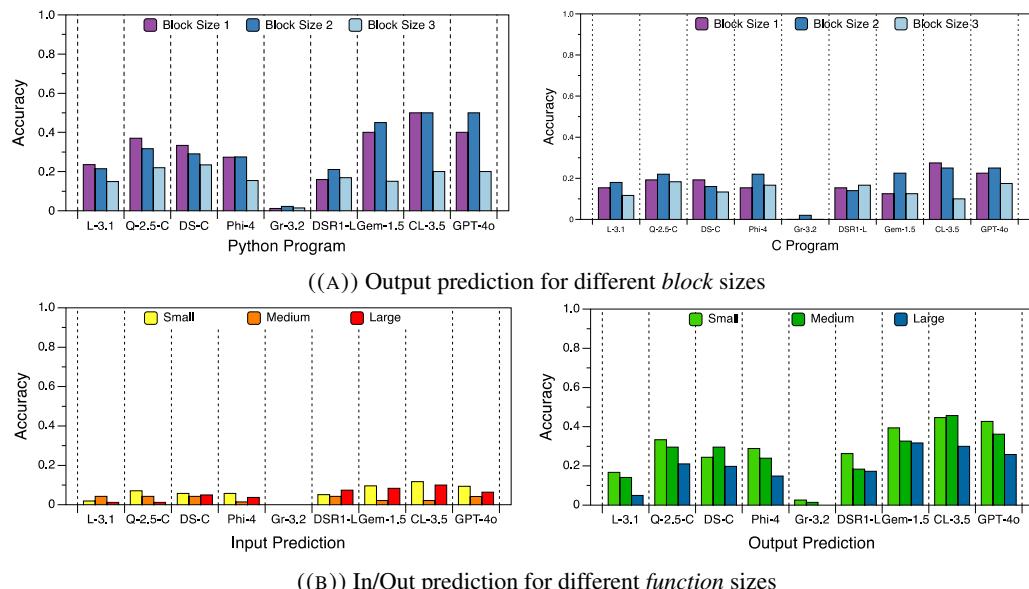
270 In the following, we presented a selection of interesting results. For clarity, we present results from
 271 one representative LLM per model family to ensure model diversity. Please refer to the Appendix for
 272 the complete set of experimental results.
 273

274 3.1 RESULTS FOR RQ1: BLOCK-LEVEL CODE SEMANTICS 275

276 Fig. 3 shows input/output prediction results for code blocks and functions (a special case of code
 277 block) across varying sizes. In Fig. 3(a) shows the results for three block sizes - blocks containing
 278 one, two, and three statements, respectively.

279 Overall, we observe that model accuracy is low even for small code blocks. For example, in C
 280 dataset, models such as Claude 3.5 and GPT-4o-mini achieve under 30% accuracy on single-statement
 281 blocks. Python yields slightly better results, though no model exceeds 50% accuracy. Performance
 282 further declines as block size increases from 1 to 3 statements, with open-source models performing
 283 significantly worse. This degradation stems from two primary challenges: models often fail to reason
 284 about individual statements, and they struggle to track variable state across statements. Notably,
 285 even Claude 3.5 achieves only 20% accuracy on 3-statement Python blocks, and less than 10% on C.
 286 However, in some cases, smaller blocks can be harder because they contain API calls.
 287

288 A similar trend is observed in Fig. 3(b) (right: Output Prediction), where models perform better on
 289 smaller functions than larger ones for output prediction. However, performance on input prediction
 290 remains consistently poor (left figure) across all function sizes. This highlights a broader limitation:
 291 LLMs are even less capable of understanding the "reverse" of operational semantics, i.e., inferring
 292 inputs from outputs. Even the best-performing model, Claude 3.5, achieves only around 12% accuracy
 293 in input prediction for small functions.

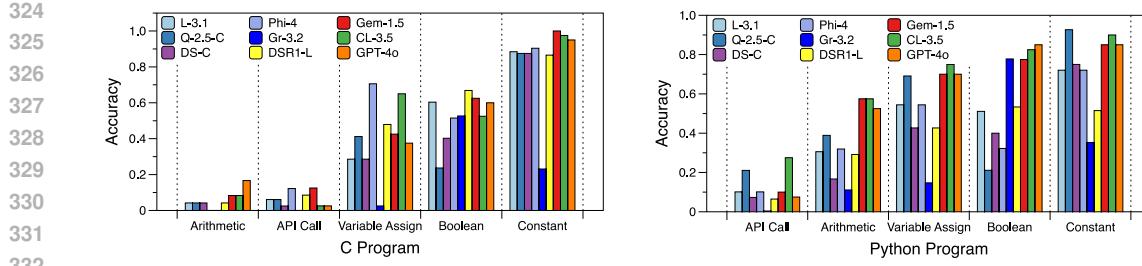


313 **FIGURE 3. RQ1:** Does increasing the size of code increase the difficulty of code reasoning?
 314
 315

316 3.2 RESULTS FOR RQ2: STATEMENT-LEVEL CODE SEMANTICS 317

318 As shown in RQ1, models struggle with value prediction even for single statements (e.g., block size
 319 1). In RQ2, we further analyze model performance by categorizing results based on statement types.
 320 Fig. 4 presents these results, with the left plot showing C and the right showing Python. Each plot
 321 groups model performance by statement type to highlight specific areas of strength and weakness.
 322

323 We observe that arithmetic and API/calls are the most statement types, even for the best reasoning
 324 models like GPT4.0-mini and Claude 3. We sampled frequently used third-party libraries,
 325 like `os`, `sys`, `time` and `math` installed by `pip`, but the models do not have knowledge about their



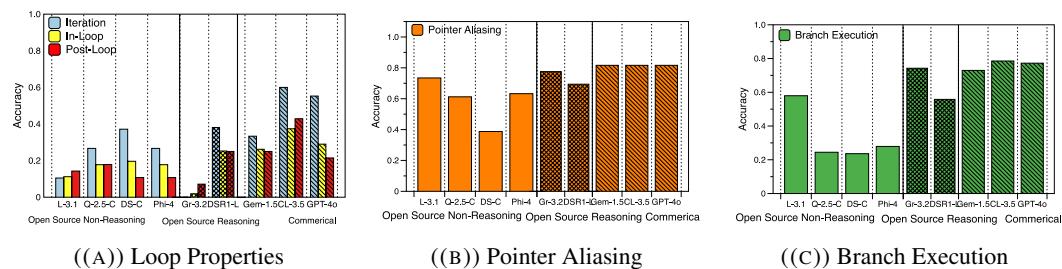
324
325
326
327
328
329
330
331
332
333
334 **FIGURE 4. RQ2:** What types of program statements can the model understand well?
335
336

337 execution semantics. We also experimented with adding the API definitions in the prompt, but it
338 didn't increase the performance significantly A.10. Models handle better for predicting Boolean
339 values such as the output of a comparison statement, and also statements where constant is assigned to
340 a variable. The models may understand the assignment operator "=" and have captured easy patterns
341 like "a=3 indicates a has value 3 after executing this statement". We did not observe significant
342 advantage of reasoning models over non-reasoning models for this task.

343 3.3 RESULTS FOR RQ3: CODE PROPERTIES WITHIN A FUNCTION 344

345 In Fig. 5(a), we report results on predicting the number of loop iterations, values in and after the loop,
346 given the input of the function. We observe that models feel difficult to predict values after executing
347 the loop. Loop iterations are the easiest tasks among the three. Our intuition is that sometimes certain
348 patterns in the code text are linked to the loop iterations. For example, Python code `for i in`
349 `range(100) : :` implies that loop iteration is 100. Somehow, some models know these patterns and
350 constants are linked to the loop iterations. We inspected the predicted loop values and did not find a
351 trend that the models just use any constant numbers in the code text as their answers.

352 In Fig. 5(b) and Fig. 5(c), we show that given an input, predicting pointer aliasing at a program
353 location and whether a branch can be taken is easier than loop properties. Here, the models only need
354 to predict "yes"/"no". The models predict pointer aliasing better than branch execution. We believe
355 that the models are able to connect code patterns such as "p=q" to the aliasing definition provided in
356 our prompt "when two pointers store the same memory addresses, they are aliasing". Notably, some
357 open-source models perform below 50% on these binary classification tasks—worse than random
358 guessing.



359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377 **FIGURE 5. RQ3:** Can models reason about different program properties?

378 3.4 RESULTS FOR RQ4: DIFFERENT PROMPTING TECHNIQUES

379 In Fig. 6, we show results of different prompting techniques on statement prediction and loop property
380 predictions (relatively difficult tasks in our list). Our results show that in both cases, models benefited
381 from more shots in the prompt. When we prompt models and provide examples more relevant to
382 the query (RAG style); that is, for statement prediction, we provide shots with the same type of
383 statement, and for loops, we provide shots of different loops in the same function, models improved
384 their performance. However, applying a simple COT by "asking models to think step by step" at the

beginning of the prompt did not help much for statement prediction, but helped for loop property prediction for some models. Our intuition is that compared to statement prediction, loop reasoning, e.g., predicting values after a loop, may be more complex and can benefit from multi-step reasoning.

