
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CODESENSE: A REAL-WORLD BENCHMARK AND
DATASET FOR CODE SEMANTIC REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding and reasoning about code semantics is essential for enhancing code
LLMs’ abilities to solve real-world software engineering (SE) tasks. Although sev-
eral code reasoning benchmarks exist, most rely on synthetic datasets or educational
coding problems and focus on coarse-grained reasoning tasks such as input/output
prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts.
To bridge this gap, we propose CodeSense , the first benchmark that makes available
a spectrum of fine-grained code reasoning tasks concerned with the software engi-
neering of real-world code. We collected Python, C and Java software projects from
real-world repositories. We executed tests from these repositories, collected their
execution traces, and constructed a ground truth dataset for fine-grained semantic
reasoning tasks. We then performed comprehensive evaluations on state-of-the-art
LLMs. Our results show a clear performance gap for the models to handle fine-
grained reasoning tasks. Although prompting techniques such as chain-of-thought
and in-context learning helped, the lack of code semantics in LLMs fundamentally
limit models’ capabilities of code reasoning. Besides dataset, benchmark and
evaluation, our work produced an execution tracing framework and tool set that
make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a
strong basis for future benchmark construction and model post training. Our code
and data are located at https://codesense-bench.github.io/.

1 INTRODUCTION

Semantic code reasoning—the capacity to understand and predict the behavior of software—is a core
requirement underpinning a wide range of complex software engineering (SE) tasks, including test
input generation, vulnerability detection, fault localization, bug repair, refactoring, and functional
verification. Unlike syntactic pattern matching, which may rely on token-level similarity or statistical
regularities, semantic reasoning ("codesense") entails a deep, execution-oriented understanding
of how software operates. Although code semantics can be expressed in many ways, in practice,
developers engage in semantic reasoning through tasks like predicting a function’s input-output
behavior, tracing variable values, analyzing control flow paths, identifying loop invariants, etc. This
form of reasoning aligns with formal definitions from programming language theory—particularly
operational semantics, which models step-by-step execution, and axiomatic semantics, which uses
logical assertions to describe program properties. Such reasoning tasks also reflect the real-world
demands placed on developers and provide a natural grounding for their day-to-day work.

Recent years have witnessed the emergence of numerous benchmarks for evaluating coding-related
tasks. However, the majority of these efforts have focused on code generation using synthetic or
narrowly scoped data—for example, HumanEval+ (Liu et al., 2023), LiveCodeBenchmark (Jain et al.,
2024), Bigcodebench (Zhuo et al., 2024), and CodeBenchGen (Xie et al., 2024)—often extracted
from isolated competitive programming problems. Consequently, they fail to capture the complexity
and structure of real-world software development. Other benchmarks that incorporate real-world code,
such as SWE-Bench (Jimenez et al., 2024), SWE-PolyBench (Rashid et al., 2025), and KGym (Mathai
et al., 2024), tend to evaluate only task-specific performance (e.g., patch generation for GitHub issues),
making it difficult to assess whether models exhibit generalizable semantic understanding. Finally,
reasoning-focused benchmarks, such as CruxEval (Gu et al., 2024), primarily target function-level
input/output prediction over short and synthetic code fragments involving random string operations.
Such settings neglect the fine-grained semantic reasoning about internal program behavior and

1

https://codesense-bench.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1 void foo(int input){
2 int n = input * 23;
3 if (3465>=n>=2287){
4 //dangerous code need to be tested
5 }
6 }

((A)) Test input generation and program execution
reasoning: to generate a test input that can lead
to the execution of dangerous code at line 4, the
model needs to find an input that can satisfy the
branch condition 3465≥n≥2287at line 3.
Understanding the semantics of operators ’*’ at
line 2 and ’≥’ at line 3 is needed to effectively
generate an input that reaches the dangerous code,
e.g., input = 120 . The branches and arithmetic
operations can be quite diverse in different pro-
grams, and it is hard to generalize patterns regard-
ing which code text should use what kind of test
input to execute.

1 void bar (int nbits) {
2 FFTContext *s = malloc(sizeof (* s));
3 if (s && nbits==100))
4 free(& s);
5 else ... return s;
6 }

((B)) Vulnerability detection, fault localization and pro-
gram repair: this code has a memory leak vulnerability
when the if condition at line 3 is false. To detect
this vulnerability, the model should know that calls to
malloc and free are related to the vulnerability (se-
mantics of the API calls), and should be paired along
the program paths along both branches starting at line 3
(semantics of the branch statements and control flow).
Similarly, malloc and free can be located in various
code contexts in different programs, and thus it is hard to
generalize the patterns only from the code text, without
semantic code reasoning.

FIGURE 1. Fine-grained code semantics are the keys for solving many SE tasks

properties, data dependencies, and control structures required to solve a variety of SE tasks for
complex real-world software systems.

To this end, we propose CodeSense, a benchmark for fine-grained code semantic reasoning, con-
structed from real-world GitHub projects in Python, C, and Java (see Table 1). CodeSense introduces
a spectrum of reasoning tasks at statement, code-block, and function levels, targeting essential
semantic properties frequently needed across SE activities. For example, predicting loop iteration
counts is critical for input/output prediction, performance analysis, and detecting infinite loops
(e.g., denial-of-service vulnerabilities). Branch condition prediction and reasoning about pointers
in C code are important for test input generation and memory safety assurance. As illustrated in
Figures 1(a) and 1(b), fine-grained semantic reasoning about arithmetic operations, control flow,
and API semantics is foundational for a variety of SE applications. Prior work (Ding et al., 2023a;
2024) has shown that incorporating semantic signals during training improves model performance on
code generation, branch prediction, code clone detection, program repair and vulnerability detection
tasks, motivating our design of CodeSense to comprehensively evaluate models’ capabilities for
semantic reasoning. Their experimental results showed that even using dynamic values collected
from small implementations (<100 lines of code), the models are able to improve downstream tasks
for real-world code.

TABLE 1. Optimal design space of code reasoning benchmarks (# denotes not support, G# denotes
partial support, and denotes fully support)

Benchmark Real-World Projects Multi-lingual Function I/O Fine-Grained Reasoning Exec. Steps API Under-standing Multi-File Project Structure
CruxEval (Gu et al., 2024) # # # # # # #
CruxEval-X (Xu et al., 2024) # # # # # #
REval Chen et al. (2024) # # G# G# # # #
CodeMind (Liu et al., 2024) # #
CoRe (Xie et al., 2025) # # # # # #

CodeSense

Using our benchmark, we evaluated 14 state-of-the-art (SOTA) LLMs and investigated six research
questions regarding the models’ code semantics reasoning capabilities. Previous work has shown that
models did not perform well on code reasoning tasks such as input/output prediction (Gu et al., 2024)
and vulnerability detection (Steenhoek et al., 2025); to understand why models fail and identify places
for improvement, we investigate: RQ1: Does increasing code size make semantic reasoning more
difficult? RQ2: Which types of program statements are easier or harder for models to reason about?
RQ3: How do models perform on code properties critical for SE tasks, such as predicting pointer
aliasing, loop iteration counts, and branch conditions? RQ4: How effective are different prompting
strategies in improving semantic reasoning? RQ5: Can models reason approximately when exact

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

values or semantics are hard to infer? RQ6: Do models handle Java, C or Python real-world programs
better?

Our results reveal that current LLMs, including SOTA models like Claude 3.5 (Anthropic, 2024),
GPT-4o-mini (OpenAI, 2024), and Gemini 1.5 (Google, 2025) struggle with fine-grained code
semantics. They often fail to reason about even single statements from real-world code—particularly
arithmetic expressions and API calls—and perform poorly on tasks involving loop values and iteration
counts. Basic chain-of-thought prompting offers limited benefit, and few-shot prompting yields only
modest improvements. In-context learning is most effective when prompts define new concepts or
include highly relevant examples. Interestingly, models can correlate natural language code semantics
questions with certain code patterns. For instance, when the code contains assignments like p = q,
models correctly respond to the prompt "do p and q at <line> alias the same memory address" even
in zero-shot settings. Similarly, models reliably infer loop bounds in explicit cases such as for i
in range(100):. Among the 14 models evaluated, Claude 3.5 consistently achieved the best
performance. We also observe that Java and Python code are generally easier for models to reason
about than C, and that input prediction (i.e., reverse semantic inference) remains among the most
challenging tasks.

