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ABSTRACT

Membership inference attacks (MIAs) against diffusion models have emerged as
a pressing privacy concern, as these models may inadvertently reveal whether a
given sample was part of their training set. We present a theoretical and empirical
study of score-based MIAs, focusing on the predicted noise vectors that diffu-
sion models learn to approximate. We show that the expected denoiser output
points toward a kernel-weighted local mean of nearby training samples, such that
its norm encodes proximity to the training set and thereby reveals membership.
Building on this observation, we propose SimA, a single-query attack that pro-
vides a principled, efficient alternative to existing multi-query methods. SimA
achieves consistently strong performance across variants of DDPM, Latent Diffu-
sion Model (LDM). Notably, we find that Latent Diffusion Models are surprisingly
less vulnerable than pixel-space models, due to the strong information bottleneck
imposed by their latent auto-encoder. We further investigate this by differing the
regularization hyperparameters (β in β-VAE) in latent channel and suggest a strat-
egy to make LDM training more robust to MIA. Our results solidify the theory of
score-based MIAs, while highlighting that Latent Diffusion class of methods re-
quires better understanding of inversion for VAE, and not simply inversion of the
Diffusion process

1 INTRODUCTION
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Figure 1: A diagram of our Membership In-
ference method in one dimension. In blue are
regions of high membership likelihood, corre-
sponding to low ∥ε̂θ∥, plotted in purple. The
green region is unlikely to be sampled in high
dimensions (c.f. Sec. 3).

Generative image models leave evidence of their
specific training data at deployment time in their
generative process. While making draws from ap-
proximations of p(x) or p(x|y), they leave biases
of the training samples (finite and fixed realiza-
tions from the real p(x) or p(x|y)). These biases
may be used in theory to reconstruct the training
data, a process known as model inversion (Zhu
et al., 2016; Creswell & Bharath, 2018; Carlini
et al., 2023; Somepalli et al., 2023a;b; Gu et al.,
2023).

The ability to invert these models raises con-
cerns in privacy and intellectual property spaces
for specific use-cases of generative models, but
also possibly provides unique perspectives into
the idiosyncrasies of the generative models them-
selves. If the models were perfect, they would
sample from a distribution indistinguishable from
the data generating process; the ways in which
they deviate from this distribution inform upon
their structure.

A critical precursor to model inversion is the membership inference attack (MIA), which determines
whether a given image was included in the training set. MIA effectively constructs a classifier for
identifying training examples, setting aside the problem of searching the domain for high-likelihood
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examples. While this may be the easier sub-problem of full model inversion, it is no less important,
as without successful MIA, model inversion is impossible.

Building upon analytic results from the literature about diffusion models (Pidstrigach, 2022; Karras
et al., 2022), we describe a performant MIA method that we believe simplifies other current methods
into a consistent methodology: the norm of the estimated score at the test point across diffusion
times (the t index). Our empirical results show this simple method has AUC scores at or above the
previous state-of-the-art for DDPM-weightsets (Ho et al., 2020) on common smaller datasets, and
well above the previous state-of-the-art for the related Guided Diffusion model (Dhariwal & Nichol,
2021) on ImageNet-1k.

In contrast to this, our experiments also show that Latent Diffusion Models (LDM) may be robust to
MIA attacks of this general class; not only our own method but every method tested has decreased
LDM performance. Running otherwise identical membership-inference attacks on publicly well-
trained DDPM and LDM checkpoints using the same member and held-out splits, we find dramatic
performance drops across all metrics and across all methods. We hypothesize that LDM robustness
may be unrelated to the Diffusion part of the Latent Diffusion Model.

We further experiment by training new LDMs on new VAE encoders with differing regularization
hyperparameters (the β KL-weight in the β-VAE framework (Burgess et al., 2018)) for the VAE
pre-training. We find that MIA performance is susceptible to the KL-weight. We also vary the
usage of an additional discriminator between the input image and reconstructed image during VAE
training, as suggested by VQ-GAN (Esser et al., 2021). Our modifications show that we can at once
reduce the vulnerability of LDMs to MIA while improving generation fidelity as measured by FID.
This indicates that successful membership inference and model inversion on the Latent Diffusion
class of methods requires better understanding of inversion for VAE, and not simply inversion of the
Diffusion process.

In summary, our contributions are the following:

1. A derivation of a simple Membership Inference Attack method (SimA), which is a reduc-
tion of other methods into a general framework.

2. An empirical demonstration that SimA provides top performance on standard datasets and
independently trained base models.

3. An empirical demonstration that this general class of methods seems to fail on Latent Dif-
fusion Models, for reasons possibly unrelated to the diffusion generative process itself,
indicating a gap in the literature.

All data splits, model checkpoints, training/fine-tuning scripts, and testing code are released on our
GitHub repository https://github.com/mx-ethan-rao/SimA

2 BACKGROUND AND RELATED WORK

Diffusion Models: Our membership inference work is specific to diffusion-based generative image
models. Originally introduced as score-based generative models (without the explicit connection to
the Diffusion model) in Song & Ermon (2019), a very large number of publications have explored
variations of these models since that point (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020;
Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022).

While each contribution has its own particular training paradigm and architecture, our attack ap-
plies to the broad class of models that estimate a gradient flow field ε̂(x, t) at points x for a
smoothing parameter/diffusion time t that approximates the gradient of the smoothed log-likelihood,
∇ log(p(x) ∗ K(t)) (Kamb & Ganguli (2024), or Appendix A.4), which is often induced by a con-
ceptual and/or training-time “forward” noise process xt =

√
ᾱtx0 + σtε and a “backward” de-

noising process similar to denoising auto-encoder processes (Alain & Bengio, 2014). These may be
variance-preserving or variance-exploding (Song et al., 2020), based on the exact parameterization
of the noise schedule. In this work we directly use weights from the following models: DDPM (Ho
et al., 2020), Guided Diffusion (Dhariwal & Nichol, 2021), Latent Diffusion Model (LDM) (Esser
et al., 2021), and Stable Diffusion (Rombach et al., 2022). Each of these directly estimate the noise
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local

local

Figure 2: Score-based MIA intuition with local-mean geometry. In a small neighborhood (“local
ball”) around a query x⋆, let µlocal(x

⋆) be the kernel-weighted mean of nearby training samples. The
model’s predicted noise (score) points from x⋆ toward this local mean, E[ε̂θ(x⋆

t , t)] ∝ µlocal(x
⋆) −

x⋆. For members (x⋆ ∈ Dtrain), the local mean µlocal(x
⋆) collapses to training sample x⋆, producing

small norms, whereas for non-members (x⋆ /∈ Dtrain), µlocal(x
⋆) deviates from x⋆, yielding larger

norms. Right: the histogram at t = 30 shows the separation in Eε∼N (0,I)[∥ε̂θ(xt, t)∥].

vector ε using a neural network ε̂(x, t). Our method manipulates x and t and analyze the networks’
outputs, but otherwise is agnostic to the exact architecture and weights.

