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Abstract

Point-based methods have made significant progress, but improving their scala-
bility in large-scale 3D scenes is still a challenging problem. In this paper, we
delve into the point-based method and develop a simpler, faster, stronger variant
model, dubbed as LinNet. In particular, we first propose the disassembled set
abstraction (DSA) module, which is more effective than the previous version of
set abstraction. It achieves more efficient local aggregation by leveraging spa-
tial anisotropy and channel anisotropy separately. Additionally, by mapping 3D
point clouds onto 1D space-filling curves, we enable parallelization of down-
sampling and neighborhood queries on GPUs with linear complexity. LinNet,
as a purely point-based method, outperforms most previous methods in both in-
door and outdoor scenes without any extra attention, and sparse convolution but
merely relying on a simple MLP. It achieves the mIoU of 73.7%, 81.4%, and
69.1% on the S3DIS Area5, NuScenes, and SemanticKITTI validation bench-
marks, respectively, while speeding up almost 10x times over PointNeXt. Our
work further reveals both the efficacy and efficiency potential of the vanilla point-
based models in large-scale representation learning. Our code will be available at
https://github.com/DengH293/LinNet.

1 Introduction

Appealed by the ongoing evolution progress of technologies in robotics, autonomous driving, aug-
mented reality, etc., LiDAR sensors are incrementally integrated into hardware-constrained devices
such as mobile devices and AR headsets. This has led to a growing interest in efficient point cloud
processing models. Given the limited computational power of mobile devices and embedded systems,
the design of mobile-friendly point cloud representation learning algorithms should not only focus on
performance but also pay attention to high computational efficiency.

Unlike images, point cloud data is irregular and unordered. There are various methods for processing
point cloud data in 3D vision. Common approaches include multi-view methods [1, 2, 3] and
voxel-based methods [4, 5]. Converting irregular data into the required formal representations often
requires additional computation and memory and thus results in the loss of geometric information [6].
Therefore, point-based methods that directly operate on point clouds have emerged. PointNet [7]
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Figure 1: Latency decomposition. We show the inference run time decomposition. (a) SA: set
abstraction; DSA: disassembled set abstraction; LS: linearization sampling; HQ: hash query; Oth.:
others. (b) LinNet achieves the highest mIoU with extremely low latency compared to the comparative
point-based approaches. The latency of each network is measured on a single Nvidia 3090 GPU,
taking a batch of 80k points.

and PointNet++ [8] are the pioneers of this approach, introducing a general point cloud learning
paradigm from local to global. The paradigm consists of two parts: the first part is a spatial
neighborhood search strategy, which utilizes algorithms such as furthest point sampling (FPS) and
K-nearest neighbors (KNN) to implement sub-sampling and neighborhood grouping of point clouds,
respectively. The second part is a trainable local feature extractor. Following them, subsequent
extensive research [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] have shown promising results by
focusing on the design of more sophisticated extractors.

Despite the impressive results that have been achieved in object recognition and semantic segmen-
tation, most of these methods are limited to applications in small-scale 3D point clouds. The main
reason is discouraged by the high time complexity of the neighborhood search strategy that the
point-based methods adopted. As shown in Fig. 1a. FPS and KNN occupy 46% of the runtime. This
draws forth the main motivation of this paper: enhancing the scalability of point-based approaches in
large-scale scenes, while maintaining their excellent performance in small-scale tasks.

In this paper, we introduce a novel model, named Linear Net (LinNet). Our LinNet derives from
inheriting the innovations and overcoming the drawbacks of the PointNet++ paradigm, including
a disassembled set abstraction (DSA) module and an efficient point search strategy. Specifically,
inspired by MobileNet [20], we first use two independent MLPs to separately learn depth-wise
geometric features of the neighborhood and point-wise semantic features. Then, the geometric
features are assigned as biases to the queried neighbors’ semantic features, achieving spatially
anisotropic neighborhood aggregation. Since the learning of high-dimensional semantic features is
point-wise and does not involve the neighborhood, the required floating-point operations (FLOPs)
are significantly lower than those needed for SA. Besides, a hash query and linearization sampling
strategy are proposed for speeding up point searching. The core of our method is to map the 3D
search space onto a segmented curve for acceleration. A sparse point cloud is ordered on that curve,
and points adjacent to each other in the curve are also adjacent in space. For neighborhood queries,
we store each segmented curve as a bucket in a hash table. When querying the neighborhood, we
only need to search in the buckets corresponding to the neighboring curves, which drastically cuts
down the search range. Linear sampling ensures uniform sampling by taking the point closest to
the origin within each grid as the new sampling point. The method reduces the time complexity to
be linear and supports GPU parallelism, resulting in very fast sampling. As shown in Fig. 1, the
additional point cloud search operations take up less than 10% of the model’s runtime. By employing
these techniques, our method achieves efficient point cloud representation learning and scalability,
providing significant performance improvements for large-scale point cloud analysis.

