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Abstract

Bayesian Network models are a powerful tool to collaboratively optimize produc-
tion processes in various manufacturing industries. When interacting, collaborating
parties must preserve their business secrets by maintaining the confidentiality of
their model structures and parameters. While most realistic industry scenarios
involve hybrid settings, handling both discrete and continuous data, current state-of-
the-art methods for collaborative and confidential inference only support discrete
data and have high communication costs. In a centralized setting, Junction Trees
enable efficient inference even in hybrid scenarios without discretizing continuous
variables, but no extension for collaborative and confidential scenarios exists. To
address this research gap, we introduce Hybrid CCJT, the first framework for con-
fidential multiparty inference in hybrid domains with semi-honest, non-colluding
adversaries, comprising: (i) a method to construct a strongly-rooted Junction Tree
across collaborating parties through a novel construct of interface cliques; and, (ii)
a protocol for confidential inference built upon multiparty computation primitives
comprising a one-time alignment phase and a belief propagation system for com-
bining the inference results across the Junction Tree cliques. Extensive evaluation
on nine datasets shows that Hybrid CCJT improves the predictive accuracy of
continuous target variables by 32% on average compared to the state-of-the-art,
while reducing communication costs by a median 10.4x under purely discrete
scenarios.

1 Introduction

Bayesian Networks (BNs) are probabilistic models that incorporate domain knowledge while retain-
ing interpretability [1]. This makes them a powerful tool for optimizing manufacturing processes
in numerous industrial domains [2| [3| |4]. One example is semiconductor manufacturing, which
involves complex procedures and machines. Production process optimization within the field in-
creasingly requires the collaboration between parties like manufacturers (with domain knowledge on
the product design and manufacturing steps) and equipment vendors (with expertise on the equip-
ment performance) [S)]. However, such collaboration must preserve the confidentiality of the BNs’
structure and parameters, which encode sensitive industrial knowledge and the parties’ evidence.
Moreover, most real-world applications require models to handle discrete (A) and continuous (I")
data simultaneously [6]], achieved using Hybrid Bayesian Networks [1].
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Figure 1: The equipment vendor and the chip manufacturer observe status of etching rate and wafer
table wear separately (evidences), and model relationship between variables with BNs (models).
Equipment vendor predicts the overlay error (query), leveraging evidence of wafer table wear
(discrete value) and etching rate (continuous value).

Collaborative Confidential Bayesian Networks tackle the aforementioned challenges by treating local
parties’ BN as a larger global network while concealing these parties’ knowledge from each other.
exemplifies confidential inference in the semiconductor industry.

Non-collaborative BNs can be queried via the Variable Elimination algorithm [/], which eliminates
variables one by one by marginalization. CCBNet [8]] extends this algorithm to collaborative confi-
dential BNs. However, CCBNet has two main drawbacks. First, it only supports discrete variables,
leaving out continuous ones. Second, it does not scale well, as inference time is worst-case expo-
nential in the number of network nodes, and high communication costs to exchange partial results
between parties. Such drawbacks hinder its real-world adoption in scenarios with continuous or
mixed-variable types, and BNs with as few as 15 nodes.

To make inference on larger BNs tractable, [9] divides the network into smaller sub-networks,
called cliques, and organizes them into a Junction Tree (JT) structure. Subsequently, inference is
performed via the Variable Elimination algorithm in each clique, and the results are combined via
Belief Propagation [10]. Conveniently, when Junction Trees are strongly-rooted, they can be used
to carry-out inference over Hybrid BNs [[11]]. The strongly-rooted property requires a strong order
eliminating continuous variables before discrete ones [12]. Constructing such a tree in a distributed
and confidential fashion is an unexplored challenge.

To tackle this, we propose Hybrid CCJT (Hybrid Collaborative Confidential Junction Trees), the
first peer-to-peer framework that runs collaborative inference over Hybrid BNs confidentially with no
need for a central coordinator. Hybrid CCJT consists of two main components:

(i) A collaborative strongly-rooted Junction Tree. We introduce interface cliques in the tree structure,
a type of clique that models distributions of variables common among parties, and preserves a strong
order which is key for inference in hybrid BN, detailed in Section[3.3]

(i1) A confidential inference protocol for Hybrid BNs. To perform inference, parties propagate their
clique partial results over the built strongly-rooted JT, starting with the continuous variables and
ending with the discrete ones. Within this protocol, we present two novel procedures to ensure
confidentiality during inference when processing interface cliques: Collaborative A Inference and
Collaborative I Inference. In particular, the former eliminates more variables before message-passing
than the state-of-the-art CCBNet for discrete BNs, drastically reducing communication costs. The
latter enables handling continuous variables, detailed in Section 3.4}

Code is available at|github.com/r-gheda/hybrid-ccjtl Our contributions are as follows:
* We propose Hybrid CCJT, the first framework for Collaborative Confidential Hybrid BN inference.

* We design a collaborative strongly-rooted JT protocol, the first method to build a collaborative,
strongly-rooted Junction Tree based on interface cliques to run accurate inference in hybrid domains.

* We prove the correctness of this novel strongly-rooted JT structure and its construction protocol.

* We propose a confidential inference protocol, which uses HE and SMC to make parties’ BNs
collaborate, while protecting their structure and parameters of and posterior of private variables.

* We evaluate our method against nine different datasets and report improvements compared to
non-hybrid confidentiality-preserving methods. We obtain a 32% average decrease in mean squared
error and up to 86 x reduction in communication costs. Furthermore, our method uses up to 331 x
smaller communication costs under purely discrete scenarios.


https://github.com/r-gheda/hybrid-ccjt

2 Related Studies and Background

2.1 Hybrid CLG Bayesian Networks

Bayesian Networks [[1] are directed acyclic graphs whose nodes are random variables and whose
edges correspond to the direct influence of one variable on another. The conditional probability
distribution (CPD) of a variable X given its parents, P[X | pa(X)], is called its factor. The tables
that summarize such probability distributions are called CPD tables. Traditionally, BNs only allow
variables to be discretely valued [7]. However, such a requirement limits the representation quality for
variables that naturally describe continuous-valued data [13]. Moreover, exact inference in discrete
BN is NP-hard, while other continuous representations, such as Conditional Linear Gaussian (CLG),
can perform exact inference with polynomial cost in the network size [[7].

Hybrid Bayesian Networks [13]] allow to model probability distributions with both discrete (A) and
continuous variables (I'). One of the most common classes of hybrid models is the set of Hybrid
Conditional Linear Gaussian (Hybrid CLG) distribution models [14]. In this class, continuous
variables are Gaussian-shaped and cannot have any discrete children. The factor of a continuous
variable X € I' with discrete parents za and continuous parents zr is given by:

P[X[{za,2r}] = N(X;a(2a) + B(za) 21, 0°(24)) M

where « and f3 are the coefficients that depend on the discrete state combination of za . If the state
combination of z is fixed, X is Gaussian-shaped. Otherwise, (X ) is a mixture of O(2/2!) Gaussian
distributions. In general, even representing the correct marginal distribution in a Hybrid CLG network
requires space exponential in the size of the network [7]]. Furthermore, even approximate inference
for simple model structures such as polytrees is NP-hard in Hybrid CLG networks [[15]].

Inference Lauritzen and Jensen [[L1] propose an algorithm to carry out accurate inference in Hybrid
CLG BNs by leveraging a strong elimination order. In such an order, continuous nodes get eliminated
from the graph before discrete ones [12].

2.2 Collaborative and Confidential Bayesian Networks

Collaborative confidential BNs aim to hide each party’s own BN structures and parameters from
one another during distributed inference. CCBNet [8] is the current state-of-the-art for collaborative
confidential BN inference. It is based on two protocols: CABN (Confidentially Augmented Bayesian
Networks) and SAVE (Share Aggregation Variable Elimination). CABN privately performs alignment
of factors of common variables, while SAVE performs distributed inference based on a Variable
Elimination and BN merging scheme inspired by Del Sagrado and Moral [[16] and Feng et al. [17].

Despite being a significant step forward in the Confidential BN literature, CCBNet falls short in
several aspects. It only supports discrete variables, has high communication costs, and reveals
marginals for some private variables from peers to the party executing a query.

Multiply-sectioned Bayesian Networks [18] proposed a method for distributed inference on
Bayesian Networks leveraging Belief Propagation. However, these methodologies require ana-
lyzing the shared BN structure, breaking confidentiality requirements. Furthermore, loopy belief
propagation entails sending more messages (due to the iterative nature of the algorithm) and is proven
to converge only on graphs with at most one cycle [19].