Latent Diffusion Models (Esser et al., 2021; Rombach et al., 2022) perform their forward process
on the latent space of some encoder-decoder structure (usually a Variational Auto-encoder (Kingma
et al., 2013)). As we show, this encoder-decoder structure appears to be robust to membership
inference, even though the particular diffusion model on its own may not be.

The analytic tractability of these models permits theory about their behavior (Kamb & Ganguli,
2024; Lukoianov et al., 2025), even pre-dating the publication of the DDPM, e.g., Alain & Bengio
(2014). Our method is conceptually linked to results and intuition from Alain & Bengio (2014) and
Kamb & Ganguli (2024).

Membership Inference Attack threat models: Model inversion and membership inference attacks
pre-date the introduction of the DDPM and LDM generative image models; MIA was defined orig-
inally for general classification tasks (Shokri et al., 2017). A non-trivial amount of literature since
that point has focused on MIA for generative image models (Chen et al., 2020) starting with GANs,
due to its attack surface (pixel arrays) and its clear privacy and intellectual property implications.

Much of the terminology and structure were defined in the security context, where a threat model
defines the scope and allowable resources for an attack vector. So-called “black box” attacks from
the original MIA literature are performed without knowledge of the model weights or structure, and
can only rely on input and output pairs from a deployed model. In contrast, “white box” attacks
(Pang et al., 2023) have access to the full architecture/weight set. We consider the most common
class of diffusion model MIAs, “grey-box” attacks (Duan et al., 2023; Zhai et al., 2024; Kong et al.,
2023; Matsumoto et al., 2023; Carlini et al., 2023; Fu et al., 2023), which span a range of options
between those two extrema; in general they have access to weights and/or internal representations,
and may query the model for particular test points. We review each of these grey box attacks in detail
in Section 3 and compare to each, with the exception of Zhai et al. (2024) as it performs membership
inference on conditional generative models instead of the unconditioned case.

3 METHODOLOGY

METHOD OVERVIEW

The predicted noise ε̂θ is outputted by the neural network, which is a scaled estimator of the score
−σt∇xt

log pt(xt) (Song et al., 2020; Ho et al., 2020; Luo, 2022), for data generating distribution
p(x) and its mollifications pt(x) on a noising schedule σt. Our Simple Attack (SimA) method is

A(x, t) = ∥ε̂θ(x, t)∥. (1)

3
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Here, x is the test point, which ostensibly was drawn from p(x), but is either in the training data or
not, and t is the diffusion time parameter. We provide a more rigorous derivation and its connections
to other MIA methods in the following sections, but we feel that its intuition is also instructive on
why such a simple method would work.

Figure 2 visualizes the intuition of our method: the expected norm of the predicted score for a query
image x⋆ at time t is effectively the gradient of a Gaussian kernel density estimator (see Appendix
A.4). For well-separated points, these estimators’ implicit distributions will have peaks at each
training point; the gradient vanishes at critical points of the smoothed density, which include the
peaks corresponding to the original data points (the blue region in the Fig. 1), up to a bias term from
the smoothing. Manipulating this fact allows us to form a simple yet successful estimator.

There should be false positive terms at the other critical points (the green region in Fig 1). In
high dimension, these should be by-in-large saddle points between maxima. Because these points
occur directly between original datapoints at their arithmetic mean, if the data manifold (the support
of p(x)) has any curvature, these points would be off manifold; empirically we do not seem to
encounter many of them, as indicated by the TPR@1%FPR measurements (see Section 4).

3.1 FROM FORWARD DIFFUSION TO SCORE

Notation: Let {βt}Tt=1 be the variance schedule of the forward diffusion process in DDPM Ho et al.
(2020). Define αt := 1 − βt and its cumulative product ᾱt :=

∏t
s=1 αs. The total noise variance

accumulated up to step t is σ2
t := 1− ᾱt.

Forward Diffusion as a Scaled Gaussian Convolution: With the variance-preserving (VP) sched-
ule of Ho et al. (2020), the forward model is

xt =
√
ᾱt x0 + σtε, ε ∼ N (0, I), σ2

t = 1− ᾱt, (2)

where x0 ∼ pdata. Marginalizing x0 gives the perturbed data distribution (Song & Ermon, 2019).
For a clean (without noise) sample x ∈ Rd,

pt(x) =

∫
Rd

pdata(x0)N
(
x |

√
ᾱtx0, σ

2
t I

)
dx0. (3)

Equation 3 is a Gaussian convolution of the original data distribution (see Appendix A.4 for an
explicit derivation), followed by a global scaling by

√
ᾱt.

pt(x) =
1

ᾱ
d/2
t

(
pdata ∗ N

(
0,

σ2
t

ᾱt
I
))( x√

ᾱt

)
. (4)

Therefore, pt(x) is the data distribution convolved with scaled Gaussian distribution whose kernel’s
covariance σ2

t

ᾱt
I = (ᾱ−1

t − 1)I grows monotonically with the timestep t.

Gradient of pt(x): Writing the kernel in standard form Kt(x, x0) = (2πσ2
t )

−d/2 exp(−∥x −√
ᾱtx0∥2/2σ2

t ), we can compute its spatial gradient: ∇xKt = −σ−2
t

(
x −

√
ᾱtx0

)
Kt. We then

combine this with Eq. 3 to obtain

∇xpt(x) = −σ−2
t

∫
pdata(x0)

(
x−

√
ᾱtx0

)
Kt(x, x0) dx0 (5)

which requires continuity assumptions on pdata which are usually assumed by DDPM analyses (Alain
& Bengio, 2014).

Introducing exact likelihood of each datapoint qt(x0 | x): Define the exact distribution of the x0

given an observation from the Gaussian smoothed distribution:

qt(x0 | x) = pdata(x0)Kt(x, x0)

pt(x)
. (6)

Because pt(x) normalizes Eq. 3, we can then rewrite Eq. 5 as

∇xpt(x) = −pt(x)

σ2
t

[
x−

√
ᾱt Eqt(x0|x)[x0|x]︸ ︷︷ ︸

µt(x)

]
. (7)

4
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We call Eqt(x0|x)[x0|x] = µt(x) the denoising mean; it is the likelihood-weighted average of the
positions of the datapoints that could have generated x at time t through the forward process, which
is the same as the mean optimal solution to the denoising problem.