The contribution of our paper can be summarized in the following three folds:

• We analyze the feature aggregation of the vanilla SA module and introduce a novel efficient and
effective DSA module. This strategy effectively reduces computational overhead and achieves
performance gains. Moreover, we discuss the superiority of this method from the perspective of
weight initialization, emphasizing how these adjustments crucially enhance the overall performance
of the network.
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Figure 2: Overall architecture. (a) Overview of the framework. The whole network consists of an
embedding layer and four stages, each containing a downsampling layer and Ni disassembled SA
blocks. (b) Structure of the DSA blocks. Each DSA block consists of a DSA module and extra MLPs.

• To improve scalability in large-scale scenes, a linear complexity point cloud search strategy is
introduced, mapping a 3D point cloud to a 1D space-filling curve. This approach drastically reduces
the time consumption associated with sub-sampling and neighbors query.

• Experiments show that our approach achieves state-of-the-art performance on widely adopted 3D
large-scale semantic segmentation benchmarks (S3DIS, NuScenes) and competitive results on
small-scale classification tasks (ScanObjectNN and ModelNet40). Extensive ablation studies have
also validated the effectiveness of our proposed components.

2 Related Works

Point cloud analysis. Point cloud analysis is primarily approached in two ways. Another approach,
exemplified by the PointNet family, directly processes raw point clouds. They introduce a hierarchical
feature learning paradigm to recursively capture local geometric structures. By adopting local point
representation and multi-scale information, PointNet++ has demonstrated excellent performance and
has become a cornerstone of modern point cloud methods [9, 16, 21, 17, 22, 23]. Our LinNet follows
the design philosophy of PointNet++ but explores a simpler yet deeper network architecture.

Voxel-based methods. Instead of learning directly on discrete points, the sparse convolution [5, 24]
first converts the point cloud into a regular grid and then constructs a full convolutional neural network
using the discrete sparse tensor. By building a hash table of discrete rasters, neighborhood query
and sampling can be performed efficiently with a constant time complexity of O(1). In addition,
the hash table construction and query can be implemented in parallel on CUDA, which significantly
improves the computational efficiency. However, even though sparse convolution performs well in
many large-scale point cloud tasks, it still faces challenges in capturing the fine-grained patterns of
point clouds. This is due to the quantization artifacts that may be introduced during voxelization,
resulting in the extracted features being limited by the voxel size [25].

Efficient network in computer vision. In computer vision, an efficient network typically refers to
a deep learning architecture designed to balance performance and operational efficiency, including
aspects like latency, FLOPs, memory, and power consumption. MobileNet [20] use depthwise separa-
ble convolutions, making them particularly efficient for mobile and embedded devices. EfficientNet
[26] systematically scales the network’s width, depth, and resolution, achieving a balance between
efficiency and accuracy. Many works in 3D vision [27, 18, 19, 25] are dedicated to optimizing the
efficiency and performance of point cloud processing. While such networks often slightly compro-
mise on performance for reduced computational load, our network, as detailed in Section 4, uniquely
enhances both efficiency and accuracy.
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3 Linear Net

3.1 Problem Formulation

Given a 3D point cloud V = (P,F) consisting of n points x. For the i-th point xi = (pi,fi),
pi ∈ R3 and fi ∈ Rc are the space coordinates and features, respectively. The task of point cloud
semantic segmentation involves assigning a class label to each point xi, while scene classification
entails predicting a class label for the entire scene C. The point-based methods usually employ several
stages to classify the points or point clouds. In each stage, a downsample layer is first applied to
sample the points, reducing the density of the point cloud.

3.2 Disassembled Set Abstraction

In this section, we progressively introduce the DSA modules. Initially, we explore the direct
application of separable convolutions in 3D vision. Subsequently, we adopt a balanced approach
to separate channel and spatial anisotropy. Finally, we explain the superiority of this method from
the perspective of weight initialization, highlighting how these adjustments enhance the overall
performance of the network.

Revisiting Local Aggregation of Computer Vision. In a standard convolutional kernel, the
anisotropy of the weights plays a critical role in capturing local information. This anisotropy
can be classified into two categories: spatial and channel anisotropy. Spatial anisotropy refers to
the variations among the features of neighboring points within the same feature channel, while
channel anisotropy reflects the differences across various feature channels. To improve efficiency,
MobileNet [20] achieves speedup by decomposing the standard convolutional kernel: it divides the
convolutional kernel into point-wise convolution (PWConv) for channel anisotropy and depth-wise
convolution (DWConv) for spatial anisotropy. Due to the sparsity of point clouds, it is impractical
to apply DWConv to handle them directly. Instead of achieving anisotropy through parameters,
point-based methods approach this by manipulating the input directly and adding anisotropy to the
input data. Given a point cloud xi, a typical local aggregation in 3D vision can be formulated as:

f ′
i = Rj:(i,j)∈N {PWConv3+c7→c(fj ||(pj − pi))}, (1)

where R is the aggregation function (usually max-pooling) that aggregates the local feature from
the neighbors of anchor point xi denoted as {j : (i, j) ∈ N}. || is the concatenate operation in
channels. PWConv3+c7→c : R3+c 7→ Rc is an MLP that consists of pointwise convolution, a batch
normalization layer, and a ReLU activation function. Here, the neighborhood features of the different
anchors come from the same query set, so they are isotropic. The coordinates are anisotropic as they
are relative to their respective anchor. Concatenating together the isotropic features and anisotropic
relative coordinates gives the input anisotropy.

Depth-wise Separate Set Abstraction. Corresponding to the separate weights, we initially chose to
separate the inputs directly as follows:

f ′
i = Rj:(i,j)∈N {PWConvc7→c(fj)}+Rj:(i,j)∈N {PWConv37→c((pj − pi))}. (2)

Since all f ′
j come from the same set, Eq. (2) is identity to Eq. (3):

f i = PWConvc7→c(fi);

f ′
i = Rj:(i,j)∈N {f j}+Rj:(i,j)∈N {PWConv37→c((pj − pi))}.

(3)

Figure 3: Training on S3DIS.

This separation is necessary for several reasons.
First, since the features are derived from the same
query set, there is no need to apply a shared-weight
PWConv on the neighboring features [18]. If the
feature dimension is c and the number of neighbors
is k, the computational complexity would be kc2.
After separation, this complexity is reduced to c2.
Second, the distribution patterns of coordinates and
features differ significantly, and using independent
convolutional kernels allows for better capture of
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Figure 4: Comparison of various local aggregation. Each square represents the semantic feature,
while each rectangle represents relative coordinates. The number of neighbors is 3. The blue line
indicates a mapping in a high-dimensional space (e.g., from 3 + c to c, or c to c), and the red line
indicates a mapping from a lower dimension to a higher dimension (e.g., from 3 to c). More blue
lines indicate more computation.

these differences. However, as encountered with MobileNet, the speedup often comes at the cost of
reduced accuracy. As illustrated in Fig. 3, DSSA accelerates the model’s convergence during the
initial few epochs. Yet, as training progresses, the convergence slows down, and the model’s overall
performance starts to degrade. The main reason lies in the lack of spatial-wise anisotropy between
neighbor features. When features are processed independently of their spatial relationships, it can
lead to a loss of contextual information critical for certain tasks, such as those involving complex
spatial structures or detailed textural information.

Disassembled set abstraction. Building on the principles outlined above, we propose a novel method
for lightweight local aggregation that addresses the inherent challenges of separating coordinates and
features. The proposed disassembled set abstraction (DSA) module can be formulated as:

f i = PWConvc7→c(fi);

f ′
i = BN{Rj:(i,j)∈N {f j + PWConv37→c((pj − pi))}},

(4)

where BN is a batch normalization layer [28]. The spatial anisotropy derived from relative positions
is integrated into the neighborhood feature aggregation as a manner of bias. This integration ensures
that the aggregation of neighborhood features is closely linked to the spatial distribution of the point
cloud, thereby enhancing the model’s robustness under varying spatial distributions. Interestingly, the
Eq. (1) and Eq. (4) are actually mathematically equivalent during forward propagation. However, the
DSA module exhibits faster convergence and lower loss compared to the SA modules (see Fig. 3).
This phenomenon can be attributed to variations in the initialization of weights as follows.

Excluding bias, Eq. (1) uses a combined weight matrix W (dimensions c×(c+3)) to process semantic
and geometric data simultaneously. For a given neighbor j, the input vector xj = [fj ,pj −pi] results
in the output:

yj = WxT
j . (5)

In this case, Kaiming initialization sets W as a normal distribution N (0,
√

2
c+3 ), potentially reducing

the impact of geometric data due to its smaller proportional weight. In stark contrast, the DSA module
separates the processing of semantic and geometric data using two distinct weight matrices, Wf for
semantic (dimensions c× c) and Wp for geometric data (dimensions c× 3), leading to:

yj = Wff
T
j +Wp(pj − pi)

T. (6)

The specific initialization Wf ∼ N (0,
√

2
c ) and Wp ∼ N (0,

√
2
3 ) allows for a more balanced

influence of geometric data, thus enhancing the network’s ability to extract and utilize geometric
information effectively. It is noteworthy that the PWConv between high-dimensional semantic
features is applied directly to the point cloud features, rather than to the neighborhood. Additionally,
the number of input channels for PWConv applied to the neighborhood is only 3, which is significantly
smaller than c (with a minimum of 64 in the segmentation model). As illustrated in Fig 4, DSA
requires substantially fewer FLOPs compared to SA, thereby improving computational efficiency and
making it more suitable for large-scale applications.
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Figure 5: Efficient point clouds searching for query and sampling. (a) The input point cloud. (b)
Point cloud after linearization by space-filling curves. Points connected by solid arrows are within
the same grid, while dashed lines connect points between different grids. (c) Store each segment
of the solid line as a hash table. (d) The point closest to the center of each region represented by
segments connected by solid arrows is chosen as the new sampling point.