3 Hybrid CCJT

3.1 Preliminaries on Junction Trees

Exact inference in discrete BNs is NP-hard as its cost grows exponentially in the network’s number
of variables (nodes). A widely used technique to make inference on larger instances tractable is to
build a Junction Tree [9]. Similarly to tree decomposition, the original network is decomposed into
a tree-like graph where each node contains a sub-graph of the original BN—called clique. After
computing inference in each small clique (e.g., by variable elimination), Belief Propagation [, a
message-passing algorithm proven to converge in linear time on trees, can combine the results. As
such, the size of the largest clique bounds the cost of inference.



In [Figure 2 we showcase the popular ASIA network
with 8 nodes [9] as an example. Here, running Variable
Elimination requires ~ 2% operations to perform exact
inference. In contrast, on the corresponding Junction
Tree in[Figure 2}, the size of the largest clique (4 in our
example) bounds the inference cost. Thus, it requires
only ~ 2* operations.

Formally, a Junction Tree of a Bayesian Network over
variables X with set of factors ® is a computational
graph whose nodes C}, termed cliques, are tuples (X; C
X, ®; C ). Edges, termed separators, are associated
with a set of variables called sepset S; ; = X; N X;.
These edges connect the cliques to form a tree. To be
valid, a Junction Tree must satisfy the following rules:

Figure 2: Construction of a Junction Tree:
(a) Example of a discrete Bayesian Net-
work. (b) A corresponding Junction Tree
consisting of 4 cliques.

o Family preservation: Each factor ¢ € ® must be associated with one clique C; such that Scope[¢] C
X;.

* Running-intersection property: For each pair C; and C, every clique on the path between them
contains X; N X;.

Exact inference can run on Junction Trees via message passing schemes exchanging factors with
joint probabilities, one of the most popular being the sum-product algorithm [[10]. Let us define the
potential of each clique C; as ¢(C;) =[] ;€ ¢;. Sum-product requires cliques to send messages

through the tree towards a root as follows:

> ¢(C )
Crenb(CH)\Cy

He,—c; = HCr—C;

vEZSi,j

where pc, ¢, 18 a message sent from clique Cj, to clique C; in the form of a CPD table with scope
Sk,i- > represents the variable marginalization operator: a fundamental operator of BN inference
which removes a set of variables from a factor. The outcome of such an operation is called marginal.

Strongly-Rooted Junction Trees Regular Junction Trees lack a strong elimination order [12]]. They
break the requirement of strictly eliminating continuous nodes before discrete nodes for correctly
running inference on Hybrid CLG models.

Definition 3.1. A Junction Tree over a set of discrete variables A and CLG variables I" is strongly-
rooted if it has a distinguished clique C,., called strong root, such that for every couple of neighboring
cliques (C;, C;), with C; being closer to C,. than C}, it holds that:

CiﬂngA \Y CJ\CZQF 3)
Lauritzen and Jensen [11]] shows that strongly-rooted Junction Trees allow computing exact posteriors

of all discrete variables (strong marginalization) and exact first and second moments of all continuous
variables (weak marginalization) via multivariate Gaussian approximation.

Shared .
Party 1 | Interface | Party 2
! Shared ' Collaborative I" Inference | |
: Party 1 | Interface | Party 2 ' SIS .
f Local Query ! Collaborative Query |, Local Query
: y ITZ \ | Ijz | F?c . P(C|X=x) | ! P(Y | X=x,C) ﬂ: | P(Y|C)
\ \ o / Ty ST | R B
: <x,y,c>f \ v, c ,‘t \ fy.cy ,“‘ I [ I
i — . - Collaborative A Inference | I
1
' | | IS S N
: AL A A2 Co]laboramc Qucry
— = 2 P(A, B,C| X =x, D=d) ' P(A,C|X=x,D=d) @ P(C|D=d, X=x)
S\ N ! =ic Nl |
(X —Y) ! {A.B,C):F €A {D,C}
(a) Parties’ input BNs (b) Collaborative JT (c) Confidential Inference Protocol

Figure 3: Overview of Hybrid CCJT. Red represents discrete, blue represent continuous. (a) Parties’
secret BNs are taken as input. (b) A Junction Tree is constructed. (c) Confidential inference is
performed. Arrows represent input.



3.2 Hybrid CCJT Overview

Hybrid CCJT is a framework to run collaborative, confidential queries in Hybrid CLG domains. It
uses two main protocols: (i) Collaborative strongly-rooted JT Protocol for parties to collaboratively
generate a strongly-rooted Junction Tree; and (ii) Collaborative Inference Protocol for parties to
jointly perform exact inference leveraging homomorphic encryption (HE) [20] and secure multi-party
computation (SMC) [21] to preserve confidentiality. showcases the steps of Hybrid CCJT.
Further, [Appendix H|provides a detailed diagram that explains the steps of inference in a two parties
scenario.

We assume that variables from different parties have the same name only if they represent the same
concept, and that considering the distinct parents for the same node across parties to be independent
reasonably approximates the ground truth. We model the joint probability distribution as the union of
each party’s BN. Our adversarial model includes semi-honest parties that follow the protocol while
trying to abuse gained information [22]] but do not collude. No trusted third party is assumed. The
goal is to protect the structure and parameters of parties’ BNs, and to hide marginals and posteriors

of private variables. We prove our confidentiality achievements in

In centralized settings, Junction Tree construction requires using algorithms that analyze the network
structure [7]]. Doing so goes against our confidentiality requirements and does not consider minimizing
communication costs. Our collaborative strongly-rooted JT Protocol allows the construction of a
strongly-rooted Junction Tree without sharing such confidential information. In this regard, two key
novel steps are the construction of interface cliques across parties and modeling common variable
distributions. Centralized inference requires parties to reveal the network structure and marginals
within the interface clique. Our Confidential Inference Protocol allows computing the outcome of
this inference without disclosing such sensitive information.

3.3 Collaborative Strongly-Rooted JT Protocol

In centralized settings, building Junction Trees involves algorithms that analyze the full network
structure [[7]]. Such an approach goes against our confidentiality requirements and does not account
for the demand to reduce communication costs. Contrarily, our Collaborative Junction Tree protocol
builds a strongly-rooted Junction Tree without sharing confidential information. First, we construct
tree cliques and separators to define an elimination order valid for hybrid inference. We then model
the posterior distribution of common variables by a process we call alignment. The assumptions we
make for providing a correct alignment are as follows: (i) variables have the same name when defining
identical concepts; (ii) same variables have the same discrete states or continuous measurement units.

Every party defines an input BN (either Discrete, Continuous, or Hybrid CLG) describing their
knowledge (Figure 3a). Network structure and parameters can be defined by human experts or
deduced via structure and parameter learning methods [23]. Before running the protocol, we find the
set of interface variables Z (i.e., the common variables among parties). For confidentiality, we do so
via Private Set Intersection [24]. The Junction Tree’s definition relies on each party’s input network
and the global set of interface variables.

Junction Tree construction We construct the collaborative Junction Tree by building each party’s
local discrete and continuous cliques and their corresponding shared interface cliques. Finally,
we connect all the cliques. For each party i, we define two local cliques: one discrete (A%) and
one continuous (I‘iﬂ) (see red and blue nodes in . Then, we define two shared interface
cliques, one discrete (A7) and one continuous (I'7). Next, we map variables and factors to each
clique. Let ®(X) denote the set of factors for each z € X, where X is a set of variables. Take
A; and T'; as the set of discrete and continuous variables in party ¢’s input network. Let Scope, [x]
be the scope of variable x in party ¢’s input network. Each party ¢ defines its local cliques as

L= (A, ®(A;\ ) and I';, = (T'; U Scope;[I';], ®(I'; \ Z)). Define interface cliques as Az =
(Scope[); Ai]U (Scope[I]NA), ®(ANZ)) and I'z = (Scope[); I's] U (Scope[l]NA), ®(I'NI)).
Cliques are then connected to form a tree. As shown in [Figure 3b] discrete and continuous local

cliques are connected with discrete and continuous shared interface cliques, respectively. The two
interface cliques are connected, with the separator being the set of threshold variables T . That is, the

set of discrete variables with continuous children (A N pa(I')). The resulting graph is a valid Junction
Tree, with any A’. being a valid strong root. We show this in detail in|[Appendix A



Algorithm 1 Collaborative Inference Protocol

Input: discrete target 72, continuous target 77, evidence &, querier Q, peers P, overlap variables O

1: CollaborativeContinuousinference(E', {Q} U P, O)

2: strong_marginals < CollaborativeDiscretelnference(E®, Q, P, O)

3: A-result <) o { A\TA}strong_marglnals > Local Variable Elimination
4: T-result + WeakMarginalization(strong_marginals, ") >
S:

return A-result, I'-result

Interface alignment After finding consensus on how to model probability distributions of common
variables in the interface clique, parties can perform all further collaborative inference queries.