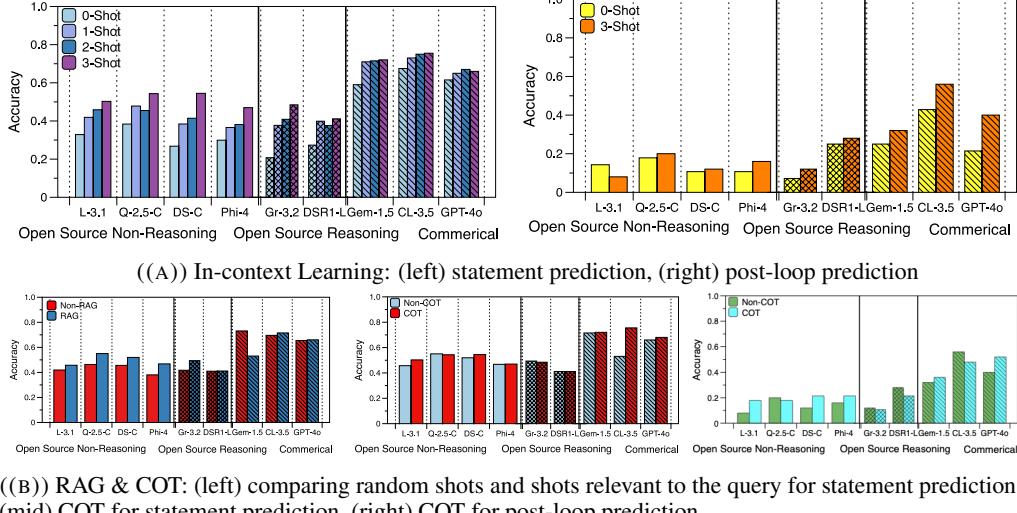


FIGURE 6. **RQ4:** Can different prompting strategies help?

3.5 RESULTS FOR RQ5: APPROXIMATION OF CODE SEMANTICS

In Fig. 7, we observed that the models reported better performance to predict an approximation of code semantics, for both statement (Fig. 7(b)) and loop (Fig. 7(c)) predictions. See also Table 7 in Appendix A.9.3 for comparing with random baselines. Interestingly, when we provide only the definition of "abstract" values (mapping from a range of concrete values to an abstract value) in the prompt, without giving an example showing an "abstract" output for a given input, the models cannot predict abstract values better than concrete values (Fig. 7(a)). Most models failed to apply definitions directly to the query examples; however, when we provide 3-shots of examples in the prompt, all the models can predict abstract values better than concrete ones.

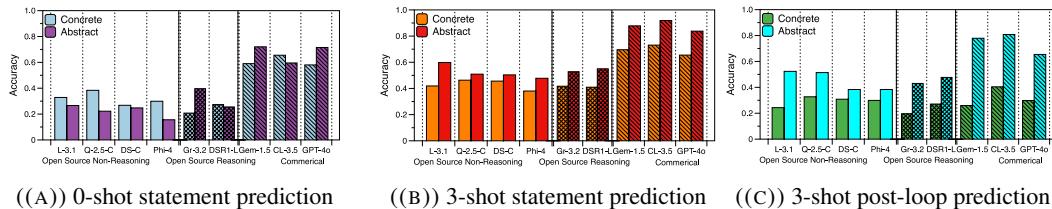


FIGURE 7. **RQ5:** Can models reason about an approximation of code semantics? (Python results)

3.6 RESULTS FOR RQ6: DIFFERENT PROGRAMMING LANGUAGES

Using input/output prediction as a case study, we investigated models code reasoning capabilities for different programming languages. Fig. 8(a) shows that Java and Python performed better than C when predicting output given input. Our intuition is that compared to the C code, Java and Python code are more high-level and closer to the natural languages than C; also probably models have seen less C code than Python/Java code in the training data. However, the models reported the lowest accuracy for input prediction of Python code (Fig. 8(b)).

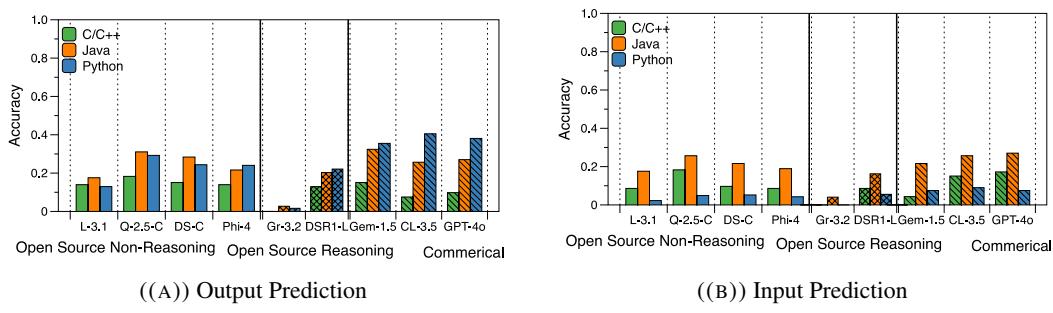


FIGURE 8. **RQ6:** Any particular programming languages are easier for the models?

4 RELATED WORK

Code Reasoning Benchmarks. CruxEval (Gu et al., 2024) assesses LLMs’ performance on synthetic Python programs using the task of input-output prediction for a function. CruxEval-X (Xu et al., 2024) extends this work to multilingual settings by translating synthetic Python programs in CruxEval to other languages using LLMs. REval (Chen et al., 2024) evaluated branch prediction tasks using ClassEval and HumanEval (Chen et al., 2021a). CodeMind (Liu et al., 2024) proposed output prediction and code synthesis tasks on existing code benchmarks (Chen et al., 2021b; Austin et al., 2021; Gu et al., 2024; Puri et al., 2021). They found that LLM reasoning capabilities deteriorate as program complexity increases (Liu et al., 2024; Zhang et al., 2024b). Our benchmark CodeSense is the first that used real-world Python, C and Java code to evaluate LLMs’ reasoning capabilities. While most code reasoning benchmarks reason about function level execution semantics, we proposed and made ground truth available for a spectrum of fine-grained reasoning tasks regarding program behaviors within a function.

Other Code Application Benchmarks. SWE-Bench (Jimenez et al., 2024) used the task of generating patches to resolve a given GitHub issues for real-world Python projects. SWE-PolyBench (Rashid et al., 2025) extends this work to other programming languages. KGym (Mathai et al., 2024) delivered a benchmark consisting of Linux kernel crash data and evaluated LLMs’ capabilities of resolving Linux kernel crashes. These benchmarks focus on task-specific performance rather than fine-grained code semantics understanding. There are also benchmarks for code generation (Li et al., 2024; Zhang et al., 2024a; Yu et al., 2024; Chen et al., 2025; Du et al., 2023) and code completion (Izadi et al., 2024; Ding et al., 2023b). However, most of these datasets—such as BigCodeBench (Zhuo et al., 2024) and CodeBenchGen (Xie et al., 2024) are restricted to a single language (primarily Python) and extracted from isolated competitive programming problems.

5 CONCLUSIONS

Code semantic reasoning is foundational for solving many software engineering applications. We propose a novel code benchmark and dataset, CodeSense, extracted from 744 Python, C and Java real-world projects, for evaluating LLMs capabilities of code semantic reasoning. We defined a spectrum of fine-grained code reasoning tasks include value predictions at various granularities of the code and program properties prediction for important code constructs like loops, pointers and branches. We developed a framework and tools that can build, test and trace software projects in different programming languages, and can automatically generate ground truth for fine-grained code semantic reasoning tasks. We conducted a comprehensive study on SOTA LLMs. We found that models in general lack the knowledge of code semantics and face challenges for reasoning about even single statements. In limited cases, models can establish the correlation of code semantics description in natural language with some simple frequent code patterns. We hope our dataset and framework can enable further code semantic benchmarks and provide ground truth for future LLMs post-training.

486 REFERENCES

487

488 Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection
489 and repair. In *NeurIPS*, 2021.

490 Anthropic. Introducing claude 3.5 sonnet, June 2024. URL <https://www.anthropic.com/news/claude-3-5-sonnet>. Accessed: 2025-05-15.

491 Abhishek Arya, Oliver Chang, Jonathan Metzman, Kostya Serebryany, and Dongge Liu. Oss-fuzz,
492 2023. URL <https://github.com/google/oss-fuzz>. Accessed: 2025-05-14.

493 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
494 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
495 models. *arXiv preprint arXiv:2108.07732*, 2021.

496 Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior of
497 a program with llm: How far are we?, 2024. URL <https://arxiv.org/abs/2403.16437>.

500 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
501 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
502 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
503 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
504 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
505 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
506 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
507 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
508 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
509 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
510 large language models trained on code, 2021a. URL <https://arxiv.org/abs/2107.03374>.

511 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
512 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
513 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021b.

514 Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dynamic benchmarking of reasoning capabilities in
515 code large language models under data contamination. *arXiv preprint arXiv:2503.04149*, 2025.

516 Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
517 Execution-aware pre-training for source code, 2023a. URL <https://arxiv.org/abs/2306.07487>.

518 Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Mu-
519 rali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang.
520 Crosscodeeval: A diverse and multilingual benchmark for cross-file code completion, 2023b. URL
521 <https://arxiv.org/abs/2310.11248>.

522 Yangruibo Ding, Jinjun Peng, Marcus J. Min, Gail Kaiser, Junfeng Yang, and Baishakhi Ray.
523 Semcoder: Training code language models with comprehensive semantics reasoning, 2024. URL
524 <https://arxiv.org/abs/2406.01006>.

525 Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
526 Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluating
527 llms on class-level code generation. *arXiv preprint arXiv:2308.01861*, 2023.

528 Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
529 software. In *Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
530 on Foundations of Software Engineering, ESEC/FSE '11*, page 416–419, New York, NY, USA,
531 2011. Association for Computing Machinery. ISBN 9781450304436. doi: 10.1145/2025113.
532 2025179. URL <https://doi.org/10.1145/2025113.2025179>.

533 Gordon Fraser and Andrea Arcuri. Sound empirical evidence in software testing. In *34th International
534 Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland*, pages
535 178–188. IEEE, 2012. ISBN 978-1-4673-1067-3.