Obtaining the exact score: Dividing Eq. equation 7 by pt(x) yields the score of distribution pt(x)
at x (Lemma 6 of Pidstrigach (2022), or, alternatively, applying the chain rule to ∇x log pt(x) and
then substituting in values):

st(x) = ∇x log pt(x) = −x−
√
ᾱt µt(x)

σ2
t

. (8)

This score function st(x) is the desired output of the ε-parameterization of Score-based Denoising
(Song et al., 2020) and the original DDPM (Ho et al., 2020). During training the UNet is asked to
predict the standard noise (Ho et al., 2020):

ε̂θ(x, t) ≈ xt −
√
ᾱt µt(x)

σt
= −σt∇x log pt(x) (9)

This is consistent with Eq. 151 of Luo (2022). For x ∈ supp pt (with or without noise), the estimator
ε̂θ(x, t) should approximate the negative score of pt(x). However, in practice the data distribution
pdata becomes the empirical distribution ptraining, which is a finite sample of points. The noised
distribution pt(x) is then a kernel smoothing of that empirical distribution, and its finite-sample
denoising mean is described in Kamb & Ganguli (2024) and refined in Lukoianov et al. (2025).
Equation 3 of Lukoianov et al. (2025) states it as:

µfinite
t (x) =

N∑
i=1

wi(x, t)x
(i)
0 , wi(x, t) = softmaxi

{
− 1

2σ2
t

∥x−
√
ᾱx

(j)
0 ∥22

}
j∈[N ]

(10)

where the x
(i)
0 are training data, and softmaxi is the ith index of a softmax function over the N

training data points. The discrepancy between the finite sample optimal denoised x distribution and
the large sample limite qt(x0|x) gives rise to our membership inference attack; the model “overfits”
to the training set, and that overfitting gap is the discrepancy which SimA seeks to exploit.

3.2 MEMBERSHIP INFERENCE ATTACK

Given a datapoint x ∈ Rd and a t = 1, . . . , T , our membership decision criterion A is defined as

A(x, t) = ∥ε̂θ(x, t)∥p . (11)

Using ℓp norms other than p = 2 provide slightly improved performance. This trend is also found in
another MIA method, Kong et al. (2023). While this is somewhat mysterious, the ℓ4 norm appears
in sum-of-squares computations (Barak et al., 2015), spherical harmonics (Stanton & Weinstein,
1981), and blind source separation (Hyvarinen, 1997) with surprising regularity.

Following the Bayes-optimal loss–threshold formulation of membership inference in classification
models by Sablayrolles et al. (2019), we recast the decision rule for diffusion models. Specifically,
we define

Mopt(x, t) = 1
[
A(x, t) ≤ τ

]
, (12)

where τ is a threshold calibrated on a held-out validation set and A(x, t) = ∥ε̂θ(x, t)∥2 is the
estimated noise at x for diffusion step t. If the predicted noise norm is smaller than τ , the sample is
inferred to be a member; otherwise, it is classified as a non-member.

The attack criterion A can be applied to three cases, which we expand upon below (see appendix
A.5 for detailed derivation of the first two cases).

Case 1 — Member of the Training Set: Let x(k) denote one of the training images {x(i)}Ni=1.
As t → 0, the finite sample denoising mean collapses to the input (full derivation is in case 1 of
Appendix A.5):

µfinite
t (x(k)) −−−→

t→0
x(k) (13)

5
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Consequently, the estimated noise vector shrinks to zero as well, meaning our criterion A(x(k), t →
0) should be small:

ε̂θ(x
(k), t) =

x(k) −
√
ᾱt x

(k)

σt
∼ σt

2 x(k) −−−→
t→0

0. (14)

While the actual value at zero is undefined, and values for small t < 10 are empirically unstable
for non-member x(k) (leading to a poor estimator, see Appendix A.7 for the detailed reason), we
find that for t ∈ [10, 300], these values will still be smaller than the case 2. These time frames are
unfortunately noise schedule and data dependent.

Case 2 — Held-out but On-Manifold: Here x† is sampled from the same data distribution pdata
as the training set, yet was never shown during training. We use the notation of local moment
matching (Bengio et al., 2012; Alain & Bengio, 2014) to describe these points. Consider the local
mean defined with respect to that Br(x

†):

µt(x
†)local = mr(x

†) =

∫
Br(x†)

xpt(x|x†)dx (15)

where r ≍ σt/
√
ᾱt . Theorems 2 and 3 of Alain & Bengio (2014) put together produce a statement

about a term that is equivalent to ε̂ (Eq. 28 of Alain & Bengio (2014)) (Full derivation is in case 2
of Appendix A.5):

mr(x
†)− x† ≈ r2

d+ 2

∂ log pt(x)

∂x

∣∣∣∣
x†

=
r2

d+ 2

(
x† −

√
ᾱtµ

finite
t (x†)

σ2
t

)
= − r2

σt(d+ 2)
ε̂θ(x

†, t)

(16)

We claim that for in-support regions of Gaussian mollified empirical distributions with well sepa-
rated points, these regions will generally not be flat, and thus ∥ε̂θ(x†, t)∥ will tend away from zero.
The magnitude to which ∥ε̂θ(x†, t)∥ diverges from zero clearly depends on the maximal density of
the dataset, but as high dimensional spaces have exponentially larger volumes than lower dimen-
sional spaces, even for large datasets (e.g. ImageNet in ResNet resolution) we can expect these
voids to be non-trivially large.

Case 3 — Out-of-Distribution (OOD). Since no training data support is available in out-of-
distribution (OOD) regions, the diffusion model lacks information about these areas. Consequently,
the learned score field in such regions is necessarily an extrapolation, and the theoretical derivations
established under the in-distribution assumption no longer hold. We do not expect either the diffu-
sion model or our attack criteion to perform well in these regions. First, even though the theoretical
finite-sample optimal denoiser is well defined (Eq. 10), a neural network approximation to it will
have very little training data in these regions. Second, a trial datapoint x∗ is by-definition not from
pdata in these regions.

Monte Carlo variant of SimA: As we mentioned in Figure 2, the intuitive attack method is the
expected norm of the predicted score for a query image x⋆ at time t, i.e. Eε∼N (0,I)[∥ε̂θ(xt, t)∥],
where xt =

√
ᾱt x0+σtε. In fact, it is not hard to see that SimA is a point estimate of this estimator

at ε = 0 (mode and median of the standard Gaussian). To evaluate this method, one should resort
to Monte Carlo method. Therefore, we name it the Monte Carlo variant of SimA (SimA-MC).
We originally thought that such a high-dimensional Monte Carlo would perform poorly until a very
large number of samples. However, this method turns out to be surprisingly tractable. The Monte
Carlo variant of SimA method provides SoTA performance within 30 samples, often within 10. For
sufficient (n ∈ [10, 30]) samples, it improves all performance metrics on all datasets of our LDM
experiments. The results is summarized in Table 3 and 6. The table results are still incomplete due
to rebuttal time for computation. We will make it ready if it goes to camera-ready.