To align the CPD of discrete interface clique, we use a geometric average (also known as the
Logarithmic Opinion Pool [23l)):

[Licp Pi[A = a;]”
PlA=a;] = L€ xa|]P[A=aq, 4)
T Ykeaa iep PilA = ai]™ g i1

where w; is a publicly known weight of party ¢, which represents the confidence in its BN. Other
foundational works on combining BNs [[16] and consensus belief [25]] also study this approach. From
the definition of the interface clique potential for discrete variables follows:

¢(Az) = o[ o(AD)™ (5)
i€P

where « is the column normalization factor applied to each table’s column based on the alignment
process. To implement it confidentially, parties allocate space in the interface variables’ CPDs to
account for parents managed by other parties with obfuscated names. Then, they collaboratively
compute column normalization factors « via HE [20]]. This normalization is only applied during
inference by the querying party, enabling peers to marginalize their private variables before message
passing, where CPD entries are secretly shared via a multiplication-based scheme [260], enhancing
both communication costs and privacy guarantees.

To align the continuous interface clique, we define the joint probability distribution of common
continuous variables as the weighted mixture of parties’ (local) Gaussian distributions. Given a fixed
discrete state combination s € Q(T):

PIX|T =] = > wiN(X; pi s (X), 04,(X)) (6)
i€P
At inference time, we approximate this distribution as a normal distribution with the same first and

second moments of [Equation 6]
PIXIT = s = N (X3 3 wigsss(X), Y [wiors,s (X)) + Y [wslp = pis(0)) @

icP iclP i€lP

where p = 3, pwipu; s(X) is the mean of the PDF. The abovementioned step does not require
sharing any parameters, maintaining confidentiality.

3.4 Collaborative Inference Protocol

We outline the protocol via pseudocode in and graphically in Let Q be

the querying party. Belief propagates towards A through two steps. First, parties collaboratively
run inference within the continuous domain to compute marginals over threshold variables (line 1).
Second, they run collaborative discrete inference (line 2). Subsequently, party () uses the computed
marginals to perform the remaining part of the query (lines 3-4). Centralized inference requires
parties to reveal the network structure and partial inference results inside of the interface clique. Our
protocol provides a procedure to compute the outcome of this inference without disclosing such

sensitive information. We discuss this in detail in[Appendix B]

Collaborative Continuous Inference During this step, we aim to merge parties’ local continuous
evidence to find the strong marginals over threshold variables. [Algorithm 2| outlines its logic.



Algorithm 2 Collaborative Continuous Inference
Input: evidence &, parties P, overlap variables O
1: forp e Pdo
2:  p.ovBelief < P[O | £] > Local Continuous Inference
3: end for
4: ovBelief < secretShare(Up6 p p.ovBelief ) >
5: forp € Pdo
6
7
8

threshold < p.A-vars N pa(p.I'-vars)
p.threshBelief <— P[threshold | ovBelief]
: end for

Algorithm 3 Collaborative Discrete Inference
Input: evidence &, querier @, peers P, overlap variables O

1: forp e Pdo

2:  p.factors < p.threshBelief [ [ y . o P[X | pa(X),&]

33 pmsg— . (a\0} p-factors > Local Discrete Inference
4: end for

5: Q.ovBelief < secretShare({p.msg Vp € P}) >
6: return Q.ovBelief [[ . P[X | pa( ), E]

Messages from I'. to I'z are derived by each party without interaction (lines 1-3). When computing
a message from I'z to Az, we aim to find strong marginals over discrete parents of continuous
variables. To do so, we merge the knowledge of continuous interface variables (line 4). Parties
then marginalize all continuous variables to find strong marginals (lines 5—7). To merge continuous
variable knowledge, parties collaboratively compute the mean and variance of [Equation 7]

X) =Y wip(X), o(X)=> [wioso(X)] + > [wilp — pi,s(X))?] ®

i€lP icP icP

We use additive secret-sharing with no trusted third party to preserve confidentiality [27]] (line 4).
Each party randomly splits its secret value into as many shares as the number of parties and sends
them to each of them. Every party adds up the values it received. Finally, parties share their results
and compute the sum to find the final output. To compute p, each party i secretly shares w;p;(X).
While to find o, each party i secretly shares w;o;(X) + w;(p — 1;(X))2.

Finding strong marginals requires integrating out all continuous variables while accounting for their
evidences. This can be convemently done in O(|T'|®) using canonical form representation [7]], which

we discuss in detail in

Collaborative Discrete Inference After computing the marginals of threshold variables, parties final-

ize strong marginalization by collaboratively calculating the message from Az to Ag. Algorithm 3
showcases the procedure. Each non-querying party ¢ finds posteriors over their discrete domain A;.
Then, from Equation2]and 5] we derive:

Hasoag = ad(AF) T D0 oAD" naya, ©)
i€P\{Q} z¢Aq

We show the derivation of [Equation 9)in [Appendix El From the equation follows that each non-
querying party ¢ has to compute message m; = ZwszQ (b(AZI)wi:uAZHAI' It is possible to do so

locally, as ¢(A%L)™i is the outcome of the discrete interface alignment procedure known to party ¢
and INNN Do o1 ¢(A’) can be computed without interaction between parties (lines 2-7).

Eventually, the product of m; gives a factor over variables owned by the querying party () that does
not reveal any information about the posterior of variables owned by other parties. We prove the
above statement in To protect the content of these messages, we use a secret sharing
scheme for multiplication [26]. A secret value gets split into shares distributed amongst parties.
Parties perform the computation with their local share of each secret, and all aggregate their results to
reconstruct the answer.



Table 1: Results on hybrid data: best in bold, second best Brier score underlined. Lower is better.

Dataset Healthcare Sangiovese

#Parties 2 4 2 4

Overlap 10% 30% 10% 30% 10% 30% 10% 30%
Brier | 0.0496 0.036 0.0577 0.0856 0.019 0.0129 0.02746 0.015

Hybrid CCJT MSE | 4.7¢+06 4.6e+05 4.8¢+06 1.4e+07 0.0033 0.0018 0.00041 0.0045
Comm. | 4.7 16.6 114 139.7 43.5 87 219 596

Brier | 0.0557 0.058 0.0651 0.128  0.0457 0.0138  0.0484  0.0125
3 States  MSE | 59e+06 49405 5.4e+06 1.7e+07 0.044  0.021 0.083 0.0071

Comm. | 4.6 9.3 8.3 23.9 44.6 164.8 133.6 2654
Brier 0.0502  0.0578  0.0623 0.173  0.0243 0.0132  0.0476 0.013
A-CCJT 5States MSE] 5e+06  5.2e+05 5.3e+06 1.6e+07 0.025  0.012 0.012 0.0218
Comm. | 4.6 18.9 5.2 36.2 71 261.3 216.3 4174

Brier | 0.0488 0.044 0.0597 0.112  0.0181 0.0129  0.0269 0.013
10 States MSE | 4.8¢+06 4.9e+05  5e+06  1.6e+07 0.012 0.0036  0.0069  0.0049
Comm. | 4.0 58.2 5.2 66.7 140.1  213.7 424.7 24013
Brier | 0.0558  0.0568  0.0651 0.128  0.0496 0.0138 0.05769 0.0125
3 States  MSE | 5.8e+06 49405 5.4e+06 1.7e+07 0.044 0.02 0.064 0.007

Comm. | 38.7 15.2 17.0 34.3 196 793.6 19044 20271
Brier | 0.0502  0.0571  0.0623 0.172  0.0243 0.0132  0.0464 0.013
CCBNet 5 States MSE | S5e+06  5.2e+05 53e+06 1.6e+07 0.025  0.011 0.011 0.0215
Comm. | 12.6 28.2 9.6 161.1 52.8 808.9 42733 377341

Brier | 0.0488 0.044 0.0597 0.113  0.0181 0.0129  0.0269 0.013
10 States MSE | 4.8e+06 4.9e+05  S5e+06  1.6e+07 0.012 0.0037  0.0069  0.0049
Comm. | 9.7 135.2 9.6 560.2 154.1 13819 4074.6 189650

Weak Marginalization After computing discrete posteriors, following the weak marginalization
procedure [7]] yields the continuous ones. Thus, for any continuous variable X we get:

PIX]=N(X: Y PlTg=sln(X). Y. PlTo=s{ou(X)+(n—p(X)}) (10

S€EQ(AQ) SEQ(AQ)

where pp =3 o7,y PlTq = s]ps(X) is the mean of the PDF in|[Equation 10

Proof of Confidentiality Below, we outline why both of Hybrid CCJT’s collaborative phases
preserve confidentiality during inference:

1. Collaborative Discrete Inference CPD tables of interface variables (say, X) are "aug-
mented" to allocate space for all parents of X pa(X ), some of which might be private. This
step is required to ensure the correct outcome of HE, CPD product, and CPD normalization
as in Equation 4. We show that this step does not leak any information about such private
parent variables by proving that their marginals yield a uniform distribution &/ (Q(pa(X))).
Where Q(X) is the set of states of variable X. We prove this in Proposition Then, we
prove that, after message passing, the marginal over these parent variables remains uniform.
This ensures no information about such private variables leaks at inference time. We prove
this in Proposition[B.5] Furthermore, note that parties encrypt the names of variables and
their states to enhance confidentiality further.