540 Free Software Foundation. GDB: The GNU project debugger. <https://www.sourceforge.org/gdb/>. Accessed: May 15, 2025.

541

542

543 Google. Gemini models: Gemini 1.5 flash, 2025. URL <https://ai.google.dev/gemini-api/docs/models#gemini-1.5-flash>. Accessed: 2025-05-15.

544

545 Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang. Cruxeval: A benchmark for code reasoning, understanding and execution, 2024. URL <https://arxiv.org/abs/2401.03065>.

546

547

548 Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, Razvan Mihai Popescu, and Arie Van Deursen. Language models for code completion: A practical evaluation. In *Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, ICSE '24*, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3639138. URL <https://doi.org/10.1145/3597503.3639138>.

549

550

551

552

553

554 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code, 2024. URL <https://arxiv.org/abs/2403.07974>.

555

556

557

558 Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL <https://arxiv.org/abs/2310.06770>.

559

560

561

562 Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and Florian Bruhin. pytest x.y. <https://github.com/pytest-dev/pytest>, 2004. Version x.y. Contributors include Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, Florian Bruhin, and others.

563

564

565

566 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.

567

568

569

570 Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code generation benchmark aligned with real-world code repositories, 2024. URL <https://arxiv.org/abs/2404.00599>.

571

572

573

574 Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Codemind: A framework to challenge large language models for code reasoning, 2024. URL <https://arxiv.org/abs/2402.09664>.

575

576

577 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation, 2023. URL <https://arxiv.org/abs/2305.01210>.

578

579

580

581 Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivančić, Junfeng Yang, and Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on linux kernel crash resolution. *Advances in Neural Information Processing Systems*, 37:78053–78078, 2024.

582

583

584

585 OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence, July 2024. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>. Accessed: 2025-05-15.

586

587

588 Oracle Corporation. *JDB - The Java Debugger*, 2025. URL <https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html>. Part of the Java SE Development Kit.

589

590

591 Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. *arXiv preprint arXiv:2105.12655*, 2021.

592

593

594 Ram Rachum, Alex Hall, Iori Yanokura, et al. Pysnooper: Never use print for debugging again, jun
595 2019. URL <https://github.com/cool-RR/PySnooper>.

596

597 Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buchholz, Tim Esler, Simon
598 Valentin, Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, Anoop
599 Deoras, Giovanni Zappella, and Laurent Callot. Swe-polybench: A multi-language benchmark for
600 repository level evaluation of coding agents, 2025. URL <https://arxiv.org/abs/2504.08703>.

601

602 Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida Alam, Hengbo
603 Tong, Swarna Das, Earl T. Barr, and Wei Le. To err is machine: Vulnerability detection challenges
604 llm reasoning, 2025. URL <https://arxiv.org/abs/2403.17218>.

605

606 Danning Xie, Mingwei Zheng, Xuwei Liu, Jiannan Wang, Chengpeng Wang, Lin Tan, and Xiangyu
607 Zhang. Core: Benchmarking llms code reasoning capabilities through static analysis tasks, 2025.
608 URL <https://arxiv.org/abs/2507.05269>.

609

610 Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, and Carolyn Rose. Codebenchgen:
611 Creating scalable execution-based code generation benchmarks, 2024. URL <https://arxiv.org/abs/2404.00566>.

612

613 Ruiyang Xu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Ben He, Shing-Chi Cheung, and
614 Le Sun. Cruxeval-x: A benchmark for multilingual code reasoning, understanding and execution.
615 *arXiv preprint arXiv:2408.13001*, 2024.

616

617 Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
618 Zhao, Li Zhu, Hari Sundaram, and Shuiguang Deng. Codescope: An execution-based multilingual
619 multitask multidimensional benchmark for evaluating llms on code understanding and generation,
2024. URL <https://arxiv.org/abs/2311.08588>.

620

621 Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
622 Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
623 trained models. In *Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE '24*, New York, NY, USA, 2024. Association for Computing Machinery.
624 ISBN 9798400702174. doi: 10.1145/3597503.3623316. URL <https://doi.org/10.1145/3597503.3623316>.

625

626 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
627 with tool-integrated agent systems for real-world repo-level coding challenges, 2024a. URL
628 <https://arxiv.org/abs/2401.07339>.

629

630 Yakun Zhang, Wenjie Zhang, Dezhi Ran, Qihao Zhu, Chengfeng Dou, Dan Hao, Tao Xie, and
631 Lu Zhang. Learning-based widget matching for migrating gui test cases. In *Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ICSE '24*. ACM, February
632 2024b. doi: 10.1145/3597503.3623322. URL <http://dx.doi.org/10.1145/3597503.3623322>.

633

634 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
635 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
636 Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
637 Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
638 David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
639 Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
640 and complex instructions, 2024. URL <https://arxiv.org/abs/2406.15877>.

641

642

643

644

645

646

647

648 A APPENDIX 649

650 A.1 MODEL NAME MAPPINGS FOR FIGURE LABELS 651

652 TABLE 3. Model Names and Their IDs in the figures
653

654 Full Model Name	655 Model ID in the figures
655 openai/gpt-4.0-mini	GPT-4o (Reasoning)
656 anthropic.claude-3.5-sonnet-20241022-v2:0	CL-3.5 (Reasoning)
657 gemini-1.5-flash-002	Gem-1.5 (Reasoning)
658 meta-llama/Llama-3.1-8B-Instruct	L-3.1
659 Qwen/Qwen2.5-14B-Instruct-1M	Q-2.5
660 Qwen/Qwen2.5-Coder-7B-Instruct	Qwen2.5-C
661 deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct	DS-C
662 microsoft/Phi-4-mini-instruct	Phi-4
663 microsoft/Phi-3.5-mini-instruct	Phi-3.5
664 ibm-granite/granite-3.2-8b-instruct	Gr-3.2 (Reasoning)
665 deepseek-ai/DeepSeek-R1-Distill-Qwen-7B	DSR1-Q-7B (Reasoning)
666 deepseek-ai/DeepSeek-R1-Distill-Llama-8B	DSR1-L (Reasoning)
667 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B	DSR1-Q-14B (Reasoning)
668 ibm-granite/granite-3.2-8b-instruct-preview	Granite-3.2 Pr (Reasoning)

669 A.2 COMPUTATION RESOURCES AND INFERENCE TOOLS 670

671 All our experiments were conducted using the following computational resources:

672

- 673 • **GPU:** NVIDIA RTX A6000 with 49GB VRAM
- 674 • **Memory Utilization:** 0.9GB GPU memory during inference runs
- 675 • **Software Stack:** vLLM (Kwon et al., 2023) for optimised transformer inference
- 676 • **Operations:** Inference-only experiments (no fine-tuning performed)

677 The inference parameters were controlled through the following configuration 4:

678 TABLE 4. Inference Configuration Parameters
679

680 Parameter	681 Value	682 Description
683 temperature	0.8	Controls randomness: Lower = more deterministic
684 top_p	0.95	Nucleus sampling: Only top 95% probability mass
685 max_tokens	4096 (default) 16384 (For reasoning models)	Base context window size Extended context for specific models
686 tp_size	1	No tensor parallelism
687 dtype	float16	Half-precision floating point
688 stop	[\n>>, \n\$, ...]	Generation stopping tokens

691 A.3 LIMITATIONS AND FUTURE WORK 692

693 In this work, we consider exact matching between the model’s response and ground truth as correct.
694 In future work, we would like to explore other metrics such as pass@k. However, we did explore
695 models’ performance of computing abstract value prediction/approximation of code semantics.

696 For some RQs, we only evaluated the models on subset of tasks. For example, when comparing
697 different programming languages in RQ6, we used input/output predictions. In the future, we will
698 extend such evaluations to more tasks. When computing pointer alias in RQ3, we used C languages.
699 Future work can also include object aliasing detection for Python and Java.

700 Additionally, we would like to expand our framework to support project tracing and task-specific
701 benchmark datasets beyond the scope of three languages. This includes adding other languages with

702 diverse domain's like (e.g., functional, system language) to enable a more comprehensive evaluation
703 of LLMs.

704
705 In future, it will be also interesting to explore more advanced prompting techniques and even fine-tune
706 the models to further evaluate the models.

707
708 **A.4 TRACE COLLECTION**

709
710 In this section, we will discuss the detailed process to generate the C, Python and Java real-world
711 traces.

712
713 **A.4.1 REAL WORLD PROJECT COLLECTION**

714 1. **C Project Collection:** For our research, we wanted to generate trace dataset on real-world
715 projects. We have selected real-world C projects that were curated in the OSS-FUZZ
716 repository. The primary reason behind selecting these projects is that they represent different
717 domains to ensure diversity in software types. This choice also aligns with our research goal
718 to generate a benchmark real-world C trace dataset.

719 2. **Python Project Collection:** To collect real-world Python projects, we adopted two ap-
720 proaches. 1) We cloned all 1489 repositories from GitHub that appear in the PyPIBugs
721 dataset, which was released in 2021 Allamanis et al. (2021). 2) To avoid missing popular
722 projects after 2021, we use GitHub API to search for repositories that are marked as mainly
723 written in Python and get the results according to the descending order of the number of
724 stars. To maximise the probability that we can execute them easily with the pytest module,
725 we only consider projects that seemingly have a testing folder at the top or second level. For
726 better compatibility and the reflection of the recent trend of programming styles, we further
727 filtered out projects that have not been updated in the last four years. Finally, we got 544
728 projects.

729 3. **Java Dataset Collection:** For Java, we aimed to gather a diverse set of real-world projects
730 to have a comprehensive trace analysis, which aligns with our trace dataset generation
731 objective. We have used EvoSuite Fraser and Arcuri (2011) for test suite generation, and
732 the SF110 dataset has been used as it is recommended by EvoSuite. This choice ensures
733 compatibility and a high testing coverage rate.