SimA in comparison to other Diffusion MIA models: A standard concept in MIA is the use
of the training loss function evaluated on the data points in question as the member/non-member

6
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Table 1: Performance of benchmark methods on DDPM across four datasets. Best results in bold

Method #Query↓ CIFAR-10 (%) CIFAR-100 (%) STL10-U (%) CelebA (%)

ASR↑ AUC↑ TPR†↑ ASR↑ AUC↑ TPR†↑ ASR↑ AUC↑ TPR†↑ ASR↑ AUC↑ TPR†↑

PIA 2 85.06 91.86 29.54 82.31 89.58 28.75 90.83 96.34 66.30 74.27 82.22 18.36
PFAMIMet 20 73.64 80.32 8.16 70.58 77.05 8.44 74.78 83.74 17.00 64.34 70.18 8.13
SecMIstat 12 82.71 89.72 33.44 81.55 88.62 29.95 89.40 95.16 66.20 73.94 81.45 14.55
Loss 1 77.67 84.73 24.14 74.85 82.19 19.56 84.60 91.42 47.67 69.13 75.96 15.15

SimA 1 83.62 90.45 35.86 82.51 89.85 38.84 91.15 96.34 72.75 74.90 82.85 20.86

Table 2: Performance of Guided Diffusion and Latent Diffusion pretrained on ImageNet1K. Best
results in bold. Member set: ImageNet-1K (3000); Held-out: ImageNetV2 (3000).

Method #Query↓ ImageNet, Guided ImageNet, LDM

ASR↑ AUC↑ TPR†↑ ASR↑ AUC↑ TPR†↑

PIA 2 64.65 66.44 9.93 55.13 56.8 2.13
PFAMIMet 20 67.85 72.22 3.77 50.77 48.76 0.57
SecMIstat 12 77.97 82.55 34.73 56.80 56.85 2.33
Loss 1 57.27 60.38 7.00 50.48 47.9 0.6

SimA 1 85.73 89.77 21.73 55.78 56.14 1.97
† True Positive Rate at 1 % False Positive Rate.

decision criterion. This is the Loss criterion, and is proposed in Matsumoto et al. (2023). They use
a stochastic sample ε to estimate this criterion, adding it to the test point x∗.

Loss = ∥ε− ε̂θ(
√
ᾱtx

∗ +
√
1− ᾱtε, t)∥ (Matsumoto et al., 2023) (17)

In theory this should be evaluated across a large number of ε measurements, but for each point they
choose to use only one. This method is predicated on the idea that for points in the training set, the
noise estimation will be better or even overfit in comparison to points not in the training set. SimA is
the evaluation of this method at ε = 0, which is the mean and mode of the ε distribution. Effectively,
Matsumoto et al. (2023) are measuring draws from lower likelihood areas, which may not exhibit
the overfit phenomenon as well as ε = 0. Fu et al. (2023) provide this same loss estimate as the
selection criterion, but increase the Monte Carlo sampling to 20 and perform it only for a single step,
sampling εt the stepwise noise instead of sampling ε.

SecMI of Duan et al. (2023) takes this one step further, evaluating not only a score term but also a
single step term, which measures sensitivity to single step differences in t:

SecMI = ∥
√
1− ᾱ(ε̂θ(x, t)− ε̂θ(

√
ᾱt+1x

∗ +
√
1− ᾱt+1ε, t+ 1))∥ (18)

SecMI is dependent on sampling ε’s as well; the authors prescribe using N = 12 samples.

The closely related PIA method computes this same loss quantity again, but using a t = 0 term
instead of the ε sample.

PIA = ∥ε̂θ(x, t = 0)− ε̂θ(
√
ᾱtx

∗ +
√
1− ᾱtε̂θ(x, t = 0), t)∥ (19)

While in theory diffusion models might not be well defined at t = 0, in practice they often can
extrapolate as they are trained on nearby t; in the continuous time case they are trained on the
interval [0, 1]. Our method has similar components to this method, manipulating t around the test
point, but again replacing its “ground-truth” noise with ε = 0 (here replaced by ε̂(x0, t = 0)).

4 EXPERIMENTS

4.1 SETUP

We evaluated our attack on 15 member–held-out pairs drawn from 11 datasets (see Appendix
A.1). The experiments were conducted on the following target models:
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Table 3: Attack performance of four baseline methods used to evaluate memorization of LDMs.
Apart from SimA(#mc), best results of in bold. The gray area denotes the Monte Carlo variant of
SimA. #mc denotes the number of Monte Carlo samples. At #mc=10, SimA advances the state-of-
the-art across all reported metrics. For ImageNet, ImageNet-1K (train split); Held-out: ImageNetV2
(validation split).

Method #Query↓ CIFAR-10 (%) CelebA (%) ImageNet (%)

AUC↑ ASR↑ TPR@1%FPR↑ AUC↑ ASR↑ TPR@1%FPR↑ AUC↑ ASR↑ TPR@1%FPR↑

Loss 1 73.28 67.48 7.86 68.65 63.47 6.39 67.49 63.16 4.09
SecMI 12 87.42 80.12 19.11 83.09 75.85 10.53 68.21 63.44 3.71
PIA 2 85.73 78.19 15.90 83.36 75.87 9.41 66.09 62.52 2.95
SimA (ε = 0) 1 89.10 81.63 19.88 84.66 77.04 11.09 69.62 64.92 3.87

SimA (#mc=10) 10 90.68 82.71 39.86 91.55 83.56 39.76 71.13 65.95 7.44

Denoising Diffusion Probabilistic Model: For CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
STL10-U (unlabeled split) (Coates et al., 2011), and CelebA (Liu et al., 2015), we trained a vanilla
DDPM (Ho et al., 2020) from scratch on the member set. From each training split we subsample n
images and partition them equally into a member set and a held-out set.

Pre-trained Guided Diffusion: We examined the publicly released Guided Diffusion model1
(Dhariwal & Nichol, 2021) trained on ImageNet-1K (Russakovsky et al., 2015). ImageNetV2 (Recht
et al., 2019), collected to mirror the original distribution (same data collection process and same year
range), serves as the held-out set.

Full statistics including dataset splits, resolutions, etc. are summarized in Table 4 of Appendix A.1.
Additional experiments on LDM models (Stable Diffusion) similar to the experiments in Zhai et al.
(2024) are included in Appendix A.3. These exhibit the same low performance across all methods
as the LDM on ImageNet experiments.

Baselines: Earlier membership-inference attacks (MIAs) aimed at GANs and VAEs—e.g., (Chen
et al., 2020; Hilprecht et al., 2019; Hu & Pang, 2021)—do not transfer well to diffusion models,
as shown by Duan et al. (2023). Consequently, we restricted our evaluation to attacks specifically
designed for diffusion models. We compared our method with four baselines: SecMI (Duan et al.,
2023), PIA (Kong et al., 2023), PFAMI (Fu et al., 2023), Loss (Matsumoto et al., 2023). We omitted
CLiD (Zhai et al., 2024), a text-conditioned MIA, because its text-supervision is incompatible with
the setup used in most of our experiments, and the provided code is not usable.