2. Collaborative Continuous Inference Unlike discrete variables, continuous counterparts do
not require computing and correctly applying normalization factors potentially defined over
private factors. Thus, continuous private variables are inherently protected during alignment.
At inference time, the means and variances of shared continuous variables are calculated
using multi-party secret sharing, which updates the parameters of such shared continuous
interface variables. This approach inherently safeguards the information of private variables,
as they are not involved in the update process.

4 Evaluation

We evaluate Hybrid CCJT on nine publicly available models (see for details) whose
data structures are hybrid or discrete only. We compare it against the state-of-the-art on different

types of queries. presents additional results on purely continuous data.

and [J] present further experiments on computational costs of cryptographic tools and insights on
communication costs respectively.



Evaluation Metrics Our experiments assess the average predictive performance for discrete and
continuous target variables, and the associated communication costs. For discrete variables, we
evaluate the prediction quality using the Brier Score defined as % Zivzl Zle (fit — 0it)* where N
is the number of queries, R is the number of target variables state combinations and f and o are the
predicted and actual probabilities, respectively. We use the Mean Squared Error (MSE) of predicted
means compared to the actual values for continuous variables. The average CPD and CLG parameter
values transmitted per query give the communication costs.

Dataset We consider the models listed in We sample a dataset from each model. Then,
we assign a subset of variables to each party. Each party receives the vertical split of the sampled
dataset corresponding to its assigned variables. From these vertical splits, the parties independently
learn the input BNs. The network structures are learned via 2-phase Restricted Maximization [28]].
Parameters are learned via Maximum Likelihood Estimator for conditional probabilities (for discrete
variables) and least squares regression models (for CLG variables) [29].

Baselines We compare Hybrid CCJT’s performance against two baselines:

¢ CCBNet [8]): the current state-of-the-art for collaborative confidential BNs.
* A-CCJT: a simplified Hybrid CCJT with only the discrete inference from [Algorithm 3]

Since none of the baselines can handle continuous data, we discretize such variables with different
degrees of coarseness, ranging from 3 to 10 states per variable. Given the complexity of discrete exact
inference [[7]], a finer discretization implies significantly higher computational and communication
costs, making it infeasible to run these algorithms with many states per variable.

4.1 Results on Hybrid Data

We consider three hybrid datasets: Healthcare and San- Table 2: Hybrid CCJT results on the

giovese (Table T), followed by Mehra (Table 7). We test large hybrid dataset Mehra for 8 parties.
Hybrid CCJT with different combinations for the number

of involved parties and overlap ratios. The overlap ratio  Qyerlap 10% 30%
denotes the fraction of variables assigned to more than

one party. For each, we run 1000 queries with one dis-  Brier 0.00783  0.00772
crete target variable and 1000 with one continuous target  MSE 7.4e+11 4.5e+12
variable. Comm 186 6734

Predictive Accuracy In all experiments, Hybrid CCJT
outperforms all baselines in predictive accuracy of continuous target variables with an average 32%
improvement in MSE compared with the best-performing baseline. When targeting discrete variables,
Hybrid CCJT is either the best performing solution or the second best performing solution with a
performance gap always under 103 in terms of Brier score. The only exception is Sangiovese with 4
parties and 30% overlap, where the deficit to the best model is 0.0025 (0.0125 versus 0.015). Note
that Sangiovese has only one discrete variable, and this column returns a quasi-uniform posterior
distribution regardless of the set of continuous evidence. The aforementioned explains why running
hybrid inference on this data does not lead to any improvement over column discretization. As one
would expect, the best performing baseline is the one with a finer discretization. Using a coarse
representation leads to a drastic performance decay compared to our implementation with an MSE
26.9 times higher, and a Brier score 42.8% higher on average. In summary, Hybrid CCJT brings
notable improvements when targeting continuous variables, proving the benefit of natively handling
continuous data. Besides, Hybrid CCJT matches the baselines when targeting discrete variables.

Communication Costs Hybrid CCJT demonstrates superior scalability in communication costs
compared to all discretized baselines. Although A-CCJT achieves the lowest communication costs
on the smaller Healthcare dataset, this advantage diminishes with larger datasets where we can
start to appreciate the improved scalability of Hybrid CCJT. Under Sangiovese with all continuous
variables except one, the communication cost of A-CCJT with 10 states increases significantly
faster than for Hybrid CCJT, reaching up to 40 times more communicated values per query. This
happens because discrete CPD tables take more space than regular continuous posteriors. Further
highlighting the advantage of handling continuous data natively. While discretizing with fewer states
may reduce communication costs in specific scenarios, this comes at the expense of a sharp decline
in predictive performance. For example, on Sangiovese with 4 parties and 10% overlap, A-CCJT
exhibits nearly 2x the error for discrete targets and 200 x the error for continuous ones, making



Hybrid CCJT the most desirable choice overall. The current state-of-the-art, CCBNet, exhibits the
worst communication performance across all experiments. Its worst result averages almost 190K
communicated values per query against only 596 used by Hybrid CCJT (i.e., a 318 reduction). This
shows how our collaborative discrete inference approach alone significantly improves communication

costs. We explore this further in [subsection 4.7

Large dataset Mehra is the largest dataset we consider, with 4 times the number of parameters
of Munin, the largest discrete dataset. While Hybrid CCJT managed to complete all experiments
(see [Table 2)), none of the discretized baselines finished within the timeouf}This is due to the
heavy computational requirements of aligning large CPD tables of discretized continuous variables.
Despite the size, Hybrid CCJT achieves good Brier and MSE scores, while maintaining reasonable
communication costs. Specifically, for a 30% overlap ratio in the smaller Sangiovese dataset, Hybrid
CCJT communicates less than a third of the values compared to A-CCJT with 10 states.

4.2 Results on Discrete Data

Since scalability of communication costs is a Table 3: Results on discrete data: communication
significant issue for CCBNet, we emphasize costs on discrete datasets. 10% overlap. Lower
the improvement of Hybrid CCJT on six mod- is better for all. Predictive accuracy difference is
els with purely discrete data. show- negligible (< 1073).

cases the results. On the Child, Alarm, and
Insurance datasets, we run experiments with 2 Dataset  #Parties CCBNet Hybrid CCJT lm"f;"cvtf)';‘em
to 8 involved parties, and up to 128 on larger

) - 2 67 14 4.8x
datasets. We perform 2000 different queries Child 4 157 33 L7x
for each. Since these datasets lack any contin- 8 429 58 74x
uous variable, Hybrid CCJT degenerates into 2 166 15 111
A-CCJT. I 1 . ith Alarm 4 1959 40 49x

\- . In smaller experiments, with two par- 3 1886 79 23.9%
ties, Hybrid CCJT reduces CCBNet commu- 2 43 7 8Ax
nication costs by 8 times, from an average of  Insurance 4 1835 43 42.7x
. 8 473 42 11.

125 to 15 communicated values. Improvement 3x
factors further increase when the number of in- __An4e 16 BB 6080 38x
volved parties grows. In larger-scale experi- Link 64 4435 439 9.7

Munin#2 128 243474 735 331.3x

ments, CCBNet’s communication costs increase
significantly, reaching as high as 243K transmitted values for Munin. In contrast, Hybrid CCJT
maintains a low communication overhead, transmitting 735 values (331 x less). As expected, we did
not measure any significant difference (> 0.001) in predictive accuracy.

