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ABSTRACT

In many supervised learning problems, model predictions are compared to ground
truth labels using simple convex losses such as softmax cross-entropy and squared
error. In weakly-supervised learning, more complex losses involving problem-
specific algorithmic procedures and knowledge, e.g., differentiable shortest-path
computations or sorting algorithms, are common. These losses can be hard to
optimize as they are non-convex in the model output and may exhibit vanishing and
exploding gradients. To alleviate this issue, we present Newton Losses, a method
for boosting the performance of non-convex and hard to optimize losses by locally
approximating an existing loss function with a quadratic (incorporating second-
order information). As Newton Losses only replaces the loss function, the method
allows training the neural network with gradient descent and is computationally
efficient. We apply Newton Losses to eight differentiable algorithm methods for the
multi-digit MNIST sorting benchmark and the Warcraft shortest-path benchmark.

1 INTRODUCTION

Traditionally, fully-supervised classification and regression learning relies on convex loss functions
such as MSE or cross-entropy, which are easy-to-optimize by themselves. However, the need for
large amounts of ground truth annotations is a limitation of fully-supervised learning; thus, weakly-
supervised learning has gained popularity. Rather than using fully annotated data, weakly-supervised
learning utilizes problem-specific algorithmic knowledge incorporated into the loss function. For
example, instead of supervising ground truth values, supervision can be given in the form of ordering
information. However, incorporating such knowledge into the loss can make it difficult to optimize,
e.g., by making the loss non-convex in the model output, non-monotonic, introducing bad local
minima, vanishing gradients, and/or exploding gradients, negatively impacting training [1], [2].

Loss functions that integrate problem-specific knowledge can range from rather simple contrastive
losses [3] to rather complex losses that require the integration of differentiable algorithms [4]. In
this work, we primarily focus on the (harder) latter category, which allows for solving specialized
tasks such as inverse rendering [5]–[7], learning-to-rank [2], [8]–[13], self-supervised learning [14],
differentiation of optimizers [15], [16], and top-k supervision [10], [12], [17]. In this paper, we
summarize these loss functions under the umbrella of algorithmic losses [18] as they introduce
algorithmic knowledge into the training objective.

While the success of neural network training is primarily due to the backpropagation algorithm
and stochastic gradient descent (SGD), there has also been a strong line of work on second-order
optimization for neural network training [19]–[28]. Compared to first-order methods like SGD,
second-order optimization methods exhibit improved convergence rates and therefore require fewer
training steps; however, they have two major limitations [26], namely (i) computing the inverse of the
curvature matrix for a large and deep neural network is computationally substantially more expensive
than simply computing the gradient with backpropagation, which makes second-order methods
practically inapplicable in many cases [29]; (ii) networks trained with second-order information
exhibit reduced generalization capabilities [30].

Inspired by ideas from second-order optimization, in this work, we propose a novel method for incor-
porating second-order information into training with non-convex and hard to optimize algorithmic
losses. Loss functions are usually cheaper to evaluate than a neural network. Further, loss functions
operate on lower dimensional spaces than the parameters of neural networks. If the loss function
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becomes the bottleneck in the optimization process because it is difficult to optimize, it suggests
itself to use a stronger optimization method that requires fewer steps like second-order optimization.
However, as applying second-order methods to neural networks is expensive and limits generalization,
we want to train the neural network with first-order SGD. Therefore, we propose Newton Losses, a
method for locally approximating loss functions with a quadratic via their second-order information.
Thereby, Newton Losses provides a (locally) convex loss leading to better optimization behavior,
while training the actual neural network with gradient descent. To clarify the notation, we note that,
with “Newton Losses”, we refer to the principle of converting an existing loss into a Newton loss.

For the quadratic approximation of the algorithmic losses, we propose two variants of Newton Losses:
(i) Hessian-based Newton Losses, which comprises a generally stronger method but requires an
estimate of the Hessian. Depending on the choice of differentiable algorithm, choice of relaxation, or
its implementation, the Hessian may, however, not be available. Thus, we also relax the method to
(ii) empirical Fisher-based Newton Losses, which derive the curvature information from the empirical
Fisher matrix, which only depends on the gradients. The Fisher variant can be easily implemented on
top of existing algorithmic losses without consideration of computing second derivatives, while the
Hessian variant requires computation of second derivatives and leads to greater improvements.

We evaluate Newton Losses for an array of eight families of algorithmic losses on two popular
algorithmic benchmarks: the four-digit MNIST sorting benchmark and the Warcraft shortest-path
benchmark. We find that Newton Losses leads to performance improvements for each of the
algorithms—for some of the algorithms (those which suffer the most from vanishing and exploding
gradients) more than doubling the accuracy. In an ablation study, we demonstrate that Newton Losses
does not harm training when applied to the convex cross-entropy loss in simple classification settings.

2 BACKGROUND & RELATED WORK

The related work comprises algorithmic supervision losses and second-order optimization methods.
To the best of our knowledge, this is the first work combining second-order optimization of loss
functions with first-order optimization of neural networks, especially for algorithmic losses.

Algorithmic Losses. Algorithmic losses, i.e., losses which contain some kind of algorithmic
component, have become quite popular in recent machine learning research. In the domain of recom-
mender systems, early learning-to-rank works already appeared in the 2000s [8], [9], [31], but more
recently Lee et al. [32] proposed differentiable ranking metrics, and Swezey et al. [13] proposed
PiRank, which relies on differentiable sorting. For differentiable sorting, an array of methods has
been proposed in recent years, which includes NeuralSort [33], SoftSort [34], Optimal Transport
Sort [10], differentiable sorting networks (DSN) [12], and the relaxed Bubble Sort algorithm [18].
Other works explore differentiable sorting-based top-k for applications such as differentiable image
patch selection [35], differentiable k-nearest-neighbor [17], [33], top-k attention for machine transla-
tion [17], differentiable beam search methods [17], [36], survival analysis [37], and self-supervised
learning [38]. But algorithmic losses are not limited to sorting: other works have considered learning
shortest-paths [15], [16], [18], learning 3D shapes from images and silhouettes [5]–[7], [18], [39],
[40], learning with combinatorial solvers for NP-hard problems [16], learning to classify handwritten
characters based on editing distances between strings [18], learning with differentiable physics
simulations [41], and learning protein structure with a differentiable simulator [42], among many
others.

Second-Order Optimization. Second-order methods have gained popularity in machine learning
due to their fast convergence properties when compared to first-order methods [19]. One alternative
to the vanilla Newton’s method are quasi-Newton methods, which, instead of computing an inverse
Hessian in the Newton step (which is expensive), approximate this curvature from the change in
gradients [26], [43], [44]. In addition, a number of new approximations to the pre-conditioning matrix
have been proposed in the recent literature, i.a., [20], [23], [45]. While the vanilla Newton method
relies on the Hessian, there are variants which use the empirical Fisher information matrix, which can
coincide in specific cases with the Hessian, but generally exhibits somewhat different behavior. For
an overview and discussion of Fisher-based methods (aka. natural gradient descent), see [46], [47].
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3 NEWTON LOSSES

3.1 PRELIMINARIES

We consider the training of a neural network f(x; θ), where x ∈ Rn is the vector of inputs, θ ∈ Rd is
the vector of trainable parameters and y = f(x; θ) ∈ Rm is the vector of outputs. As per vectorization,
x = [x1, . . . , xN ]⊤ ∈ RN×n denotes a set of N input data points, and y = f(x; θ) ∈ RN×m denotes
the neural network outputs corresponding to the inputs. Further, let ℓ : RN×m → R denote the loss
function, and let the “label” information be implicitly encoded in ℓ. The reason for this choice of
implicit notation is that, for many algorithmic losses, it is not just a label, e.g., it can be ordinal
information or a set of encoded constraints. The training of a neural network may be expressed as

argmin
θ∈Θ

ℓ(f(x; θ)) (1)

where Θ ⊆ Rd is the domain of the trainable parameters θ. We note that the formulation (1) is general
and includes, e.g., optimization of non-decomposable loss functions (i.e., not composed of individual
losses per training sample), which is relevant for some algorithmic losses like, e.g., ranking losses [2].