Evaulation Metrics: We evaluated attack performance using several metrics: ASR (attack suc-
cess rate, i.e., membership inference accuracy), AUC (Area Under ROC Curve), TPR at 1% FPR
(TPR@1%FPR), and the number of queries per attack (#Query). The TPR@1%FPR is computed
by selecting the threshold τ at which the false positive rate falls just below 0.01, and reporting the
corresponding true positive rate at that operating point. The ASR is defined as the maximum accu-
racy achieved over all thresholds, i.e. τ∗ = maxτ

1
2

(
TPR(τ)+1−FPR(τ)

)
in the balanced setting.

The AUC is computed as the trapezoidal integral of TPR(τ) against FPR(τ) across all thresholds.

Implementation details: Some baselines (Duan et al., 2023; Kong et al., 2023; Zhai et al., 2024)
augmented their score- or feature-vector statistic with an auxiliary neural classifier; to focus on the
statistic itself we evaluated only the norm-based versions, which were SecMIstat and PFAMIMet. Of
the two variants (PIA and PIAN) introduced by Kong et al. (2023), we benchmarked only PIA, as
PIAN showed no statistically significant gain in general from their experiments.

To minimise re-implementation error, our codebase reused the official releases of SecMI, PIA, and
Guided Diffusion wherever possible. We failed to re-use PFAMI’s code as the provided code was
inoperable. A reimplemented copy is provided in our code base. PFAMI, in several cases, failed to
attack the victim model (ASR ≈ 50%). We hypothesize that this degradation arose from the sen-
sitivity of its Monte Carlo estimator to the effective sample size, which varied with dataset charac-
teristics and latent dimensionality, yielding high-variance estimates. For each method, we followed
the hyperparameter suggestion in their original paper. Notably, l2-norm, l4-norm and l2-norm were
used for SecMI, PIA and Loss as suggested. l4-norm was used for SimA as it achieved the best
performance in general. For the timestep-dependent attacks (SimA, SecMI, PIA, Loss), we swept

1https://github.com/openai/guided-diffusion
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Figure 3: Left: The performance comparison of AUC between DDPM and Latent Diffusion Model
on the same member/held-out splits for ImageNet-1K and ImageNetV2. Right: Comparison of
AUC of MIA (top) and normalized FID (bottom) across categorical β settings for Standard β-VAE
(Burgess et al., 2018) Encoding and Adversarial β-VAE (Esser et al., 2021) on CIFAR-10. The
x-axis represents categorical indices of β values, without encoding their numerical magnitude.

t = 0 : 300 and reported the best-performing value for each method (PFAMI is timestep-free and
therefore needed no sweep). More implementation details can be found in Section 4.2.

4.2 MAIN RESULTS

In Table 1, all DDPM baselines were trained on a member split and evaluated on an held-out split
of equal sizes: 25 k/25 k for CIFAR-10 and CIFAR-100, 50 k/50 k for STL10-U, and 30 k/30 k for
CelebA, all at a spatial resolution of 32 × 32. We adopted the public checkpoints and splits re-
leased by SecMI for CIFAR-10/100, and retrained STL10-U and CelebA for 18 k and 60 k steps,
respectively. Across all datasets and metrics, SimA achieved the best in almost all the experiments
over three metrics (ASR, AUC, TPR@1%FPR) while requiring the fewest queries, underscoring its
efficiency and practical advantage.

In Table 2, we further evaluated Guided Diffusion (Dhariwal & Nichol, 2021) and LDM (Rombach
et al., 2022) at their public class-conditional ImageNet-1K checkpoints (256×256). We find that for
Guided Diffusion SimA has the highest ASR and AUC by a wide margin, while SecMI has a very
high TPR@1%FPR. For the Latent Diffusion on the same dataset and holdout, SecMI technically
has the best performance, but all methods are extremely bad, achieving less than 57 AUC and 2.3%
TPR@1%FPR.

DDPM vs. Latent Diffusion Model: In the original LDM (Rombach et al., 2022), the encoder
is a VQ-VAE (Van Den Oord et al., 2017); its discrete code-book forces quantization on patches.
A continuous VAE (Kingma et al., 2013) is used in Stable Diffusion and passes richer detail, but
still compresses pixel-level information. In both cases, embeddings may express high-level coarse-
grained information, and pathological memorization of pixel patterns might be reduced. To investi-
gate this, recap from experiments on Table 2, we used the same member and held-out sets on Guided
Diffusion Model and LDM, and All other variables (seed, code, versions) are held constant.

As shown in Fig. 3 (Left) and Table 2, performance drops markedly from DDPM to LDM: SimA,
PIA, and SecMIstat fall to ∼55% in ASR, 56% in AUC, and 2% in TPR@1%FPR, while PFAMIMet
and Loss perform no better than random guessing.

To further investigate why this particular LDM checkpoint exhibits reduced vulnerability to MIA,
we conduct a controlled study on CIFAR-10. We train a series of VAEs with varying β values in the
β-VAE framework (Burgess et al., 2018). The LDMs are subsequently trained based on these frozen
VAE encoders. We perform attack on latent diffusion model. As shown in Fig. 3 (Right-Top), MIA
performance is sensitive to the KL-divergence weight β. Introducing a small KL regularization on
VAE training increases AUC, but stronger constraints lead to a monotonic decline, consistent with
the expectation that a tighter information bottleneck reduces membership leakage during encoding.
Importantly, however, the FID performance is relatively unaffected by the β parameter until much
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larger values, indicating that it is possible to preserve generative quality (at least up to the FID
metric) while also increasing robustness to MIA.

Interestingly, incorporating a discriminator between the input image and reconstructed image during
VAE training, an approach originally developed for VQ-GAN (Esser et al., 2021), also reduces MIA
effectiveness in LDMs while improving sample fidelity. As illustrated in Fig. 3 (Right), this minor
architectural modification yields models that are both more robust to membership inference and
capable of generating images with lower FID relative to the data distribution. Full training details
are provided in Section A.6 of the Appendix.

This series of experiments, as well as the disparate results on ImageNet-1K between image-domain
diffusion and a latent domain diffusion model indicate a gap in the model inversion literature. Pre-
viously models have focused on the Diffusion process itself; our results in Table 2 indicate that
Diffusion processes on their own can already be solved for MIA to a high degree of fidelity with
a very simple estimator. On the otherhand, the LDM class of models have MIA performance only
marginally above at-random. We believe that this should be the focus of model inversion efforts
moving forward.