Contributions. This work introduces CodeSense, a realistic and comprehensive benchmark for
evaluating LLMs’ fine-grained code semantics reasoning in practical software engineering contexts.
We advance the state-of-the-art code reasoning benchmarks by:

1. Defining a diverse set of fine-grained semantic reasoning tasks grounded in real-world
software engineering needs,

2. Developing a scalable open-source framework and toolchain to automatically generate
execution traces and semantic annotations, enabling continuous benchmark expansion while
mitigating data leakage,

3. Constructing a benchmark dataset using real-world projects in Python, C, and Java,
4. Empirically analyzing six research questions across 14 state-of-the-art LLMs to assess their

strengths and limitations in semantic reasoning, and
5. Launching a public leaderboard to support reproducibility and accelerate progress

on semantic reasoning for code: https://codesense-bench.github.io/
leaderboard.html

2 BENCHMARK CONSTRUCTION

2.1 DEFINING A SPECTRUM OF CODE REASONING TASKS

To design tasks for evaluating LLMs’ capabilities of code semantic reasoning, we first considered the
definition of code semantics. In programming languages and software engineering, code semantics
—“what is the meaning of this code” — are defined as what is the output value given the input
of a code snippet. Such fine-grained reasoning tasks are directly related to end-tasks in software
engineering. For example, previous work (Ding et al., 2023a) shows that when fine-tuned with
statement-level values, the performance of the models improved for vulnerability detection, branch
prediction and code clone detection. Prior study (Steenhoek et al., 2025) reported that although
recent LLMs improved math reasoning and natural language reasoning significantly, they are still
insufficient for handling end-tasks related to code reasoning. To help locate the weakness of models’
code reasoning at a fine-granularity and help models to improve a variety of SE applications that are
linked to the fine-grained reasoning steps, we designed the following code reasoning tasks:

Task 1: Block-level code semantics (RQ1): To investigate whether a model understand a chuck
of code, we give a block of statements. We give input and ask the models to predict the execution
output; also we give output, we ask the models to predict the input. Input/output prediction of a
function is a special case of probing block-level code semantics. In our evaluation, we sampled a
block of statements from the entry of the functions and increased the sizes of blocks, including the
entire function.

Task 2: Statement-level code semantics (RQ2): We classified program statements based on
programming language semantics and evaluated models on five common statement types, including
arithmetic, boolean expression, API/Function call, variable assignment and constant assignment.

3

https://codesense-bench.github.io/leaderboard.html
https://codesense-bench.github.io/leaderboard.html

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

FIGURE 2. CodeSense: Data curation and benchmark creation overview.

Knowing code semantics at the statement level means that given an input of the statement, the models
are able to produce a correct output. In our evaluation, we studied output predictions in more depth.
We randomly sampled a statement from the program and asked the models to predict its output given
input.

Task 3: Code properties within a function (RQ3): Code property (property regarding a particular
code construct) is another aspect of code semantics. We focused on three important properties in this
benchmark. Loops are related to code optimization and detecting bugs. Reasoning about pointers in
C code are very important for assuring memory safety and detecting and repairing vulnerabilities.
Knowing how to predict branch outcomes can help generate test inputs and parallelize code.

Task 3-1: Loop property. Given an input of a function, we asked models to predict the number of
loop iterations, the values in the loop and the values after executing the loop. In our evaluation, we
randomly sampled a loop in a function and randomly sampled variables in and after the loop.

Task 3-2: Pointer property. Here, we give the models a function and its input, and we ask models
to predict whether the two pointers are aliased (pointing to the same memory location) at a given
program point.

Task 3-3: Branch property. Giving a function and its input as well as the location of a conditional
branch in the function, we ask the model to predict what is the outcome of the branch. In our
evaluation, we randomly selected a conditional branch in the function for prediction.

Task 4: Approximation of code semantics (RQ5): Reasoning about concrete values for the above
tasks is very challenging. Sometimes, to solve an SE task, we may only need an approximate value of
code semantics. For example, in Fig. 1(a), the models do not have to generate a concrete number like
input=120; it is sufficient for models to tell us that an integer input between 100-150 can trigger
the dangerous code. We designed a set of abstract values for different data types, following prior
literature (Ding et al., 2023a) and evaluate if the models can predict abstract values correctly.

The above tasks are also used for studying RQ4 regarding prompting techniques and RQ6 com-
paring different programming languages. We have included the prompts for all the above tasks in
Appendix/data package.

2.2 COLLECTING AND TRACING REAL-WORLD MULTI-LINGUAL SOFTWARE PROJECTS

Constructing ground truth for the set of code-semantics tasks is a great challenge. We collected
a total of 744 real-world software projects of Python, C and Java from GitHub. We developed a
framework and tool chain to build the projects, run tests and collect the execution traces which contain
values, data types, names of function calls and memory addresses (for C code) at each statement. We
developed analysis tools to extract ground truth for the benchmark tasks from those fine-grained code

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

semantics data. Please check our Appendix A.5 for our language selection rationale and how our
framework can be easily extended to other languages.

Python. We collected 1489 GitHub repositories from the PyPIbugs dataset (Allamanis et al., 2021).
We removed projects that don’t contain test cases or have not been updated in the last four years, and
obtained 544 projects. We first installed dependencies for each project and used pytest (Krekel
et al., 2004) to run tests, and Pysnooper (Rachum et al., 2019) for tracing.

C. We used 100 projects curated in OSS-Fuzz (Arya et al., 2023). We built and fuzzed the real-world
projects using the OSS-Fuzz infrastructure in the docker environment with project-wise fuzzing
harnesses. We developed a tracing framework built on the GNU debugger (GDB) (Free Software
Foundation).

Java. We collected 100 projects from the SF110 dataset (Fraser and Arcuri, 2012). We used
EvoSuite (Fraser and Arcuri, 2011) to generate and run test cases and developed our tracing tool on
top of Java Debugger (Oracle Corporation, 2025) to record the execution details of the projects.

2.3 DATA FILTERING

We collected whole program traces, from which we curated unique functions based on their entry
and exit points in the execution trace logs. We excluded functions that only contains comments, too
lengthy to fit into the models’ context, and the functions which don’t have meaningful functionality in
their body. For example, some functions only contain one statement like “return 0”, or “printf(“...”) or
some functions are just a wrapper for another function which we have tested, such as "void myfunc(){
func();}". We obtained a total of 2125 Python, 876 C and 875 Java unique functions, with the sizes
ranging from 3 to 516 lines of code. From these unique functions, we curated our task-specific
datasets.

In real-world code, we face many complexities, e.g., the input of a function and the values of a
variable can be complex types. As the first step of probing models to reason about fine-grained code
semantics for real-world code, we focus on ground truth values of primitive data types in all tasks,
including int, float, str, bool, list, pointer, double, dictionary, tuple, etc. In
the evaluation, we show that even for values of primitive types, the models face challenging to predict
them. We collected a total of 4483 samples from Python, C and Java, and constructed the ground
truth for the above tasks and used for evaluation. See Table 2.

TABLE 2. Number of Samples for Tasks

Task Python C Java Total Samples

Task 1: Block 1860 731 – 2591
Task 1: Function 308 94 74 476
Task 2/Task 4: Statement 545 485 – 1030
Task 3-1/Task 4: Loop 105 – – 105
Task 3-2: Pointer – 49 – 49
Task 3-3: Branch 232 – – 232

Total Samples 3050 1359 74 4483

3 EVALUATION

We evaluate 14 SOTA LLMs, 8 reasoning models and 6 non-reasoning models (see Appendix Table 3
for full names and short IDs used in figures), including open-source models (Llama, phi), close-
source/API models (GPT-4.0 Mini, Claude 3.5 and Gemini 1.5) and distilled models (DeepSeek R1
series), with the model parameter sizes ranging from 7 to 14 billions. We utilized vLLM(v0.3.3) as
our inference engine to run the models.

