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Abstract

In data-intensive applications, graphs serve as foun-
dational structures across various domains. How-
ever, the increasing size of datasets poses signifi-
cant challenges to performing downstream tasks.
To address this problem, techniques such as graph
coarsening, condensation, and summarization have
been developed to create a coarsened graph while
preserving important properties of the original
graph by considering both the graph matrix and the
feature or attribute matrix of the original graph as
inputs. However, existing graph coarsening tech-
niques often neglect the label information during
the coarsening process, which can result in a lower
quality coarsened graph and limit its suitability
for downstream tasks. To overcome this limitation,
we introduce the Label-Aware Graph Coarsening
(LAGC) algorithm, a semi-supervised approach
that incorporates the graph matrix, feature matrix,
and some of the node label information to learn
a coarsened graph. Our proposed formulation is a
non-convex optimization problem that is efficiently
solved using block successive upper bound mini-
mization(BSUM) technique, and it is provably con-
vergent. Our extensive results demonstrate that the
LAGC algorithm outperforms the existing state-of-
the-art method by a significant margin.

1 INTRODUCTION

Graphs, as foundational mathematical structures, hold im-
mense significance across diverse domains such as material
science, finance, biology, and chemistry [Battaglia et al.,
2018, Wu et al., 2020, Zhou et al., 2020, Bruna et al., 2013,
Chen et al., 2020, Defferrard et al., 2016]. Serving both
as end goals and preprocessing tasks for various models,
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graphs play a pivotal role in representing and analyzing
intricate relationships within datasets [Kumar et al., 2020].
Nevertheless, the ever-increasing size of datasets presents
a formidable challenge, requiring substantial memory re-
sources and computational power to execute downstream
tasks effectively [Chen et al., 2022]. This growing scale
underscores the critical need for innovative approaches and
optimizations to harness the full potential of graph-based
analyses in today’s data-intensive landscape.

In response to these challenges, the landscape has seen the
emergence of techniques like graph coarsening[Loukas and
Vandergheynst, 2018, Loukas, 2019, Kumar et al., 2023a,b,a,
Dorfler and Bullo, 2011, Ron et al., 2010, Hendrickson et al.,
1995], graph condensation [Jin et al., 2021], and graph sum-
marization [Riondato et al., 2017]. These innovative ap-
proaches are designed to learn a smaller and more tractable
graph while retaining the properties of the original graph.

There exist various graph reduction techniques. The most
recent are: Loukas and Vandergheynst [2018], Loukas
[2019] are heuristic-based approaches, Jin et al. [2021] is
a deep learning-based technique, Kumar et al. [2023a] is
an optimization-based framework. However, Loukas and
Vandergheynst [2018], Loukas [2019] considers only the
Laplacian of original graph while Jin et al. [2021], Kumar
et al. [2023a] considers Laplacian matrix as well as feature
matrix of the original graph for learning a coarsened graph.

These methods focus on learning a crucial mapping ma-
trix to connect nodes in the original graph to supernodes
in coarsened graphs. For a given original graph, multiple
coarsened graphs can be generated. To assess the quality
of a coarsened graph, the node profile matrix is introduced,
as detailed in section 3.1 [Ghoroghchian et al., 2021]. This
matrix, relying on the mapping matrix and the one-hot la-
bel matrix of the original graph, is essential for achieving
a well-balanced mapping. To ensure an optimal coarsened
graph for downstream tasks, the node profile matrix of the
coarsened graph ideally should exhibit maximum sparsity.
However, existing graph coarsening methods are not able



to learn coarsened graphs with sparse ϕ matrices, limiting
their effectiveness for downstream tasks.

To enhance downstream task efficacy with coarsened graphs,
achieving a sparse node profile matrix is crucial. In this pa-
per, we propose an optimization-based method incorporat-
ing a function dependent on the mapping matrix C and a one
hot matrix of some of the node labels of the original graph.
The proposed formulation also includes Dirichlet energy
and log determinant, constituting a non-convex optimiza-
tion problem efficiently solvable through block successive
upper bound minimization(BSUM) technique. We present
the Label-Aware Graph Coarsening (LAGC) algorithm, up-
dating variables iteratively, one at a time, while keeping
others constant. Our algorithm is proven convergent, pro-
viding a robust and efficient solution to the optimization
problem.

To demonstrate the efficacy of our algorithm, we applied
it to a downstream task—specifically, node classification
and link prediction using the coarsened graph. Utilizing the
LAGC algorithm, we learned the coarsened graph, consider-
ing the graph matrix, feature matrix, and some of the node
labels from the original graph. Subsequently, we trained a
Graph Neural Network (GNN) using the learned coarsened
graph. Testing was then conducted on the original graph.
Notably, our results exhibited a substantial performance
improvement over existing state-of-the-art methods, under-
scoring the superior capabilities of our proposed approach.

Our main contributions can be summarized as follows:

1. This is the first optimization method that leverages the
graph matrix, feature matrix, and label matrix of the
original graph to learn a more informative coarsened
graph, optimizing its suitability for downstream tasks.

2. The proposed method is an efficiently solvable opti-
mization technique utilizing block successive upper
bound minimization(BSUM) technique, updating one
variable at a time while maintaining the other fixed.
Additionally, the method is proven to be convergent.

3. To demonstrate the effectiveness of our proposed algo-
rithm, we conducted a downstream task, specifically
node classification and link prediction. We trained a
Graph Neural Network (GNN) using the coarsened
graph, and testing was carried out on the original
graphs. It is clear that our LAGC algorithm outper-
forms the state-of-the-art method significantly.