5 CONCLUSION

In the present work we have described a simple membership inference estimator, giving theoretical
justification for its performance, and for the performance of similar estimators in the literature which
previously lacked a unified theoretical backing. We demonstrate that this estimator has competitive
performance on many baselines, including state-of-the-art performance on ImageNet-1K image-
domain inversion. Our experiments also elucidate a hole in the current literature concerning latent-
domain diffusion methods, where all tested membership inference methods currently fail.
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A APPENDIX

A.1 DATASETS AND SPLITS

Datasets and splits used for our experiments are summarized in Table 4.

A.2 PERFORMANCE RANK ACROSS 15 EXPERIMENTS

A rank distribution over 5 benchmark methods (Duan et al., 2023; Kong et al., 2023; Matsumoto
et al., 2023; Fu et al., 2023) across 15 experiments is provided in Figure 5.

A.3 ADDITIONAL EXPERIMENTS ON CLASS CONDITIONAL IMAGENET, AND
STABLE DIFFUSION PRE-TRAINED ON LAION-AESTHETICS V2 5+.

For the unconditional case of Guided Diffusion, please see Table 5.

Pre-trained Latent Diffusion Models: For Pokémon2, COCO2017-Val (Lin et al., 2014),
and Flickr30k (Young et al., 2014), we fine-tuned Stable Diffusion v1-43 on a randomly
selected subset of each training split, reserving an equally sized subset as the held-out
set. We also studied the original Stable Diffusion v1-54 checkpoint, pre-trained on
LAION-Aesthetics v2 5+ (Schuhmann et al., 2022) (member set). Here we sampled 2500 im-
ages from LAION-2B-MultiTranslated5 and COCO2017-Val as non-members, respectively. No-
tably, the images from LAION-2B-MultiTranslated are filtered with attributes pwatermark < 0.5;
prediction (aesthetic score) > 5.0 and similarity > 0.3. pwatermark and prediction are to mini-
mize the domain shift between the member set and the held-out set. And similarity is to ensure the
alignment of the text-image pairs.

Stable Diffusion v1-4 was fine-tuned for 15k, 50k, and 200k steps on the member splits of Pokémon,
COCO-2017-Val, and Flickr30k, respectively, with a fixed learning rate of 1×10−5 (AdamW). None
of these datasets are in the original pre-training corpus. Additionally, we adopted the default data
augmentation (Random-Crop and Random-Flip) while training.

The results are summarized on Table 7 and 8, which followed the experimental protocol of Zhai
et al. (2024) and evaluated membership-inference attacks on Stable Diffusion under two scenarios:

Fine-tuning. A Stable Diffusion v1-4 checkpoint was fine-tuned on the designated member split of
each target dataset; attacks were launched on paired member/held-out splits.

Pre-training. A pre-trained Stable Diffusion v1-5 model was attacked directly, without additional
fine-tuning. The member set was a subset of LAION-Aesthetics v2 5+ that was used during pre-
training, while the held-out set was an equally-sized split drawn from the target dataset.

For every dataset we created five random member/held-out partitions. All experiments were run
in both text-conditional and unconditional modes, except on the Pokémon dataset where only the
conditional mode was considered because the model over-fit rapidly. The unconditional baseline was
obtained by passing an empty string to the CLIP text encoder. For datasets evaluated in both modes,
the absolute gain of the conditional attack over the unconditional one was reported in blue. Across
all datasets and metrics, conditioning on text consistently strengthened the attack, indicating that
text-conditional generation memorised training data more severely than unconditional generation.

2https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions
3https://huggingface.co/CompVis/stable-diffusion-v1-4
4https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
5https://huggingface.co/datasets/laion/laion2B-multi-joined-translated-to-en
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Table 4: Datasets and splits used for our experiments.

Model Member Held-out Pre-trained Fine-tuned Splits Resolution Cond.

DDPM

CIFAR-10 CIFAR-10 No – 25k/25k 32 –
CIFAR-100 CIFAR-100 No – 25k/25k 32 –
STL10-U STL10-U No – 50k/50k 32 –
CelebA CelebA No – 30k/30k 32 –

Guided Diffusion ImageNet-1k ImageNetV2 Yes No 3k/3k 256 class

Stable Diffusion V1-4 Pokémon Pokémon Yes Yes 416/417 512 text
COCO2017-Val COCO2017-Val Yes Yes 2.5k/2.5k 512 text

Flickr30k Flickr30k Yes Yes 10k/10k 512 text

Stable Diffusion V1-5 LAION-Aesthetics v2 5+ LAION-2B-MultiTranslated Yes No 2.5k/2.5k 512 text
LAION-Aesthetics v2 5+ COCO2017-Val Yes No 2.5k/2.5k 512 text

A.4 FROM MARGINAL DENSITY TO EXPLICIT GAUSSIAN CONVOLUTION

Let ᾱt =
∏t

s=1 αs and σ2
t = 1− ᾱt. The VP forward marginal is

pt(x) =

∫
Rd

pdata(x0) N
(
x
∣∣√ᾱt x0, σ

2
t I

)
dx0. (20)

Set u =
√
ᾱt x0 so that x0 = u/

√
ᾱt and dx0 = ᾱ

−d/2
t du. Then

pt(x) = ᾱ
−d/2
t

∫
Rd

pdata

(
u√
ᾱt

)
N
(
x
∣∣u, σ2

t I
)
du. (21)

Introduce x̃ := x/
√
ᾱt and ũ := u/

√
ᾱt, so u =

√
ᾱt ũ and du = ᾱ

d/2
t dũ. Substituting into

equation 21 cancels the Jacobians and yields

pt(x) =

∫
Rd

pdata(ũ) N
(√

ᾱt (x̃− ũ)
∣∣ 0, σ2

t I
)
dũ. (22)

Use the Gaussian scaling identity

N (az | 0, σ2I) = a−d N
(
z | 0, σ

2

a2
I

)
(for a > 0),

with a =
√
ᾱt and z = x̃− ũ. Then equation 22 becomes

pt(x) = ᾱ
−d/2
t

∫
Rd

pdata(ũ) N
(
x̃− ũ

∣∣ 0, σ2
t

ᾱt
I

)
dũ. (23)

The integral in equation 23 is a (Euclidean) convolution evaluated at x̃:(
pdata ∗ N (0,

σ2
t

ᾱt
I)
)
(x̃) =

∫
Rd

pdata(ũ) N
(
x̃− ũ

∣∣ 0, σ2
t

ᾱt
I
)
dũ.

Therefore,

pt(x) = ᾱ
−d/2
t

(
pdata ∗ N

(
0,

σ2
t

ᾱt
I
))( x√

ᾱt

)
(24)

with σ2
t /ᾱt = ᾱ−1

t − 1.