We designed five different natural language prompt templates (see Appendix/data package), and ran
them on a sampled dataset for each model. We observed that prompt templates are model-sensitive,
but not task-sensitive. So we select a template for each model for all the tasks. We prompted the
models to give a response inside specific tags (<ans> </ans>) and considered the response inside that
tag to compare with the ground truth, as done in (Gu et al., 2024). For our evaluation metrics, we
used accuracy (exact matching of the generated outputs of the models and the ground truth label).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

In the following, we presented a selection of interesting results. For clarity, we present results from
one representative LLM per model family to ensure model diversity. Please refer to the Appendix for
the complete set of experimental results.

3.1 RESULTS FOR RQ1: BLOCK-LEVEL CODE SEMANTICS

Fig. 3 shows input/output prediction results for code blocks and functions (a special case of code
block) across varying sizes. In Fig. 3(a) shows the results for three block sizes - blocks containing
one, two, and three statements, respectively.

Overall, we observe that model accuracy is low even for small code blocks. For example, in C
dataset, models such as Claude 3.5 and GPT-4o-mini achieve under 30% accuracy on single-statement
blocks. Python yields slightly better results, though no model exceeds 50% accuracy. Performance
further declines as block size increases from 1 to 3 statements, with open-source models performing
significantly worse. This degradation stems from two primary challenges: models often fail to reason
about individual statements, and they struggle to track variable state across statements. Notably,
even Claude 3.5 achieves only 20% accuracy on 3-statement Python blocks, and less than 10% on C.
However, in some cases, smaller blocks can be harder because they contain API calls.

A similar trend is observed in Fig. 3(b) (right: Output Prediction), where models perform better on
smaller functions than larger ones for output prediction. However, performance on input prediction
remains consistently poor (left figure) across all function sizes. This highlights a broader limitation:
LLMs are even less capable of understanding the "reverse" of operational semantics, i.e., inferring
inputs from outputs. Even the best-performing model, Claude 3.5, achieves only around 12% accuracy
in input prediction for small functions.

((A)) Output prediction for different block sizes

((B)) In/Out prediction for different function sizes

FIGURE 3. RQ1: Does increasing the size of code increase the difficulty of code reasoning?

3.2 RESULTS FOR RQ2: STATEMENT-LEVEL CODE SEMANTICS

As shown in RQ1, models struggle with value prediction even for single statements (e.g., block size
1). In RQ2, we further analyze model performance by categorizing results based on statement types.
Fig. 4 presents these results, with the left plot showing C and the right showing Python. Each plot
groups model performance by statement type to highlight specific areas of strength and weakness.

We observe that arithmetic and API/calls are the most statement types, even for the best reasoning
models like GPT4.0-mini and Claude 3. For APIs, we sampled frequently used third-party libraries,
like os, sys, time and math installed by pip, but the models do not have knowledge about their

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

FIGURE 4. RQ2: What types of program statements can the model understand well?

execution semantics. We also experimented with adding the API definitions in the prompt, but it
didn’t increase the performance significantly A.10. Models handle better for predicting Boolean
values such as the output of a comparison statement, and also statements where constant is assigned to
a variable. The models may understand the assignment operator "=" and have captured easy patterns
like "a=3 indicates a has value 3 after executing this statement". We did not observe significant
advantage of reasoning models over non-reasoning models for this task.

3.3 RESULTS FOR RQ3: CODE PROPERTIES WITHIN A FUNCTION

In Fig. 5(a), we report results on predicting the number of loop iterations, values in and after the loop,
given the input of the function. We observe that models feel difficult to predict values after executing
the loop. Loop iterations are the easiest tasks among the three. Our intuition is that sometimes certain
patterns in the code text are linked to the loop iterations. For example, Python code for i in
range(100):. implies that loop iteration is 100. Somehow, some models know these patterns and
constants are linked to the loop iterations. We inspected the predicted loop values and did not find a
trend that the models just use any constant numbers in the code text as their answers.

In Fig. 5(b) and Fig. 5(c), we show that given an input, predicting pointer aliasing at a program
location and whether a branch can be taken is easier than loop properties. Here, the models only need
to predict "yes"/"no". The models predict pointer aliasing better than branch execution. We believe
that the models are able to connect code patterns such as "p=q" to the aliasing definition provided in
our prompt "when two pointers store the same memory addresses, they are aliasing". Notably, some
open-source models perform below 50% on these binary classification tasks—worse than random
guessing.

RQ3 Loop

((A)) Loop Properties ((B)) Pointer Aliasing ((C)) Branch Execution

FIGURE 5. RQ3: Can models reason about different program properties?

3.4 RESULTS FOR RQ4: DIFFERENT PROMPTING TECHNIQUES

In Fig. 6, we show results of different prompting techniques on statement prediction and loop property
predictions (relatively difficult tasks in our list). Our results show that in both cases, models benefited
from more shots in the prompt. When we prompt models and provide examples more relevant to
the query (RAG style); that is, for statement prediction, we provide shots with the same type of
statement, and for loops, we provide shots of different loops in the same function, models improved
their performance. However, applying a simple COT by "asking models to think step by step" at the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

beginning of the prompt did not help much for statement prediction, but helped for loop property
prediction for some models. Our intuition is that compared to statement prediction, loop reasoning,
e.g., predicting values after a loop, may be more complex and can benefit from multi-step reasoning.

((A)) In-context Learning: (left) statement prediction, (right) post-loop prediction

((B)) RAG & COT: (left) comparing random shots and shots relevant to the query for statement prediction,
(mid) COT for statement prediction, (right) COT for post-loop prediction

FIGURE 6. RQ4: Can different prompting strategies help?

3.5 RESULTS FOR RQ5: APPROXIMATION OF CODE SEMANTICS

In Fig. 7, we observed that the models reported better performance to predict an approximation of
code semantics, for both statement (Fig. 7(b)) and loop (Fig. 7(c)) predictions. See also Table 7
in Appendix A.9.3 for comparing with random baselines. Interestingly, when we provide only the
definition of "abstract" values (mapping from a range of concrete values to an abstract value) in the
prompt , without giving an example showing an "abstract" output for a given input, the models cannot
predict abstract values better than concrete values (Fig. 7(a)). Most models failed to apply definitions
directly to the query examples; however, when we provide 3-shots of examples in the prompt, all the
models can predict abstract values better than concrete ones.

((A)) 0-shot statement prediction ((B)) 3-shot statement prediction ((C)) 3-shot post-loop prediction

FIGURE 7. RQ5: Can models reason about an approximation of code semantics? (Python results)

3.6 RESULTS FOR RQ6: DIFFERENT PROGRAMMING LANGUAGES

Using input/output prediction as a case study, we investigated models code reasoning capabilities
for different programming languages. Fig. 8(a) shows that Java and Python performed better than C
when predicting output given input. Our intuition is that compared to the C code, Java and Python
code are more high-level and closer to the natural languages than C; also probably models have seen
less C code than Python/Java code in the training data. However, the models reported the lowest
accuracy for input prediction of Python code (Fig. 8(b)).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

((A)) Output Prediction ((B)) Input Prediction

FIGURE 8. RQ6: Any particular programming languages are easier for the models?

4 RELATED WORK

Code Reasoning Benchmarks. CruxEval (Gu et al., 2024) assesses LLMs’ performance on synthetic
Python programs using the task of input-output prediction for a function. CruxEval-X (Xu et al.,
2024) extends this work to multilingual settings by translating synthetic Python programs in CruxEval
to other languages using LLMs. REval (Chen et al., 2024) evaluated branch prediction tasks using
ClassEval and HumanEval (Chen et al., 2021a). CodeMind (Liu et al., 2024) proposed output
prediction and code synthesis tasks on existing code benchmarks (Chen et al., 2021b; Austin et al.,
2021; Gu et al., 2024; Puri et al., 2021). They found that LLM reasoning capabilities deteriorate as
program complexity increases (Liu et al., 2024; Zhang et al., 2024b). Our benchmark CodeSense
is the first that used real-world Python, C and Java code to evaluate LLMs’ reasoning capabilities.
While most code reasoning benchmarks reason about function level execution semantics, we proposed
and made ground truth available for a spectrum of fine-grained reasoning tasks regarding program
behaviors within a function.