Typically, the optimization problem (1) is solved by using an iterative algorithm (e.g., SGD [48],
Adam [49], or Newton’s method [26]) updating the weights θ by repeatedly applying a respective
update step:

θ ← One optimization step of ℓ(f(x; θ)) wrt. θ . (2)

However, in this work, we consider splitting this optimization update step into two alternating steps:

z⋆ ← One optimization step of ℓ(z) wrt. z ← 1 f(x; θ) , (3a)

θ ← One optimization step of 1
2∥z

⋆ − f(x; θ)∥22 wrt. θ . (3b)

This split allows us later to use two different iterative optimization algorithms for (3a) and (3b),
respectively. This is especially interesting for optimization problems where the loss function ℓ is
non-convex and its minimization is a difficult optimization problem itself, and, in other words, those
problems, where a more robust and stronger optimization method exhibits faster convergence.

We note that a similar split (for the case of splitting between the layers of a neural network, and
using gradient descent for both (3a) and (3b)) is also utilized in the fields of biologically plausible
backpropagation [50]–[53] and proximal backpropagation [54], leading to reparameterizations of
backpropagation. In Supplementary Material D, we provide further discussion of the split for the
special case of using the same optimizer for (3a) and (3b) from a theoretical perspective and show
that: (1) for gradient descent the split does not change the parameter updates, (2) for Newton’s
method in a rank-1 setting the split does not change the parameter updates, and, (3) under simplifying
assumptions, the sets of stationary points are invariant to the split for a broader class of deterministic
strategies.

3.2 METHOD

Equipped with the two-step optimization method (3), we can now introduce Newton Losses:

We propose optimizing (3a) with Newton’s method, while optimizing (3b) with gradient descent.

In the following, we formulate how we can solve optimizing (3a) with Newton’s method, or, whenever
we do not have access to the Hessian of ℓ, using a step pre-conditioned via the empirical Fisher
matrix. This allows us to transform an original loss function ℓ into a Newton loss ℓ∗, which allows
optimizing ℓ∗ with gradient descent, making it suitable for common machine learning frameworks.

We begin by considering the quadratic approximation of the loss function at the location y = f(x; θ)

ℓ̃y(z) = ℓ(y) + (z− y)⊤∇yℓ(y) +
1
2 (z− y)⊤∇2

yℓ(y) (z− y) . (4)

To find the location z⋆ of the stationary point of ℓ̃y(z), we set its derivative to 0:

∇zℓ̃y(z
⋆) = 0 ⇔ ∇yℓ(y) +∇2

yℓ(y)(z
⋆ − y) = 0 ⇔ z⋆ = y − (∇2

yℓ(y))
−1∇yℓ(y) . (5)

1For each step, z is initialized to the current model predictions f(x; θ).
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However, when ℓ is non-convex or the smallest eigenvalues of ∇2
yℓ(y) either become negative or

zero, z⋆ would not be the local minimum of ℓ but may instead be any other stationary point or lie
far away from y, leading to exploding gradients downstream. To resolve this issue, we introduce
Tikhonov regularization [55] with a strength of λ, which leads to a well-conditioned curvature matrix:

z⋆ = y − (∇2
yℓ(y) + λ · I)−1∇yℓ(y) . (6)

Using z⋆, we can plug the solution into (3b) to find the Newton loss ℓ∗ and compute its derivative as

ℓ∗z⋆(y) = 1
2 (z

⋆ − y)⊤(z⋆ − y) = 1
2 ∥z

⋆ − y∥22 and ∇yℓ
∗
z⋆(y) = y − z⋆ . (7)

Via this construction, we obtain the Newton loss ℓ∗z⋆ , a new convex loss, which itself has a gradient
that corresponds to a Newton step of the original loss. Thus, when we optimizing the Newton loss
with gradient descent, we obtain the proposed method.
Definition 1 (Newton Losses (Hessian)). For a loss function ℓ and a given current parameter vector θ,
we define the Hessian-based Newton loss via the empirical Hessian as

ℓ∗z⋆(y) = 1
2∥z

⋆ − y∥22 where z⋆i = ȳi −
(

1
N

∑N
j=1∇

2
ȳj
ℓ(ȳ) + λ · I

)−1

∇ȳiℓ(ȳ)

for all i ∈ {1, ..., N} and ȳ = f(x; θ).

We remark that computing and inverting the Hessian of the loss function is usually computationally
efficient. However, whenever the Hessian matrix of the loss function is not available, whether it
may be due to limitations of a differentiable algorithm, large computational cost, lack of a respective
implementation of the second derivative, etc., we may resort to using the empirical Fisher matrix as a
source for curvature information. We remark that the empirical Fisher matrix is not the same as the
Fisher information matrix [46], and that the Fisher information matrix is generally not available for
algorithmic losses. While the empirical Fisher matrix, as a source for curvature information, may be
of lower quality than the Hessian matrix, it has the crucial advantage that it can be readily computed
from the gradients, specifically,

F = Ex

[
∇f ℓ(f(x, θ)) · ∇f ℓ(f(x, θ))

⊤] . (8)

This means that, assuming a moderate dimension of the prediction space m, computing the empirical
Fisher comes at no significant overhead and may, conveniently, be performed in-place as we discuss
later. Again, we regularize the matrix via Tikhonov regularization with strength λ and can, accordingly,
define the empirical Fisher-based Newton loss as follows.
Definition 2 (Newton Loss (Fisher)). For a loss function ℓ, and a given current parameter vector θ,
we define the empirical Fisher-based Newton loss as

ℓ∗z⋆(y) = 1
2∥z

⋆ − y∥22 where z⋆i = ȳi −
(

1
N

∑N
j=1∇ȳj ℓ(ȳ)∇ȳj ℓ(ȳ)

⊤ + λ · I
)−1

∇ȳiℓ(ȳ)

for all i ∈ {1, ..., N} and ȳ = f(x; θ).

Before continuing with the implementation, integration, and further computational considerations,
we can make an interesting observation. In the case of using the trivial MSE loss, i.e., ℓ(y) =
1
2∥y − y⋆∥22 where y⋆ denotes a ground truth, the Newton loss collapses to the original MSE loss.
This demonstrates that Newton losses require non-trivial original losses. Another interesting aspect is
the arising fixpoint—the Newton loss of a Newton loss is equivalent to a simple Newton loss.

3.3 IMPLEMENTATION

After introducing Newton Losses, in this section, we discuss aspects of implementation and integration
into differentiable algorithm-based training architectures. In particular, we illustrate its integration in
Algorithms 1 and 2. Whenever we have access to the Hessian matrix of the algorithmic loss function,
it is generally favorable to utilize the Hessian-based approach (Algo. 1 / Def. 1), whereas we can
utilize the empirical Fisher-based approach (Algo. 2 / Def. 2) in any case.

In Algorithm 1, the differences to a regular training is that we use the original loss only for the
computation of the gradient (grad) and the Hessian matrix (hess) of the original loss. Then we
compute z⋆ (z_star). Here, depending on the automatic differentiation framework, we need to ensure
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Algorithm 1 Training with a Newton Loss

# Python style pseudo-code
model = ... # neural network
loss = ... # original loss fn
optimizer = ... # optim. of model
tik_l = ... # hyperparameter

for data, label in data_loader:
# apply a neural network model
y = model(data)

# compute gradient of orig. loss
grad = gradient(loss(y, label), y)
# compute Hessian (or alt. Fisher)
hess = hessian(loss(y, label), y)

# compute the projected optimum
z_star = (y - grad @ inverse(hess

+ tik_l * eye(g.shape[1]))).detach()

# compute the Newton loss
l = MSELoss()(y, z_star)

# backpropagate and optim. step
l.backward()
optimizer.step()

Algorithm 2 Training with InjectFisher

# implements the Fisher-based Newton
# loss via an injected modification
# of the backward pass:
class InjectFisher(AutoGradFunction):

def forward(ctx, x, tik_l):
assert len(x.shape) == 2
ctx.tik_l = tik_l
return x

def backward(ctx, g):
fisher = g.T @ g * g.shape[0]
input_grad = g @ inverse(fisher

+ ctx.tik_l * eye(g.shape[1]))
return input_grad, None

for data, label in data_loader:
# apply a neural network model
y = model(data)
# inject the Fisher backward mod.
y = InjectFisher.apply(y, tik_l)
# compute the original loss
l = loss(y, label)
# backpropagate and optim. step
l.backward()
optimizer.step()

not to backpropagate through the target z_star, which may be achieved, e.g., via “.detach()”,
“.stop_gradient()”, or “with no_grad():” depending on the choice of library. Finally, the
Newton loss l may be computed as a squared or MSE loss between the model output y and z_star
and an optimization step on l may be performed.