1.1 OUTLINE AND NOTATION

The paper is organized as follows: in Section 2, we present
foundational background information covering graphs,
graph learning from data, and graph coarsening techniques.
Additionally, we introduce the proposed LAGC formulation
in this section. Section 3 is dedicated to the development

of our algorithm. Finally, in Section 4, we present the out-
comes of our experiments conducted on real-world datasets.
In terms of notation, lower case (bold) letters denote scalars
(vectors) and upper case letters denote matrices. The di-
mension of a matrix is omitted whenever it is clear from
the context. The (i, j)-th entry of a matrix X is denoted
by Xij . X† and X⊤ denote the pseudo inverse and trans-
pose of matrix X , respectively. Xi and [XT ]j denote the
i-th column and j-th row of matrix X . The all-zero and
all-one vectors or matrices of appropriate sizes are denoted
by 0 and 1, respectively. The ∥X∥1, ∥X∥F , ∥X∥1,2 denote
the ℓ1-norm, Frobenius norm and ℓ1,2-norm of X , respec-
tively. The Euclidean norm of the vector X is denoted as
∥X∥2. det(X) is defined as the generalized determinant of
a positive definite matrix X , i.e., the product of its non-zero
eigenvalues. The inner product of two matrices is defined
as ⟨X,Y ⟩ = tr(X⊤Y ), where tr(·) is the trace operator. R+

represents positive real numbers. The inner product of two
vectors is defined as ⟨Xi, Xj⟩ = XT

i Xj where Xi and Xj

are the i-th and j-th column of matrix X .

2 BACKGROUND AND PROBLEM
FORMULATION

In this section, we review the basics of graph and graph
coarsening.

2.1 GRAPH

A graph with features and labels is represented as G =
(V,E,A,X, Y ), where V = {v1, v2, ..., vp} denotes the
vertex set, E ⊆ V × V is the edge set, and A ∈ Rp×p

+

stands for the adjacency (weight) matrix for a graph hav-
ing p number of nodes. Each non zero entry Aij repre-
sents the edge between the ith and jth nodes. Furthermore
X ∈ Rp×n = [x1,x2, . . . ,xp]

⊤ is a feature matrix, where
each row vector xi ∈ Rn represents the feature vector as-
sociated with one of the p nodes of the graph G. Moreover,
in semisupervised learning, label information is given by
Y ∈ {0, 1}p×l, where if node vi is labelled, then yi : repre-
sents the corresponding one-hot indicator vector; otherwise,
yi := 0 for unlabelled data. In the general, a graph is repre-
sented by either an adjacency matrix or a Laplacian matrix.
A matrix Θ ∈ Rp×p is identified as a combinatorial Lapla-
cian matrix when it belongs to the following set [Kumar
et al., 2020]:

SΘ =
{
Θij = Θji ≤ 0 for i ̸= j; Θii = −

∑
j ̸=i

Θij

}
. (1)

Moving forward, the relationship between the adjacency
matrix A and the combinatorial Laplacian matrix is defined
as Aij = −Θij for all i ̸= j, and Aij = 0 for i = j.



Highlighting the advantages of the Laplacian matrix Θ over
the adjacency matrix A, Θ possesses key properties such as
being a positive semidefinite matrix, a symmetric matrix,
and having zero row sums. In the subsequent subsection, we
will delve into a discussion on graph learning from data.

2.2 GRAPH LEARNING FROM DATA

Given the data X = [x1, ...,xp]
T , a connected and smooth

graph can be obtained by solving the following optimization
problem [Kalofolias, 2016]:

min
Θ∈SΘ

−γ log(det(Θ + J)) + tr(XTΘX) + βh(Θ) (2)

where, Θ ∈ Rp×p represents the target Laplacian matrix,
and SΘ is the set of Laplacian matrices as defined in (1).
The term tr(XTΘX) represents the smoothness or energy
of the graph, and minimizing it signifies that nodes with
similar features will have higher edge weights. Next, β is a
hyperparameter, and the regularizer h(Θ) enforces desired
properties e.g. sparsity in the coarsened graph. Ensuring the
connectedness of the graph requires maintaining the rank of
Θ as p-1. This is achieved through the term−γ log(det(Θ+
J)), where J = 1

p1p×p is a rank-1 matrix with each element
equal to 1

p . The addition of J to Θ ensures a full-rank matrix
without altering the row and column space of Θ. Next, in
the subsequent subsection, we will delve into the discussion
of graph coarsening.

2.3 GRAPH COARSENING

The objective of graph coarsening is to learn a smaller,
more tractable graph Gc(Θc, X̃, Ỹ ) while preserving the
properties of the original graph G(Θ, X, Y ). Where, Θc ∈
Rk×k is the Laplacian matrix, X̃ ∈ Rk×n is the feature
matrix, Ỹ ∈ Rk×l is the label matrix of the coarsened graph.
The relation between, Θ and Θc, X and X̃ , Y and Ỹ are
given by,

Θc = CTΘC, X = CX̃, Ỹ = argmax(C†Y ) (3)

Where C ∈ Rp×k
+ is the mapping matrix that maps the p

number of nodes of original graph to k number of nodes of
the coarsened graph. Also, each non zero entry of C i.e. Cij

indicate ith node of original graph get mapped to the jth

super node of the coarsened graph. For a balanced mapping,
the mapping matrix must belong to the following set:

C =
{
C ≥ 0| ⟨Ci, Cj⟩ = 0 ∀ i ̸= j, ⟨Ci, Ci⟩ = di,

∥Ci∥0 ≥ 1 and
∥∥[C⊤]i

∥∥
0
= 1

}
(4)

Problem Statement: Given an original graph G(Θ, X, Y ),
our objective is to learn a coarsened graph Gc(Θc, X̃, Ỹ ).

Several graph coarsening techniques have been developed
for learning the mapping matrix C. The heuristic method
proposed by [Loukas, 2019] focuses solely on the Laplacian
matrix Θ to derive the mapping matrix C. In contrast, [Jin
et al., 2021] is a deep learning based method leveraging
graph neural networks for learning a condensed graph. A
more recent and comprehensive optimization-based method
is introduced by [Kumar et al., 2023a]. This method not
only considers the Laplacian matrix Θ but also incorporates
the feature matrix X for the learning of the mapping matrix
C.