Other Code Application Benchmarks. SWE-Bench (Jimenez et al., 2024) used the task of generat-
ing patches to resolve a given GitHub issues for real-world Python projects. SWE-PolyBench (Rashid
et al., 2025) extends this work to other programming languages. KGym (Mathai et al., 2024) delivered
a benchmark consisting of Linux kernel crash data and evaluated LLMs’ capabilities of resolving
Linux kernel crashes. These benchmarks focus on task-specific performance rather than fine-grained
code semantics understanding. There are also benchmarks for code generation (Li et al., 2024; Zhang
et al., 2024a; Yu et al., 2024; Chen et al., 2025; Du et al., 2023) and code completion (Izadi et al.,
2024; Ding et al., 2023b). However, most of these datasets—such as BigCodeBench (Zhuo et al.,
2024) and CodeBenchGen (Xie et al., 2024) are restricted to a single language (primarily Python)
and extracted from isolated competitive programming problems.

5 CONCLUSIONS

Code semantic reasoning is foundational for solving many software engineering applications. We
propose a novel code benchmark and dataset, CodeSense, extracted from 744 Python, C and Java
real-world projects, for evaluating LLMs capabilities of code semantic reasoning. We defined a
spectrum of fine-grained code reasoning tasks include value predictions at various granularities of
the code and program properties prediction for important code constructs like loops, pointers and
branches. We developed a framework and tools that can build, test and trace software projects in
different programming languages, and can automatically generate ground truth for fine-grained code
semantic reasoning tasks. We conducted a comprehensive study on SOTA LLMs. We found that
models in general lack the knowledge of code semantics and face challenges for reasoning about even
single statements. In limited cases, models can establish the correlation of code semantics description
in natural language with some simple frequent code patterns. We hope our dataset and framework can
enable further code semantic benchmarks and provide ground truth for future LLMs post-training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection
and repair. In NeurIPS, 2021.

Anthropic. Introducing claude 3.5 sonnet, June 2024. URL https://www.anthropic.com/
news/claude-3-5-sonnet. Accessed: 2025-05-15.

Abhishek Arya, Oliver Chang, Jonathan Metzman, Kostya Serebryany, and Dongge Liu. Oss-fuzz,
2023. URL https://github.com/google/oss-fuzz. Accessed: 2025-05-14.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior of
a program with llm: How far are we?, 2024. URL https://arxiv.org/abs/2403.16437.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021a. URL https://arxiv.org/abs/2107.
03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dynamic benchmarking of reasoning capabilities in
code large language models under data contamination. arXiv preprint arXiv:2503.04149, 2025.

Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
Execution-aware pre-training for source code, 2023a. URL https://arxiv.org/abs/
2306.07487.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang.
Crosscodeeval: A diverse and multilingual benchmark for cross-file code completion, 2023b. URL
https://arxiv.org/abs/2310.11248.

Yangruibo Ding, Jinjun Peng, Marcus J. Min, Gail Kaiser, Junfeng Yang, and Baishakhi Ray.
Semcoder: Training code language models with comprehensive semantics reasoning, 2024. URL
https://arxiv.org/abs/2406.01006.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluating
llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, page 416–419, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450304436. doi: 10.1145/2025113.
2025179. URL https://doi.org/10.1145/2025113.2025179.

Gordon Fraser and Andrea Arcuri. Sound empirical evidence in software testing. In 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages
178–188. IEEE, 2012. ISBN 978-1-4673-1067-3.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://github.com/google/oss-fuzz
https://arxiv.org/abs/2403.16437
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2306.07487
https://arxiv.org/abs/2306.07487
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2406.01006
https://doi.org/10.1145/2025113.2025179

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Free Software Foundation. GDB: The GNU project debugger. https://www.sourceware.
org/gdb/. Accessed: May 15, 2025.

Google. Gemini models: Gemini 1.5 flash, 2025. URL https://ai.google.dev/
gemini-api/docs/models#gemini-1.5-flash. Accessed: 2025-05-15.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution, 2024. URL
https://arxiv.org/abs/2401.03065.

Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, Razvan Mihai Popescu, and Arie
Van Deursen. Language models for code completion: A practical evaluation. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ICSE ’24, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.
3639138. URL https://doi.org/10.1145/3597503.3639138.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.
07974.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and
Florian Bruhin. pytest x.y. https://github.com/pytest-dev/pytest, 2004. Version
x.y. Contributors include Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe,
Brianna Laugher, Florian Bruhin, and others.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code
generation benchmark aligned with real-world code repositories, 2024. URL https://arxiv.
org/abs/2404.00599.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Codemind:
A framework to challenge large language models for code reasoning, 2024. URL https:
//arxiv.org/abs/2402.09664.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivančić, Junfeng Yang, and
Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on linux
kernel crash resolution. Advances in Neural Information Processing Systems, 37:78053–78078,
2024.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence, July 2024. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/. Ac-
cessed: 2025-05-15.

Oracle Corporation. JDB - The Java Debugger, 2025. URL https://docs.oracle.com/
javase/8/docs/technotes/tools/unix/jdb.html. Part of the Java SE Develop-
ment Kit.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655, 2021.

11

https://www.sourceware.org/gdb/
https://www.sourceware.org/gdb/
https://ai.google.dev/gemini-api/docs/models#gemini-1.5-flash
https://ai.google.dev/gemini-api/docs/models#gemini-1.5-flash
https://arxiv.org/abs/2401.03065
https://doi.org/10.1145/3597503.3639138
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06770
https://github.com/pytest-dev/pytest
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2404.00599
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2305.01210
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdb.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ram Rachum, Alex Hall, Iori Yanokura, et al. Pysnooper: Never use print for debugging again, jun
2019. URL https://github.com/cool-RR/PySnooper.

Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buchholz, Tim Esler, Simon
Valentin, Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, Anoop
Deoras, Giovanni Zappella, and Laurent Callot. Swe-polybench: A multi-language benchmark for
repository level evaluation of coding agents, 2025. URL https://arxiv.org/abs/2504.
08703.

Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida Alam, Hengbo
Tong, Swarna Das, Earl T. Barr, and Wei Le. To err is machine: Vulnerability detection challenges
llm reasoning, 2025. URL https://arxiv.org/abs/2403.17218.

Danning Xie, Mingwei Zheng, Xuwei Liu, Jiannan Wang, Chengpeng Wang, Lin Tan, and Xiangyu
Zhang. Core: Benchmarking llms code reasoning capabilities through static analysis tasks, 2025.
URL https://arxiv.org/abs/2507.05269.

Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, and Carolyn Rose. Codebenchgen:
Creating scalable execution-based code generation benchmarks, 2024. URL https://arxiv.
org/abs/2404.00566.

Ruiyang Xu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Ben He, Shing-Chi Cheung, and
Le Sun. Cruxeval-x: A benchmark for multilingual code reasoning, understanding and execution.
arXiv preprint arXiv:2408.13001, 2024.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Hari Sundaram, and Shuiguang Deng. Codescope: An execution-based multilingual
multitask multidimensional benchmark for evaluating llms on code understanding and generation,
2024. URL https://arxiv.org/abs/2311.08588.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400702174. doi: 10.1145/3597503.3623316. URL https://doi.org/10.1145/
3597503.3623316.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges, 2024a. URL
https://arxiv.org/abs/2401.07339.

Yakun Zhang, Wenjie Zhang, Dezhi Ran, Qihao Zhu, Chengfeng Dou, Dan Hao, Tao Xie, and
Lu Zhang. Learning-based widget matching for migrating gui test cases. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ICSE ’24. ACM, February
2024b. doi: 10.1145/3597503.3623322. URL http://dx.doi.org/10.1145/3597503.
3623322.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2024. URL https://arxiv.org/abs/2406.15877.