We note that, while we use a label from our data_loader, this label may be empty or an abstract
piece of information for the differentiable algorithm; in our experiments, we use information about
ordinal relationships between values as well as a shortest-path on a graph.

In Algorithm 2, we sketch how to apply the empirical Fisher-based Newton Losses. In particular, due
to the empirical Fisher matrix depending only on the gradient, we can compute it in-place during the
backward pass / backpropagation, which makes this variant particularly simple and efficient to apply.
This can be achieved via an injection of a custom gradient right before applying the original loss,
which replaces the gradient in-place by a gradient that corresponds to Definition 2. The injection is
performed by the InjectFisher function, which corresponds to an identity during the forward pass
but replaces the gradient by the gradient of the respective empirical Fisher-based Newton loss.

In both cases, the only additional hyperparameter to specify is the Tikonov regularization strength
λ (tik_l). This hyperparameter heavily depends on the algorithmic loss function, particularly, on
the magnitude of gradients provided by the algorithmic loss, which may vary drastically between
different methods and implementations. Other factors may be the choice of Hessian / Fisher, the
dimension of outputs m, the batch size N . Notably, for very large λ, the direction of the gradient
becomes more similar to regular gradient descent, and for smaller λ, the effect of Newton Losses
increases. We provide an ablation study for λ in Figure 4 for the ranking experiment.

4 EXPERIMENTS

For the experiments, we apply Newton Losses to eight methods for differentiable algorithms and
evaluate them on two established benchmarks for algorithmic supervision, i.e., problems where
an algorithm is applied to the predictions of a model and only the outputs of the algorithm are
supervised. Specifically, we focus on the tasks of ranking supervision and shortest-path supervision
because they each have a range of established methods for evaluating our approach. In ranking
supervision, only the relative order of a set of samples is known, while their absolute values remain
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unsupervised. The established benchmark for differentiable sorting and ranking algorithms is the
multi-digit MNIST sorting benchmark [2], [10], [12], [33], [34]. In shortest path supervision, only
the shortest-path of a graph is supervised, while the underlying cost matrix remains unsupervised.
The established benchmark for differentiable shortest-path algorithms is the Warcraft shortest-path
benchmark [15], [16], [18]. As these tasks require backpropagating through conventionally non-
differentiable algorithms, the respective approaches make the ranking or shortest-path algorithms
differentiable such that they can be used as part of the loss function. Finally, as an ablation study, we
also apply Newton Losses to the trivial case of classification, where we do not expect a performance
improvement, as the loss is not hard to optimize, but rather validate that the method still works.

4.1 RANKING SUPERVISION

CNN
CNN
CNN
CNN
CNN

Diff.
Rank

Figure 1: Overview over ranking supervision with a differentiable
sorting / ranking algorithm. A set of input images is (element-wise)
processed by a CNN, producing a scalar for each image. The scalars
are sorted / ranked by the differentiable ranking algorithm, which
returns the differentiable permutation matrix, which is compared
to the ground truth permutation matrix.

In this section, we explore ranking su-
pervision [33] with an array of differ-
entiable sorting-based losses. Here,
we use the four-digit MNIST sorting
benchmark [33], where sets of n four-
digit MNIST images are given, and
the supervision is the relative order of
these images corresponding to the dis-
played value, while the absolute val-
ues remain unsupervised. The goal is
to learn a CNN that maps each image
to a scalar value in an order preserv-
ing fashion. As losses, we use sorting
supervision losses based on the Neu-
ralSort [33], the SoftSort [34], the logistic Differentiable Sorting Network [12], and the monotonic
Cauchy DSN [2]. NeuralSort and SoftSort work by mapping an input list (or vector) of values to a
differentiable permutation matrix that is row-stochastic and indicates the order / ranking of the inputs.
Differentiable Sorting Networks offer an alternative to NeuralSort and SoftSort. DSNs are based
on sorting networks, a classic family of sorting algorithms that operate by conditionally swapping
elements. By introducing perturbations, DSNs relax the conditional swap operator to a differentiable
conditional swap and thereby continuously relax the sorting and ranking operators. We discuss
the background of each of these differentiable sorting and ranking algorithms in greater detail in
Supplementary Material A.

Setups. The sorting supervision losses are cross-entropy losses defined between the differentiable
permutation matrix produced by a respective differentiable sorting operator and the ground truth
permutation matrix corresponding to a ground truth ranking. The Cauchy DSN may be an exception
to the hard to optimize classification as it is quasi-convex [2]. We evaluate the sorting benchmark for
numbers of elements to be ranked n ∈ {5, 10} and use the percentage of rankings correctly identified
as well as percentage of individual element ranks correctly identified as evaluation metrics. For each
of the four original baseline methods, we compare it to two variants of their Newton losses: the
empirical Hessian and the empirical Fisher variant. For each setting, we train the CNN on 10 seeds
using the Adam optimizer [49] at a learning rate of 10−3 for 105 steps and a batch size of 100.

Table 1: Ranking supervision with differentiable sorting. The metric is the percentage of rankings correctly
identified (and individual element ranks correctly identified) averaged over 10 seeds. Statistically significant
improvements (significance level 0.05) are indicated bold black, and improved means are indicated in bold grey.

n = 5n = 5n = 5 NeuralSort [33] SoftSort [34] Logistic DSN [12] Cauchy DSN [2]

Baseline 71.33±2.05 (87.10±0.96) 70.70±2.60 (86.75±1.26) 53.56±18.04 (77.04±10.30) 85.09±0.77 (93.31±0.39)
NL (Hessian) 83.31±1.7083.31±1.7083.31±1.70 (92.54±0.7392.54±0.7392.54±0.73) 83.87±0.8183.87±0.8183.87±0.81 (92.72±0.3992.72±0.3992.72±0.39) 75.02±12.5975.02±12.5975.02±12.59 (88.53±06.0088.53±06.0088.53±06.00) 85.11±0.7885.11±0.7885.11±0.78 (93.31±0.34)
NL (Fisher) 83.93±0.6283.93±0.6283.93±0.62 (92.80±0.3092.80±0.3092.80±0.30) 84.03±0.5984.03±0.5984.03±0.59 (92.82±0.2492.82±0.2492.82±0.24) 63.11±30.6363.11±30.6363.11±30.63 (79.28±22.1679.28±22.1679.28±22.16) 84.95±0.79 (93.25±0.37)

n = 10n = 10n = 10 NeuralSort SoftSort Logistic DSN Cauchy DSN

Baseline 24.26±01.52 (74.47±0.83) 27.46±3.58 (76.02±1.92) 12.31±10.22 (58.81±16.79) 55.29±2.46 (87.06±0.85)
NL (Hessian) 48.76±05.8848.76±05.8848.76±05.88 (84.83±2.1384.83±2.1384.83±2.13) 55.07±1.0855.07±1.0855.07±1.08 (86.89±0.3186.89±0.3186.89±0.31) 42.14±22.3042.14±22.3042.14±22.30 (75.35±23.7775.35±23.7775.35±23.77) 56.49±1.0256.49±1.0256.49±1.02 (87.44±0.4087.44±0.4087.44±0.40)
NL (Fisher) 39.23±11.3839.23±11.3839.23±11.38 (81.14±4.9181.14±4.9181.14±4.91) 54.00±2.2454.00±2.2454.00±2.24 (86.56±0.6886.56±0.6886.56±0.68) 25.72±27.4225.72±27.4225.72±27.42 (52.18±36.51) 56.12±1.8656.12±1.8656.12±1.86 (87.35±0.6587.35±0.6587.35±0.65)
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Results. As displayed in Table 1, we can see that—for each original loss—Newton Losses improve
over their baselines. For NeuralSort, SoftSort, and Logistic DSNs, we find that using the Newton
losses substantially improves performance. Here, the reason is that these methods suffer from
vanishing and exploding gradients, especially for the more challenging case of n = 10. As expected,
we find that the Hessian Newton Loss leads to better results than the Fisher variant, except for
NeuralSort and SoftSort in the easy setting of n = 5, where the results are nevertheless quite close.
Monotonic differentiable sorting networks, i.e., the Cauchy DSNs, provide an improved variant of
DSNs, which have the property of quasi-convexity and have been shown to exhibit much better
training behavior out-of-the-box, which makes it very hard to improve upon the existing results.
Nevertheless, Hessian Newton Losses are on-par for the easy case of n = 5 and, notably, improve
the performance by more than 1% on the more challenging case of n = 10. In summary, we obtain
strong improvements on losses that are difficult-to-optimize, while on well-behaving losses the
improvements are smaller. This aligns with our goal of improving performance on losses that are
hard to optimize.