734
735 **A.4.2 HIGH-LEVEL STEPS OVERVIEW OF GENERATING TRACES**

736 **C Trace Collection**

737 1. **Building Projects:** Building projects before fuzzing is necessary to ensure that different
738 project dependencies are correctly installed and configured, avoiding runtime errors during
739 the fuzzing process. This helps to create a consistent and effective environment for the next
740 fuzzing process.

741 2. **Fuzzing:** In the fuzzing phase, we executed the fuzzer on the already-built projects to
742 generate the input data corpora. We configure the fuzzing tools with appropriate settings and
743 parameters for each project. This includes specifying input seed files, maximum time for
744 the fuzzer to run and kill delay to maximise code coverage. Throughout the fuzzing process,
745 detailed logs are maintained to track the execution progress and other relevant information.
746 These logs can aid in debugging, result interpretation, and fuzzing outcomes.

747 3. **Tracing:** Tracing is the most crucial step to have the execution information of real-world
748 projects. We use a tracing framework with the GNU debugger to log the execution of the
749 projects. With the help of the framework, we log function calls, variable values, and other
750 states during the execution of the projects. We start the tracing by setting an entry point for
751 the program, and during the execution of the tracing, we record the different states of the
752 program at various points by logging them into an XML-formatted file for further analysis.
753 Additionally, we have added a tracer timeout to ensure the maximum running time of the
754 tracer, as well as an extra kill delay to ensure the safe exit of the tracer. This ensures the
755 reliability and robustness of the tracing process if any unexpected events occur.

756 **Python Trace Collection**
757

758 1. **Execution:** We execute the collected projects to get traces in a best-effort approach: 1) We
759 scan the common dependency files to install the dependencies into an independent Python
760 environment for each project. 2) We use pytest to execute the test cases in the projects and
761 collect the outputs. 3) We analyze the outputs to identify missing dependency errors and try
762 to install the missing dependencies several times.

763 2. **Tracing:** We use the PySnooper tool to trace the projects but made the following mod-
764 ifications to it: 1) We only keep traces corresponding to source code files in the project
765 source directories to exclude traces happened in Python built-in functions or third-party
766 dependencies. 2) We expand the representation of user-defined class objects by showing the
767 name and value pairs of their first-level attributes. 3) We save the types of variables in traces
768 instead of just value representations to provide more information for the execution-aware
769 source code modeling.

770 **Java Trace Collection**
771

772 1. **Tracing:** To generate the tracing framework for Java, we integrated Java Debugger to record
773 the execution details of the projects. We logged method invocation, variable values, and
774 different program states during the execution cycle. For Java, we stored the raw trace
775 in JSON format, which was stored in directories specific to each class within the project
776 directories. This helps manage large amounts of data, consequently making it easier to
777 retrieve, analyze and clean it up for further tasks.

778
779 TABLE 5. Trace Collection
780

	Real-world projects	Testing Tools	Tracing Tools
Python	PyPIbugs+Github (544)	Pytest	Pysnooper
C	OSS-Fuzz (100)	Fuzzing	GDB
Java	SF-110 (100)	Evosuite	JDB

781 It should be noted that although our repository are in the training dataset. However, the models are
782 asked to predict dynamic information, which we generated by running test inputs over programs,
783 using tools like fuzzers. Those values are not in the repos and have never been seen by the models. In
784 fact, this is the advantage of our benchmark. The future benchmark designers can use our testing and
785 tracing tools to run other inputs to freshly generate more data that are new to the models.
786

787
788 A.5 LANGUAGE SELECTION RATIONALE AND EXTENSIBILITY

789 The three programming languages in our benchmark are important and representative for program-
790 ming language features and real-world applications: C is a low level programming language and
791 useful for building systems, Java has object-oriented programming features, are widely used for
792 building enterprise and web applications, Python is important for data science and AI applications.
793 Our benchmark is extensible, third-parties (as well as ourselves in future) can add more languages.
794 Our scripts, prompts and methodologies can be adapted for new programming languages to (1) select
795 and download programs of a programming language from GitHub, (2) fuzz for generating test inputs,
796 (3) trace and curate ground truth data (4) provide input and parse output when interacting with models.
797 Instead of GDB (for C), Pysnooper (for Python) and Java Debugger Oracle Corporation (for Java),
798 we will need to plug in debugging tools for new programming languages.

799 You may ask “we have compilers and code execution tools, why do we need models to predict
800 dynamic information”— Predicting dynamic values is not only useful for executing programs, but
801 required for many other downstream tasks. For example, in Fig. 1, to generate test input that can
802 exercise a true branch, the models need to know how each operator in statements updates the values.
803 The key difference is that: when using code execution tools, we give one input and ask for the output,
804 but in other downstream tasks, we require models to first understand fine-grained semantics and then

810 find inputs that can satisfy certain constraints. Even for compiling and executing programs, we may
811 benefit from LLMs prediction, as compilation and execution can be time-consuming and hard to
812 be configured, especially for legacy code. This ability of LLMs is particularly important when the
813 user cannot run the code snippet, e.g., missing dependencies or unavailable resources. Predicting
814 input/output values as code reasoning tasks have been established by prior research (Gu et al., 2024),
815 (Chen et al., 2021b), (Yan et al., 2024). Our work extended prior research by introducing real-world
816 projects and fine-grained tasks supported only by our tracing framework.

817

818 A.6 DETAILED DESCRIPTION OF TASKS

819

820 In this section, we will provide a detailed description of our tasks. A.6.1 provides a comprehensive
821 description of the statement-based evaluation we performed on LLMs. We sampled five types of
822 statements, i.e, Assignment, Arithmetic, Constant, Boolean, and Function Call, and prompted the
823 models about the value after execution of each type of statement given the variable states before
824 executing that statement. For the block prediction task A.6.2, we sampled statements from the start
825 of the code snippet, given the input of the code, we prompted the model to predict the output at the
826 end of the 1st statement, the 2nd statement, and the 3rd statement. For Branch prediction A.6.3, we
827 prompted the model whether a specific branch will be taken or not of a code snippet, given the input
828 of that code snippet.

829

830 In the case of A.6.4, we sampled loop statements from the code snippets. For each loop, we first
831 collected the number of iterations of that loop as ground truth, and queried the model about how
832 many times the loop would be iterated. We also collected and prompted the model regarding
833 the variable state inside the loop body after the n-th interaction. We have named this "In-Loop"
834 prediction. Additionally, we sampled variables after the execution of the whole loop and queried the
835 model regarding the variable value after the execution of the loop body ("Post-Loop" prediction).
836 For input/output prediction A.6.5, we used the approach similar to (Gu et al., 2024). For output
837 prediction, we give the entire code snippet and the input of the code snippet, and vice versa for input
838 prediction.

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A.6.1 STATEMENT PREDICTION TASK

```
865
866     def xldate_from_date_tuple(date_tuple, datemode):
867         year, month, day = date_tuple
868         data_list = list(date_tuple)
869         if datemode not in (0, 1):
870             raise XLDateBadDatemode(datemode)
871
872         if year == 0 and month == 0 and day == 0:
873             return 0.00
874         c = 100
875         if not (1900 <= year <= 9999):
876             raise XLDateBadTuple("Invalid_year:%r" % ((year, month, day),))
877         if not (1 <= month <= 12):
878             raise XLDateBadTuple("Invalid_month:%r" % ((year, month, day),
879                                 )))
880         if day < 1 \
881             or (day > _days_in_month[month] and not (day == 29 and month ==
882                 2 and _leap(year))):
883             raise XLDateBadTuple("Invalid_day:%r" % ((year, month, day),))
884
885         Yp = year + 4716
886         M = month
887         if M <= 2:
888             Yp = Yp - 1
889             Mp = M + 9
890         else:
891             Mp = M - 3
892         jdn = ifd(1461 * Yp, 4) + ifd(979 * Mp + 16, 32) + \
893             day - 1364 - ifd(ifd(Yp + 184, 100) * 3, 4)
894         xldays = jdn - _JDN_delta[datemode]
895         if xldays <= 0:
896             raise XLDateBadTuple("Invalid(year,month,day):%r" % ((year,
897                 month, day),))
898         if xldays < 61 and datemode == 0:
899             raise XLDateAmbiguous("Before1900-03-01:%r" % ((year, month,
900                 day),))
901
902     return float(xldays)
903
904 xldate_from_date_tuple(date_tuple=(1907, 7, 3), datemode=0)
```

905 Assignment Prediction

- 906 • What will be the value of the final output of the statement `year, month, day =`
907 `date_tuple` given `{'date_tuple': (1907, 7, 3)}` after executing
908 the statement?

909 Arithmetic Prediction

- 910 • What will be the value of the final output of the statement `Yp = year + 4716`
911 given `{'year': 1907}` after executing the statement?

912 Constant Prediction

- 913 • What will be the value of the final output of the statement `c = 0` given `{'con-`
914 `stant': 0}` after executing the statement?

915 Boolean Prediction

- 916 • Will the true branch of the statement `if datemode not in (0, 1):` be
917 executed given `{'datemode': 0}`?

918 Function Call Prediction

- 919 • What will be the value of the final output of the statement `data_list =`
920 `list(date_tuple)` given `{'date_tuple': (1907, 7, 3)}` after ex-
921 ecuting the statement??