A.5 MIA IN THREE CASES

When the data prior is the empirical distribution constructed from the training set {x(i)}Ni=1. We
have ptrain(x0) =

1
N

∑
i δ(x0 − x(i)). For any test image x, the UNet predicts

ε̂θ(x, t) ≈
x−

√
ᾱt µt(x)

σt
, (25)
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Table 5: Performance of Guided Diffusion pretrained on ImageNet1K with class conditional
changes. Best results in bold, second-best underlined. Member set: ImageNet-1K (3000); Held-out:
ImageNetV2 (3000). The performance difference of the class-conditional attack from the uncondi-
tional one is in blue. Format: uncond.% (∆ = cond.–uncond.).

Method #Query↓ ASR↑ AUC↑ TPR@1%FPR↑

PIA 2 64.65(-1.98) 66.44(-0.93) 9.93(-3.96)
PFAMIMet 20 67.85(+0.22) 72.22(+0.25) 3.77(+0.50)
SecMIstat 12 77.97(-9.09) 82.55(-8.94) 34.73(-19.53)
Loss 1 57.27(+0.10) 60.38(+0.15) 7.00(+0.07)

SimA 1 85.73(+2.57) 89.77(+2.03) 21.73(+6.87)

Table 6: Updated table, we leave the old table for rebuttal use. See our rebuttal for additional
explanation.This table is still incomplete; we will make it ready if it goes to camera-ready. Attack
performance of four baseline methods used to evaluate memorization of Stable Diffusion. Apart
from SimA(#mc), best results in bold. The gray area is the Monte Carlo variant of SimA. #mc
denotes the number of Monte Carlo samples. Notably, at #mc=10 and 30, SimA pushes the state-of-
the-art forward across all reported metrics.

Method #Query↓ Pokémon (%) MS-COCO (%) Flickr (%)

AUC↑ ASR↑ TPR@1%FPR↑ AUC↑ ASR↑ TPR@1%FPR↑ AUC↑ ASR↑ TPR@1%FPR↑

Loss 1 92.03 85.47 40.77 83.26 75.80 13.48 63.13 59.74 2.35
SecMI 12 88.12 81.04 29.02 91.35 84.00 39.16 71.81 66.54 5.29
PIA 2 94.93 90.52 32.85 92.51 85.72 24.76 68.88 64.61 2.67
SimA (ε = 0) 1 93.50 87.87 20.38 93.71 87.34 29.80 70.04 65.96 2.59

SimA (#mc=10) 10 96.75 91.47 63.79 93.21 85.76 45.36 70.26 65.65 4.47
SimA (#mc=30) 30 97.01 92.31 70.50 94.24 86.66 52.48 72.23 66.85 6.33

We are interested in the quantity

µfinite
t (x) = Eqt(x0|x)[x0] =

N∑
i=1

wi(x, t)x
(i),

wi(x, t) =
exp

[
−∥x−

√
ᾱt x

(i)∥2/(2σ2
t )
]

N∑
j=1

exp
[
−∥x−

√
ᾱt x

(j)∥2/(2σ2
t )
] .

(26)

Equations equation 26 express the posterior mean as a weighted average of the training samples,
where each kernel weight wi(x, t) depends on the Euclidean distance between the noisy query x
and the down-scaled datum

√
ᾱt x

(i).

CASE 1 — TRAINING MEMBER

Pick x = x(k) ∈ {x(i)}. Set x = x(k) in equation 26. Define the squared distances

dik(t) :=
∥∥x(k) −

√
ᾱt x

(i)
∥∥2, ∆ik(t) :=

dik(t)− dkk(t)

2σ2
t

. (27)

Using equation 26 and equation 27 we obtain

wk(x
(k), t) =

[
1 +

∑
i̸=k

exp
(
−∆ik(t)

)]−1

, (28)

wi̸=k(x
(k), t) = exp

(
−∆ik(t)

)
wk(x

(k), t). (29)

SMALL-NOISE LIMIT t → 0. Because σ2
t = 1− ᾱt → 0 and

1−
√
ᾱt = O(σ2

t ), dkk(t) =
(
1−

√
ᾱt

)2 ∥x(k)∥2 = O(σ4
t ),
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Table 7: Performance of Stable Diffusion that is pretrianed on LAION-Aesthetics v2 5+.
COCO2017-Val and Flickr30k here follows the fine-tuning setting. LAION-2B-MultiTranslated
is the pre-training setting. The performance difference of the text-conditional attack from the un-
conditional one is in blue. Format: uncond.% (∆ = cond.–uncond.).

Method #Query↓ COCO2017-Val (%) Flickr30k (%) LAION-2B-MultiTranslated (%)

ASR↑ AUC↑ TPR†↑ ASR↑ AUC↑ TPR†↑ ASR↑ AUC↑ TPR†↑

PIA 2 62.4(+0.7) 65.8(+1.2) 2.88(+0.32) 59.3(+0.6) 61.8(+0.8) 1.64(+0.17) 60.6(–0.0) 63.8(+0.0) 4.12(+0.08)
PFAMIMet 20 61.9(+0.7) 65.4(+0.9) 2.28(+0.20) 59.2(+0.4) 61.6(+0.6) 1.75(+0.11) 50.0(+0.0) 40.8(+0.2) 0.80(+0.08)
SecMIstat 12 64.4(+0.7) 69.1(+1.0) 4.32(+0.60) 61.1(+0.5) 64.6(+0.9) 2.85(+0.57) 56.7(+0.1) 58.6(+0.0) 2.92(-0.16)
Loss 1 58.5(+0.6) 61.7(+1.0) 3.44(+0.12) 56.1(+0.4) 58.3(+0.6) 1.83(+0.08) 50.1(+0.0) 37.0(+0.0) 0.80(+0.00)

SimA 1 63.1(+0.9) 66.5(+1.3) 3.04(+0.28) 60.1(+0.6) 62.5(+0.9) 1.71(+0.17) 60.3(-0.0) 63.3(-0.0) 3.20(-0.08)
† True Positive Rate at 1 % False Positive Rate

Table 8: Performance of Stable Diffusion pre-trained on LAION-Aesthetics v2 5+. Pokémon uses
SD v1-4 (fine-tuned) and reports conditional only (no parentheses). COCO2017-Val uses SD v1-5
(held-out) and reports in the format uncond.% (∆ = cond. − uncond.). Best in bold, second-best
underlined.

Method #Query↓ Pokémon (fine-tune) (%) COCO2017-Val (pre-training) (%)

ASR↑ AUC↑ TPR† ↑ ASR↑ AUC↑ TPR† ↑

PIA 2 89.9 94.6 30.9 53.7(-0.06) 52.3(-0.14) 2.1(-0.12)
PFAMIMet 20 50.0 19.0 0.0 52.0(+0.08) 48.7(+0.12) 0.4(+0.00)
SecMIstat 12 81.4 87.8 34.1 55.7(-0.06) 56.0(-0.13) 1.2(+0.08)
Loss 1 80.2 87.9 24.7 55.4(+0.02) 49.3(-0.01) 0.4(+0.00)

SimA 1 87.6 93.0 21.8 54.5(-0.04) 53.7(-0.07) 1.5(+0.12)
† True Positive Rate at 1 % False Positive Rate.

we have, for i ̸= k,

∆ik(t) ∼ ∥x(k) − x(i)∥2

2σ2
t

−−−→
t→0

+∞, ∆kk(t) = 0.