3.3 Point Searching Strategy

Recent literature [29, 30] employ space-filling curves to serialize point clouds, which are then
uniformly divided into patches and fed into a transformer architecture. Inspired by this, we map
points in 3D space onto a space-filling curve for accelerating point searching. Denote the coordinates
p as (x, y, z) and the batch index as b. The shuffled key is defined as a 64-bit integer:

Key = (b ≪ 54)|(⌊z/s⌋ ≪ 36)|(⌊y/s⌋ ≪ 18)|(⌊x/s⌋), (7)

where ≪ denotes left bit-shift, s denotes the grid size, and | denotes bitwise OR. It is worth noting
that, unlike PTv3 [30], which contains only one point per grid cell, our approach allows multiple
points to share the same key. We utilize shuffled keys to store these points in memory in an ordered
manner, ensuring that elements sharing the same key are close to each other in memory. As shown
in Fig. 5b, points on the same solid line are in the same grid. Through this, the point cloud V is
partitioned into m sub-regions [V1,V2, . . .Vm].

Hash query. By storing coordinates in spatial order, a hash table can be constructed to efficiently
manage and query neighbors. Each bucket represents a non-empty grid. The key is the shuffled key
of the grid, and the value contains two parts: the index of the first point in the grid and the count
of points in that grid. If the number of grids is m, the time complexity of building the hash table is
O(m). During the query phase, for each point, we find the 27 (i.e., 3× 3× 3) neighboring grids and
query the hash table with these keys. Finally, the top k nearest points are selected. Assuming each
point’s 27-grid neighborhood contains p points on average, identifying the closest k points involves
maintaining a heap with a complexity of O(p log k) and a final sorting step costing O(k log k). Thus,
the total computational complexity is O(m+N(p log k + k log k)), while that of kNN is O(kN2).

Linearization sampling. To achieve uniform and fast sampling, we select a point from each subset
according to the following rule:

idxi = arg min
j : (j)∈Mi

(∥pj − ⌊pj/s⌋ × s∥2) , (8)

where (j) ∈ Mi are the points of i-th sub-regions. This rule ensures that the newly sampled points
are the closest to the origin within their respective grids, guaranteeing uniform sampling. The method
has a linear time complexity and supports GPU parallelism, resulting in very fast sampling speeds.

3.4 Network Architecture

The overall architecture is illustrated in Fig. 2. For segmentation tasks, we use both encoders and
decoders. To ensure a fair comparison, in the indoor dataset S3DIS, we configure the encoder depth
as [4, 7, 4, 4], which is the same as PointNeXt. For the outdoor dataset, the encoder depth is set to [4,
4, 7, 4]. Specifically, the channel numbers for these stages are set to [C, 2C, 4C, 8C], with C being 64.
For the classification task, only the encoder is used. Considering that the dataset for the classification
task is small and PointNeXt is already capable of real-time response, we do not use the proposed
linear search strategy, ensuring a fairer comparison between the DSA module and the SA module.
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Table 1: Indoor sem. seg. on S3DIS Area 5.

Methods Input mIoU OA Acc

PointNet [7] point 41.1 - 66.2
PointCNN [31] point - - 75.6
PointWeb [32] point 60.3 87.0 66.6
PointNet++ [8] point 68.6 87.7 67.1
KPConv [33] point 67.1 - 79.1
RandLA-Net [27] point - - 82.0
PTv1 [9] point 70.4 90.8 76.5
CBL [34] point 69.4 90.6 -
PointMeta [17] point 72.0 91.4 -
ASSANet [18] point 66.8 - -
Str. Trans. [21] point 72.0 91.5 78.1
Fast PT [25] point 70.1 - 77.3
PTv2‡ [11] point 72.6 91.6 78.0
PTv3‡ [30] point 73.4 - -
ConDaFormer‡ [35] point 73.5 92.4 78.9
PointVector [16] point 72.3 91.0 78.1
PointNeXt [22] point 70.8 91.7 77.5

LinNet (ours) point 72.9 91.3 78.6
LinNet ‡ (ours) point 73.7 91.9 79.0

Table 2: Outdoor sem. seg. on NuScenes.