922
923
924

918 A.6.2 BLOCK PREDICTION TASK

919
920 **def** exchange(a, i, j):
921 temp = a[i]
922 a[i] = a[j]
923 a[j] = temp
924 exchange(a=[0, 100, 200, 0, 0, 0, 0, 0, 0, 0], i=2, j=1)

925 **1-Block Prediction**

926 • What will be the value of the final output of the statement `temp = a[i]` after
927 executing the statement given the function input '`a': [0, 100, 200, 0,
928 0, 0, 0, 0, 0], 'i': 2, 'j': 1?`'

929 **2-Block Prediction**

930 • What will be the value of the final output of the statement `a[i] = a[j]` after
931 executing the statement given the function input '`a': [0, 100, 200, 0,
932 0, 0, 0, 0, 0], 'i': 2, 'j': 1?`'

933 **3-Block Prediction**

934 • What will be the value of the final output of the statement `a[j] = temp` after
935 executing the statement given the function input '`a': [0, 100, 200, 0,
936 0, 0, 0, 0, 0], 'i': 2, 'j': 1?`'

937 A.6.3 BRANCH TASK

938 **1.**
939 **def** xldate_from_date_tuple(date_tuple, datemode):
940 **2.**
941 **3.** year, month, day = date_tuple
942 **4.**
943 **5.** **if** datemode **not in** (0, 1):
944 **raise** XLDateBadDatemode(datemode)
945 **7.**
946 **8.** **if** year == 0 **and** month == 0 **and** day == 0:
947 **return** 0.00
948 **10.**
949 **11.** **if** not (1900 <= year <= 9999):
950 **raise** XLDateBadTuple("Invalid_year:%r" % ((year, month, day
951),))
952 **13.** **if** not (1 <= month <= 12):
953 **raise** XLDateBadTuple("Invalid_month:%r" % ((year, month,
954 day),))
955 **15.** **if** day < 1 ****
956 **or** (day > _days_in_month[month] **and** not (day == 29 **and** month ==
957 2 **and** _leap(year))):
958 **raise** XLDateBadTuple("Invalid_day:%r" % ((year, month, day
959),))
960 **18.**
961 **19.** Yp = year + 4716
962 **20.** M = month
963 **21.** **if** M <= 2:
964 Yp = Yp - 1
965 Mp = M + 9
966 **24.** **else:**
967 Mp = M - 3
968 **26.** jdn = ifd(1461 * Yp, 4) + ifd(979 * Mp + 16, 32) + \
969 **27.** day - 1364 - ifd(ifd(Yp + 184, 100) * 3, 4)
970 **28.** xldays = jdn - _JDN_delta[datemode]
971 **29.** **if** xldays <= 0:
972 **raise** XLDateBadTuple("Invalid(year,month,day):%r" % ((year,
973 month, day),))
974 **31.** **if** xldays < 61 **and** datemode == 0:
975 **raise** XLDateAmbiguous("Before1900-03-01:%r" % ((year, month,
976 day),))
977 **33.** **return** **float**(xldays)
978 **34.**
979 **35.** xldate_from_date_tuple((1907, 7, 3), 0)

968 **Brach Prediction**

969 • Is line 12, `raise XLDateBadTuple("Invalid year: %r" %`
970 `((year, month, day),))` executed when `xldate_from_date_`
971 `tuple((1907, 7, 3), 0)` is called?

972 A.6.4 LOOP TASK

973

```
974
975 1. def make_version_tuple(vstr=None):
976 2.   if vstr is None:
977 3.     vstr = __version__
978 4.   if vstr[0] == "v":
979 5.     vstr = vstr[1:]
980 6.   components = []
981 7.   for component in vstr.split["+"] [0].split("."):
982 8.     try:
983 9.       components.append(int(component))
984 10.    except ValueError:
985 11.      break
986 12.    components = tuple(components)
987 13.  return components
988 14.
989 15. make_version_tuple('v0.1.1')
```

988

989 **Iteration Prediction**

990

- How many times will the loop on line 7 execute when `make_version_tuple('v0.1.1')` is called?

992

993 **In-Loop Prediction**

994

- What is the value of `components` in line 9 after 2nd iteration when `make_version_tuple('v0.1.1')` is called?

995

996 **Post-Loop Prediction**

997

- What is the value of `components` in line 12 when `make_version_tuple('v0.1.1')` is called?

998

999

1000

1001

1002

1003 A.6.5 INPUT-OUTPUT TASK

1004

```
1005 def cast_tuple(val, length = None):
1006   if isinstance(val, list):
1007     val = tuple(val)
1008
1009     output = val if isinstance(val, tuple) else ((val,) * default(
1010       length, 1))
1011
1012   if exists(length):
1013     assert len(output) == length
1014
1015   return output
```

1016

1017

1018

1019 **Output Prediction**

1020

- What will be the output of the code given input `{'val':1, 'length':4}`?

1021

1022 **Input Prediction**

1023

- What will be the input of the code given output `(1, 1, 1, 1)`?

1024

1025

1026 A.7 CONCRETE TO ABSTRACT MAPPING

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1026 we carefully aligned the value ranges for each abstract category with the overall value distribution
 1027 observed in our benchmark. We evaluated the abstract mapping results against a random baseline,
 1028 where mapping rules were selected randomly from all available mapping categories.
 1029
 1030
 1031
 1032

1033 TABLE 6. Concrete Value to Quantize Value Mapping
 1034

Type	Condition	Category
Integer	$0 < v \leq 10$	Positive Regular
	$v > 10$	Positive Large
	$v == 0$	Zero
	$-10 \leq v < 0$	Negative Regular
	$v < -10$	Negative Large
Float	$1.0 < v \leq 10.0$	Positive Regular
	$0.0 < v \leq 1.0$	Positive Small
	$10.0 < v$	Positive Large
	$v == 0.0$	Zero
	$-1.0 \leq v < 0.0$	Negative Small
	$-10.0 \leq v < -1.0$	Negative Regular
	$v < -10.0$	Negative Large
String	<code>len(s) == 0</code>	Empty String
	<code>len(s) > 0 and s.isalpha()</code>	Alphabetic String
	<code>len(s) > 0 and s.isdigit()</code>	Numeric String
	<code>len(s) > 0 and not (s.isalpha() or s.isdigit())</code>	Mixed String
List	<code>len(lst) == 0</code>	Empty List
	<code>len(lst) > 0</code>	Non-Empty List
Tuple	<code>len(tup) == 0</code>	Empty Tuple
	<code>len(tup) > 0</code>	Non-Empty Tuple
Dict	<code>len(dict) == 0</code>	Empty Dictionary
	<code>len(dict) > 0</code>	Non-Empty Dictionary
Set	<code>len(set) == 0</code>	Empty Set
	<code>len(set) > 0</code>	Non-Empty Set
Boolean	<code>True</code>	True
	<code>False</code>	False
NoneType	<code>None</code>	None

1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075 A.8 PROMPTING TECHNIQUES
 1076
 1077
 1078
 1079 The following is a subset of prompts we used to evaluate the models. The rest prompts are shown in
 our data package.

```
1080 A.8.1 RQ1 PROMPT
1081
1082
1083
```

Generalized Statement Execution Prediction Prompt

```
1085 Here's some {lang} code. Each example highlights a single
1086 statement of (assignment, branch, or function calls) and
1087 shows you what the variable values look like just before it
1088 runs.
1089 Your goal? Figure out what the result will be right after
1090 that statement runs.
1091 Here are {shot} examples to walk you through it: -----
1092 -----
1093
1094
1095
1096
```

Assignment Prediction Prompt

```
1097 You're given some {lang} code and one specific assignment
1098 line.
1099 Here are the local variables just before that line runs. Can
1100 you figure out what the value of the assignment will be af-
1101 terwards?
1102 Code Snippet: ``{lang} {code} ``
1103 Statement: {statement}
1104 Before Values: {variables}
1105 Answer using <ans></ans> tags, Do not include any extra in-
1106 formation.
1107
1108
1109
1110
1111
```

Boolean Prediction Prompt

```
1112 Here's a branch(if)/Boolean statement in {lang}, and the val-
1113 ues of the variables it uses.
1114 Will the branch run? Answer 'Yes' or 'No'.
1115 Code: ``{lang} {code} ``
1116 Branch Statement: {statement}
1117 Condition Variables: {variables}
1118 Answer using <ans></ans> tags, Do not include any extra in-
1119 formation.
1120
1121
1122
1123
1124
1125
```

Function Call Prompt

```
1126 Here's a function or API call in {lang} with some parameters.
1127 Based on the inputs, what will it return?
1128 Code: ``{lang} {code} ``
1129 Call: {statement}
1130 Parameter Values: {variables}
1131 Answer using <ans></ans> tags, Do not include any extra in-
1132 formation.
1133
```

```
1134 A.8.2 RQ2 PROMPTS
1135
1136
```

```
1137     Generalized Block Execution Prediction Prompt
```

```
1138
1139     Take a look at the {lang} code blocks. One statement is
1140     highlighted in each.
1141     You'll also see the input values going into the function.
1142     Based on those, try to figure out what the highlighted line
1143     will do.
1144     Here are {shot} examples that show how it works: -----
1145
1146
1147
```

```
1148     Block Prediction Prompt
1149
```

```
1150
1151     Here's a full function in {lang} and a line of code inside it
1152     we care about.
1153     Given the function's inputs, what value will that line pro-
1154     duce?
1155     Code: ``{lang} {code} ``
1156     Statement: {statement}
1157     Inputs: {inputs}
1158     Answer using <ans></ans> tags
1159
1160
```

```
1161     Generalized input_output prompt
```

```
1162
1163     Here's some {lang} code. You'll either get the inputs or the
1164     outputs, but not both.
1165     Your task is to fill in the missing part--predict the out-
1166     put if you know the input, or figure out what input must've
1167     produced the output.
1168     Check out these {shot} examples for reference: -----
1169
1170
1171
```

```
1172     Output Prompt
1173
```

```
1174
1175     Here's some {lang} code and the inputs passed into it.
1176     What output do you expect from it?
1177     Code: ``{lang} {code} ``
1178     Inputs: {input}
1179     Answer using <ans></ans> tags
1180
1181
```

```
1182     Input Prompt
1183
```

```
1184
1185     You know the output of a piece of {lang} code. Can you fig-
1186     ure out what the input must've been?
1187     Code: ``{lang} {code} ``
1188     Output: {output}
1189     Answer using <ans></ans> tags
1190
```