4.2 SHORTEST-PATH SUPERVISION

Figure 2: 12× 12 Warcraft shortest-path problem. An input terrain
map (left), the unsupervised ground truth cost embedding (center)
and the ground truth supervised shortest path (right).

In this section, we apply Newton
Losses to the shortest-path supervi-
sion task of the 12 × 12 Warcraft
shortest-path benchmark [15], [16],
[18]. Here, 12 × 12 Warcraft terrain
maps are given as 96 × 96 RGB im-
ages (e.g., Figure 2 left) and the super-
vision is the shortest path from the top
left to the bottom right (Figure 2 right)
according to a hidden cost embedding
(Figure 2 center). The hidden cost em-
bedding is not available for training.
The goal is to predict 12× 12 cost embeddings of the terrain maps such that the shortest path accord-
ing to the predicted embedding corresponds to the ground truth shortest path. Vlastelica et al. [16]
have shown that integrating an algorithm in the training pipeline substantially improves performance
compared to only using a neural network with an easy-to-optimize loss function, which has been
confirmed by subsequent work [15], [18]. For this task, we explore a set of families of algorithmic
supervision approaches: Relaxed Bellman-Ford [18] is a shortest-path algorithm relaxed via the
AlgoVision framework, which continuously relaxes algorithms by perturbing all accessed variables
with logistic distributions and approximating the expectation value in closed form. Stochastic Smooth-
ing [56] is a sampling-based differentiation method that can be used to relax, e.g., a shortest-path
algorithm by perturbing the input with probability distribution. Perturbed Optimizers with Fenchel-
Young Losses [15] build on stochastic smoothing and Fenchel-Young losses [57] and identify the
argmax to be the differential of max, which allows a simplification of stochastic smoothing, again
applied, e.g., to shortest-path learning problems. We use the same hyperparameters as shared by
previous works [15], [18].

Table 2: Shortest-path benchmark results for different variants of the
AlgoVision-relaxed Bellman-Ford algorithm [18]. The metric is the
percentage of perfect matches averaged over 10 seeds. Significant
improvements are bold black, and improved means are bold grey.

Variant For+L1 For+L2
2 While+L1 While+L2

2

Baseline 94.19±0.33 95.90±0.2195.90±0.2195.90±0.21 94.30±0.20 95.77±0.41

NL (Fisher) 94.52±0.3494.52±0.3494.52±0.34 95.37±0.54 94.47±0.3494.47±0.3494.47±0.34 95.93±0.2895.93±0.2895.93±0.28

Relaxed Bellman-Ford. The re-
laxed Bellman-Ford algorithm [18]
is a continuous relaxation of the
Bellman-Ford algorithm via the Al-
goVision library. To increase the num-
ber of settings considered, we ex-
plore four sub-variants of the algo-
rithm: For+L1, For+L2

2, While+L1,
and While+L2

2. Here, For / While
refers to the distinction between us-
ing a While and For loop in Bellman-Ford, while L1 vs. L2

2 refer to the choice of metric between
shortest paths. As computing the Hessian of the AlgoVision Bellman-Ford algorithm is too expensive
with the PyTorch implementation, for this evaluation, we restrict it to the empirical Fisher-based
Newton loss. The results displayed in Table 2. While we can observe small improvements in three
out out of four settings and the best result is achieved by Newton Losses, the differences are small.
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This can be attributed to (i) the high performance of the baseline algorithm on this benchmark, and
(ii) only being able to use the empirical Fisher-based Newton loss which is expected to underperform
compared to the Hessian Newton loss.

Stochastic Smoothing. After discussing the analytical relaxation, we continue with stochastic
smoothing approaches. First, we consider stochastic smoothing [56], which allows perturbing the
input of a function with an exponential family distribution to estimate the gradient of the smoothed
function. For the baseline, we apply stochastic smoothing to a hard non-differentiable Dijkstra
algorithm based loss function to relax it via Gaussian noise (“SS of loss”). We utilize variance
reduction via the method of covariates. As we detail in Supplementary Material A.4, stochastic
smoothing can also be used to estimate the Hessian of the smoothed function [56]. Based on this
result, we can construct the Hessian Newton loss. As an extension to stochastic smoothing, we apply
stochastic smoothing only to the non-differentiable Dijstra algorithm (thereby computing its Jacobian
matrix) but use a differentiable loss to compare the predicted relaxed shortest-path to the ground truth
shortest-path (“SS of algorithm”). In this case, the Hessian Newton loss is not applicable because the
output of the smoothed algorithm is high dimensional and the Hessian of the loss becomes intractable.
Nevertheless, we can apply the Fisher-based Newton loss. We evaluate both approaches for 3, 10,
and 30 samples.

0 10 20 30 40 50
Epochs

55
60
65
70
75
80
85

Ac
c.

 [%
]

Baseline
NL (Hessian)
NL (Fisher)

Figure 3: Test accuracy (perfect matches) plot
for ‘SS of loss’ with 10 samples on the War-
craft shortest-path benchmark. Displayed is the
mean and 95% conf. interval.

In Table 3, we can observe that Newton Losses im-
proves the results for stochastic smoothing in each
case with more than 3 samples. The reason for the
poor performance on 3 samples is that the Hessian or
empirical Fisher, respectively, is estimated using only
3 samples, which makes the estimate unstable. For
10 and 30 samples, the performance improves com-
pared to the original method. In Figure 3, we display
a respective accuracy plot. When comparing “SS of
loss” and “SS of algorithm”, we can observe that the
extension to smoothing only the algorithm improves
performance for at least 10 samples. Here, the reason,
again, is that smoothing the algorithm itself requires
estimating the Jacobian instead of only the gradient;
thus, a larger number of samples is necessary; however
starting at 10 samples, smoothing the algorithm performs better, which means that the approach is
better at utilizing a given sample budget.

Perturbed Optimizers with Fenchel-Young Losses. Perturbed optimizers with a Fenchel-Young
loss [15] is a formulation of solving the shortest path problem as an argmax problem, and differentiat-
ing this problem using stochastic smoothing-based perturbations and a Fenchel-Young loss. Berthet et
al. [15] mentioned that their approach works well for small numbers of samples, which we can
confirm as seen in Table 3 where the accuracy is similar for each number of samples. By extending
their formulation to computing the Hessian of the Fenchel-Young loss, we can compute the Newton
loss, and find that we can achieve improvements of more than 2%. However, for Fenchel-Young
losses, which are defined via their derivative, the empirical Fisher is not particularly meaningful,
leading to equivalent performance between the baseline and the Fisher Newton loss. An interesting
observation is that perturbed optimizers with Fenchel-Young losses perform better than stochastic
smoothing in the few-sample regime, whereas stochastic smoothing performs better with larger
numbers of samples.

Table 3: Shortest-path benchmark results for the stochastic smoothing of the loss (including the algorithm),
stochastic smoothing of the algorithm (excluding the loss), and perturbed optimizers with the Fenchel-Young
loss. The metric is the percentage of perfect matches averaged over 10 seeds. Significant improvements are bold
black, and improved means are bold grey.