Methods Input Val Test

RandLA-Net [27] point - -
KPConv [33] point - -
RangeNet++ [36] point 65.5 -
Salsanext [37] hybrid 72.2 -
MinkUNet [4] voxel 73.3 -
PolarNet [38] point 71.0 -
PVKD [39] hybrid 76.0 -
AMVNet [40] - 76.1 -
Cylender3D [41] cylender 76.1 77.2
SPVNAS [42] hybrid 77.4 -
RPVNet [43] hybrid 77.6 -
2DPASS‡ [44] hybrid - 80.8
RangeFormer [45] - 78.1 80.1
SphereFormer [46] voxel 78.4 81.9
WaffleIron‡ [47] point 79.1 -
OACNN‡ [48] voxel 78.9 -
PTv3‡ [30] point 80.4 82.7

LinNet(ours) point 80.4 -
LinNet ‡(ours) point 81.4 82.3

4 Experiments

To validate the effectiveness of LinNet, we conduct experiments in 3D semantic segmentation and 3D
object classification tasks. We also conduct an extensive ablation study to analyze each component in
LinNet. More details of the experiments can be found in the Appendix.

4.1 Semantic Segmentation

Data and metric. S3DIS [49] (Stanford Large-Scale 3D Indoor Spaces) is a challenging benchmark
that comprises 6 extensive indoor areas, 271 rooms, and 13 semantic categories, which represent
different types of objects and room elements commonly found in indoor environments. Each point
in the dataset is labeled with one of the 13 semantic categories, such as table, door, chair, column,
and window, in addition to clutter. Following previous work [22], we subsample the grid before
sending the point cloud to the network. The grid size and maximum number of points are set to
0.04m and 24000 respectively. During training, we crop the center point by the pre-set maximum
number of points and discard the rest. During testing, the entire scene is processed. The experiment
results are shown in Tab. 1. For evaluation metrics, we choose class-wise intersection over union
(mIoU), mean of class-wise accuracy (mAcc), and overall point-wise accuracy (OA). Given that
S3DIS is relatively small, we conduct further experiments on the NuScenes [50] dataset to validate
the efficiency of our model. In this dataset, each point is annotated with one of the 16 semantic
categories. The dataset encompasses 1,000 scenes collected in Boston and Singapore, reflecting
diverse urban environments. We adhered to the official segmentation protocol, allocating 700 scenes
for training, 150 for validation, and another 150 for testing, ensuring a balanced and comprehensive
evaluation of our model’s performance across varied scenes.

Performance. The results are shown in Tab. 1 and Tab. 2. Following Point Transformer v2 [11]
and CondaFormer [35], we also employ the test time augmentation (TTA) strategy to achieve fairer
comparisons, and results using the TTA strategy are labeled with ‡. In indoor dataset S3DIS, our
LinNet outperforms the SoTA point-based method PointNeXt [22] by 2.9%, 0.2%, 2.5% in terms
of mIoU, OA, and mAcc, respectively. We also visualize the segment result in Fig. 6. In large-
scale dataset NuScenes, LinNet also outperforms all previous methods. It is worth noting that our
approach utilizes a pure MLP network, employing solely point-wise convolutions. This highlights
that sophisticated feature extractors, such as attention mechanisms and graph structures, are not
essential for achieving robust segmentation capabilities. Moreover, our method is strictly based on
point data, devoid of any sparse convolutions, which further underscores the scalability of point-based
methods in managing large-scale point clouds effectively.
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Figure 6: Comparative Visualization of Semantic Segmentation on S3DIS.

Table 3: 3D object classification in ScanObjectNN and ModelNet40. Averaged results in three
random runs using 1024 points as input without normals and without voting are reported.

ScanObjectNN (PB_T50_RS) ModelNet40 Params. FLOPs Throughput
Method OA (%) mAcc (%) OA (%) mAcc (%) M G (ins./sec.)

PointNet [7] 68.2 63.4 89.2 86.2 3.5 0.9 4199
PointCNN [14] 78.5 75.1 92.2 88.1 0.6 - 44
DGCNN [13] 78.1 73.6 92.9 90.2 1.8 4.8 458
DeepGCN [51] - - 93.6 90.9 2.2 3.9 -
KPConv [33] - - 92.9 - 14.3 - -
ASSANet-L [18] - - 92.9 - 118.4 - 144
SimpleView [3] 80.5±0.3 - 93.0±0.4 90.5±0.8 0.8 - -
MVTN [1] 82.8 - 93.5 92.2 3.5 1.8 2-
Point Cloud Transformer [10] - - 93.2 - 2.9 2.3 -
CurveNet [52] - - 93.8 - 2.0 - -
PointMLP [23] 85.4±1.3 83.9±1.5 94.1 91.3 13.2 31.3 220
PointMetaBase [17] 87.9±0.2 - - - - 0.6 -
PointNeXt [22] 87.7±0.4 85.8±0.6 93.7±0.3 90.9±0.5 1.4 1.6 2126

LinNet (ours) 88.2±0.4 86.6±0.7 93.6±0.2 91.0±0.5 1.4 0.6 1852

4.2 Object classification

We chose the ScanObjectNN [53] and ModelNet40 [54] datasets to assess the classification capa-
bilities of our model, and the results are shown in Fig. 3. We also report the parameters, FlOPs,
and throughput. Following PointNeXt, the input channels of the models used in ScanobjectNN and
ModelNet40 are 32 and 64 respectively. The model parameters are computed for C = 32.