1188 A.8.3 RQ3 PROMPTS
1189

1190 Generalized Loop Prediction Prompt
1191

1192 Let's explore some loops in {lang}. You'll get the full loop
1193 structure along with the input values used in the code.
1194 I'll ask you questions about how the loop body or post-loop
1195 values behave with those inputs.
1196 Here's how it works with {shot} example(s): -----
1197 -----

1198

1199 Iteration Prediction
1200

1201 Take a look at this lang loop with some given inputs.
1202 Question:{question}
1203 Code:
1204 {lang}
1205 {code}
1206 Answer using <ans></ans> tags.
1207

1208 In-Loop Prediction
1209

1210 This is a {lang} loop and what the input to the function
1211 looks like.
1212 I'll ask you something about what happens inside the loop
body.
1213 Code:
1214 {lang}
1215 {code}
1216 Question:
1217 {question}
1218 Answer using <ans></ans> tags
1219

1220

1221 Post-Loop Prediction
1222

1223 This is a {lang} loop and what the input to the function
1224 looks like.
1225 I'll ask you something about what happens after the loop
body.
1226 Code:
1227 {lang}
1228 {code}
1229 Question:
1230 {question}
1231 Answer using <ans></ans> tags
1232

1233

1234 Branch Prediction Prompt
1235

1236 Here's a branch (if) block statement in {lang}.
1237 Will the branch run given the function call? Answer 'Yes' or
'No'.
1238 Code: ``{lang} {code} ``
1239 Question: {question}
1240 Answer using <ans></ans> tags, Do not include any extra in-
1241 formation.

```
1242
1243 Alias Prediction
1244 Here's some {lang} code with two pointer variables:
1245 - Pointer A: '{pointer_1}'
1246 - Pointer B: '{pointer_2}'
1247 Do these pointers reference the same memory address? Answer
1248 "Yes" or "No".
1249 Code: ``{lang} {code}``
1250 Function Input: {input}
1251 Question: Do '{pointer_1}' and '{pointer_2}' in (line
1252 {line_1}) point to the same memory location?
1253 Put your answer in <ans></ans> tags.
1254
1255
```

A.8.4 RQ4 PROMPTS

```
1258 Assignment CoT
1259
1260 Let's figure out the result of the assignment: '{statement}'
1261 You've got the current variable values: {variables}
1262 Think through the right-hand side, then update the left-hand
1263 side with the result.
1264
1265
```

Boolean CoT

```
1266 Boolean CoT
1267
1268 Here's the condition: '{statement}'
1269 These are the variable values: {variables}
1270 Evaluate the condition. Is it true or false? That tells you
1271 if the branch runs.
1272
1273
```

Function Call CoT

```
1274 Function Call CoT
1275
1276 This is the function call: '{statement}'
1277 With these parameter values: {variables}
1278 Figure out what the function does and predict the return
1279 value.
1280
1281
```

Block Prediction CoT

```
1282 Block Prediction CoT
1283
1284 First, trace the execution flow till the highlighted state-
1285 ment {statement} and {input} of the given input,
1286 Then identify the variables associated with the statement
1287 Next, use the trace execution flow to evaluate the statement
1288 What value does the statement produce?
1289
1290
```

Output Prediction CoT

```
1291 Output Prediction CoT
1292
1293 We're given inputs: {input}
1294 Walk through the code step by step.
1295 Watch how the values change until we get the final output.
1296 Check that it matches what the function should return.
1297
1298
```

1296
1297

Input Prediction CoT

1298 We know the output: {output}
1299 Work backwards--what input could've led to that?
1300 Figure out what had to happen in the code, and reverse it to
1301 get the input.

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

Iteration Prediction CoT

1313 Start the loop using the initial values.
1314 Check the condition, run the body, update, and repeat.
1315 Keep going until the loop ends.
1316
1317

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

Loop in-Value CoT

1328 Look at the variables at the start of this iteration.
1329 Go through each line in the loop body.
1330 What happens to the variables by the end?
1331
1332
1333

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

Loop Post-Value CoT

1344 See why the loop stopped (condition failed).
1345 Check the final values of all changed variables.
1346 What did the last iteration do before ending?
1347 What would be the variable value after loop termination?
1348
1349

Overall Statement Prediction Prompt (1-shot) with CoT steps

1350
1351
1352 Here's some Python code. Each example highlights a single
1353 statement of (assignment, branch, or function calls) and
1354 shows you what the variable values look like just before it
1355 runs. Your goal? Figure out what the result will be right
1356 after that statement runs.
1357
1358 Here are 1 example to walk you through it:
1359
1360 ----- EXAMPLE 1: -----
1361 Here's a function or API call in Python with some parameters.
1362 Based on the inputs/parameter values, what will it return?
1363
Code:
1364 Python
1365 {in-context Code}
1366
Function Call: {statement with function call}
Parameter Values: {values}
1367
1368 Let's think step by step:
1369 This is the function call: {statement}
1370 With these parameter values: {variables}
1371 Figure out what the function does and predict the return
1372 value.
1373
Therefore the final answer is:<ans> {Ground Truth} </ans>
1374
1375
1376 Now, please solve the following new problem.
1377
1378 You're given some Python code and one specific assignment
1379 line. Here are the local variables just before that line
1380 runs. Can you figure out what the value of the assignment
1381 will be afterwards?
1382
Code:
1383 Python
1384 {Query Code}
1385
Statement: {selected statement}
1386
Before Values: {values}
1387
1388 Answer using <ans></ans> tags, Do not include any extra in-
1389 formation.
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 **A.8.5 RQ5 PROMPTS**

1405 **Statement Prediction Prompt with Abstract Mapping**

1406

1407 You're given some Python code and one specific assignment line.
 1408 Here are the local variables just before that line runs. Can
 1409 you figure out what the value of the assignment will be after-
 1410 wards?

1411 **Code:**
 1412 Python
 1413 {Query Code}

1414

1415 **Statement:** {selected statement}

1416

1417 **Before Values:** {values}

1418

1419 You have to give your value prediction using the given quantiza-
 1420 tion rules: {rules_list}

1421

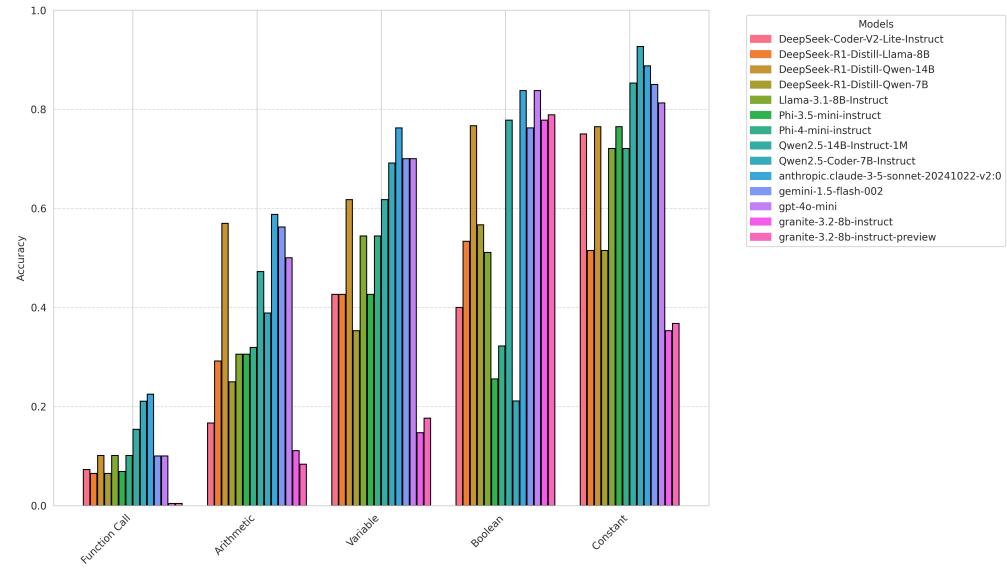
1422 Answer using <ans></ans> tags, Do not include any extra informa-
 1423 tion.

1424

1425 **A.9 ADDITIONAL RESULTS**

1426 **A.9.1 RQ1**

1427 Fig. 9 and Fig. 10 depict each model's capability on individual statement types. Fig. 11 and Fig. 12
 1428 show the performance of all the models across five types of statements for languages Python and C.



1450 **FIGURE 9. RQ1 Statement type accuracy across Models (Python)**

1451 **A.9.2 RQ4**

1452 In Fig. 13, we show that for most of the models, adding the number of shots/in-context examples
 1453 helps the models. Fig. 14 demonstrates that selecting in-context examples in a more controlled way,
 1454 for example, selecting the same function as in-context examples, helps the models reason better.
 1455 Finally, Fig. 15 shows whether adding a Chain of Thought (CoT) with the in-context examples can
 1456 help improve the performance.