5 Conclusion

Motivated by the need of collaborative and confidential inference in manufacturing settings, we
introduce Hybrid CCJT, a novel framework enabling collaborative confidential inference on Hybrid
Bayesian Networks. By addressing the scalability limitations of existing methods and their inability
to model hybrid data, Hybrid CCJT facilitates secure collaborative inference while maintaining
confidentiality of party models and of private variable posteriors. The proposed framework introduces
two pivotal components: a collaborative strongly-rooted JT for constructing a strongly-rooted Junction
Tree, and a Confidential Inference Protocol to perform privacy-preserving inference that leverages
such a Junction Tree. Our evaluation across nine datasets demonstrates Hybrid CCJT’s superior
predictive accuracy (by 32% better MSE on average) at reduced communication costs (up to 86x
less sent values). In we discuss Hybrid CCJT limitations, like possible attacks on
confidentiality or the ability to handle a broader class of hybrid networks, and possible solutions.
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Nomenclature

A Set of all discrete variables

Al Local discrete clique of party ¢

Az Interface discrete clique

A Set of discrete variables owned by party ¢

r Set of all continuous variables

A Local continuous clique of party ¢

I'z Interface continuous clique

T; Set of continuous variables owned by party ¢

P Set of the parties

N(X; p,0) Normal distribution over X with mean y and standard deviation o

T Set of threshold variables, i.e., A N pa(I")

U(S) Uniform distribution over set .S

Q(X) Set of states over variable X

®(S) Set of factors over variables in S

¢(X) Factor of variable X
CPD; ; Entry ¢, j of a Conditional Probability Distribution
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pa(X) Set of parents of variable X

P[X | E = e] Probability of variable X conditioned on evidence E = ¢
P[X | E] Probability of variable X conditioned on variable £

P[X] Probability of variable X

A Strongly-rooted Junction Tree Proof

Here, we prove the validity of the strongly-rooted Junction Tree 7 built following the Collaborative
Junction Tree protocol. We first prove that 7 is a valid Junction Tree. Then, we proceed to show that
any local discrete clique (A};) is a valid strong root for 7.

A.1 Family Preservation Property

Definition A.1. A Junction Tree T over set of factors @ is said to be family preserving if each factor
¢ € @ is associated with one cluster ¢; € T such that Scope[¢] C X;. With X; being the set of
variables over which c; is defined.

Since in Hybrid CLG networks, no continuous variable can have a discrete child. It follows that:
Lemma A.2. Scope[A] C A

Let A; and T'; be the set of discrete and continuous variables in party i’s input network. It follows
that:

Lemma A.3. Va € (A, UT,) \ Z all parents of x are in A; UT;

LemmaAd4. (ANZ)U(TNI)=1

By definition, Z is the set of all variables that belong to more than one party. From this, Lemma@]
and Lemma follow.

Lemma A.5. (A \Z)N(A;\I)=0Vi,jeP

Lemma A.6. (I;\Z)N([;\Z)=0Vi,jeP

Clearly, the set of discrete and continuous variables are disjoint.

LemmaA.7. ANT =0
Proposition A.8. T is family preserving.

Proof. InT there are four possible types of cliques:
© AL = (A, 2(Ai\ 1))
o I'%. = (I'; U Scope; (T';), ®(I'; \ 7))
* Az = ((Scope[); Ai] U (Scope[I') N A], ®(ANT))
* I'z = (Scope[),; T';] U (Scope[l'] N A, @(I' N Z))
Lemma[A.2] A Lemma[A.3|= Scope[A; \ Z] C A,

.. A% is family preserving.

Trivially, Scope[I'; \ Z] € I'; U Scope|[L';]

.. % is family preserving.

Trivially, Scope[A N Z] C (Scope[(); A;]) U (Scope[I'] N A)
.. Az is family preserving.

Trivially, Scope[I' N Z] C Scope[(), I';] U (Scope[I'] N A

.. 'z is family preserving.

From Lemma[A4|= (U;cp A \I) U (U;ep Ti \ ) U (T NT)U(ANI) =TUA
.. BEach factor is associated with at least one clique.
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Lemma:> (AN\D)N(A;\T)=0 Vi,jeP
Lemmaé(FZ\I)ﬂ(Fj\I):Q) Vi,jeP
Trivially, (A, \Z)N(ANZ)=0 VieP
Trivially, ([, \Z)N(T'NZ)=0 VieP
(307 =

NANZ)=0 VieP
NICNZ)=0 VieP
NI;\I)=0 Vi,jeP
.. Each factor is associated with at most one clique.

.. T is family preserving. O

A.2 Running Intersection Property

We recall all cliques definitions given by construction following the Collaborative Junction Tree
protocol as in m subsection 3.3| Let Scope; () be the scope of variable x in party 4’s input network.

Lemma A9. A% = A,

Lemma A.10. Az = Scope[[; A;] U (Scope[I'| N A)
Lemma A.11. T'%. = T'; U Scope, (T;)

Lemma A.12. T'z = Scope[[), ;] U (Scope[I'] N A)

We recall the definition of the running intersection property:

Definition A.13. A Junction Tree 7 satisfies the running intersection property if, for all pairs of
cliques (C1,Cz) in T, C; N Cy is also in every clique in the path in 7 between C; and Cs.

From Definition [A7T3] it trivially follows that:
Lemma A.14. Every pair of neighboring cliques satisfy the running intersection property.
Proposition A.15. T satisfies the running intersection property.

Proof. By Lemma[A:T4] all pairs of neighboring cliques satisfy the running intersection property. In
T, there are five possible pairs of non-neighboring cliques:

Lemma — AL N AJLQ At .
.. P satisfies the running intersection property.

A ' J
Lemma Ny cliz
.. P2 satisfies the running intersection property.

Lemmal|A.9| A Lemma = A% NIz C Scope[l'] N A

LemmalA.10|= Scope|l'|NA C Az
.. Ps satisfies the running intersection property.

Lemmal|A.11|A LemmalA.10|= I'.. N1 Az C Scope[l'] N A
Lemma|A.10|= Scope[[| NA C T’z
.. P4 satisfies the running intersection property.

LemmalA.9 A Lemma:> A% NT% C Scope[l'] N A
LemmalA.10|= Az C Scope[I'] N A

LemmalA.12|= I'z C Scope[I'] N A

.. Ps satisfies the running intersection property.
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.. T satisfies the running intersection property. O

A.3 Strong Root Property

Following Deﬁnition we prove that A% is a strong root of 7.

From Lemmal|A.11|and Lemma|A.12} it follows that:
LemmaA.16. % NACTIzNA

From Lemma[A.T0]and Lemma[A.7] it follows:
Lemma A.17. A7 C A
Proposition A.18. A% is a strong root of T.

Proof. In T there are three possible pairs of neighboring cliques:

o S1: (T, T'g), with Tz being closer to the root.
* St (I'z, A7), with Az being closer to the root.

o S3: (A%, Az), where either can be closer to the root depending on which party requests the
query.

Lemma[A.16= (1% \T'z)NA=0=T7\T;, CT
.. 81 E=|Equation 3

LemmalA17|= Az NT'z CA

-8, —[Equation 3

LemmalA.17|= A% N Az = Az NAL CA
- 8y - Equation 3

.. A% is a strong root of 7. O

B Confidentiality of Hybrid CCJT

Here, we present the achievements in confidentiality preservation of Hybrid CCJT. Before proceed-
ing to the discussion, we introduce some auxiliary concepts.

Confidentiality in Bayesian Networks When dealing with confidentiality in Bayesian Networks it
is worth noticing that some information leakage is typically inevitable. In fact, simply knowing the
result of an inference query could be used to reverse-compute further information. For instance, [30]
studied privacy-preserving applications of algorithms such as Belief Propagation and Sampling. In
Kearns’ application, messages in the Belief Propagation process must be protected. However, leaf
nodes can always reverse compute incoming messages from their neighbors from solely the inference
outcome [30]. To formalize this notion, [30] give the following definition of a privacy-preserving
protocol:

Definition B.1. Let IT be any protocol for the k parties to jointly compute the value y = f(z1, ..., T))
from their n-bit private inputs. We say that II is privacy-preserving if for every 1 < ¢ < k, anything
that party ¢ can compute in polynomial time in n following the execution of II, they could also
compute in polynomial time given only their private input ; and the value y.

In this section, we show that Hybrid CCJT abides Definition @ That is, no information about

structure, parameters, and posteriors of other parties” BNs are revealed after performing a query with
Hybrid CCJT.