Method SS of loss SS of algorithm PO w/ FY loss

# Samples 3 10 30 3 10 30 3 10 30

Baseline 62.83±5.2962.83±5.2962.83±5.29 77.01±2.18 85.48±1.23 57.55±4.5857.55±4.5857.55±4.58 78.70±1.90 87.26±1.50 80.64±0.75 80.39±0.57 80.71±1.28

NL (Hessian) 62.40±5.48 78.82±2.1278.82±2.1278.82±2.12 85.94±1.3385.94±1.3385.94±1.33 — — — 83.09±3.1183.09±3.1183.09±3.11 81.13±3.5881.13±3.5881.13±3.58 83.45±2.2183.45±2.2183.45±2.21

NL (Fisher) 58.80±5.10 78.74±1.6878.74±1.6878.74±1.68 86.10±0.6086.10±0.6086.10±0.60 53.82±8.45 79.24±1.7879.24±1.7879.24±1.78 87.41±1.1387.41±1.1387.41±1.13 80.70±0.6580.70±0.6580.70±0.65 80.37±0.98 80.45±0.78
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4.3 ABLATION STUDY

Finally, as an ablation study, we want to ensure that Newton Losses do not impede training for
the simple case of MNIST classification with a softmax cross-entropy loss. We remark that, as
cross-entropy is convex and very well-behaved objective, we cannot expect improvements for this
experiment. To facilitate a fair and extensive comparison, we benchmark training on 5 models and
with 2 optimizers: We use 5-layer fully connected ReLU networks with 100 (M1), 400 (M2) and
1 600 (M3) neurons per layer, as well as the convolutional LeNet-5 with sigmoid activations (M4) and
LeNet-5 with ReLU activations (M5). Further, we use SGD and Adam [49] as optimizers. To evaluate
both early performance and full training performance, we test after 1 and 200 epochs. We run each
experiment with 20 seeds, which allows us to perform significance tests (significance level 0.05).
As displayed in Table 4, we find that Newton Losses perform indistinguishable to regular training,
specifically, in 9 out of 20 cases it is better and in 7 cases equal. We find that it is significantly better
in a single case, which is to be expected from equal methods (on average 1/20 tests will be significant
at a significance level of 0.05). In conclusion, we can observe that for the trivial case of classification
with the convex cross-entropy loss, Newton Losses maintains the original training performance.

Table 4: Ablation study: MNIST classification. Results averaged over 20 seeds. A better mean is indicated by a
gray bold number and a significantly better mean is indicated by a black bold number.

Optim. SGD Optimizer Adam Optimizer

Ep. Method / Model M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

1 SMCE loss 93.06% 94.26% 94.77% 10.57% 96.25%96.25%96.25% 94.75% 96.36% 95.90% 90.60% 97.56%
1 NL (Hessian) 93.06% 94.28%94.28%94.28% 94.77% 10.57% 96.23% 94.75% 96.36% 95.91%95.91%95.91% 90.63%90.63%90.63% 97.63%97.63%97.63%

200 SMCE loss 98.13%98.13%98.13% 98.40% 98.46% 99.06%99.06%99.06% 99.07% 98.12% 98.46% 98.62% 98.95% 99.23%99.23%99.23%
200 NL (Hessian) 98.11% 98.42%98.42%98.42% 98.46% 99.04% 99.11%99.11%99.11% 98.12% 98.50%98.50%98.50% 98.63%98.63%98.63% 98.97%98.97%98.97% 99.20%

4.4 RUNTIME ANALYSIS

We provide tables with runtimes for the experiments in Supplementary Material B. We can observe that
the runtimes between the baseline and empirical Fisher-based Newton Losses are indistinguishable for
all cases. For the analytical relaxations of differentiable sorting algorithms, where the computation of
the Hessian can become expensive with automatic differentiation (i.e., without a custom derivation of
the Hessian and without vectorized Hessian computation), we observed overheads between 10% and
2.6×. For all stochastic approaches, we observe indistinguishable runtimes for Hessian-based Newton
Losses. In summary, applying the Fisher variant of Newton Losses has a minimal computational
overhead, whereas, for the Hessian variant, any overhead depends on the implementation of the
computation of the Hessian of the algorithmic loss function. For applications where the the output
dimensionality m becomes very large such that inversion of the empirical Fisher becomes expensive,
we refer to the Woodbury matrix identity [58], which allows simplifying the computation via its
low-rank decomposition. A corresponding deviation is included in Supplementary Material G.

5 CONCLUSION

In this work, we focused on weakly-supervised learning problems that require integration of differ-
entiable algorithmic procedures in the loss function. This leads to non-convex loss functions that
exhibit vanishing and exploding gradients, making them hard to optimize. Thus, we proposed a novel
approach for improving performance of algorithmic losses building upon the curvature information
of the loss. For this, we split the optimization procedure into two steps: optimizing on the loss itself
using Newton’s method to mitigate vanishing and exploding gradients, and then optimizing the neural
network with gradient descent. We simplified this procedure via a transformation of an original
loss function into a Newton loss, which comes in two flavors: a Hessian variant for cases where the
Hessian is available and an empirical Fisher variant as an alternative. We evaluated Newton Losses
on a set of algorithmic supervision settings, demonstrating that the method can drastically improve
performance for weakly-performing differentiable algorithms. We hope that the community adapts
Newton Losses for learning with differentiable algorithms and see great potential for combining it
with future differentiable algorithms in unexplored territories of the space of differentiable relaxations,
algorithms, operators, and simulators.
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A ALGORITHMIC SUPERVISION LOSSES

In this section, we extend the discussion of SoftSort, DiffSort, AlgoVision, and stochastic smoothing.

A.1 SOFTSORT AND NEURALSORT

SoftSort [34] and NeuralSort [33] are prominent yet simple examples of a differentiable algorithm. In
the case of ranking supervision, they obtain an array or vector of scalars and return a row-stochastic
matrix called the differentiable permutation matrix P , which is a relaxation of the argsort operator.
Note that, in this case, a set of k inputs yields a scalar for each image and thereby y ∈ Rk. As a
ground truth label, a ground truth permutation matrix Q is given and the loss between P and Q is
the binary cross entropy loss ℓSS(y) = BCE (P (y), Q) . Minimizing the loss enforces the order of
predictions y to correspond to the true order, which is the training objective. SoftSort is defined as

P (y) = softmax
(
−
∣∣y⊤ ⊖ sort(y)

∣∣ /τ) (9)

= softmax
(
−
∣∣y⊤ ⊖ Sy

∣∣ /τ) (10)

where τ is a temperature parameter, “sort” sorts the entries of a vector in non-ascending order, ⊖ is
the element-wise broadcasting subtraction, | · | is the element-wise absolute value, and “softmax”
is the row-wise softmax operator, as also used in (32) (right). NeuralSort is defined similarly and
omitted for the sake of brevity. In the limit of τ → 0, SoftSort and NeuralSort converge to the exact
ranking permutation matrix [33], [34]. A respective Newton loss can be implemented using automatic
differentiation according to Definition 1 or via the Fisher information matrix using Definition 2.

A.2 DIFFSORT

Differentiable sorting networks (DSN) [2], [12] offer a strong alternative to SoftSort and NeuralSort.
They are based on sorting networks, a classic family of sorting algorithms that operate by conditionally
swapping elements [59]. As the locations of the conditional swaps are pre-defined, they are suitable
for hardware implementations, which also makes them especially suited for continuous relaxation.
By perturbing a conditional swap with a distribution and solving for the expectation under this
perturbation in closed-form, we can differentially sort a set of values and obtain a differentiable
doubly-stochastic permutation matrix P , which can be used via the BCE loss as in Section A.1. We
can obtain the respective Newton loss either via the Hessian computed via automatic differentiation
or via the Fisher information matrix.

A.3 ALGOVISION

AlgoVision [18] is a framework for continuously relaxing arbitrary simple algorithms by perturbing
all accessed variables with logistic distributions. The method approximates the expectation value
of the output of the algorithm in closed-form and does not require sampling. For shortest-path
supervision, we use a relaxation of the Bellman-Ford algorithm [60], [61] and compare the predicted
shortest path with the ground truth shortest path via an MSE loss. The input to the shortest path
algorithm is a cost embedding matrix predicted by a neural network.