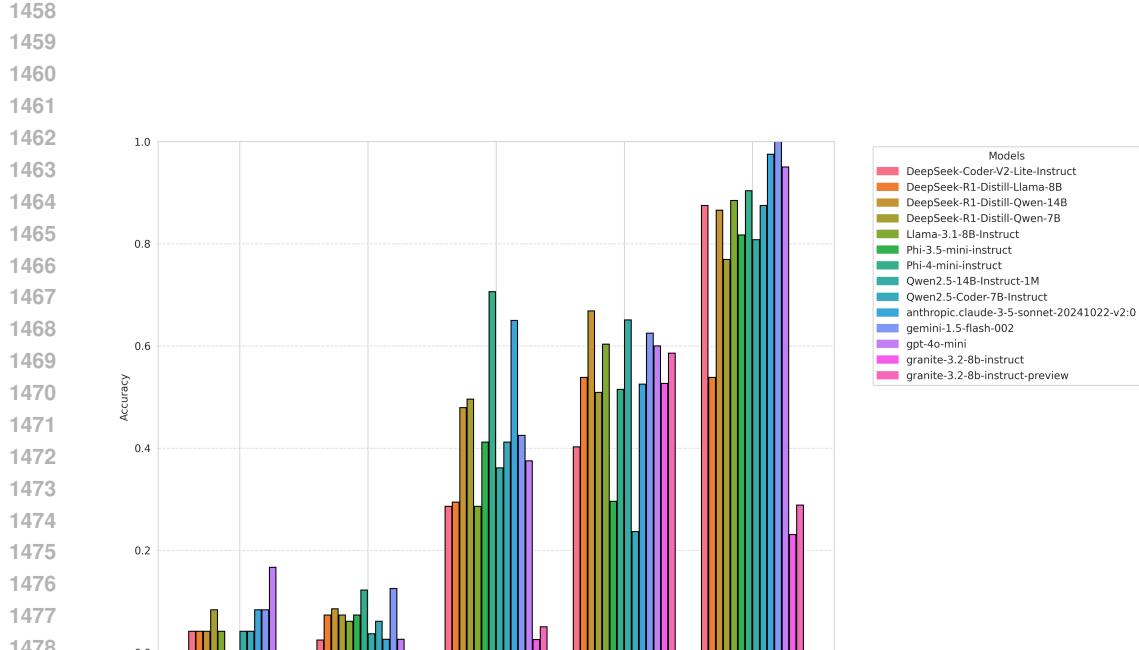


FIGURE 10. RQ1 Statement type accuracy across Models (C)

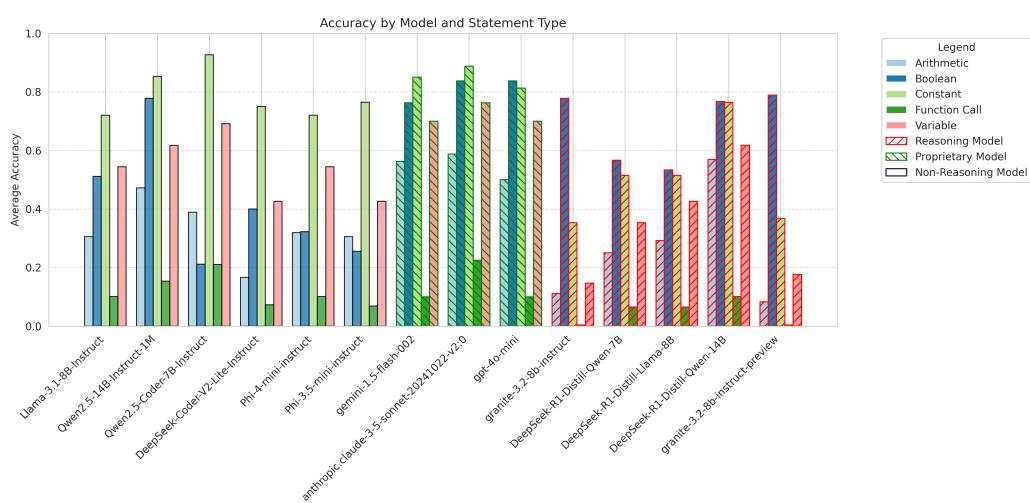


FIGURE 11. RQ1 Statement type accuracy across Models (Python)

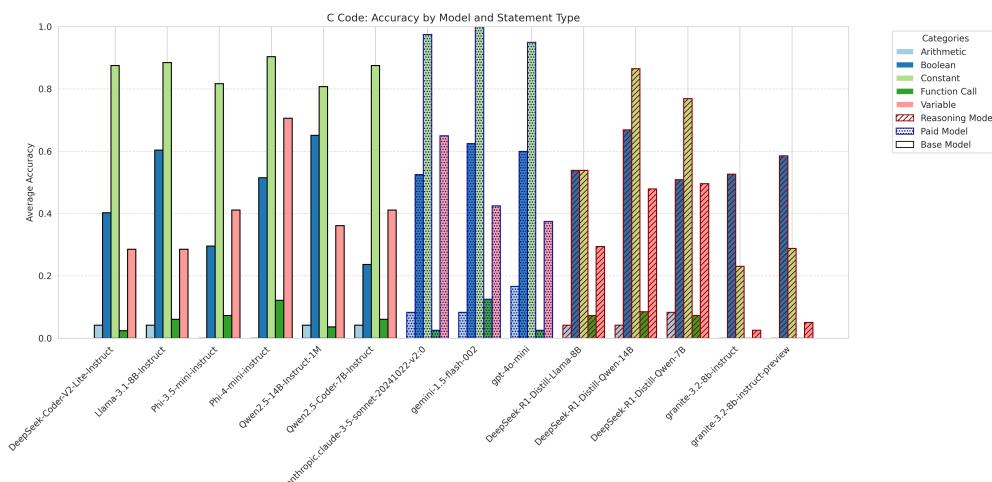


FIGURE 12. **RQ1** Statement type accuracy across Models (C)

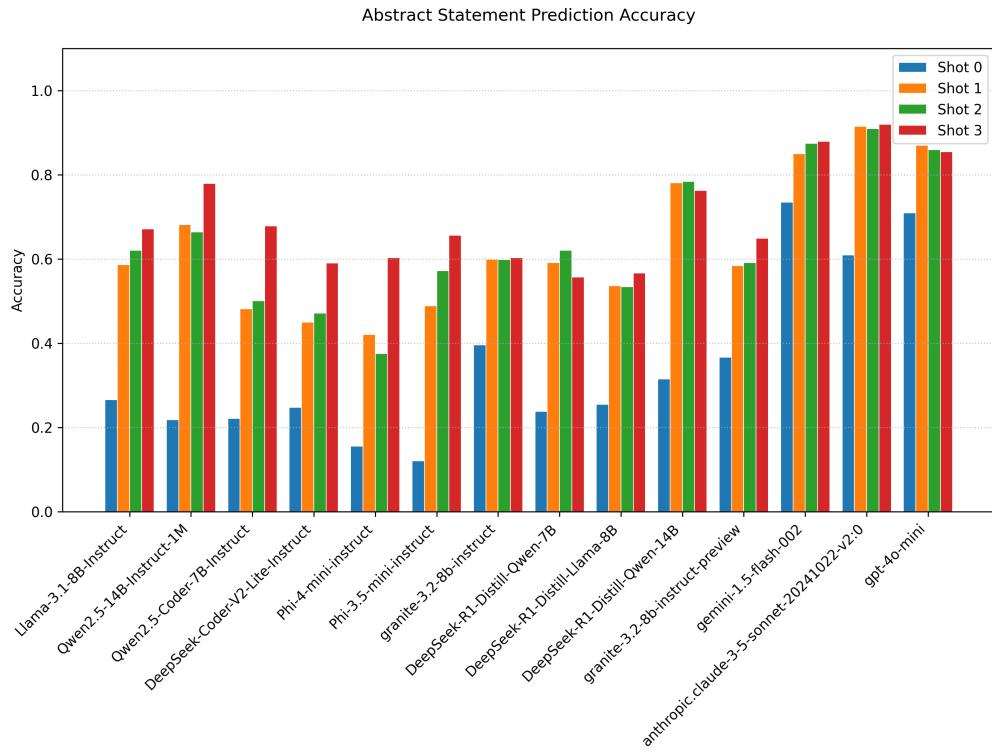


FIGURE 13. **RQ4** Models' Performance with increasing shots from 0 to 3 (Abstract Value Prediction).

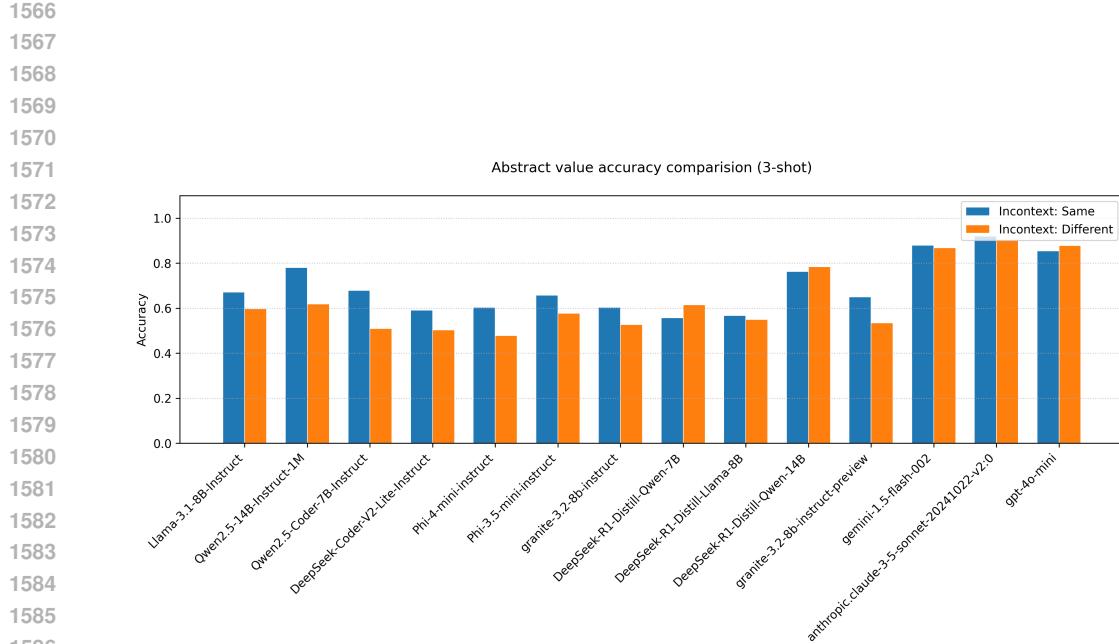


FIGURE 14. **RQ4** Models' Performance with random and same function in-context Examples.