12

https://github.com/cool-RR/PySnooper
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2403.17218
https://arxiv.org/abs/2507.05269
https://arxiv.org/abs/2404.00566
https://arxiv.org/abs/2404.00566
https://arxiv.org/abs/2311.08588
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://arxiv.org/abs/2401.07339
http://dx.doi.org/10.1145/3597503.3623322
http://dx.doi.org/10.1145/3597503.3623322
https://arxiv.org/abs/2406.15877

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 MODEL NAME MAPPINGS FOR FIGURE LABELS

TABLE 3. Model Names and Their IDs in the figures

Full Model Name Model ID in the figures

openai/gpt-4.0-mini GPT-4o (Reasoning)
anthropic.claude-3-5-sonnet-20241022-v2:0 CL-3.5 (Reasoning)
gemini-1.5-flash-002 Gem-1.5 (Reasoning)
meta-llama/Llama-3.1-8B-Instruct L-3.1
Qwen/Qwen2.5-14B-Instruct-1M Q-2.5
Qwen/Qwen2.5-Coder-7B-Instruct Qwen2.5-C
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct DS-C
microsoft/Phi-4-mini-instruct Phi-4
microsoft/Phi-3.5-mini-instruct Phi-3.5
ibm-granite/granite-3.2-8b-instruct Gr-3.2 (Reasoning)
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B DSR1-Q-7B (Reasoning)
deepseek-ai/DeepSeek-R1-Distill-Llama-8B DSR1-L (Reasoning)
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B DSR1-Q-14B (Reasoning)
ibm-granite/granite-3.2-8b-instruct-preview Granite-3.2 Pr (Reasoning)

A.2 COMPUTATION RESOURCES AND INFERENCE TOOLS

All our experiments were conducted using the following computational resources:

• GPU: NVIDIA RTX A6000 with 49GB VRAM
• Memory Utilization: 0.9GB GPU memory during inference runs
• Software Stack: vLLM (Kwon et al., 2023) for optimised transformer inference
• Operations: Inference-only experiments (no fine-tuning performed)

The inference parameters were controlled through the following configuration 4:

TABLE 4. Inference Configuration Parameters

Parameter Value Description
temperature 0.8 Controls randomness: Lower = more deter-

ministic
top_p 0.95 Nucleus sampling: Only top 95% probabil-

ity mass
max_tokens 4096 (default) Base context window size

16384 (For reasoning models) Extended context for specific models
tp_size 1 No tensor parallelism
dtype float16 Half-precision floating point
stop [\n»>, \n$, ...] Generation stopping tokens

A.3 LIMITATIONS AND FUTURE WORK

In this work, we consider exact matching between the model’s response and ground truth as correct.
In future work, we would like to explore other metrics such as pass@k. However, we did explore
models’ performance of computing abstract value prediction/approximation of code semantics.

For some RQs, we only evaluated the models on subset of tasks. For example, when comparing
different programming languages in RQ6, we used input/output predictions. In the future, we will
extend such evaluations to more tasks. When computing pointer alias in RQ3, we used C languages.
Future work can also include object aliasing detection for Python and Java.

Additionally, we would like to expand our framework to support project tracing and task-specific
benchmark datasets beyond the scope of three languages. This includes adding other languages with

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

diverse domain’s like (e.g., functional, system language) to enable a more comprehensive evaluation
of LLMs.

In future, it will be also interesting to explore more advanced prompting techniques and even fine-tune
the models to further evaluate the models.

A.4 TRACE COLLECTION

In this section, we will discuss the detailed process to generate the C, Python and Java real-world
traces.

A.4.1 REAL WORLD PROJECT COLLECTION

1. C Project Collection: For our research, we wanted to generate trace dataset on real-world
projects. We have selected real-world C projects that were curated in the OSS-FUZZ
repository. The primary reason behind selecting these projects is that they represent different
domains to ensure diversity in software types. This choice also aligns with our research goal
to generate a benchmark real-world C trace dataset.

2. Python Project Collection: To collect real-world Python projects, we adopted two ap-
proaches. 1) We cloned all 1489 repositories from GitHub that appear in the PyPIBugs
dataset, which was released in 2021 Allamanis et al. (2021). 2) To avoid missing popular
projects after 2021, we use GitHub API to search for repositories that are marked as mainly
written in Python and get the results according to the descending order of the number of
stars. To maximise the probability that we can execute them easily with the pytest module,
we only consider projects that seemingly have a testing folder at the top or second level. For
better compatibility and the reflection of the recent trend of programming styles, we further
filtered out projects that have not been updated in the last four years. Finally, we got 544
projects.

3. Java Dataset Collection: For Java, we aimed to gather a diverse set of real-world projects
to have a comprehensive trace analysis, which aligns with our trace dataset generation
objective. We have used EvoSuite Fraser and Arcuri (2011) for test suite generation, and
the SF110 dataset has been used as it is recommended by EvoSuite. This choice ensures
compatibility and a high testing coverage rate.

A.4.2 HIGH-LEVEL STEPS OVERVIEW OF GENERATING TRACES

C Trace Collection

1. Building Projects: Building projects before fuzzing is necessary to ensure that different
project dependencies are correctly installed and configured, avoiding runtime errors during
the fuzzing process. This helps to create a consistent and effective environment for the next
fuzzing process.

2. Fuzzing: In the fuzzing phase, we executed the fuzzer on the already-built projects to
generate the input data corpora. We configure the fuzzing tools with appropriate settings and
parameters for each project. This includes specifying input seed files, maximum time for
the fuzzer to run and kill delay to maximise code coverage. Throughout the fuzzing process,
detailed logs are maintained to track the execution progress and other relevant information.
These logs can aid in debugging, result interpretation, and fuzzing outcomes.

3. Tracing: Tracing is the most crucial step to have the execution information of real-world
projects. We use a tracing framework with the GNU debugger to log the execution of the
projects. With the help of the framework, we log function calls, variable values, and other
states during the execution of the projects. We start the tracing by setting an entry point for
the program, and during the execution of the tracing, we record the different states of the
program at various points by logging them into an XML-formatted file for further analysis.
Additionally, we have added a tracer timeout to ensure the maximum running time of the
tracer, as well as an extra kill delay to ensure the safe exit of the tracer. This ensures the
reliability and robustness of the tracing process if any unexpected events occur.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Python Trace Collection

1. Execution: We execute the collected projects to get traces in a best-effort approach: 1) We
scan the common dependency files to install the dependencies into an independent Python
environment for each project. 2) We use pytest to execute the test cases in the projects and
collect the outputs. 3) We analyze the outputs to identify missing dependency errors and try
to install the missing dependencies several times.

2. Tracing: We use the PySnooper tool to trace the projects but made the following mod-
ifications to it: 1) We only keep traces corresponding to source code files in the project
source directories to exclude traces happened in Python built-in functions or third-party
dependencies. 2) We expand the representation of user-defined class objects by showing the
name and value pairs of their first-level attributes. 3) We save the types of variables in traces
instead of just value representations to provide more information for the execution-aware
source code modeling.

Java Trace Collection

1. Tracing: To generate the tracing framework for Java, we integrated Java Debugger to record
the execution details of the projects. We logged method invocation, variable values, and
different program states during the execution cycle. For Java, we stored the raw trace
in JSON format, which was stored in directories specific to each class within the project
directories. This helps manage large amounts of data, consequently making it easier to
retrieve, analyze and clean it up for further tasks.

TABLE 5. Trace Collection

Real-world Testing Tracing
projects Tools Tools

Python PyPIbugs+Github (544) Pytest Pysnooper
C OSS-Fuzz (100) Fuzzing GDB
Java SF-110 (100) Evosuite JDB

It should be noted that although our repository are in the training dataset. However, the models are
asked to predict dynamic information, which we generated by running test inputs over programs,
using tools like fuzzers. Those values are not in the repos and have never been seen by the models. In
fact, this is the advantage of our benchmark. The future benchmark designers can use our testing and
tracing tools to run other inputs to freshly generate more data that are new to the models.

A.5 LANGUAGE SELECTION RATIONALE AND EXTENSIBILITY

The three programming languages in our benchmark are important and representative for program-
ming language features and real-world applications: C is a low level programming language and
useful for building systems, Java has object-oriented programming features, are widely used for
building enterprise and web applications, Python is important for data science and AI applications.
Our benchmark is extensible, third-parties (as well as ourselves in future) can add more languages.
Our scripts, prompts and methodologies can be adapted for new programming languages to (1) select
and download programs of a programming language from GitHub, (2) fuzz for generating test inputs,
(3) trace and curate ground truth data (4) provide input and parse output when interacting with models.
Instead of GDB (for C), Pysnooper (for Python) and Java Debugger Oracle Corporation (for Java),
we will need to plug in debugging tools for new programming languages.