In semi-supervised learning, where some node label infor-
mation is available, existing state-of-the-art methods often
neglect the label information during the coarsening process
or, equivalently, while learning the mapping matrix C. This
oversight in utilizing the label matrix might result in the
learning of a less informative coarsened graph, rendering it
unsuitable for downstream tasks and potentially undermin-
ing the purpose of the coarsening process. In response, we
introduce the first framework that incorporates the feature
matrix X , label matrix Y in which some node labels are
known, and Laplacian matrix Θ of the original graph as
inputs in the learning of a coarsened graph. The proposed
formulation is:

min
Θc,X̃,C

f(Θc, X̃) + βh(Θc) +
λ

2
g(C) + r(C, Y ) (5)

s.t. C ≥ 0, Θc = CTΘC, X = CX̃, Θc ∈ SΘ, C ∈ C

where, f(Θc, X̃) is a graph fitting term, for example
f(Θc, X̃) = tr(X̃TΘcX̃) represents the smoothness of the
graph. Subsequently, the regularizer h(Θc) is applied to the
Laplacian matrix to ensure crucial properties in the graph.
For instance, h(Θc) = ∥CTΘC∥2F is employed to ensure
sparsity in the resulting coarsened graph. This regulariza-
tion term contributes to shaping the graph by imposing con-
straints that lead to a more structured and meaningful repre-
sentation. Additionally, the regularizer g(C) is imposed on
the mapping matrix C to enforce desired properties outlined
in C as defined in (4).

Subsequently, the function r(C, Y ) plays a pivotal role in
our approach, incorporating the label matrix Y of the orig-
inal graph and the mapping matrix C. This function maps
nodes with similar labels in the original graph to a supern-
ode in the coarsened graph. The careful selection of the
function r(C, Y ) is paramount as it directly influences the
quality of the coarsened graph. Determining the appropriate
function is a challenging task. In the next subsection, we
will delve into the algorithm development.

3 ALGORITHM DEVELOPMENT

Before delving into the algorithm development, we will ex-
plore the concept of the node profile matrix [Ghoroghchian
et al., 2021] in the subsequent section.



3.1 NODE PROFILE MATRIX

Given an original graph G(Θ, X, Y ), the objective of graph
coarsening is to learn a coarsened graph Gc through the
learning of the mapping matrix C. The quality assessment
of this coarsened graph is often quantified using the node
profile matrix.

The node profile matrix of a coarsened graph, denoted as ϕ,
is defined as :

ϕ = CTY (6)

Here, Y ∈ Rp×l
+ represents the one-hot label matrix of the

original graph. In the matrix ϕ, each non-zero entry ϕij

signifies the count of nodes from the original graph with
the jth label that are mapped to the ith supernode in the
coarsened graph Gc. A balanced mapping is characterized by
the sparsity of each row in the ϕ matrix, indicating that nodes
with similar labels from the original graph are effectively
mapped into a supernode of the coarsened graph.

Figure 1: This illustration illustrates that, for a given original
graph G, there exist numerous possibilities for the coarsened
graph. Notably, it is discernible that the coarsened graph Gc2
stands out as a more informative representation as similar
label nodes get mapped to the same supernode, making it
particularly well-suited for downstream tasks.

Let’s consider an toy example in the Figure 1 involving an
original graph G and examine two coarsened graphs, each
with its associated ϕ matrix:

[ϕ1] =


2 1 0
1 1 0
0 1 0
1 0 3
0 0 1

 ϕ2 =


3 0 0
2 0 0
0 3 0
0 0 3
0 0 1


The increased sparsity observed in ϕ2 compared to ϕ1 is
indicative of a more pronounced trend: nodes with similar
labels are consistently mapped to the same supernode. This,
in turn, suggests that the coarsened graph corresponding
to ϕ2 encapsulates a more focused and distinctive repre-
sentation of the original graph compared to the coarsened

graph associated with ϕ1. Consequently, when contemplat-
ing downstream tasks, leveraging the coarsened graph de-
rived from ϕ2 proves more advantageous, as it is not only
more informative but also specifically tailored to capture the
essential structural and label-related characteristics of the
original graph.

Furthermore, current graph coarsening techniques face lim-
itations in effectively learning coarsened graphs when the
associated ϕ matrix is sparse. This constraint hinders their
suitability for downstream tasks, particularly node classifica-
tion using the coarsened graph. Additionally, these existing
methods often overlook the label information inherent in the
original graph during the coarsening process. Consequently,
the resulting coarsened graphs lack crucial information, lead-
ing to suboptimal performance in downstream tasks. To ad-
dress these challenges, there is a need for more advanced
graph coarsening techniques that incorporate graph matrix,
feature matrix and label information of the original graph
while doing the coarsening such that the learned coarsened
graph is more informative and having sparse ϕ matrix.

In the subsequent section, we introduce the first
optimization-based approach that consider graph matrix,
feature matrix and label matrix of the original graph as in-
puts, aiming to learn a more informative coarsened graph
characterized by a sparse ϕ matrix. Notably, during the
coarsening process, we selectively taken the information of
label in a semisupervised manner.