A.4 STOCHASTIC SMOOTHING

Another differentiation method is stochastic smoothing [56]. This method regularizes a non-
differentiable and discontinuous loss function ℓ(y) by randomly perturbing its input with random
noise ϵ (i.e., ℓ(y + ϵ)). The loss function is then approximated as ℓ(y) ≈ ℓϵ(y) = Eϵ[ℓ(y + ϵ)].
While ℓ may be non-differentiable, its smoothed stochastic counterpart ℓϵ is differentiable and the
corresponding gradient and Hessian can be estimated via the following result.
Lemma 1 (Exponential Family Smoothing, adapted from Lemma 1.5 in Abernethy et al. [56]). Given
a distribution over Rm with a probability density function µ of the form µ(ϵ) = exp(−ν(ϵ)) for any
twice-differentiable ν, then

∇ylϵ(y) = ∇yEϵ [ℓ(y + ϵ)] = Eϵ

[
ℓ(y + ϵ)∇ϵν(ϵ)

]
, (11)

∇2
y lϵ(y) = ∇2

yEϵ [ℓ(y + ϵ)] = Eϵ

[
ℓ(y + ϵ)

(
∇ϵν(ϵ)∇ϵν(ϵ)

⊤−∇2
ϵν(ϵ)

)]
. (12)
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A variance-reduced form of (11) and (12) is

∇yEϵ [ℓ(y + ϵ)] = Eϵ

[
(ℓ(y + ϵ)− ℓ(y))∇ϵν(ϵ)

]
, (13)

∇2
yEϵ [ℓ(y + ϵ)] = Eϵ

[
(ℓ(y + ϵ)− ℓ(y))

(
∇ϵν(ϵ)∇ϵν(ϵ)

⊤−∇2
ϵν(ϵ)

)]
. (14)

In this work, we use this to estimate the gradient of the shortest path algorithm. By including the
second derivative, we extend the perturbed optimizer losses to Newton losses. This also lends itself
to full second-order optimization.

A.5 PERTURBED OPTIMIZERS WITH FENCHEL-YOUNG LOSSES

Berthet et al. [15] build on stochastic smoothing and Fenchel-Young losses [57] to propose perturbed
optimizers with Fenchel-Young losses. For this, they use algorithms, like Dijkstra, to solve optimiza-
tion problems of the type maxw∈C⟨y, w⟩, where C denotes the feasible set, e.g., the set of valid paths.
Berthet et al. [15] identify the argmax to be the differential of max, which allows a simplification of
stochastic smoothing. By identifying similarities to Fenchel-Young losses, they find that the gradient
of their loss is

∇yℓ(y) = Eϵ

[
argmax

w∈C
⟨y + ϵ, w⟩

]
− w⋆ (15)

where w⋆ is the ground truth solution of the optimization problem (e.g., shortest path). This
formulation allows optimizing the model without the need for computing the actual value of the loss
function. Berthet et al. [15] find that the number of samples—surprisingly—only has a small impact
on performance, such that 3 samples were sufficient in many experiments, and in some cases even
a single sample was sufficient. In this work, we confirm this behavior and also compare it to plain
stochastic smoothing. We find that for perturbed optimizers, the number of samples barely impacts
performance, while for stochastic smoothing more samples always improve performance. If only few
samples can be afforded (like 10 or less), perturbed optimizers are better as they are more sample
efficient; however, when more samples are available, stochastic smoothing is superior as it can utilize
more samples better.

B RUNTIMES

In this supplementary material, we provide and discuss runtimes for the experiments.

In the differentiable sorting and ranking experiment, as shown in Table 5, we observe that the runtime
from regular training compared to the Newton loss with the Fisher is only marginally increased. This
is because computing the Fisher and inverting it is very inexpensive. We observe that the Newton loss
with the Hessian, however, is more expensive: due to the implementation of the differentiable sorting
and ranking operators, we compute the Hessian by differentiating each element of the gradient, which
makes this process fairly expensive. An improved implementation could make this process much
faster. Nevertheless, there is always some overhead to computing the Hessian compared to the Fisher.

Table 5: Runtimes for the differentiable sorting results corresponding to Table 1. Times of full training in
seconds on a single A6000 GPU.

n = 5 n = 10

DSN NeuralSort SoftSort DSN NeuralSort SoftSort

Baseline 4214 3712 3683 6192 5236 5011
NL (Hessian) 8681 4057 4216 22617 6154 6010
NL (Fisher) 4232 3762 3730 6239 5153 5098

In Table 6, we show the runtimes for the shortest-path experiment with AlgoVision. Here, we observe
that the runtime overhead is very small.

In Table 7, we show the runtimes for the shortest-path experiment with stochastic methods. Here, we
observe that the runtime overhead is also very small. Here, the Hessian is also cheap to compute as it
is not computed with automatic differentiation.
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Table 6: Runtimes for the shortest-path results corresponding to Table 2. Times of full training in seconds on a
single A6000 GPU.

Algorithm Loop For While
Loss L1 L2

2 L1 L2
2

Baseline 624 606 911 913
NL (Fisher) 608 634 920 917

Table 7: Runtimes for the shortest-path results corresponding to Table 3. Times of full training in seconds on a
single A6000 GPU.

Loss SS of loss SS of algorithm PO w/ FY loss
# Samples 3 10 30 3 10 30 3 10 30

Baseline 894 1419 3183 916 1401 3170 646 1157 2947
NL (Hessian) 902 1398 3159 − − − 666 1161 2971
NL (Fisher) 882 1394 3217 901 1382 3200 667 1168 2973

C HYPERPARAMETER λ

For the experiments in the tables, select λ based one seed from the grid λ ∈
[0.001, 0.01, 0.1, 1, 10, 100, 100]. For the experiments in Tables 2 and 9, we present the values
in the Tables 8 and 9, respectively. For the experiment in Table 2, we use a Tikhonov regularization
strength of λ = 1000, which was selected based on the first out of the four algorithms (For+L1).

Table 8: Tikhonov regularization strengths λ for the experiment in Table 1.

n = 5 n = 10

NeuralSort SoftSort Logistic DSN Cauchy DSN NeuralSort SoftSort Logistic DSN Cauchy DSN

NL (Hessian) λ = 0.01 λ = 10 λ = 0.1 λ = 0.1 λ = 0.01 λ = 1 λ = 0.1 λ = 0.1
NL (Fisher) λ = 0.1 λ = 10 λ = 0.1 λ = 0.1 λ = 100 λ = 100 λ = 0.1 λ = 0.1

Table 9: Tikhonov regularization strengths λ for the experiment in Table 3.

Loss SS of loss SS of algorithm PO w/ FY loss
# Samples 3 10 30 3 10 30 3 10 30

NL (Hessian) λ = 1000 λ = 1000 λ = 1000 — — — λ = 1000 λ = 1000 λ = 1000
NL (Fisher) λ = 0.1 λ = 0.1 λ = 0.1 λ = 1000 λ = 1000 λ = 1000 λ = 1000 λ = 1000 λ = 1000

In Figure 4, we provide an ablation study for the hyperparameter λ for SoftSort and NeuralSort.
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Figure 4: Ablation Study wrt. λ. Displayed is the accuracy of individual element ranks correctly identified.
We use the experimental setting from Table 1 for NeuralSort and SoftSort and n = 5 (top right, bottom left).
Further, to ablate the hyperparameter of the base methods NeuralSort and SoftSort (τ ), we display the results
for τ ∈ [1, 0.1]. Throughout the paper, we selected the optimal hyperparameter settings for each baseline,
in particular, τ = 0.1 for NeuralSort and τ = 1 for SoftSort, and used the optimal baseline hyperparameter
configurations also for Newton Losses.
In the plots, we consider 13 values for λ from 0.001 to 1000. We can observe that Newton Losses are robust
over multiple orders of magnitude for the hyperparameter λ.
The plots are averaged over 2 runs and individual runs are indicated with reduced opacity [will be updated to 10
runs for the camera-ready].
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D EQUIVALENCES UNDER THE SPLIT

In this section, we consider the splitting of the optimization step from (2) into (3a) and (3b) in greater
detail. First, we consider the equivalence between (2) and (3a) + (3b) for each case being gradient
descent which has also been considered by [54] in a different context. Second, we consider the case
of this equivalence for Newton’s method and find that it is maintained in a rank-1 setting. Third, we
reparameterize optimization steps to show that, under simplifying assumptions, the sets of stationary
points are equivalent for a broader class of iterative optimization algorithms.