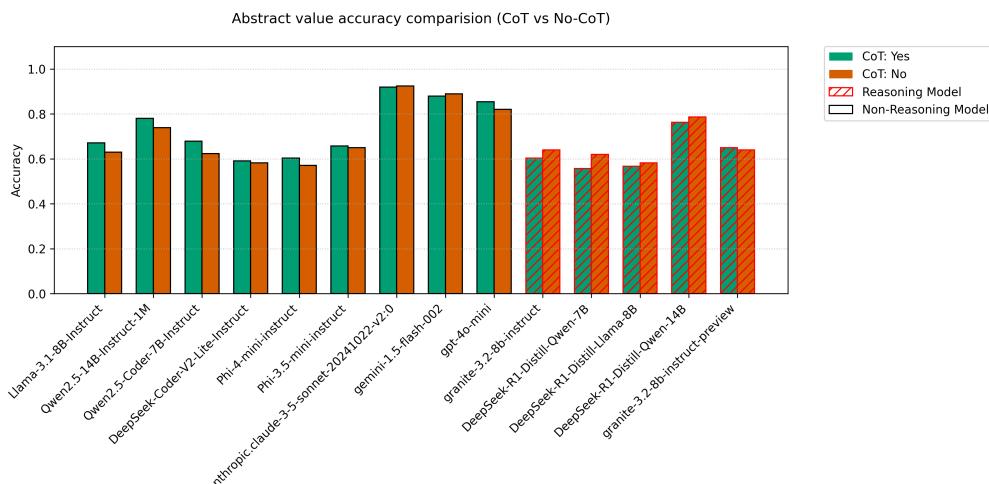
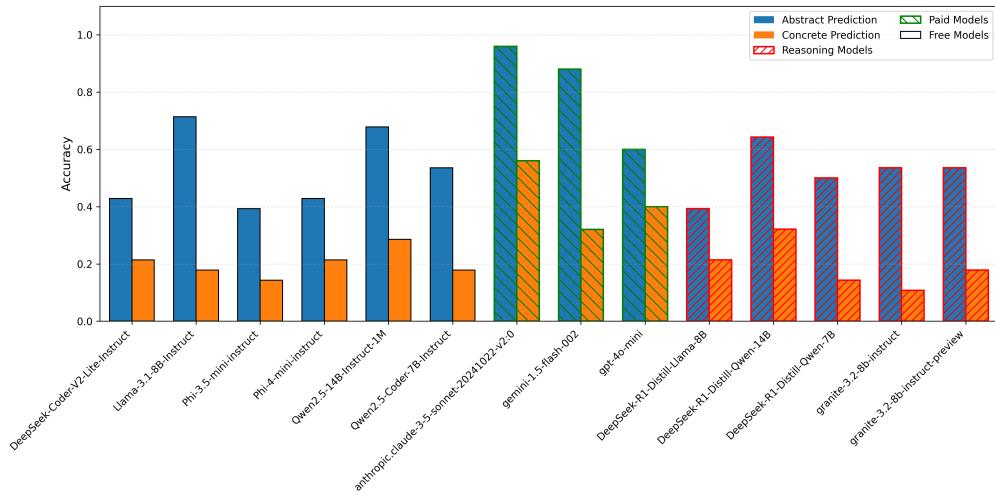


FIGURE 15. **RQ4** Models' Performance CoT vs No-CoT

1620 A.9.3 RQ5
1621

1622 In Fig. 16, we compare abstract value vs concrete value prediction for post-loop values. Though the
1623 models struggle with concrete value prediction, they can improve the performance for predicting the
1624 range/approximation of the concrete value.


1642 FIGURE 16. **RQ5:** Post-Loop value prediction abstract vs concrete values (3-shots)
1643

1644 TABLE 7. Model Performance Comparison on Abstract Value Prediction
1645

Model Name	Random Baseline	0-shot	3-shot
DeepSeek-Coder-V2	0.084	0.247	0.504
DeepSeek-R1-Distill-Llama	0.112	0.255	0.549
DeepSeek-R1-Distill-Qwen-14B	0.169	0.316	0.784
DeepSeek-R1-Distill-Qwen-7B	0.113	0.238	0.614
Llama-3.1-8B	0.104	0.266	0.597
Phi-3.5-mini	0.077	0.121	0.577
Phi-4-mini	0.088	0.156	0.478
Qwen2.5-14B	0.176	0.218	0.618
Qwen2.5-Coder-7B	0.099	0.222	0.509
granite-3.2-8B	0.152	0.396	0.528
granite-3.2-8B	0.147	0.367	0.535

1659 A.10 API DEFINITION ABLATION STUDY 1660

1661 In Task 2, when predicting the output for output of an API call, we conducted additional experiments
1662 to evaluate whether providing API definitions improves model performance. We tested two types of
1663 settings: (i) with No API definition and (ii) with API definitions.

1664 We ran our evaluation on the open-source models and evaluated all the 248 function call prediction
1665 examples from our dataset. Table 8 shows the results on the best-performing open-source models:

1666 TABLE 8. Accuracy of API prediction with different API definition strategies
1667

Model	No API definitions	API implementation
Qwen 2.5-7B	0.206	0.226
Qwen 2.5-14B	0.182	0.194
Phi-4	0.125	0.089
Llama-3.1-8B	0.105	0.089

1674 The results indicate that providing API definitions does not significantly improve performance, and
1675 in some cases slightly degrades it. This supports our hypothesis that the fundamental limitation for
1676 fine-grained code reasoning is not lack of API knowledge, but rather the models' inability to reason
1677 about statement-level and block-level semantics.

1680 A.11 COMPARISON WITH EXISTING BENCHMARKS

1682 We did a partial evaluation of the output prediction task on our evaluation framework on the three
1683 best-performing open-source models on CodeSense, and we present the results in Table 9. Our result
1684 shows that the models perform significantly worse in CodeSense than CruxEval.

1686 TABLE 9. Output prediction accuracy comparison: CruxEval vs. CodeSense

1688 Model	1689 CruxEval	1690 CodeSense	1691 Drop
1690 DeepSeek-R1-Distill-Qwen-14B	0.75	0.37	0.38
1691 Qwen2.5-14B	0.52	0.27	0.25
1692 Qwen2.5-Coder-7B	0.50	0.30	0.20

1694 A.12 VARIANCE ANALYSIS

1697 We have run the statement prediction task, and the results in Table 10 across three runs demonstrate
1698 that the variance across multiple runs is minimal, and this doesn't change our core findings.

1700 TABLE 10. Variance analysis across three runs on statement prediction task

1702 Model	1703 Run 1	1704 Run 2	1705 Run 3	1706 Mean \pm Std Dev
1703 Qwen2.5-14B	44.4%	44.4%	43.3%	44.0% \pm 0.6%
1704 DeepSeek-R1-Distill-Qwen-14B	42.0%	41.8%	43.8%	42.5% \pm 1.0%
1705 Qwen2.5-Coder-7B	38.4%	38.4%	38.4%	38.3% \pm 0.0%
1706 DeepSeek-R1-Distill-Llama-8B	26.4%	25.7%	27.3%	26.5% \pm 0.8%

1709 A.13 DIFFERENT PROMPTING TECHNIQUES FOR STATEMENT PREDICTION

1712 Table 11 shows the difference between two prompting strategies: using in-context examples of the
1713 same statement type as the query versus examples of a *different* statement type.

1715 TABLE 11. Statement Prediction Performance by Type

1717 Model	1718 Same Type Statement	1719 Different Type Statement
1719 Qwen2.5-14B-Instruct-1M	0.44	0.42
1720 DeepSeek-R1-Distill-Qwen-14B	0.42	0.39
1721 Qwen2.5-Coder-7B-Instruct	0.38	0.37
1722 Llama-3.1-8B-Instruct	0.32	0.29
1723 Phi-4-mini-instruct	0.30	0.25

1725 A.14 FUNCTION SIZE ANALYSIS

1726 Table 12 shows how we categorise function difficulties based on lines of code.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

TABLE 12. Function Size Categories

Category	Length (Lines of Code)
Small	$\text{length} \leq 9$
Medium	$10 < \text{length} \leq 19$
Large	$\text{length} \geq 20$

A.15 EXAMPLES OF FINE-GRAINED INSIGHTS

Codesense’s fine-grained task can uncover reasoning failures on code semantics that are not visible to the coarse-grained benchmarks. For example, consider the simple function from our benchmark

```

1740
1741 def _is_ascii(s):
1742     if isinstance(s, str):
1743         for c in s:
1744             if ord(c) > 255:
1745                 return False
1746         return True
1747     return _supports_unicode(s)
1748
1749 _is_ascii(' 123456789#')

```

Question: “How many times will the loop on line 3 iterate?”

Ground Truth: 11 (The length of the input string s , which contains a leading space, digits 1–9, and the # character).

However, models such as Qwen2.5-Coder-7B incorrectly respond with **10**. This error reveals that the model fails at a fundamental level: it cannot correctly reason about string iteration, specifically miscounting the characters in a simple string literal.

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781