3.2 PROPOSED FORMULATION

Given a graph G(Θ ∈ Rp×p, X ∈ Rp×n, Y ), where
Y ∈ {0, 1}p×l, the label matrix Y follows a binary en-
coding, with yi : representing the corresponding one-hot
indicator vector if node vi is labeled; otherwise, yi := 0
for unlabelled nodes in a semi-supervised fashion. The pro-
posed formulation for learning a coarsened graph, empha-
sizing sparsity in the ϕ matrix, is as follows:

min
Θc,X̃,C

−γlog det(Θc + J) + tr(X̃TΘcX̃) (7)

+βh(Θc) +
λ

2
g(C) + r(C, Y )

s.t. C ≥ 0, Θc = CTΘC, X = CX̃, Θc ∈ SΘ, C ∈ C

In this work, we have opted for r(C, Y ) = ∥CTY ∥2F as our
guiding function. This particular formulation is designed
to enforce sparsity within the ϕ matrix of the coarsened
graph. Furthermore, the term −log det(Θc + J) ensure the
connectedness of the coarsened graph where, J = 1

k1k×k

is a rank 1 matrix with each element equals to 1
k . On the

other hand, the original hard constraint X = CX̃ poses
challenges in optimization. To address this, we relax X =
CX̃ to ∥CX̃ −X∥2F and introduce regularizers h(Θc) =
∥Θc∥2F and g(C) = ∥CT ∥21,2. Putting Θc = CTΘC in



equation (7) three-variable optimization problem converted
into two variable optimization problem as:

min
X̃,C
−γlog det(CTΘC + J) + tr(X̃TCTΘCX̃) (8)

+
α

2
||CX̃ −X||2F +

λ

2
∥CT ∥21,2 +

β

2
∥CTΘC∥2F+

δ

2
∥CTY ∥2F

s.t. SC =
{
C ≥ 0| ∥[CT ]i∥22 ≤ 1 ∀ i = 1, .., p

}
where, term β

2 ∥C
TΘC∥2F is incorporated to enforce spar-

sity in the learned coarsened graph. Meanwhile, the term
δ
2∥C

TY ∥2F plays a crucial role in promoting sparsity within
the ϕ matrix. This sparsity condition ensures that nodes
sharing the same label are consistently mapped to the same
supernode, thereby enhancing the coherence and consis-
tency of the mapping process.

The proposed formulation (8) is a non-convex optimiza-
tion problem when considering all variables simultaneously.
However, the problem transforms into a convex optimiza-
tion problem when isolating one variable at a time, treating
the remaining variables as constants. Our objective is to
address this problem iteratively using a block successive
upper bound minimization (BSUM) approach and develop
a block MM-based algorithm. This algorithm updates one
variable at a time while keeping the other constant, leading
to a more manageable and convergent optimization process
for the variables (X̃, C).

3.3 UPDATE OF C

When considering C as a variable and holding X̃ constant,
the resulting sub-problem for C can be expressed as follows:

min
C∈Sc

f(C) = −γlog det(CTΘC + J) +
λ

2
∥CT ∥21,2 (9)

+
α

2
∥CX̃ −X∥2F + tr(X̃TCTΘCX̃) +

β

2
∥CTΘC∥2F

+
δ

2
∥CTY ∥2F

The functions −γ log det(CTΘC + J), λ
2 ∥C

T ∥21,2,
α
2 ∥CX̃ − X∥2F , and tr(X̃TCTΘCX̃) are all convex
functions [Kumar et al., 2023a]. Additionally, the terms
β
2 ∥C

TΘC∥2F and δ
2∥C

TY ∥2F involve Frobenius norms, ren-
dering them convex functions as well. Considering the set
Sc as a closed convex set, it can be asserted that the opti-
mization problem (9) is strictly convex.

By using the first-order Taylor series approximation, a ma-
jorised function for f(C) at C(t) can be obtained as [Beck

and Pan, 2018, Razaviyayn et al., 2012, Sun et al., 2017]:

g(C|C(t)) = f(C(t))+(C−C(t))∇f(C(t))+
L

2
||C−C(t)||2

(10)
where f(C) is L−Lipschitz continuous gradient
function L = max(L1, L2, L3, L4, L5, L6) with
L1, L2, L3, L4, L5, L6 the Lipschitz constants of
−γlog det(CTΘC + J), tr(X̃TCTΘCX̃), ∥CX̃ − X∥2F ,
∥CT ∥21,2, β

2 ∥C
TΘC∥2F , δ

2∥C
TY ∥2F respectively. After

ignoring the constant term, the majorised problem of (9) is

minimize
C∈Sc

1

2
CTC − CTA (11)

where A = C(t) − 1
L∇f(C

(t)) and ∇f(C(t)) =

−2γΘC(t)(C(t)TΘC(t) + J)−1 + α
(
C(t)X̃ −X

)
X̃T +

2ΘC(t)X̃X̃T+λC(t)111+βΘCCTΘC+δY (C⊤Y )⊤ where
111 is all ones matrix of dimension k × k.

Lemma 1 By using KKT optimality condition we can ob-
tain the optimal solution of (11) as

C(t+1) =

(
C(t) − 1

L
∇f

(
C(t)

))+

(12)

where (Xij)
+ = max(

Xij

∥[XT ]i∥2
, 0) and [XT ]i is the i-th

row of matrix X .

Proof: The proof is deferred to the Appendix A.

3.4 UPDATE OF X̃

Fixing C, we obtain the following problem for X̃:

min
X̃

f(X̃) = tr(X̃TCTΘCX̃) +
α

2
∥CX̃ −X∥2F (13)

The problem (13) is a strongly convex optimization prob-
lem as CTΘC and CTC are the positive semi-definite and
definite matrices, respectively. The closed form solution of
problem (13) can be obtained by setting the gradient to zero,
i.e., 2CTΘCX̃ + αCT (CX̃ −X) = 0, we get

X̃t+1 =

(
2

α
CTΘC + CTC

)−1

CTX (14)

It is noteworthy that the label matrix Y is structured as a
one-hot matrix, representing the labels of the nodes in the
original graph G in a semi-supervised fashion. Each row of
Y corresponds to a node, and the one-hot encoding signifies
the presence of a specific label for that node.

Theorem 1 The sequence {C(t), X̃(t)} generated by Algo-
rithm 1 converges to the set of Karush–Kuhn–Tucker (KKT)
points of Problem (8).