ScanObjectNN. It contains approximately 15,000 real scanned objects divided into 15 categories
with 2,902 instances, which presents substantial challenges due to occlusions and noise. We conduct
experiments on PB_T50_RS, the most challenging and frequently used variant of ScanObjectNN.
According to the report, the proposed LinNet significantly outperformed existing methods in Overall
Accuracy (OA) and mean Accuracy (mAcc), using fewer model parameters and achieving faster
processing speeds. LinNet achieved an OA of 88.6% and a mAcc of 87.3% on ScanObjectNN. Note
that we employ the same training protocols and experimental conditions as the SOTA benchmark,
PointNeXt. Nonetheless, we still achieve an OA improvement of 0.4%, while other PointNeXt style
architectures (e.g., PointMetaBase [17]) using the same experimental setup only achieve an OA
improvement of 0.1%.

ModelNet40. This dataset is a widely-used object classification dataset, comprises 12,311 3D
computer graphics CAD models across 40 categories. Our results, as indicated, are highly competitive
and exceed those of most previous methods. LinNet achieved an Overall Accuracy of 93.9% on
ModelNet40, surpassing graph-based models like DGCNN [13], transformer-based models such as
Point Transformer [9], and KPConv [33].

4.3 Model Efficiency

We evaluate the efficiency of our model at four different scales of points: 20k, 50k, 100k, and 200k.
The down sampling rate is about 4. The experiments are performed on an RTX 3090. The models
we compared include PointNeXt-XL [22] and Point Transformer v2 [11]. As shown in Fig. 7a, the
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(a) Efficiency comparison of different models. (b) Efficiency comparison of different components.

Figure 7: Efficiency comparisons. The horizontal axis represents the number of points in the input
tensor and the vertical axis represents the running time in milliseconds.

Table 4: Model design ablation.

ID LS HQ DDSA DSA mIoU Latency(ms)
I 70.8 89
II ✓ 72.0 45
III ✓ 70.8 80
IV ✓ ✓ 72.0 38
V ✓ ✓ ✓ 71.0 32
VI ✓ ✓ ✓ 73.1 34

Table 5: Ablation on the DSA design.

ID Methods mIoU ∆

(1) Vanilla SA 72.0 -1.1
(2) DSSA 71.0 -2.1
(3) ASSA 70.5 -2.6
(4) PosPool 69.9 -3.2
(5) Avg. pooling 71.2 -1.9
(6) DSA 73.1 -

latency of LinNet grows linearly with the scale of the point cloud. Point Transformer v2 employs
grid pooling, a technique similar to our linearization sampling, both characterized by linear time
complexity. However, thanks to the simplicity and efficiency of our disassembled set aggregation,
our model exhibits only half the latency of Point Transformer v2. Notably, at the 200k level, our
LinNet model operates 13 times faster than PointNeXt, demonstrating significant improvements in
processing speed. We also explore the latency of the proposed point cloud search strategy. Note that
the horizontal axis is on a logarithmic scale. As shown in Fig. 7b, linearization sampling and hash
query based on space-filling curves leads to greater speedup as the point cloud size increases. The
proposed linearization sampling can be up to a thousand times faster than FPS.

4.4 Ablation Study

We conduct ablation experiments of the model to verify the validity of each component, and all
experimental results are averaged over three times in the S3DIS area 5 unless otherwise stated.

LinNet. We perform ablation experiments on different modules introduced in LinNet: linearization
sampling (LS), hash query (HQ), depth-wise separate set abstraction (DSSA), and disassembled set
abstraction (DSA), with the results shown in Tab. 4. The delay was measured on a 20k number of
point clouds. The model used in Exp. I is PointNeXt, which is the baseline result of our design. In
Exp. II through VI, we progressively incorporated each of our proposed components, improving the
baseline accuracy to 73.1% and reducing the latency to 34 ms.

Disassembled set abstraction. In Tab. 5, we investigate the design of the feature aggregation
module to improve the aggregation of semantic and geometric information. We utilize ASSA [18]
and PosPool [19], instead of DSA module. Additionally, we evaluate the performance impact of
replacing max pooling with average pooling. Exp. (1) and (2) show a 1% decrease in accuracy
when using simple separation of inputs directly. Comparing Exp. (1) with Exp. (6) indicates that
the proposed DSA module performs better than the SA module. Exp. (3) and (4), which employ
ASSA and PosPool respectively, demonstrate performance degradation, highlighting that our data-
driven approach outperforms the parameter-free strategy in merging low-dimensional coordinates and
high-dimensional semantics. Exp. (5) shows that max pooling is more compatible with our network.