B.1 Structure and Parameters

Junction Tree Construction Hybrid CCJT defines a collaborative junction tree without requiring
any information disclosure between the parties. In fact, every party knows which of their variables to
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allocate in the local and interface cliques. This is sufficient to carry out inference as in our protocol,
but no party knows anything about the content nor the structure of other parties’ local cliques.

Discrete Factor Alignment Parties’ factors are updated for discrete interface factors only. As
anticipated in this is done via securely computing the column normalization factor c.
Let CPD; ; denote party ¢ CPD column j, then o = || ®; CPD; ;|1 is computed via homomorphic
encryption. Our implementation relies on the CKKS [20] scheme for floating-point addition and
multiplication. This procedure allows to apply the geometric mean correctly without disclosing the
parties’ CPD entries. As a matter of fact, after computing the (scalar) normalization factor «, it is
not possible to decompose it into the |CPD,; ;| 2™ values used to compute it in polynomial time,
abiding to Definition [B.T}

B.2 Posterior of Private Variables

Hybrid CCJT executes two subroutines to perform collaborative inference: one on the discrete
domain, one on the continuous domain. We show that no party gains any information about the
posterior of other parties’ private variables (i.e., that are not part of the interface).

Posterior of Discrete Variables We ensure that only the querying party handles the normalization
process of interface factors. As shown in this allows each party to marginalize all
variables that are not shared with the querying party prior to message passing. As such, the merging
procedure will only reveal the posterior of the interface variables, which are owned by the querying
party.

Let X be a discrete variable owned by two parties A and B, with A being the querying party.

Let pa, (X) be the set of parent variables of X owned by party 4.

Let P4[X], P [X] be the probability distribution according to A before and after the message
passing procedure respectively.

We show that after performing factor alignment (Proposition [B.2)) and message-passing (Proposition
[B.3). the querying party does not gain any additional information about the true probability distribution
of variables in pag (X).

Proposition B.2. Pslpag(X)] = U{Q(pag (X))}

Proof. By construction, P4 is obtained by duplicating each entry to allocate space for variables in
pag(X). It follows that:

- L i a
D i e IR (n
Thus,
Palpag(X)] = U{Q(pag (X))} (12)
O

Let S =pa,(X)Upag(X)U{X}.
Let S’ = S\ pag(X).
The following is a corollary of Proposition [B.2}

Corollary B.3. Y., Pa[S = j,1]

From [Equation 2] it follows:
Lemma B.4. P [S] = P4[S5] - ZWTEWB(X) PglS]

= moa,moy Vi € Apap(X))

Let Pé = Zvarepax(B) Pp
Proposition B.5. P [pay(X)] = U{Qpag(X))} = Phlpag(X)] = U{Qpas(X))}
Proof.

ZjGQ(S):paB(X):i PA[S = ]]

PA[paB(X) = Z] = ZkeQ(S) PA[S — k}

Vi€ Q(pag(X))  (13)
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jEQ(S’) lEQ(pa (X)) PB S - j7l
= £ Vi € Q(pag(X (14)
> ZmEQ(paB(X)) PylS = k,m]- (Pt (X))
keQ(s”) ZnEQ(paB(X)) PB [S = k,n]

1 / .
ooy Pals’ = )
> jeasn {Iﬂ(p Blgp[)g,

B :j]

Vi€ Qpag(X))  (15)

PAS = k-
EkeQ(S’) {Pz[[S’ _ k]] }
-1 Zjents) {];z[[g’:?]} Vi Qpag(X)) (16
~ [Q(pag (X)) 5 {PA[S' — k}.} i€ Qpag(X)) (16)
keQ(S’) P;;[S’ — k]
1 .
~ Q0pag (X)) Vi€ Qpag(X)) (A7)
Thus,
Pjlpag(X)] = U{Q(pag(X))} (18)

O

Generalization to N parties Proposition can be generalized to /N parties by substituting
ZlEQ(paB(X)) Pp[S = j, 1] with [];cp\ 14} ZlEQ(pai(X)) P;[S = j,1] and Py with [Lice\ (a3 P

Posterior of Continuous Variables As anticipated in continuous variables mean and
variances are computed via multi-party secret sharing updating the parameters of continuous interface
variables. This process inherently protects private variables’ information as they are not involved in
this update operation.

C Canonical Representation of Conditional Linear Gaussian CPDs

A common representation used for CLG BNss is the canonical form [[1], which represents CLG factors
as a log-quadratic form exp(Q (X)) where @ is some quadratic function.

Definition C.1. A canonical form C(X; K, h, g) is defined as

C(X;K,h,g) = exp(—%XTKX +hTX + g) (19)

We can represent every Gaussian in the canonical form [7]]:
N E) = C(K, h, g) (20)

where .
K=" h=%"p, g=—gp'> p- log((27r)"/2|2|1/2> @1)

C.1 Operations on Canonical Form

Factor Product The product of two canonical forms over the same scope can be easily computed as:
C(K1,h1,91) - C(K3, he,g2) = C(K1 + K2, hy + ha, g1 + g2) (22)

Whenever two factors are not defined over the same scope, they can be expanded by simply padding
the K, h parameters with zeros.

Factor Marginalization We can marginalize a canonical form onto a subset of its variables. Let
C(X,Y; K, h, g) be some canonical form over { X, Y} where:

_ | Kxx Kxy _ |hx
K= |:KYX KYY:| » h= {hy] @3)
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The marginalized factor C(X; K',h',¢') = [C(X,Y; K, h, g) dY is computed as:
K'=Kxx — KxyKyyKyx, h'=hx —KxyKyyhy, y
g =g+ %<1og 12n Ky | + h%K;;hy) 24)

Factor Reduction Finally, it is possible to reduce a canonical form based on a certain evidence. Let
C(X,Y; K, h, g) be some canonical form over { X, Y} represented as in[Equation 23| Then, setting
Y = y results in the canonical form C(X; K’ k', ¢’), where:
1

K'=Kxx, W =hx—Kxyy, ¢ =g+hyy— 5y Kyyy (25)
Computational Costs Importantly, all factor operations can be done in polynomial time in the
scope of the factor. In particular, the product or division of factors requires quadratic time. Factor
marginalization, which requires matrix inversion, can be done naively in O(NN?), and more efficiently
using advanced methods.

C.2 Canonical Form in Hybrid CLG BNs

In hybrid BNs, using both discrete (A) and continuous (I") variables, factors with both types of
variables can be represented using a canonical table [7]].

Definition C.2. A canonical table ¢ over D, X with D C A and X C I is a table with an entry for
each d € Q(D) where each entry contains a canonical form ¢(d) = C(X; Kq, hq, ga)-

Note that the canonical table representation subsumes both the canonical form and the table factors
used in the context of discrete networks. For the former, D = (}, we have only a single canonical form
over X. For the latter, X = (), the parameters K4, hy are vacuous, and we remain with a canonical
form ¢(d) = exp(gq) for each entry.

D Strong Elimination Order Example

Strong elimination Non-strong elimination
order order
A
B C
D

(2) An example Bayesian Network | () Two possible elimination orders over the network.

Root cliques are highlighted with thicker borders.

Figure 4: (a) shows an example Bayesian Network. (b) shows two possible elimination orders over it.
Only the left one is strongly-rooted, allowing accurate inference in hybrid domains.

E Collaborative Inference for Discrete Query Messages

As introduced in Section [3] when performing collaborative confidential inference (Alg ), we
aim at finding p1, AG- Following the sum-product message-passing formulation || [LO]:

Hagong = D ¢(Az) J] naioa, (26)
cEAq 1€ P\{Q}

We follow the formulation based on the geometric mean for ¢(Az) (Equation 5) and rewrite the
equation:

fasaae = » alfe@n™ I raroa, @7

xdAg iEP ieP\{Q}
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= Z ag(AF)" H ORI (28)
z¢AqQ i€ P\{Q}

Since the marginalization operator does not require to eliminate any variable in A, we can rewrite
the equation as:

Hagoae =ad(AF) >0 [ oAD" nayoa, (29)
rZAq ie P\{Q}
Furthermore, when multiplying CPD tables, variables that are not common in both tables can be
marginalized prior to the product without affecting the result.

Paz—-a2 = ag( AQ H Z o( Al e BAaL AL (30)
i€P\{Q} z¢Aq

F Results on Continuous Data

Table 4: Result on continuous data: mean squared errors.