Proof: The proof is deferred to the Appendix B.



Figure 2: The diagram above illustrates the sequence of steps in performing node classification task using a coarsened graph.
Given an original graph G(Θ, X, Y ) where some of the node labels are known, we employ the LAGC algorithm learn a
coarsened graph characterized by a sparser ϕ matrix. The resulting coarsened graph is denoted as Gc(Θc, X̃, Ỹ ) where,
Ỹ = argmax(C†Y ). Subsequently, the coarsened graph Gc is utilised to train a Graph Neural Network (GNN). Subsequently,
the trained GNN is evaluated by predicting the labels of nodes in the original graph for which labels were not initially
known.

Algorithm 1: LAGC Algorithm

Input: G(X,Y,Θ), α, γ, λ, β, δ
t← 0;
while stopping criteria not met do

Update Ct+1 and X̃t+1 as in (12) and (14)
respectively.
t← t+ 1;

end
Output: C, Θc, and X̃

Dataset Nodes Edges Features Classes

CORA 2,708 5,429 1,433 7
CITESEER 3,327 9,104 3,703 6
DBLP 17,716 52,867 1,639 4
CO-CS 18,333 163,788 6,805 15
PUBMED 19,717 44,338 500 3
CO-PHYSICS 34,493 247,962 8,415 5

Table 1: Overview of the datasets employed for node classi-
fication

4 EXPERIMENTS

This section presents experiments validating our proposed
LAGC algorithm, beginning with experimental settings, fol-
lowed by a comparative analysis against key baselines, and
concluding with a concise demonstration of LAGC’s advan-
tages.

4.1 EXPERIMENTAL SETUP

Dataset We have performed the experiments on the datasets
as shown in the Table 1.

Baseline Techniques: We validate our algorithm through ex-

tensive experiments on real datasets, benchmarking against
state-of-the-art methods: GCOND [Jin et al., 2021], SCAL
[Huang et al., 2021], and FGC [Kumar et al., 2023b]. These
selections are based on their recent advancements and supe-
rior performance, establishing them as leading coarsening
approaches.

Next, we have evaluated the performance of our algorithm
through node classification accuracy and time taken(τ )
for coarsening and classification. Experiment with real
dataset using our model outperforms all other state-of-the-
art method in node classification and time complexity.

4.2 NODE CLASSIFICATION

For the node classification task using a coarsened graph,
we employ the proposed LAGC algorithm to learn a coars-
ened graph by considering the original graph G(Θ, X, Y ),
utilising 80% of the original graph’s node labels in a semi-
supervised manner. After obtaining the coarsened graph
Gc(Θc, X̃), we infer coarsened graph labels using Ỹ =
argmax(PY ), where P denotes the pseudo-inverse of the
mapping matrix C. Subsequently, a Graph Convolutional
Network (GCN) is trained on Gc(Θc, X̃, Ỹ ). Testing is then
performed on the remaining 20% of nodes, whose labels
were not utilized during coarsening. Moreover, we have also
compared the node classification task using the coarsened
graph with the task using the original graph. While perform-
ing the node classification task using the original graph, we
maintained an identical split, utilising 80% of the original
graph’s node labels for training and the remaining 20% for
testing. In the process of node classification, we undertake
the following steps:

4.3 LINK PREDICTION

We further demonstrate the effectiveness of our proposed
LAGC algorithm on downstream tasks like link prediction.



Data set r=k/p GCOND SCAL FGC LAGC Whole Data

0.3 81.56 ± 0.62 79.42 ± 1.71 84.03 ± 0.08 87.62 ± 0.01
CORA 0.1 81.37 ± 0.40 71.38 ± 3.62 79.96 ± 0.18 86.10 ± 0.03 89.50 ± 1.20

0.05 78.93 ± 0.44 55.32 ± 7.03 77.31 ± 0.65 82.85 ± 0.02
0.3 72.43 ± 0.49 68.87 ± 1.37 72.85 ± 0.10 78.51 ± 1.25

CITESEER 0.1 70.46 ± 0.49 71.38 ± 3.62 69.46 ± 0.22 76.00 ± 0.50 78.09 ± 1.95
0.05 64.03 ± 2.40 55.32 ± 7.03 69.02 ± 0.24 75.70 ± 0.31
0.05 93.05 ± 0.26 73.09 ± 7.41 93.31 ± 0.11 94.46 ± 0.58

CO-PHYSICS 0.03 92.81 ± 0.31 63.65 ± 9.65 92.00 ± 1.78 94.28 ± 0.21 96.22 ± 0.74
0.01 92.81 ± 0.31 63.65 ± 9.65 91.08 ± 0.78 93.26 ± 0.89
0.05 78.16 ± 0.30 72.82 ± 2.62 78.14 ± 0.29 82.85 ± 0.32

PubMed 0.03 78.04 ± 0.47 70.24 ± 2.63 77.60 ± 0.16 82.10 ± 0.21 88.89 ± 0.57
0.01 77.20 ± 0.02 50.49 ± 10.5 76.10 ± 1.91 81.27 ± 0.91
0.05 86.29 ± 0.63 34.45 ± 10.0 89.12 ± 0.08 91.36 ± 0.48

CO-CS 0.03 86.32 ± 0.45 26.06 ± 9.29 86.32 ± 0.43 90.32 ± 0.97 93.32 ± 0.62
0.01 84.01 ± 0.02 14.42 ± 8.51 85.41 ± 0.24 88.27 ± 0.34
0.05 79.15 ± 0.20 76.52 ± 2.88 80.08 ± 0.01 81.64± 0.42

DBLP 0.03 78.42 ± 1.26 75.49 ± 2.84 79.92 ± 0.48 80.93± 0.12 85.35± 0.86
0.01 74.29 ± 0.57 72.01± 1.83 77.47 ± 0.33 79.49 ± 0.53

Table 2: The table summarizes node classification accuracy on real benchmark datasets for the proposed LAGC algorithm in
comparison to GCOND [Jin et al., 2021], SCAL [Huang et al., 2021], and FGC [Kumar et al., 2023a]. For small datasets,
coarsening ratios of r = 0.3, 0.1, and r = 0.05 were considered, while for large datasets, ratios of r = 0.05, 0.03, and
r = 0.01 were used. The proposed algorithm consistently outperforms state-of-the-art methods by a significant margin.
Remarkably, on the Citeseer dataset, our method attains a higher node classification accuracy using the coarsened graph
compared to the accuracy achieved when the original graph is used for training.