Model scalability. We refer to the default LinNet as LinNet-Base and designed two variants with
different numbers of trainable parameters: LinNet-Small, which has one-tenth the parameters of
LinNet-Base, and LinNet-Large, which has four times the parameters of LinNet-Base. We test the

9



Table 6: Model scalability. Latency and FLOPs are measured with 24k points.

Name Channels Depths Param(M). FLOPs (G) Latency (ms) mIoU(%)
Small 32 [2,2,2,2] 1.5 2.1 27 77.6
Base 64 [4,4,7,4] 16.5 7.8 34 80.4
Large 128 [4,4,7,4] 65.6 24.9 42 81.3

Table 7: Memory footprint during training and inference on the NuScenes dataset.

Model Training Memory Inference Memory

MinkUNet 2.6 GB 1.4 GB
PointNeXt Out of Memory Out of Memory
LinNet-Small 5.2 GB 4.9 GB
LinNet 16 GB 13 GB

performance of these models on the outdoor dataset NuScenes, and the results are summarized in
Tab. 6. The mIoU on the validation set steadily improves with increasing model size. Additionally,
since the models are linear, the increase in parameters does not result in significantly higher latency.
Notably, without using TTA, our LinNet-Small achieves a validation accuracy of 77.6% with only
1.7M parameters, surpassing the 38M parameter sparse convolution method MinkUnet [4].

Memory footprint. We conduct experiments to evaluate memory usage during both training
and inference phases on the NuScenes dataset, utilizing an RTX 4090 graphics card with all tests
conducted at a batch size of 1. We include comparisons with the baseline model PointNeXt [22]
and the sparse convolution method MinkUNet [4]. Our findings reveal that PointNeXt suffers from
out-of-memory issues when handling large-scale scenes, highlighting scalability challenges. In
contrast, our DSA module significantly reduces memory consumption by avoiding high-dimensional
feature transformations on neighboring point clouds. Given that MinkUNet starts with 32 input
channels, we conducted similar tests with our LinNet-Small model, which also has 32 initial feature
channels, for a direct comparison. The results are shown in Tab. 7. Although LinNet-Small consumes
more memory than MinkUNet, it is crucial to note that LinNet-Small, with only 1.7M parameters,
achieves a validation accuracy of 77.6%, surpassing the 38M parameter sparse convolution method
MinkUNet, which achieves 73.3%.

5 Conclusion

Conclusion. In this paper, we implement a point-based approach with linear complexity. Unlike
current point-based methods, our framework uses space-filling curves to achieve neighbor query and
downsampling with linear complexity. Additionally, we introduce a disassembled set aggregation
module, which aggregates local features simply and elegantly, significantly reducing the redundant
computations in neighborhoods and greatly enhancing scalability. Extensive experiments on multiple
benchmarks demonstrate the efficiency and state-of-the-art performance of our method.

Limitation and Future Work. Although the proposed approach largely addresses the scalability
challenges of point-based approaches in large-scale scenes, the distribution of point cloud data
in memory in point-based approaches tends to be discontinuous, leading to inefficient memory
access. This increases the cache miss rate, which in turn reduces the processing speed. Point-wise
neighborhood aggregation also consumes a significant amount of memory. We hope that future work
will address the significantly higher memory footprint than sparse convolution methods.
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suggestions. This work was supported by the Key Research and Development Program of Shaanxi
Province of China under Grant 2024GX-YBXM-149, in part by the National Natural Science
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Appendix

In the appendix, we provide more experiment details in Sec. A, and more experiment results in Sec.
B.

A Experimental Details

This section provides a detailed description of the experimental setup for each dataset.

Experimental environment.

• CUDA version: 11.3
• PyTorch version: 1.12.1
• GPU: Nvidia RTX 4090D × 4
• CPU: AMD EPYC 9754 128-Core

Training details. The specific model training settings are shown in Tab. 8 and Tab. 9. We used
cross-entropy loss in all experiments.

Table 8: Data augmentation.

Rotate Flip Scale Jitter Chromatic Drop Height Grid Size

ScanObjectNN ! ! !

ModelNet40 !

S3DIS ! ! ! ! ! 0.04
NuScenes ! ! ! ! 0.05
Sem. KITTI ! ! ! ! 0.05

Table 9: Training setting.