Dataset | Ecoli70  Magic-Niab
Hybrid CCJT 0.070 0.287

3 States 1.411 0.521
Discretized BN 5 States 0.367 0.533

10 States 0.368 N/A

Here, we extend our experiments on purely continuous datasets, i.e., Ecoli70 and Magic-Niab and
summarize the results in[Table 4] Since these datasets do not contain any categorical variable, we
only run collaborative continuous inference as shown in Our baseline is the exact
inference on discretized datasets with different levels of coarseness. Due to poor scalability of
CCBNet and A-CCIJT when dealing with discretized datasets, we use a centralized discrete network
instead with no communication cost. This provides an upper bound on the predictive performance of
a discretization-based approach. Under both experiments, we ran 10000 queries, with 4 parties and
10% overlap.

Across all experiments, Hybrid CCJT achieves the highest predictive accuracy. Under the Ecoli70
dataset, Hybrid CCJT attains an MSE of 0.07, which is five times lower than the optimal discrete
counterpart and 20 times better than the non-optimal one. Under the Magic-Niab dataset, our model
achieves an MSE of 0.287, outperforming the discretized counterpart, which has an MSE of 0.521.
Furthermore, the discretized model failed to run inference in a reasonable amount of time with 10
states on Magic-Niab.

G Datasets Details

Table 5: Overview of used datasets.

Type Dataset #Discrete nodes #Continuous nodes #Arcs #Params Source
Healthcare 3 4 9 42 23]
Hybrid CLG  Sangiovese 1 14 55 259 [31]
Mehra 8 16 71 324423 [32]
Child 20 - 25 230 [33]
Alarm 37 - 46 509 [34]
Discrete Insurance 27 - 52 1008 [35]
Andes 223 - 338 1157 [36]
Link 724 - 1125 14211 [37]
Munin #2 1003 - 1244 69431 [38]
Continuous Ecoli70 - 46 70 162 [39]
Magic-Niab - 44 66 154 [40]

In([Table 5] we provide the characteristics about the datasets used in our experiments. We used three
Hybrid CLG datasets (Healthcare, Sangiovese, Mehra), six discrete datasets (Child, Alarm, Insurance,
Andes, Link, Munin #2), and two CLG ones (Ecoli70, Magic-Niab).
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H Hybrid CCJT Diagram

To graphically showcase the Hybrid CCJT inference pipeline, and [0] provide a detailed
flowchart of collaborative inference with two parties.

~ Local Marginalization Local Discrete Inference
> Local Continuous N
5 Inference Py[overlap | €] /P1 T|A, overlap] x Ploverlap] [ Filthreshold] P;[overlap | threshold, €]
o
Secret Sharing
Zw P;Joverlap | €] ‘Ploverlap]
Local Marginalizati
Qq ocal Marginalization Local Discrete Inference
>
Local Continuous
E Inference Prloverlap | £] 5 / Py[T|A, overlap] * Ploverlap] [ Palthreshold] Py[overlap | threshold, ]

Figure 5: Flowchart of Hybrid CCJT collaborative continuous inference procedure with two parties.

~ Local Discrete Inference
>
S P [overlap | threshold, €] Prloverlap]
o
Secret Sharing
1’ T
HP[o'uerlap]“" Ploverlap) l
) Local Discrete Marginalization

1 Local Discrete Inference Local Continuos Marginalization
2 Pyfoverlap———— >~ P[A | overlap] x Ploverlap]

% [overlap]
8 Pyoverlap | threshold, £ Altarget Equation 10

Figure 6: Flowchart of Hybrid CCJT collaborative discrete inference procedure with two parties.
We will prepare a more detailed explanation of the inference protocol in the methodology section and
a more detailed pseudocode and a diagram to be included in the appendix. The inference is divided in
three steps (of which two are collaborative) and follows the logic of the Lauritzen algorithm [11]].

Collaborative Continuous Inference The first step requires marginalizing continuous variables and
finding the strong marginals over the threshold variables. Recall that threshold variables are the
discrete variables with at least one continuous child. In short, we aim at computing P[T'|I" = ¢],
where 7' is the set of threshold variables and I' = e is some continuous evidence. To do so, parties
collaboratively compute the updated parameters of interface continuous variables given the set of
continuous evidences as in

= wiu(X), o(X) = [wioi(X)] + Y wilp — p(X))?]

ieP icP icP

where the parameters u; and o; are obtained locally by computing P[Ir|T" = e]. Once these new
parameters are obtained, they can help compute the marginals over the threshold variables by just
marginalizing all the continuous variables.

Collaborative Discrete Inference Once parties find the marginals of threshold variables, the querying
party needs to find the strong marginals over the remaining discrete variables. For this, parties compute
P[IA|A = e], the posterior of discrete interface variables given their discrete evidence. The querying
party receives these posteriors and merge them via secret sharing to find the geometric mean:

=[[ P.l1a]”
i€P
The querying party can then use this factor to update its local probability distribution via sum-product
message passing [10] (Equation 2).

Local Query At this point in the protocol, the querying party can find the posterior of any variable
it owns. For discrete variables, the posterior is found by marginalizing non-target variables, as
in a normal junction tree. For continuous variables, the posterior is found by marginalizing all
non-threshold variables and performing weak marginalization:

PIX]=N(X; Y PlTo=slm(X), > PlTo=sHo(X) + (- ps(X)?})

SEQ(AQ) éeQ(AQ)
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I Computational Costs of Cryptographic Tools

The computation complexity of homomorphic encryption in solving an overlap is O(L - N log(N)),
bounded by L chained multiplications of a size N ciphertext. L is the maximum number of parties
in an overlap. N is a power of two (in the range 2!°-219), derived from the desired precision, the
maximum output scale, and L. Successive multiplications increase complexity linearly [20]. The cost
of a single multiplication is linearithmic [41]. In our implementation, solving a private set intersection
between two parties is O(m log(m)) time, where m is the maximum number of variables among the
two parties.

The protocol relies on private set intersection, secret sharing (additive/product-based), and homomor-
phic encryption (HE) at different points in its lifecycle. Among the enumerated cryptographic tools,
only HE involves a significant computational overhead, while the primary bottleneck for the others is
network latency. HE is used exclusively during discrete factor alignment. The results below split the
HE computation time across:

1. Context Generation: Generation of HE keys and parameters.

2. Encrypted Column Summation: The actual HE-encrypted computation; used to compute
column normalization factors (i.e.,  in Equation 4).

3. CPD Combination: Alignment of party CPDs based on the HE-computation outputs.

We report the per-factor mean and standard deviation of each HE substep and the total time
required for all factors.

Table 6: Results on discrete datasets (10% overlap)
Dataset #Parties Context Gen. (ms) Col. Sums (ms) CPD comb. (ms) Total (ms)

2 153+ 0 18.7£0 0.27+0 176
Asia 4 644+ 0 802+ 0 0.53£0 1449
8 2155+ 0 767+ 0 0.746£ 0 2926
2 136+ 5.7 51401+ 82611 9.57+ 14.6 206191
Alarm 4 672+ 50 3639+ 4780 0.749+ 0.4 17250
8 1900+ 150 96745+ 134754 4.19+ 4.69 394601
2 143+ 5 144+ 84 0.33£ 0.034 577
Child 4 703+ 26 17151+ 9176 1.78+£ 0.6 35713
8 1984+ 57 83010+ 79570 3.9+ 29 169999
Link 64 133+ 7 324.94 381 0.4+ 0.1 431291

As expected, substep 2, i.e., encrypted column summation, is the most time-consuming one, taking
up to 96 seconds in the worst-case scenario, but remains under one second in 6 out of 10 experiment
scenarios. Its time requirements increase overall with the number of parties sharing factors. In
contrast, substeps 1 and 3, i.e., context generation and CPD combination, run in under one second
and one millisecond, respectively. Moreover, we note that the HE procedure represents a one-off
setup cost, after which parties may perform unlimited queries until one of them updates their local
network.

When dealing with hybrid domains, we notice that encryption takes significantly more time on the
discretized variants. While Hybrid CCJT maintains the entire encryption process under one second
for both Sangiovese and Healthcare datasets, A-CCJT’s encryption cost grows as the discretization
coarseness is reduced (i.e., more states). These results also reaffirm the gains in memory and
communication costs of natively handling CLG variables compared to discretizing them.