You may ask “we have compilers and code execution tools, why do we need models to predict
dynamic information”—- Predicting dynamic values is not only useful for executing programs, but
required for many other downstream tasks. For example, in Fig. 1, to generate test input that can
exercise a true branch, the models need to know how each operator in statements updates the values.
The key difference is that: when using code execution tools, we give one input and ask for the output,
but in other downstream tasks, we require models to first understand fine-grained semantics and then

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

find inputs that can satisfy certain constraints. Even for compiling and executing programs, we may
benefit from LLMs prediction, as compilation and execution can be time-consuming and hard to
be configured, especially for legacy code. This ability of LLMs is particularly important when the
user cannot run the code snippet, e.g., missing dependencies or unavailable resources. Predicting
input/output values as code reasoning tasks have been established by prior research (Gu et al., 2024),
(Chen et al., 2021b), (Yan et al., 2024). Our work extended prior research by introducing real-world
projects and fine-grained tasks supported only by our tracing framework.

A.6 DETAILED DESCRIPTION OF TASKS

In this section, we will provide a detailed description of our tasks. A.6.1 provides a comprehensive
description of the statement-based evaluation we performed on LLMs. We sampled five types of
statements, i.e, Assignment, Arithmetic, Constant, Boolean, and Function Call, and prompted the
models about the value after execution of each type of statement given the variable states before
executing that statement. For the block prediction task A.6.2, we sampled statements from the start
of the code snippet, given the input of the code, we prompted the model to predict the output at the
end of the 1st statement, the 2nd statement, and the 3rd statement. For Branch prediction A.6.3, we
promoted the model whether a specific branch will be taken or not of a code snippet, given the input
of that code snippet.

In the case of A.6.4, we sampled loop statements from the code snippets. For each loop, we first
collected the number of iterations of that loop as ground truth, and queried the model about how
many times the loop would be iterated. We also collected and prompted the model regarding
the variable state inside the loop body after the n-th interaction. We have named this "In-Loop"
prediction. Additionally, we sampled variables after the execution of the whole loop and queried the
model regarding the variable value after the execution of the loop body ("Post-Loop" prediction).
For input/output prediction A.6.5, we used the approach similar to (Gu et al., 2024). For output
prediction, we give the entire code snippet and the input of the code snippet, and vice versa for input
prediction.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.6.1 STATEMENT PREDICTION TASK

def xldate_from_date_tuple(date_tuple, datemode):
year, month, day = date_tuple
data_list = list(data_tuple)
if datemode not in (0, 1):

raise XLDateBadDatemode(datemode)

if year == 0 and month == 0 and day == 0:
return 0.00

c = 100
if not (1900 <= year <= 9999):

raise XLDateBadTuple("Invalid_year:%r" % ((year, month, day),)
)

if not (1 <= month <= 12):
raise XLDateBadTuple("Invalid_month:%r" % ((year, month, day)

,))
if day < 1 \
or (day > _days_in_month[month] and not (day == 29 and month ==

2 and _leap(year))):
raise XLDateBadTuple("Invalid_day:%r" % ((year, month, day),))

Yp = year + 4716
M = month
if M <= 2:

Yp = Yp - 1
Mp = M + 9

else:
Mp = M - 3

jdn = ifd(1461 * Yp, 4) + ifd(979 * Mp + 16, 32) + \
day - 1364 - ifd(ifd(Yp + 184, 100) * 3, 4)

xldays = jdn - _JDN_delta[datemode]
if xldays <= 0:

raise XLDateBadTuple("Invalid(year,month,day):%r" % ((year,
month, day),))

if xldays < 61 and datemode == 0:
raise XLDateAmbiguous("Before1900-03-01:%r" % ((year, month,

day),))
return float(xldays)

xldate_from_date_tuple(date_tuple=(1907, 7, 3), datemode=0)

Assignment Prediction
• What will be the value of the final output of the statement year, month, day =
date_tuple given {’date_tuple’: (1907, 7, 3)} after executing
the statement?

Arithmetic Prediction
• What will be the value of the final output of the statement Yp = year + 4716

given {’year’: 1907} after executing the statement?

Constant Prediction
• What will be the value of the final output of the statement c = 0 given {’con-
stant’: 0} after executing the statement?

Boolean Prediction
• Will the true branch of the statement if datemode not in (0, 1): be

executed given {’datemode’: 0}?

Function Call Prediction
• What will be the value of the final output of the statement data_list =
list(data_tuple) given {’date_tuple’: (1907, 7, 3)} after ex-
ecuting the statement??

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.6.2 BLOCK PREDICTION TASK

def exchange(a, i, j):
temp = a[i]
a[i] = a[j]
a[j] = temp

exchange(a=[0, 100, 200, 0, 0, 0, 0, 0, 0, 0], i=2, j=1)

1-Block Prediction
• What will be the value of the final output of the statement temp = a[i] after

executing the statement given the function input ’a’: [0, 100, 200, 0,
0, 0, 0, 0, 0, 0], ’i’: 2, ’j’: 1?

2-Block Prediction
• What will be the value of the final output of the statement a[i] = a[j] after

executing the statement given the function input ’a’: [0, 100, 200, 0,
0, 0, 0, 0, 0, 0], ’i’: 2, ’j’: 1?

3-Block Prediction
• What will be the value of the final output of the statement a[j] = temp after

executing the statement given the function input ’a’: [0, 100, 200, 0,
0, 0, 0, 0, 0, 0], ’i’: 2, ’j’: 1?

A.6.3 BRANCH TASK

1.def xldate_from_date_tuple(date_tuple, datemode):
2.
3. year, month, day = date_tuple
4.
5. if datemode not in (0, 1):
6. raise XLDateBadDatemode(datemode)
7.
8. if year == 0 and month == 0 and day == 0:
9. return 0.00
10.
11. if not (1900 <= year <= 9999):
12. raise XLDateBadTuple("Invalid_year:%r" % ((year, month, day

),))
13. if not (1 <= month <= 12):
14. raise XLDateBadTuple("Invalid_month:%r" % ((year, month,

day),))
15. if day < 1 \
16. or (day > _days_in_month[month] and not(day == 29 and month ==

2 and _leap(year))):
17. raise XLDateBadTuple("Invalid_day:%r" % ((year, month, day)

,))
18.
19. Yp = year + 4716
20. M = month
21. if M <= 2:
22. Yp = Yp - 1
23. Mp = M + 9
24. else:
25. Mp = M - 3
26. jdn = ifd(1461 * Yp, 4) + ifd(979 * Mp + 16, 32) + \
27. day - 1364 - ifd(ifd(Yp + 184, 100) * 3, 4)
28. xldays = jdn - _JDN_delta[datemode]
29. if xldays <= 0:
30. raise XLDateBadTuple("Invalid(year,month,day):%r" % ((year,

month, day),))
31. if xldays < 61 and datemode == 0:
32. raise XLDateAmbiguous("Before1900-03-01:%r" % ((year, month,

day),))
33. return float(xldays)
34.
35.xldate_from_date_tuple((1907, 7, 3), 0)

Brach Prediction
• Is line 12, raise XLDateBadTuple("Invalid year: %r" %
((year, month, day),)) executed when xldate_from_date_-
tuple((1907, 7, 3), 0) is called?

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.6.4 LOOP TASK

1. def make_version_tuple(vstr=None):
2. if vstr is None:
3. vstr = __version__
4. if vstr[0] == "v":
5. vstr = vstr[1:]
6. components = []
7. for component in vstr.split("+")[0].split("."):
8. try:
9. components.append(int(component))
10. except ValueError:
11. break
12. components = tuple(components)
13. return components
14.
15. make_version_tuple('v0.1.1')

Iteration Prediction
• How many times will the loop on line 7 execute when make_version_tu-
ple(’v0.1.1’) is called?

In-Loop Prediction
• What is the value of components in line 9 after 2nd iteration when make_-
version_tuple(’v0.1.1’) is called?

Post-Loop Prediction
• What is the value of components in line 12 when make_version_tu-
ple(’v0.1.1’) is called?

A.6.5 INPUT-OUTPUT TASK

def cast_tuple(val, length = None):
if isinstance(val, list):

val = tuple(val)

output = val if isinstance(val, tuple) else ((val,) * default(
length, 1))

if exists(length):
assert len(output) == length

return output

Output Prediction
• What will be the output of the code given input {’val’:1, ’length’:4}?

Input Prediction
• What will be the input of the code given output (1, 1, 1, 1)?