Epoch Learning Rate Weight Decay Scheduler Optimizer Batch Size

ScanObjectNN 250 0.002 0.05 Cosine AdamW 32
ModelNet40 600 0.001 0.05 Cosine AdamW 32
S3DIS 3000 0.01 0.0001 Cosine AdamW 8
NuScenes 50 0.002 0.05 Cosine AdamW 12
Sem. KITTI 50 0.002 0.05 Cosine AdamW 12

Data license. Our experiments use open-source datasets widely applied for 3D recognition research.
The ScanObjectNN [53], SemanticKITTI [55], dataset is under the MIT license, while S3DIS [49],
NuScenes [50], and ModelNet40 [54] have custom licenses that only allow academic use.

B Additional Quantitative Results

In this section, we present additional quantitative results of SemanticKITT [55] for 3D semantic
segmentation. In addition, we provide semantic segmentation results for each category of NuScenes
(see Tab. 10) and S3DIS Area 5 (see Tab. 11).

SemanticKITTI. The SemanticKITTI dataset consists of sequences from the original KITTI dataset,
comprising a total of 22 sequences. Each sequence contains approximately 1,000 LiDAR scans,
amounting to around 20,000 individual frames. The result is shown in Tab. 12. The mIoU of
validation set and test set are 69.1% and 70.4% respectively.

S3DIS 6-fold cross-validation. To evaluate the generalization capabilities, we perform 6-fold cross-
validation on the S3DIS dataset to ensure a robust assessment of our model’s performance across
different subsets of data. The results are shown in Fig. 13.

Nomalization layer type. We conducted ablation studies on the S3DIS dataset to further assess the
necessity and effectiveness of BN. As shown in Tab. 14, models with BN outperform those with
Layer Normalization (LN) and without any normalization, indicating that BN is particularly effective
for our specific architecture.
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Table 10: Semantic segmentation results on NuScenes val set. ‡ denotes using rotation and
translation testing-time augmentations.
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RangeNet53++ [36] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [38] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [37] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
AMVNet [40] 76.1 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9
Cylinder3D [41] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
PVKD [39] 76.0 76.2 40.0 90.2 94.0 50.9 77.4 78.8 64.7 62.0 84.1 96.6 71.4 76.4 76.3 90.3 86.9
RPVNet [43] 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9
2DPASS [44] ‡ 79.4 78.8 49.6 95.6 93.6 60.0 84.1 82.2 67.5 72.6 88.1 96.8 72.8 76.2 76.5 89.4 87.2
SphereFormer [46]‡ 79.5 78.7 46.7 95.2 93.7 54.0 88.9 81.1 68.0 74.2 86.2 97.2 74.3 76.3 75.8 91.4 89.7
LinNet(ours) 80.4 79.2 54.6 96.6 93.2 53.9 89.0 83.7 70.6 73.3 88.5 96.9 73.8 76.1 75.4 91.5 89.7
LinNet‡(ours) 81.4 80.0 56.9 96.9 94.0 58.4 90.0 84.4 72.1 74.2 89.7 97.0 74.4 76.8 76.0 91.7 89.9

Table 11: Semantic segmentation results on S3DIS Area 5.
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PointNet[7] - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
PointNet++[8] 83.0 - 53.5 - - - - - - - - - - - - -
PointCNN[14] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
DGCNN[13] 83.6 - 47.9 - - - - - - - - - - - - -
DeepGCN[51] - - 52.5 - - - - - - - - - - - - -
KPConv[33] - 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
ASSANet-L[18] - - 66.8 - - - - - - - - - - - - -
Point Trans.[9] 90.8 76.5 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 82.4 89.1 74.3 80.2 76.0 59.3
RepSurf-U[57] 90.2 76.0 68.9 - - - - - - - - - - - - -
PointVector[57] 91.0 78.1 72.3 95.1 98.6 85.1 0.0 41.4 60.8 76.7 84.4 92.1 82.0 77.2 85.1 61.4
PointNeXt [22] 90.7 77.5 70.8 94.2 98.5 84.4 0.0 37.7 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
LinNet(ours) 91.9 79.0 73.7 94.8 98.5 86.2 0.0 45.5 61.6 82.8 85.1 92.3 85.5 80.0 80.4 65.4

Table 12: Sem. seg. on Sem. KITTI.

Methods Val Test

SPVNAS [42] 64.7 66.4
Cylinder3D [41] 64.3 67.8
PVKD [39] - 71.2
2DPASS [44] 69.3 72.9
WaffleIron [47] 68.0 70.8
SphereFormer [46] 67.8 74.8
RangeFormer [45] 67.6 73.3
MinkUNet [4] 63.8 -

LinNet (ours) 69.1 70.4

Table 13: S3DIS 6-fold cross-validation.

Methods mIoU (%) mAcc (%) OA (%)

PointNeXt 74.9 83.0 90.3

LinNet 78.6 86.3 91.9

Table 14: Normalization layer.

None BN LN

71.8% 72.9% 71.9%
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Our code will be available upon publication.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
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deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license of
a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

20

paperswithcode.com/datasets


Answer: [Yes]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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