D.1 LEMMA 2

Using gradient descent step according to (2) is equivalent to using two gradient steps of the alternating
scheme (3), namely one step for (3a) and one step for (3b):
Lemma 2 (Gradient Descent Step Equality between (2) and (3a)+(3b)). A gradient descent step
according to (2) with arbitrary step size η coincides with two gradient descent steps, one according to
(3a) and one according to (3b), where the optimization over θ has a step size of η and the optimization
over z has a unit step size.

Proof. Let θ ∈ Θ be the current parameter vector and let z = f(x; θ). Then the gradient descent
steps according to (3a) and (3b) with step sizes 1 and η > 0 are expressed as

z← z−∇z ℓ(z) = f(x; θ)−∇f ℓ(f(x; θ)) (16)

θ ← θ − η∇θ
1
2∥z− f(x; θ)∥22 = θ − η

∂ f(x; θ)

∂ θ
· (f(x; θ)− z) . (17)

Combining (16) and (17) eventually leads to

θ ← θ − η
∂ f(x; θ)

∂ θ
·(f(x; θ)−f(x; θ)+∇f ℓ(f(x; θ)))

= θ − η∇θ ℓ(f(x; θ)), (18)
which is exactly a gradient descent step of problem (1) starting at θ ∈ Θ with step size η.

D.2 LEMMA 3

Here, we show that a corresponding equality also holds for a special case of the Newton step.
Lemma 3 (Newton Step Equality between (2) and (3a)+(3b) for m = 1). In the case of m = 1 (i.e.,
a one-dimensional output), a Newton step according to (2) with arbitrary step size η coincides with
two Newton steps, one according to (3a) and one according to (3b), where the optimization over θ
has a step size of η and the optimization over z has a unit step size.

Proof. Let θ ∈ Θ be the current parameter vector and let z = f(x; θ). Then applying Newton steps
according to (3a) and (3b) leads to

z← z− (∇2
z ℓ(z))

−1∇z ℓ(z)

= f(x; θ)− (∇2
f ℓ(f(x; θ)))

−1∇f ℓ(f(x; θ)) (19)

θ ← θ − η

(
∇2

θ

1

2
∥z− f(x; θ)∥22

)−1

∇θ
1

2
∥z− f(x; θ)∥22 (20)

= θ − η

(
∂

∂θ

[
∂ f(x; θ)

∂ θ
· (f(x; θ)− z)

])−1
∂ f(x; θ)

∂ θ
· (f(x; θ)− z) (21)

= θ − η

(
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
(f(x; θ)−z)+

(
∂ f(x; θ)

∂ θ

)2)−1
∂ f(x; θ)

∂ θ
· (f(x; θ)− z)

Inserting (19), we can rephrase the update above as

θ ← θ − η

(
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
(∇2

f ℓ(f(x; θ)))
−1∇f ℓ(f(x; θ)) +

(
∂ f(x; θ)

∂ θ

)2)−1

· ∂ f(x; θ)

∂ θ
· (∇2

f ℓ(f(x; θ)))
−1∇f ℓ(f(x; θ))

(22)
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By applying the chain rule twice, we further obtain

∇2
θℓ(f(x; θ)) =

∂

∂θ

[
∂ f(x; θ)

∂ θ
∇f ℓ(f(x; θ))

]
=

∂

∂θ

[
∂ f(x; θ)

∂ θ

]
∇f ℓ(f(x; θ)) +

∂ f(x; θ)

∂ θ

∂

∂θ
∇f ℓ(f(x; θ))

=
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
∇f ℓ(f(x; θ)) +

∂ f(x; θ)

∂ θ
∇f

∂

∂θ
ℓ(f(x; θ))

=
∂

∂θ

[
∂ f(x; θ)

∂ θ

]
∇f ℓ(f(x; θ)) +

(
∂ f(x; θ)

∂ θ

)2
∇2
f ℓ(f(x; θ)),

which allows us to rewrite (22) as

θ′ = θ −
(
(∇2

f ℓ(f(x; θ)))
−1∇2

θ ℓ(f(x; θ))
)−1

(∇2
f ℓ(f(x; θ)))

−1∇θ ℓ(f(x; θ))

= θ − (∇2
θ ℓ(f(x; θ)))

−1∇θ ℓ(f(x; θ)),

which is exactly a single Newton step of problem (1) starting at θ ∈ Θ.

D.3 LEMMA 4

In this section, we reparameterize update step of deterministic iterative optimization methods to show
an equality of the sets of convergence points under model assumptions. Specifically, we can express
optimization steps corr. to (2) and (3a) as

θ ← arg min
θ′∈Θ

ℓ(f(x; θ′)) + Ω1(θ
′, θ)

and z⋆ ← argmin
z∈Y

ℓ(z) + Ω2(z, f(x; θ))
(23)

where Ω is a regularizer such that one step of a respective deterministic iterative optimization method
(such as gradient descent) corresponds to the global optimum of the regularized optimization problems
in (23). More specifically, Ω1 corresponds to the optimizer used in (2) and Ω2 corresponds to the
optimizer used in (3a). We note that the regularizer Ω is not a neural network regularizer like weight
regularization or dropout; instead, the regularizers are reparameterizations of local optimization
strategies. The reason for using the perspective of reparameterizing optimization steps as regularized
cases of the global optimizations problems is exclusively for enabling a generality of our theory.
We further note that a regularizer Ω is a valid choice if and only if it corresponds to a step of a
respective deterministic iterative optimization method. As an example, the regularizer corresponding
to a Newton step is Ω(z, f(x; θ)) = ℓ̃f(x;θ)(z) − ℓ(z). Formally, given an input x we consider
Y = {f(x; θ) , θ ∈ Θ} ⊆ RN×m as the set of attainable outputs. Here, we assume Y = RN×m,
which generally holds for over-parameterized universal function approximators like neural networks,
and we assume that such output remains attainable during training, which excludes a catastrophic
collapse of the network, e.g., to a constant output. The regularizer Ω has the standard property that
Ω(a, b) = 0 for any a = b. Note that the explicit form of the regularizer Ω does not need to be known
nor computed. In SM E, we discuss explicit choices of Ω and provide further discussion.

This allows us to express the set of points of convergence for the iterative optimization methods.
Recall that an iterative optimization method has converged if it has arrived at a fixed point, i.e, the
parameters do not change when applying an update. The set of points of convergence for (2) is

A =
{
θ | θ ∈ arg min

θ′∈Θ
ℓ(f(x; θ′)) + Ω1(θ

′, θ)
}
,

i.e., those points at which the update does not change θ. For the two-step optimization method (3),
the set of points of convergence is

B =
{
θ | f(x; θ) = z⋆ ∈ argmin

z∈Y
ℓ(z) + Ω2(z, f(x; θ))

}
as the method has converged if the update (3a) yields z⋆ = z because the subsequent update (3b) will
not change θ as z⋆ = z = f(x; θ) already holds, and thus 1

2∥z
⋆ − f(x; θ)∥22 = 0.

Now, we show that the iterative method (2) and the alternating method (3) lead to the same sets of
convergence points, i.e., to the same sets possible solutions.
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Lemma 4 (Equality of the Sets of Convergence Points). Assuming Ω1 = Ω2 being valid in accordance
to Equation 23, and assuming the model as described in this section, the setA of points of convergence
obtained by the iterative optimization method (2) is equal to the set B of points of convergence
obtained by the two-step iterative optimization method (3).

Proof. (A ⊂ B) First, we show that any point in A also lies in B. By definition, for each
point in A, the optimization step (2) does not change θ, i.e., θ′ = θ. Thus, f(x; θ) = f(x; θ′) ∈
argminz∈Y ℓ(z) + Ω2(z, f(x; θ)), and therefore θ ∈ B.