Algorithm 2: Node Classification using proposed
LAGC
Input: G(Θ, X, Y )
Output: Trained weight matrix W ∗

Apply LAGC on G to learn P ; P = C†;
Compute feature matrix of the coarsened graph:
X ′ = PX;

Compute labels of the coarsened graph:
Y ′ = argmax(PY );

Learn W ∗ matrix to minimize ℓ(GCNGc
(W ∗), Y ′);

We evaluated link prediction performance on three citation
networks: Cora, Citeseer, and PubMed. In link prediction,
the task is to predict the existence of a connection between
two nodes. For our link prediction task, we employed the
approach of SEAL [Zhang and Chen, 2018]. We split the
original graph into training and testing sets, ensuring both
sets retain the same number of nodes. The training graph
comprises 80% of the original edges, while the remaining
20% are used for testing. We utilize the training graph to
learn the coarsened graph and train the graph neural net-
work on this representation. The trained model is then evalu-
ated on the testing graph, with performance measured using
the area under the ROC Curve (AUC). Additionally, we
compared our model’s performance on the link prediction

task with the state-of-the-art FGC algorithm [Kumar et al.,
2023b] and the baseline of using the entire graph for predic-
tion. It’s important to note that GCOND[Jin et al., 2021] is
a deep learning framework designed specifically for node
classification tasks and is not suitable for link prediction.

Algorithm 3: Link Prediction using proposed LAGC
Input: G(Θ, X, Y )
Output: GNN model Gθ
Randomly initialize model parameter W ∗;
Treat the existing edges as Positive Examples P;
Randomly sample a set of edges to serve as negative
examples N;

Divide P and N into training and test sets;
Apply LAGC on train set to learn P ; P = C†;
Update W ∗ by minimizing binary cross-entropy loss
ℓ(GNNGC

(W ∗), Y ′
u∼v);

4.4 GENERALIZABILITY OF PROPOSED LAGC
ALGORITHM

To demonstrate the generalizability of learning a coarsened
graph from our proposed algorithms, we employed various
architectures to train the Graph Neural Network (GNN).
Specifically, we utilized GNN architectures such as GCN



Data set r=k/p LAGC FGC Whole Data

0.3 0.78 0.77
Cora 0.1 0.77 0.75 0.84

0.05 0.75 0.72
0.3 0.75 0.73

CITESEER 0.1 0.74 0. 70 0.78
0.05 0.72 0.68
0.05 0.77 0.67

PubMed 0.03 0.72 0.70 0.83
0.01 0.68 0.66

Table 3: This table presents the Area Under the ROC Curve
(AUC) metric for link prediction using the proposed LAGC
algorithm and the state-of-the-art FGC algorithm Kumar
et al. [2023a]. The performance is evaluated at various coars-
ening ratios: r = 0.3, 0.1, and 0.05 for small datasets, and
r = 0.05, 0.03, and 0.01 for large datasets. A baseline com-
parison using the entire dataset is also included. It is evident
that the proposed LAGC algorithm outperforms the existing
state of the art graph coarsening technique across all coars-
ening ratios.

[Kipf and Welling, 2016], APPNP [Gasteiger et al., 2018],
and GAT[Veličković et al., 2017] for training and execut-
ing the node classification task. The table4 illustrates that
our methods for learning the coarsened graph are compati-
ble with different widely used GNN architectures, yielding
nearly identical node classification accuracy obtained on
different GNN structures.

Data set GCN GAT APPNP

Cora 84.45 ± 0.1 80.23 ± 0.2 86.05 ± 0.4
Citeseer 75.61 ± 0.6 72.72 ± 0.9 76.40 ± 0.2
Pubmed 80.91 ± 0.1 73.92 ± 0.2 79.62± 0.6
Co-CS 88.27 ± 0.3 84.49 ± 0.0 90.27 ± 0.2

Table 4: Node classification accuracy (%) obtained using dif-
ferent GNN structures like GCN [Kipf and Welling, 2016],
GAT [Veličković et al., 2017], and APPNP [Gasteiger et al.,
2018]. The experiments were conducted on various datasets,
employing the LAGC algorithm with a coarsening ratio of
0.1 for Cora and Citeseer datasets and 0.01 for PubMed and
Coauthor CS datasets. It is evident that the proposed LAGC
method is suitable for all GNN architecture.

4.5 NODE PROFILE MATRIX

To quantify the coarsened graph quality betweenthe pro-
posed LAGC algorithm and state-of-the-art methods, we
computed the mapping matrix C and derived the correspond-
ing node profile matrix ϕ = C⊤Y . Upon comparing the heat
maps of ϕ matrices with the recent FGC algorithmKumar
et al. [2023a], we observed that the LAGC-generated ϕ ma-

trix is significantly sparser. This sparsity indicates a higher-
quality coarsened graph produced by LAGC compared to
FGC [Kumar et al., 2023a]. Also, note that our comparison
was made with FGC solely because GCOND [Jin et al.,
2021] cannot learn the mapping matrix during the coarsen-
ing process.