A.7 CONCRETE TO ABSTRACT MAPPING

For the approximation of code semantics, we prompted the models to reason in abstract values,
instead of reasoning about the concrete exact value. Table 6 shows the mapping from concrete value
to abstract category, following the prior literature (Ding et al., 2023a). When defining these mappings,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

we carefully aligned the value ranges for each abstract category with the overall value distribution
observed in our benchmark. We evaluated the abstract mapping results against a random baseline,
where mapping rules were selected randomly from all available mapping categories.

TABLE 6. Concrete Value to Quantize Value Mapping

Type Condition Category

Integer

0 < v ≤ 10 Positive Regular
v > 10 Positive Large
v == 0 Zero
−10 ≤ v < 0 Negative Regular
v < −10 Negative Large

Float

1.0 < v ≤ 10.0 Positive Regular
0.0 < v ≤ 1.0 Positive Small
10.0 < v Positive Large
v == 0.0 Zero
−1.0 ≤ v < 0.0 Negative Small
−10.0 ≤ v < −1.0 Negative Regular
v < −10.0 Negative Large

String

len(s) == 0 Empty String
len(s) > 0 and s.isalpha() Alphabetic String
len(s) > 0 and s.isdigit() Numeric String
len(s) > 0 and not (s.isalpha() or s.isdigit()) Mixed String

List
len(lst) == 0 Empty List
len(lst) > 0 Non-Empty List

Tuple
len(tup) == 0 Empty Tuple
len(tup) > 0 Non-Empty Tuple

Dict
len(dict) == 0 Empty Dictionary
len(dict) > 0 Non-Empty Dictionary

Set
len(set) == 0 Empty Set
len(set) > 0 Non-Empty Set

Boolean
True True
False False

NoneType None None

A.8 PROMPTING TECHNIQUES

The following is a subset of prompts we used to evaluate the models. The rest prompts are shown in
our data package.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A.8.1 RQ1 PROMPT

Generalized Statement Execution Prediction Prompt

Here’s some {lang} code. Each example highlights a single
statement of (assignment, branch, or function calls) and
shows you what the variable values look like just before it
runs.
Your goal? Figure out what the result will be right after
that statement runs.
Here are {shot} examples to walk you through it: ----------

Assignment Prediction Prompt

You’re given some {lang} code and one specific assignment
line.
Here are the local variables just before that line runs. Can
you figure out what the value of the assignment will be af-
terwards?
Code Snippet: ``{̀lang} {code} ``
Statement: {statement}
Before Values: {variables}
Answer using <ans></ans> tags, Do not include any extra in-
formation.

Boolean Prediction Prompt

Here’s a branch(if)/Boolean statement in {lang}, and the val-
ues of the variables it uses.
Will the branch run? Answer ’Yes’ or ’No’.
Code: ``{̀lang} {code} ``
Branch Statement: {statement}
Condition Variables: {variables}
Answer using <ans></ans> tags, Do not include any extra in-
formation.

Function Call Prompt

Here’s a function or API call in {lang} with some parameters.
Based on the inputs, what will it return?
Code: ``{̀lang} {code} ``
Call: {statement}
Parameter Values: {variables}
Answer using <ans></ans> tags, Do not include any extra in-
formation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

A.8.2 RQ2 PROMPTS

Generalized Block Execution Prediction Prompt

Take a look at the {lang} code blocks. One statement is
highlighted in each.
You’ll also see the input values going into the function.
Based on those, try to figure out what the highlighted line
will do.
Here are {shot} examples that show how it works: ----------

Block Prediction Prompt

Here’s a full function in {lang} and a line of code inside it
we care about.
Given the function’s inputs, what value will that line pro-
duce?
Code: ``{̀lang} {code} ``
Statement: {statement}
Inputs: {inputs}
Answer using <ans></ans> tags

Generalized input_output prompt

Here’s some {lang} code. You’ll either get the inputs or the
outputs, but not both.
Your task is to fill in the missing part--predict the out-
put if you know the input, or figure out what input must’ve
produced the output.
Check out these {shot} examples for reference: ------------

Output Prompt

Here’s some {lang} code and the inputs passed into it.
What output do you expect from it?
Code: ``{̀lang} {code} ``
Inputs: {input}
Answer using <ans></ans> tags

Input Prompt

You know the output of a piece of {lang} code. Can you fig-
ure out what the input must’ve been?
Code: ``{̀lang} {code} ``
Output: {output}
Answer using <ans></ans> tags

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

A.8.3 RQ3 PROMPTS

Generalized Loop Prediction Prompt

Let’s explore some loops in {lang}. You’ll get the full loop
structure along with the input values used in the code.
I’ll ask you questions about how the loop body or post-loop
values behave with those inputs.
Here’s how it works with {shot} example(s): ----------------

Iteration Prediction

Take a look at this lang loop with some given inputs.
Question:{question}
Code:
{lang}
{code}
Answer using <ans></ans> tags.

In-Loop Prediction

This is a {lang} loop and what the input to the function
looks like.
I’ll ask you something about what happens inside the loop
body.
Code:
{lang}
{code}
Question:
{question}
Answer using <ans></ans> tags

Post-Loop Prediction

This is a {lang} loop and what the input to the function
looks like.
I’ll ask you something about what happens after the loop
body.
Code:
{lang}
{code}
Question:
{question}
Answer using <ans></ans> tags

Branch Prediction Prompt

Here’s a branch (if) block statement in {lang}.
Will the branch run given the function call? Answer ’Yes’ or
’No’.
Code: ``{̀lang} {code} ``
Question: {question}
Answer using <ans></ans> tags, Do not include any extra in-
formation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Alias Prediction

Here’s some {lang} code with two pointer variables:
- Pointer A: ’{pointer_1}’
- Pointer B: ’{pointer_2}’
Do these pointers reference the same memory address? Answer
"Yes" or "No".
Code: ``{̀lang} {code} ``
Function Input: {input}
Question: Do ’{pointer_1}’ and ’{pointer_2}’ in (line
{line_1}) point to the same memory location?
Put your answer in <ans></ans> tags.

A.8.4 RQ4 PROMPTS

Assignment CoT

Let’s figure out the result of the assignment: ’{statement}’
You’ve got the current variable values: {variables}
Think through the right-hand side, then update the left-hand
side with the result.

Boolean CoT

Here’s the condition: ’{statement}’
These are the variable values: {variables}
Evaluate the condition. Is it true or false? That tells you
if the branch runs.

Function Call CoT

This is the function call: ’{statement}’
With these parameter values: {variables}
Figure out what the function does and predict the return
value.

Block Prediction CoT

First, trace the execution flow till the highlighted state-
ment {statement} and {input} of the given input,
Then identify the variables associated with the statement
Next, use the trace execution flow to evaluate the statement
What value does the statement produce?

Output Prediction CoT

We’re given inputs: {input}
Walk through the code step by step.
Watch how the values change until we get the final output.
Check that it matches what the function should return.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Input Prediction CoT

We know the output: {output}
Work backwards--what input could’ve led to that?
Figure out what had to happen in the code, and reverse it to
get the input.

Iteration Prediction CoT

Start the loop using the initial values.
Check the condition, run the body, update, and repeat.
Keep going until the loop ends.

Loop in-Value CoT

Look at the variables at the start of this iteration.
Go through each line in the loop body.
What happens to the variables by the end?

Loop Post-Value CoT

See why the loop stopped (condition failed).
Check the final values of all changed variables.
What did the last iteration do before ending?
What would be the variable value after loop termination?

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Overall Statement Prediction Prompt (1-shot) with CoT steps

Here’s some Python code. Each example highlights a single
statement of (assignment, branch, or function calls) and
shows you what the variable values look like just before it
runs. Your goal? Figure out what the result will be right
after that statement runs.

Here are 1 example to walk you through it:

--------------------------- EXAMPLE 1: --------------------
Here’s a function or API call in Python with some parameters.
Based on the inputs/parameter values, what will it return?

Code:
Python
{in-context Code}

Function Call: {statement with function call}
Parameter Values: {values}

Let’s think step by step:
This is the function call: {statement}
With these parameter values: {variables}
Figure out what the function does and predict the return
value.
Therefore the final answer is:<ans> {Ground Truth} </ans>

Now, please solve the following new problem.

You’re given some Python code and one specific assignment
line. Here are the local variables just before that line
runs. Can you figure out what the value of the assignment
will be afterwards?