J Communication Costs Analysis

We repeated the experiments from Table 1 with new variable splits to derive further insights in
the communication costs of Hybrid CCJT. Table 8 isolates the communication costs of Discrete
and Continuous collaborative inference. This allows us to better analyze the communication costs
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Table 7: Results on hybrid datasets (30% overlap)

Dataset #Parties Context Gen. (ms) Col. Sums (ms) CPD comb. (ms) Total (ms)
Healthcare (Hybrid) 2 127+ 0 26+ 0 0.23+0 154
Healthcare (Discrete, 3 states) 2 142+ 8.24 82.44 67 0.3+ 0.05 675
Healthcare (Discrete, 5 states) 2 71.35+ 13 71.4+ 62.4 0.271+ 0.03 641
Healthcare (Discrete, 10 states) 2 139.74 10.2 165.5+ 152.6 0.316+ 0.04 918
Healthcare (Hybrid) 4 646.9+ 6.04 244+ 90.5 0.43+ 0.02 1785
Healthcare (Discrete, 3 states) 4 678.46+ 49.3 300.2+ 139.2 0.48+ 0.06 2940
Healthcare (Discrete, 5 states) 4 682.9+ 46.7 3007.84+ 3660 0.662+ 0.295 11076
Healthcare (Discrete, 10 states) 4 677+ 51 5956+ 7221.4 0.864 0.48 19905
Sangiovese (Hybrid) 2 127+ 0 12.1+0 0.25£0 141
Sangiovese (Discrete, 3 states) 2 1414+ 9.7 8274 1080 0.464 0.24 2906
Sangiovese (Discrete, 5 states) 2 139.849.2 710.3+£ 905 0.403+ 0.18 2553
Sangiovese (Discrete, 10 states) 2 141+ 11.9 621+ 489 0.424+ 0.09 2289
Sangiovese (Hybrid) 4 127+ 0 12.1+0 0.25£0 140
Sangiovese (Discrete, 3 states) 4 139+ 9.7 813.7+ 1063 0.434+0.24 2861
Sangiovese (Discrete, 5 states) 4 659.3+ 49.6 188826.7+ 239278.3 13.2+ 16.4 758015
Sangiovese (Discrete, 10 states) 4 8384+ 51 1082339+ 1591371 51+ 72.8 4332927

gains obtained by natively handling continuous data. Furthermore, we report standard deviation
measurement of communication costs.

Table 8: Communication costs analysis for discrete and continuous variables

Dataset Healthcare Sangiovese
#Parties 2 2 4 2 2 4 4
Overlap 10% 30% 10% 30% 10% 30% 10% 30%
HybridCCIT Discrete 11+ 4.2 5+4.4  20£11.6  48+43.9 32+ 0 32+ 0 96+ 0 96+ 0
y CLG 0+ 0 214+ 4.8 0+ 0 192+ 62.1 29+ 7.5 59+ 10.5 182+ 44.9 541+ 73.6
3 States 11+39 21+11.2 14+56 70+ 24.2 21+ 1.0 177+ 37.9 243+ 45.0 3313+ 1251.6
A-CCIT 5 States 10+ 3.8 20+6.7 10+ 1.6 121+ 78.8 38+ 1.1 225+ 36.0 279+ 46.7 355914 19277.8
10 States 8+ 3.1 39+ 15 10+ 1.8 229+ 148.7 27+ 2.2 334+ 146.0 539+ 100.2 5131+ 1842.4
3 States 58+ 27.3 61+ 156 20+ 5.0 120+ 30.6 240+ 77.1 1021+ 298.3 25609+ 11412.6 285054 11896.8
CCBNet 5States  14.7+£3.7 72£29.8 10+1.6 888+428.7  55+£7.0  1557£506.7 5210+ 1971.2 271053+ 125799.6
10 States  11£3.2 290+ 139 10+ 1.8 2068+ 1043 169+ 40.8 990+ 247.0 4766+ 1438.7 577838+ 295695.1

K Limitations and Future Work

Attacks on Hybrid CCJT When performing inference with Hybrid CCJT with N parties, secret
shared messages can be reverse computed if N — 1 parties collude. This means that this kind of
information leakage is inevitable when only two parties participate in the inference process. For
instance, let us look at secret sharing for continuous variables. The merged posterior of common
continuous variables is a weighted average of parties’ locally computed posteriors. Then, one party
can reverse-compute its peer posterior using the secret sharing outcome and its own locally computed
posterior. Similarly, the same goal can be achieved when secret sharing posteriors of common discrete
variables, dividing the outcome by the CPD table of the locally computed posterior.

These two attacks abide our security definition, as structure and parameters of the local Bayesian
Networks remain protected. Furthermore, the attack previously mentioned falls under Definition [B.T]
of a privacy-preserving protocol, as the secret local posterior is found using the outcome of the
protocol and prior knowledge. In order to avoid this information leakage, it is possible to limit the
outcome detail of a query. Maximum A Posteriori (MAP) queries [[7] allow to find the most-likely
state combination of a set of variables given a set of evidence instead of revealing their posterior
distribution. Conveniently, MAP queries can be performed via Belief Propagation on a Junction Tree
using the Max-Product message-passing procedure [7]]. Future research will focus on applying MAP
queries to collaborative Junction Trees.

Finding Common Nodes Hybrid CCJT assumes that the same variable is given the same name
across multiple parties. This allows us to use Private Set Intersection to find common nodes among
parties’ networks. On the one hand, this can be a strong assumption at times difficult to satisfy in real
use-cases. On the other hand, privately finding common variables from multiple Bayesian Networks
is a modular operation which can be easily replaced with more advanced techniques, without affecting
the core implementation of the Hybrid CCJT framework.
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Inconsistencies can appear at the level of variable definition (parties using different names for the
same concept) or their representation (state/measurement mismatches for discrete and continuous
variables, respectively). Some possible mitigation strategies are:

* parties giving synonyms for variable names;
* normalizing variable names (e.g., as lowercase);

« for state alignment mismatches in discrete variables, states not present in all parties could
get mapped to a single miscellaneous state;

 for measurement unit mismatches in continuous variables, parties could update their local
representations to an agreed-upon unit.

Consensus on Representation of Common Nodes Another requirement of Hybrid CCJT is that
common nodes need to follow the same representation across multiple parties’. For instance, the same
discrete variable must have the same set of states when represented by different parties. Common
continuous variables must be represented using the same measure unit.

Furthermore, when dealing with a hybrid domain, parties must find a consensus on whether represent-
ing a variable as discrete or continuous. On the other hand, when discretizing a continuous variable,
we introduce a further consensus problem. That is, variables need to be discretized with the same set
of states.

Modeling limitations of Hybrid CLG BNs Our work addresses inference in Hybrid CLG BNs
leveraging the Lauritzen algorithm [[L1]. In general, these networks do not allow continuous variables
to have discrete children. However, [42] showcase how to extend the Lauritzen algorithm (used in our
work) to run exact inference in augmented Hybrid CLG BNs. Augmented Hybrid CLG BNs allow
continuous variables to have discrete children by modeling CPDs of these nodes as softmax functions.
Let A be a discrete node and Y7, . .., Y} be its (continuous) parents:

i k i
exp(b' + 3, wiy)
m ; k j
Zj:] exp(bd + 37, wiy)

These variables are referred by [42]] as CD-CPD (Continuous-Discrete CPD) variables. Briefly, the
algorithm proposed requires to:

PlA=a] = (31)

1. Perform inference as in [11] to compute the strong marginals of A variables and weak
marginals of I" variables, without taking into account CD-CPD variables.

2. Insert CD-CPD variables in the Junction Tree, and re-compute marginals of all variables
(Referred as tree re-calibration in the paper).

Our method allows to perform step 1 of Lerner’s algorithm. Extending Hybrid CCJT to perform
step 2 of Lerner algorithm is an interesting research gap that will be addressed by future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims presented in the abstract reflect the methodology presented in
Section [3]and the experimented results showcased in Section 4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are introduced in Section [5]and further detailed in[Appendix K]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are detailed in Section [3] the verification of assumptions
and derivations of proof are provided in[Appendix Al for exactness of computation, and

for confidentiality achievements.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain our novel algorithm and the experiment methodology in Section[3]
and Section ] respectively.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We made our code publicly available at github.com/r-gheda/hybrid-ccjt.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Used datasets and experiments methodologies are stated in Section 4]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While we report only average values, each experiment includes a large num-
ber of queries. For predictive performance metrics, we observe consistent patterns across
all tested scenarios. In contrast, communication improvements are typically so substan-
tial—often by several orders of magnitude—that they are unlikely to be due to statistical
anomalies.
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» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the amount of system memory used for the experiments, which is
the main limiting factor. We did not use any accelerators in our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We hereby confirm that the conducted research conforms with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any trained models and all used datasets come from
existing public repositories.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We reference all assets used in our evaluations in [Table 3|
Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with humans subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with humans subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in creating this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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