Misclassified labels: The coarsened graph labels, denoted
as Ỹ , are determined by selecting the class index that max-
imises the corresponding entry in the product C†Y where
Y is some node label matrix of the original graph. The mis-
classified label for each supernode i (where i = 1, 2, . . . , k)
is computed as the sum of all non-zero entries in the ith

row of ϕ matrix, excluding the maximum entry. The total
misclassified labels, represented as q, are the summation
across all nodes.

In our comparative analysis, we evaluate the performance
by quantifying the number of misclassified labels (q). We
computed misclassified labels for the Cora dataset with
coarsening ratios of 0.05 and 0.1. The state-of-the-art FGC
[Kumar et al., 2023a] algorithm resulted in 250 and 458
misclassified points, while our proposed LAGC algorithm
yielded 180 and 338 misclassified points for the respective
coarsening ratios. The LAGC algorithm exhibits superior
performance with fewer misclassifications.

Moreover, the heat map in the Figure 5, depicting ϕ ma-
trices from both the proposed LAGC and state-of-the-art
FGC [Kumar et al., 2023a] algorithm, provides a visual con-
firmation of the efficacy of LAGC. It vividly illustrates a
notable reduction in misclassified points compared to the
FGC algorithm.

4.6 RUN-TIME COMPLEXITY:

Given an input graph with p nodes, E1 edges, and a feature
vector of size n for each node, the time complexity for node
classification using a Graph Convolutional Network (GCN)
with l layers is O(lp2n+ lpE1n) [Blakely et al., 2021].

The worst-case per iteration computational complexity of
our proposed LAGC algorithm is O(p2k) for learning a
coarsened graph. However, when both coarsening and node
classification are performed, the overall time complexity of
our algorithm isO(p2k+lk2n+lkE2n), where k represents
the number of nodes in the coarsened graph, and E2 is
the number of edges in the coarsened graph. Given that
(p >> k) and E1 >> E2, and choosing k such that k < n,
the time complexity for coarsening and node classification
becomes significantly lower compared to performing node
classification solely on the original graph. The effectiveness
of this approach is evident in Table 5, demonstrating that the
proposed LAGC algorithm is notably faster than baseline
methods and exhibits similar time complexity compared to
the FGC algorithm [Kumar et al., 2023a,b].



Figure 3: ϕ matrix (LAGC) Figure 4: ϕ matrix (FGC)

Figure 5: In Figure (3) to (4), we present heat maps of the
ϕ matrix obtained from our proposed LAGC and the state-
of-the-art FGC algorithm [Kumar et al., 2023a]. Notably,
the ϕ matrix derived from our algorithm exhibits greater
sparsity compared to FGC, highlighting the effectiveness
of our approach. Furthermore, the number of misclassified
labels (q) is 338 and 458 for a coarsening ratio of 0.1 for
the proposed LAGC and the state-of-the-art FGC algorithm
[Kumar et al., 2023a], respectively. This contrast illustrates
that the coarsened graph learned from our proposed algo-
rithm has higher quality than the coarsened graph learned
from the state-of-the-art method.

Dataset(τ ) GCOND SCAL FGC LAGC
Cora 329.8 27.7 1.71 1.55
Citeseer 331.3 56.2 2.15 2.03
Pubmed 202.0 54.0 19.81 20.35
Co-CS 1600 180 34.4 49.87

Table 5: The table presents a time complexity analysis com-
paring the proposed LAGC algorithm with baseline algo-
rithms GCOND[Jin et al., 2021], SCAL [Huang et al., 2021],
and FGC [Kumar et al., 2023a], considering a coarsening
ratio of r = 0.05, where τ (in sec.) is the time required to
perform coarsening and classification. It is evident that the
proposed LAGC is much faster than the existing baselines
and comparable to FGC algorithm [Kumar et al., 2023a].

5 CONCLUSION

This paper introduces the Label-Aware Graph Coarsening
(LAGC) algorithm, an optimization-based approach that
uniquely incorporates the graph matrix, feature matrix, and
label matrix of the original graph for coarsening, mark-
ing the first algorithm to consider the label matrix during
this process. The method, efficiently solved through block
successive upper bound minimization (BSUM), iteratively
updates variables while ensuring convergence. Extensive ex-
perimentation demonstrates LAGC’s superior performance
in node classification tasks compared to state-of-the-art
methods, establishing a significant advancement in graph
coarsening techniques. LAGC’s contributions include a com-
prehensive optimization strategy, an efficient algorithm, and

empirical evidence highlighting its practical advantages in
enhancing graph-based analyses.

6 ACKNOWLEDGEMENTS

We would like to thank the editor and reviewers for their sug-
gestions to improve this paper. We would also like to thank
to Mr. Prakash Pal for his contribution to the discussions
regarding the paper and code implementation. This work is
supported by the DST Inspire faculty grant MI02322G.

References

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive bi-
ases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

Amir Beck and Dror Pan. Convergence of an Inexact
Majorization-Minimization Method for Solving a Class
of Composite Optimization Problems, pages 375–410.
01 2018. ISBN 978-3-319-97477-4. doi: 10.1007/
978-3-319-97478-1_13.

Derrick Blakely, Jack Lanchantin, and Yanjun Qi. Time
and space complexity of graph convolutional networks.
Accessed on: Dec, 31, 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and locally connected networks
on graphs. arXiv preprint arXiv:1312.6203, 2013.

Jie Chen, Yousef Saad, and Zechen Zhang. Graph coars-
ening: from scientific computing to machine learning.
Journal of the Spanish Society of Applied Mathematics
(SeMA), 79(1):187–223, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding,
and Yaliang Li. Simple and deep graph convolutional net-
works. In International Conference on Machine Learning,
pages 1725–1735. PMLR, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural
information processing systems, 29, 2016.