(B ⊂ A) Second, we show that any point in B also lies in A. For each θ ∈ B, we
know that, by definition, f(x; θ) = z⋆ ∈ argminz∈Y ℓ(z) + Ω2(z, f(x; θ)), therefore θ ∈
argminθ′∈Θ ℓ(f(x; θ′)) + Ω2(f(x; θ

′), f(x; θ)) where Ω2(f(x; θ), f(x; θ)) = 0 = Ω1(θ, θ), and,
therefore θ ∈ A.

Lemma 4 states the equivalence of the original training (2) and its counterpart (3) wrt. their possible
points of convergence (i.e., solutions) for an arbitrary choice of the iterative method as long as
Ω1 = Ω2, i.e., as long as the optimization method in (2) equals the optimization method in (3a).
Remark 1 (Generality of Lemma 4). The choice of the optimization method in (3b) is arbitrary and
does not have to match the one used in (3a). Thus, Lemma 4 states that the points of convergence
(i.e., solutions) are the same between using Newton’s method and using Newton Losses.

E REGULARIZERS Ω

In this section, we provide a more detailed discussion, how the regularization term Ω in (23) induces
different iterative optimization methods.

We note that simply choosing any regularizer that does not correspond to a respective optimization
step, such as Ω¬(x, y) = ∥x− y∥22, is not valid. The reason for this is that we require a regularizer
that is a reparameterization of a respective optimization step.

The simple setting, where (3a) represents a basic gradient descent, i.e.,

z⋆ ← z− η∇ℓ(z), z = f(x; θ) , (24)

can be obtained by choosing a regularization term as

Ω(z, f(x; θ)) = ℓ(f(x; θ)) + η∇f ℓ(f(x; θ))
⊤(z− f(x; θ))

+ 1
2 (z− f(x; θ))⊤(z− f(x; θ))− ℓ(z). (25)

Then, the first-order optimality conditions for
minz ℓ(z) + Ω(z, f(x; θ)) are

∇z (ℓ(z) + Ω(z, f(x; θ))) = η∇f ℓ(f(x; θ)) + z− f(x; θ) = 0, (26)

which leads to the gradient step

z = f(x; θ)− η∇f ℓ(f(x; θ)) . (27)

Alternatively, we can ask for the choice of the regularization term Ω corresponding to a Newton step
in (3a), i.e.,

z⋆ ← z− η(∇2ℓ(z))−1∇ℓ(z), z = f(x; θ) . (28)

In this case, by choosing

Ω(z, f(x; θ)) = ℓ(f(x; θ)) + η(z−f(x; θ))⊤∇f ℓ(f(x; θ)) (29)

+ 1
2 (z−f(x; θ))

⊤∇2
f ℓ(f(x; θ))(z−f(x; θ))−ℓ(z),

the first-order optimality conditions for
minz ℓ(z) + Ω(z, f(x; θ)) are

∇z (ℓ(z) + Ω(z, f(x; θ))) = η∇f ℓ(f(x; θ)) +∇2
f ℓ(f(x; θ))(z− f(x; θ)) = 0, (30)

which is equivalent to a Newton step

z = f(x; θ)− η(∇2ℓ(f(x; θ)))−1∇ℓ(f(x; θ)) . (31)
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F NEWTON LOSSES OF TRIVIAL LOSSES

For illustrative purposes, in this section, we present examples of Newton losses of trivial losses,
which we can solve in closed form.

A popular loss function for classification is the softmax cross entropy (SMCE) loss, defined as

ℓSMCE(y) =

k∑
i=1

−pi log qi , (32)

where qi =
exp(yi)∑k
j=1 exp(yj)

.

Example 1 (Softmax cross-entropy loss). For the SMCE loss, the induced Newton loss is given as

ℓ∗SMCE(y) =
1

2
∥z⋆ − y∥22 (33)

where the element-wise Hessian variant is

z⋆E = −
(
diag(q)− qq⊤

)−1
(q − p) + y , (34)

the empirical Hessian variant is

z⋆H = −E
[
diag(q)− qq⊤

]−1
(q − p) + y , (35)

and the empirical Fisher variant is

z⋆F = −E
[
(q − p)(q − p)⊤

]−1
(q − p) + y . (36)

A less trivial example is the binary cross-entropy (BCE) loss with

ℓBCE(y) = BCE(y, p) (37)

= −
m∑
i=1

pi log yi + (1− pi) log(1− yi) ,

where p ∈ ∆m is a probability vector encoding of the ground truth.
Example 2 (Binary cross-entropy loss). For the BCE loss, the induced Newton loss is given as

ℓ∗BCE(y) =
1

2
∥z⋆ − y∥22 , (38)

where the element-wise Hessian variant is

z⋆E = − diag
(
−p⊘ y2 + (1− p)⊘ (1− y)2

)−1

(p⊘ y − (1− p)⊘ (1− y)) + y, (39)

the empirical Hessian variant is

z⋆H = −diag
(
Ey

[
−p⊘ y2 + (1− p)⊘ (1− y)2

])−1

(p⊘ y − (1− p)⊘ (1− y)) + y, (40)

and the empirical Fisher variant is

z⋆F = −Ey [(p⊘ y − (1− p)⊘ (1− y))

(p⊘ y − (1− p)⊘ (1− y))
⊤
]−1

(p⊘ y − (1− p)⊘ (1− y)) + y, (41)

and where ⊙ and ⊘ are element-wise operations.

The BCE loss is often extended using the logistic sigmoid function to what is called the sigmoid
binary cross-entropy loss (SBCE), defined as

ℓSBCE(y) = BCE(σ(y), p) (42)

where σ(x) =
1

1 + exp(−x)
.
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Example 3 (Sigmoid Binary cross-entropy loss). For the SBCE loss, the induced Newton loss is
given as

ℓ∗SBCE(y) =
1

2
∥z⋆ − y∥22 (43)

where the element-wise Hessian variant is

z⋆E = −diag
(
σ(y)− σ(y)2

)−1
(σ(y)− p) + y , (44)

the empirical Hessian variant is

z⋆H = −diag
(
Ey

[
σ(y)− σ(y)2

] )−1
(σ(y)− p) + y , (45)

and the empirical Fisher variant is

z⋆F = −Ey

[
(σ(y)− p)(σ(y)− p)⊤

]−1
(σ(y)− p) + y , (46)

and where ⊙ and ⊘ are element-wise operations.

G WOODBURY MATRIX IDENTITY FOR HIGH DIMENSIONAL OUTPUTS

For the empirical Fisher method, where z⋆ ∈ RN×m is computed via

z⋆i = ȳi −
(

1
N

∑N
j=1∇ȳj

ℓ(ȳ)∇ȳj
ℓ(ȳ)⊤ + λ · I

)−1

∇ȳi
ℓ(ȳ)

for all i ∈ {1, ..., N} and ȳ = f(x; θ), we can simplify the computation via the Woodbury matrix
identity [58]. In particular, we can simplify the computation of the inverse to(

1
N

∑N
j=1∇ȳj

ℓ(ȳ)∇ȳj
ℓ(ȳ)⊤ + λ · I

)−1

(47)

=
(

1
N ∇ȳℓ(ȳ)

⊤∇ȳℓ(ȳ) + λ · I
)−1

(48)

=
1

λ
· Im −

1

N · λ2
· ∇ȳℓ(ȳ)

⊤ ·
(

1
N ·λ∇ȳℓ(ȳ)∇ȳℓ(ȳ)

⊤ + IN

)−1

· ∇ȳℓ(ȳ) . (49)

This reduces the cost of matrix inversion from O(m3) down to O(N3). We remark that this variant
is only helpful for cases where the batch size N is smaller than the output dimensionality m.

Further, we remark that in a case where the output dimensionality m and the batch size N are both
very large, i.e., the cost of the inverse is typically still small in comparison to the computational cost
of the neural network. To illustrate this, the dimensionality of the last hidden space (i.e., before the
last layer) hl is typically larger than the output dimensionality m. Accordingly, the cost of only the
last layer itself is O(N ·m · hl), which is typically larger than the cost of the inversion in Newton
Losses. In particular, assuming hl > m, O(N ·m · hl) > O(min(m,N)3).

We remark that the Woodbury inverted variation can also be used in the InjectFisher implemen-
tation.
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