Code:
Python
{Query Code}

Statement: {selected statement}

Before Values: {values}

Answer using <ans></ans> tags, Do not include any extra in-
formation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

A.8.5 RQ5 PROMPTS

Statement Prediction Prompt with Abstract Mapping

You’re given some Python code and one specific assignment line.
Here are the local variables just before that line runs. Can
you figure out what the value of the assignment will be after-
wards?

Code:
Python
{Query Code}

Statement: {selected statement}

Before Values: {values}

You have to give your value prediction using the given quantiza-
tion rules: {rules_list}

Answer using <ans></ans> tags, Do not include any extra informa-
tion.

A.9 ADDITIONAL RESULTS

A.9.1 RQ1

Fig. 9 and Fig. 10 depict each model’s capability on individual statement types. Fig. 11 and Fig. 12
show the performance of all the models across five types of statements for languages Python and C.

FIGURE 9. RQ1 Statement type accuracy across Models (Python)

A.9.2 RQ4

In Fig. 13, we show that for most of the models, adding the number of shots/in-context examples
helps the models. Fig. 14 demonstrates that selecting in-context examples in a more controlled way,
for example, selecting the same function as in-context examples, helps the models reason better.
Finally, Fig. 15 shows whether adding a Chain of Thought (CoT) with the in-context examples can
help improve the performance.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

FIGURE 10. RQ1 Statement type accuracy across Models (C)

FIGURE 11. RQ1 Statement type accuracy across Models (Python)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

FIGURE 12. RQ1 Statement type accuracy across Models (C)

FIGURE 13. RQ4 Models’ Performance with increasing shots from 0 to 3 (Abstract Value Prediction).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

FIGURE 14. RQ4 Models’ Performance with random and same function in-context Examples.

FIGURE 15. RQ4 Models’ Performance CoT vs No-CoT

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

A.9.3 RQ5

In Fig. 16, we compare abstract value vs concrete value prediction for post-loop values. Though the
models struggle with concrete value prediction, they can improve the performance for predicting the
range/approximation of the concrete value.

FIGURE 16. RQ5: Post-Loop value prediction abstract vs concrete values (3-shots)

TABLE 7. Model Performance Comparison on Abstract Value Prediction

Model Name Random Baseline 0-shot 3-shot
DeepSeek-Coder-V2 0.084 0.247 0.504
DeepSeek-R1-Distill-Llama 0.112 0.255 0.549
DeepSeek-R1-Distill-Qwen-14B 0.169 0.316 0.784
DeepSeek-R1-Distill-Qwen-7B 0.113 0.238 0.614
Llama-3.1-8B 0.104 0.266 0.597
Phi-3.5-mini 0.077 0.121 0.577
Phi-4-mini 0.088 0.156 0.478
Qwen2.5-14B 0.176 0.218 0.618
Qwen2.5-Coder-7B 0.099 0.222 0.509
granite-3.2-8b 0.152 0.396 0.528
granite-3.2-8b 0.147 0.367 0.535

A.10 API DEFINITION ABLATION STUDY

In Task 2, when predicting the output for output of an API call, we conducted additional experiments
to evaluate whether providing API definitions improves model performance. We tested two types of
settings: (i) with No API definition and (ii) with API definitions.

We ran our evaluation on the open-source models and evaluated all the 248 function call prediction
examples from our dataset. Table 8 shows the results on the best-performing open-source models:

TABLE 8. Accuracy of API prediction with different API definition strategies

Model No API definitions API implementation
Qwen 2.5-7B 0.206 0.226
Qwen 2.5-14B 0.182 0.194
Phi-4 0.125 0.089
Llama-3.1-8B 0.105 0.089

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

The results indicate that providing API definitions does not significantly improve performance, and
in some cases slightly degrades it. This supports our hypothesis that the fundamental limitation for
fine-grained code reasoning is not lack of API knowledge, but rather the models’ inability to reason
about statement-level and block-level semantics.

A.11 COMPARISON WITH EXISTING BENCHMARKS

We did a partial evaluation of the output prediction task on our evaluation framework on the three
best-performing open-source models on CodeSense, and we present the results in Table 9. Our result
shows that the models perform significantly worse in CodeSense than CruxEval.

TABLE 9. Output prediction accuracy comparison: CruxEval vs. CodeSense

Model CruxEval CodeSense Drop
DeepSeek-R1-Distill-Qwen-14B 0.75 0.37 0.38
Qwen2.5-14B 0.52 0.27 0.25
Qwen2.5-Coder-7B 0.50 0.30 0.20

A.12 VARIANCE ANALYSIS

We have run the statement prediction task, and the results in Table 10 across three runs demonstrate
that the variance across multiple runs is minimal, and this doesn’t change our core findings.

TABLE 10. Variance analysis across three runs on statement prediction task

Model Run 1 Run 2 Run 3 Mean ± Std Dev
Qwen2.5-14B 44.4% 44.4% 43.3% 44.0% ± 0.6%
DeepSeek-R1-Distill-Qwen-14B 42.0% 41.8% 43.8% 42.5% ± 1.0%
Qwen2.5-Coder-7B 38.4% 38.4% 38.4% 38.3% ± 0.0%
DeepSeek-R1-Distill-Llama-8B 26.4% 25.7% 27.3% 26.5% ± 0.8%

A.13 DIFFERENT PROMPTING TECHNIQUES FOR STATEMENT PREDICTION

Table 11 shows the difference between two prompting strategies: using in-context examples of the
same statement type as the query versus examples of a different statement type.

TABLE 11. Statement Prediction Performance by Type

Model Same Type Statement Different Type Statement
Qwen2.5-14B-Instruct-1M 0.44 0.42
DeepSeek-R1-Distill-Qwen-14B 0.42 0.39
Qwen2.5-Coder-7B-Instruct 0.38 0.37
Llama-3.1-8B-Instruct 0.32 0.29
Phi-4-mini-instruct 0.30 0.25

A.14 FUNCTION SIZE ANALYSIS

Table 12 shows how we categorise function difficulties based on lines of code.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

TABLE 12. Function Size Categories

Category Length (Lines of Code)
Small length ≤ 9
Medium 10 < length ≤ 19
Large length ≥ 20

A.15 EXAMPLES OF FINE-GRAINED INSIGHTS

Codesense’s fine-grained task can uncover reasoning failures on code semantics that are not visible to
the coarse-grained benchmarks. For example, consider the simple function from our benchmark

def _is_ascii(s):
if isinstance(s, str):

for c in s:
if ord(c) > 255:

return False
return True

return _supports_unicode(s)

_is_ascii(' 123456789#')

Question: “How many times will the loop on line 3 iterate?”
Ground Truth: 11 (The length of the input string s, which contains a leading space, digits 1–9, and
the # character).

However, models such as Qwen2.5-Coder-7B incorrectly respond with 10. This error reveals that
the model fails at a fundamental level: it cannot correctly reason about string iteration, specifically
miscounting the characters in a simple string literal.

33

	Introduction
	Benchmark Construction
	Defining a Spectrum of Code Reasoning Tasks
	Collecting and Tracing Real-world Multi-Lingual Software Projects
	Data Filtering

	Evaluation
	Results for RQ1: Block-level code semantics
	Results for RQ2: Statement-level code semantics
	Results for RQ3: Code properties within a function
	Results for RQ4: Different prompting techniques
	Results for RQ5: Approximation of code semantics
	Results for RQ6: Different programming languages

	Related Work
	Conclusions
	Appendix
	Model Name Mappings for Figure Labels
	Computation Resources and Inference Tools
	Limitations and Future Work
	Trace Collection
	Real World Project Collection
	High-Level Steps Overview of Generating Traces

	Language Selection Rationale and Extensibility
	Detailed Description of Tasks
	Statement Prediction Task
	Block Prediction Task
	Branch Task
	Loop Task
	Input-Output Task

	Concrete to Abstract Mapping
	Prompting Techniques
	RQ1 Prompt
	RQ2 Prompts
	RQ3 Prompts
	RQ4 Prompts
	RQ5 Prompts

	Additional Results
	RQ1
	RQ4
	RQ5

	API Definition Ablation Study
	Comparison with Existing Benchmarks
	Variance Analysis
	Different Prompting techniques for Statement Prediction
	Function Size Analysis
	Examples of Fine-Grained Insights