Florian Dorfler and Francesco Bullo. Kron reduction of
graphs with applications to electrical networks, 2011.
URL https://arxiv.org/abs/1102.2950.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan
Günnemann. Predict then propagate: Graph neural
networks meet personalized pagerank. arXiv preprint
arXiv:1810.05997, 2018.

https://arxiv.org/abs/1102.2950


Nafiseh Ghoroghchian, Gautam Dasarathy, and Stark Draper.
Graph community detection from coarse measurements:
Recovery conditions for the coarsened weighted stochas-
tic block model. In International Conference on Artifi-
cial Intelligence and Statistics, pages 3619–3627. PMLR,
2021.

Bruce Hendrickson, Robert W Leland, et al. A multi-level
algorithm for partitioning graphs. SC, 95(28):1–14, 1995.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu,
and Min Zhou. Scaling up graph neural networks via
graph coarsening. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 675–684, 2021.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang
Tang, and Neil Shah. Graph condensation for graph neural
networks. arXiv preprint arXiv:2110.07580, 2021.

Vassilis Kalofolias. How to learn a graph from smooth
signals. In Arthur Gretton and Christian C. Robert, ed-
itors, Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51 of Pro-
ceedings of Machine Learning Research, pages 920–929,
Cadiz, Spain, 09–11 May 2016. Proceedings of Machine
Learning Research.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Manoj Kumar, Anurag Sharma, and Sandeep Kumar. A uni-
fied framework for optimization-based graph coarsening.
Journal of Machine Learning Research, 24(118):1–50,
2023a.

Manoj Kumar, Anurag Sharma, Shashwat Saxena, and
Sandeep Kumar. Featured graph coarsening with sim-
ilarity guarantees. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
17953–17975. PMLR, 23–29 Jul 2023b.

Sandeep Kumar, Jiaxi Ying, José Vinícius de Miranda Car-
doso, and Daniel P Palomar. A unified framework for
structured graph learning via spectral constraints. Journal
of Machine Learning Research, 21(22):1–60, 2020.

Andreas Loukas. Graph reduction with spectral and cut
guarantees. Journal of Machine Learning Research, 20
(116):1–42, 2019.

Andreas Loukas and Pierre Vandergheynst. Spectrally ap-
proximating large graphs with smaller graphs. In Inter-
national Conference on Machine Learning, pages 3237–
3246. Proceedings of Machine Learning Research, 2018.

Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A
unified convergence analysis of block successive mini-
mization methods for nonsmooth optimization. SIAM
Journal on Optimization, 23, 09 2012. doi: 10.1137/
120891009.

Matteo Riondato, David García-Soriano, and Francesco
Bonchi. Graph summarization with quality guarantees.
Data mining and knowledge discovery, 31(2):314–349,
2017.

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based
coarsening and multiscale graph organization, 2010. URL
https://arxiv.org/abs/1004.1220.

Ying Sun, Prabhu Babu, and Daniel P. Palomar.
Majorization-minimization algorithms in signal process-
ing, communications, and machine learning. IEEE Trans-
actions on Signal Processing, 65(3):794–816, 2017. doi:
10.1109/TSP.2016.2601299.
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A PROOF OF LEMMA 1

The Lagrangian function of (12) is

L(C, X̃,µ1) =
1

2
C⊤C − C⊤A− µ⊤

1 C (15)

where µ1 is the dual variable. The KKT conditions of (12) is

C −A− µ1 = 0, (16)

µ⊤C = 0, (17)
C ≥ 0, (18)
µ1 ≥ 0 (19)

The optimal solution of C that satisfies all KKT conditions (16-19) is

Ct+1 = (A)+ (20)

=

(
C(t) − 1

L
∇f

(
C(t)

))+

(21)

This concludes the proof.

B PROOF OF THEOREM 1

The Lagrangian function of (8) is

L(C, X̃,µ1,µ2) = −γlog det(CTΘC + J) +
α

2
||X − CX̃||2F + tr(X̃TCTΘCX̃) +

λ

2

p∑
i=1

∥[CT ]i∥21 (22)

+
β

2
∥CTΘC∥2F +

δ

2
∥CTY ∥2F − tr(µ⊤

1 C) + µT
2

[
(∥CT

1 ∥22 − 1), . . . , (∥CT
p ∥22 − 1)

]T
+

δ

2
∥CTY ∥2F

where µ1(p×k) and µ2(p×1) are the dual variables.
The KKT conditions with respect to C is

(i)−2γΘC(CTΘC+J)−1+α
(
CX̃ −X

)
X̃T +2ΘCX̃X̃T +λC111k×k+δY (C⊤Y )⊤−µ1+2

[
µ21C

T
1 , . . . µ2pC

T
p ]

T +

2βΘCCTΘC = 0,



(ii)
{
µ2i(∥CT

i ∥22 − 1) = 0
}p

i=1
, tr(µ⊤

1 C) = 0

(iii) C ≥ 0, ∥[CT ]i∥22 ≤ 1 ∀ i = 1, 2, . . . , p,
(iv) µ1 ≥ 0, µ2 ≥ 0

where 1k×k is a k × k matrix whose all entry is one. The variable C is derived by using the KKT condition from (12):

C∞ − C∞ +
1

L

(
− 2γΘC∞

(
(C∞)TΘC∞ + J

)−1

+ α(C∞X̃∞ −X)(X̃∞)T + 2βΘC∞(C∞)TΘC∞ (23)

+2ΘC∞X̃∞(X̃∞)T + λC∞111k×k + δY
(
(C∞)⊤Y

)⊤)
= 0

For µ1 = 0 and µ2i[C
T ]∞i = 0 ∀ i = 1, 2, . . . p, we observe that C∞ satisfies the KKT condition.

The KKT condition with respect to X̃ is

2CTΘCX̃ + αCT (CX̃ −X) = 0

The solution of convex optimization problem (13) is

X̃∞ =

(
2

α
(C∞)TΘC∞ + CTC

)−1

(C∞)TX∞

which satisfies the KKT condition. This concludes the proof.
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