Hence
wk(x

(k), t) −−−→
t→0

1, wi̸=k(x
(k), t) −−−→

t→0
0. (30)

This implies

µfinite
t (x(k)) −−−→

t→0
x(k) . (31)

Moreover, substituting into the estimator equation 25,∥∥ε̂θ(x(k), t)
∥∥
2

≈
∥∥∥x(k) −

√
ᾱt x

(k)

σt

∥∥∥
2

=
|1−

√
ᾱt|

σt
∥x(k)∥2. (32)

To see the asymptotic form using Taylor expansion around σ2
t = 0, note that

√
ᾱt =

√
1− σ2

t = 1− 1
2σ

2
t − 1

8σ
4
t +O(σ6

t ),

so that
1−

√
ᾱt =

1
2σ

2
t +O(σ4

t ).

Therefore
1−

√
ᾱt

σt
= 1

2σt +O(σ3
t ),

and hence ∥∥ε̂θ(x(k), t)
∥∥
2

∼ σt

2 ∥x(k)∥2 −−−→
t→0

0. (33)
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CASE 2 — HELD-OUT BUT ON-MANIFOLD

Consider a test data point x† which is not in our original dataset (i.e., x† /∈ {x(i)}Ni=1), but sampled
from the same generating distribution pdata. Under the diffusion process assumptions, the local
weighted mean µt(x) in equation 26 has the same algebraic form as a kernel regression (Nadaraya,
1964; Watson, 1964), using training dataset {x(i)}Ni=1 with (effective) Gaussian bandwidth

h(t) :=
σt√
ᾱt

. (34)

The weights wi(x, t) in equation 26 are proportional to exp
(
−∥x† −

√
ᾱx(i)∥22/(2h(t)2)

)
, so

µfinite
t (x†) coincides with a Gaussian–kernel local average of “nearby” training points, where

“nearby” is on the order of bandwidth h(t). The kernel-weighted local mean with radius r around
x† is defined as

mr(x
†) :=

∫
Br(x†)

uKr(u− x†) p(u) du∫
Br(x†)

Kr(u− x†) p(u) du

, (35)

Kr(z) ∝ exp
(
−∥z∥2

2r2

)
, (36)

where r ≍ h(t) and p(u) is the empirical distribution. This is a normalization of the local mean
defined in Eq. 15 of this paper, and Appendix 6.4.1 of Alain & Bengio (2014). By local moment
matching (Bengio et al., 2012; Alain & Bengio, 2014), combining Theorems 2 and 3 of Alain &
Bengio (2014) (see their Eq. (28)) yields the second-order expansion

mr(x
†)− x† =

r2

d+ 2

∂ log pt(x)

∂x

∣∣∣∣
x†

+ o(r3), (37)

where pt is the Gaussian-mollified density at scale σt. Using equation 9, we obtain the proportion-
ality stated in the main text:

mr(x
†)− x† ≈ r2

d+ 2

∂ log pt(x)

∂x

∣∣∣∣
x†

=
r2

d+ 2

(
x† −

√
ᾱtµ

finite
t (x†)

σ2
t

)
= − r2

σt(d+ 2)
ε̂θ(x

†, t)

(38)
Notably, this equation should not be correct if x† is in a low density region of the support of pdata,
but these points should generally be rarely sampled by definition. Moreover, the ε̂ estimate of the
score will also be extrapolating at those points.

Implication for the attack statistic. In in-support regions of the empirical distribution, the local
geometry is generally not flat, so ∥mr(x

†)− x†∥ > 0 for r > 0 sufficiently small. By equation 38,
this implies ∥ε̂θ(x†, t)∥ is bounded away from zero (at fixed t), hence A(x†, t) = ∥ε̂θ(x†, t)∥p
exceeds the member case (Case 1). This matches the intuition summarized in the main text: on-
manifold, held-out queries denoise less precisely than memorized training points, yielding a moder-
ately larger attack statistic without the divergence seen off-manifold.

CASE 3 — OUT-OF-DISTRIBUTION (FAR OFF-MANIFOLD)

Since no training data support is available in out-of-distribution (OOD) regions, the diffusion model
lacks information about these areas. Consequently, the learned score field in such regions is neces-
sarily an extrapolation, and the theoretical derivations established under the in-distribution assump-
tion no longer hold.

A.6 TRAINING DETAILS OF ADVERSARIAL β-VAE ON CIFAR-10

We train a series of β-VAE on the CIFAR-10 dataset using AdamW optimization with a learn-
ing rate of 2 × 10−4, and investigate the relationship between membership information leak-
age and latent space regularization. The model was trained with a batch size of 128 and β =
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{0.0, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.5, 1.0} to balance reconstruction fidelity with la-
tent space regularization.

For comparison, we considered two variants: (i) a standard β-VAE trained solely with pixel-level
reconstruction and KL divergence losses, and (ii) a β-VAE augmented with an adversarial discrim-
inator (adversarial β-VAE) applied between input and reconstructed images. In the latter case, a
hinge-loss–based PatchGAN (Isola et al., 2017) discriminator was introduced partway through train-
ing, encouraging the reconstructions to be not only faithful but also visually sharper. Across both
setups, training was conducted for sufficient epochs to ensure convergence (120 epochs). The latter
LDMs are trained based on these frozen VAE encoders. For phase two LDM training, we deliber-
ately train 2048 epochs to ensure the membership information leakage. For training split, we reuse
the member split from previous experiments as shown in Table 4. We sample 1000 images from the
well-trained LDM checkpoints and calculate the FID to training split.

Specifically, in the adversarial setup, optimization proceeds in two steps per iteration. First, we up-
date the VAE with the usual reconstruction+KL objective and, after a warm-up, add a non-saturating
adversarial term (hinge form; equivalent to −E[D(x̂)]) gated to turn on only after a chosen global-
step threshold (we set this to 2,000 steps in our runs). The adversarial term is weighted adaptively
using a VQGAN-style (Esser et al., 2021) gradient-norm ratio on the decoder’s last layer and then
scaled by a constant factor of 0.8; before the start step, its weight is zero by design. Second, we
update the discriminator with a hinge loss on real images x versus reconstructions x̂ recomputed
in a no-grad branch (to avoid generator gradient leakage), using AdamW with the same learning
rate/betas/weight-decay as the VAE optimizer.

A.7 WHY EXTREMELY EARLY AND LATE t ARE PROBLEMATIC:

Figure 4: Top: density pt(x); blue dots are
training samples. Bottom: estimated score
∇x log pt(x). For very early t ∈ [0, 10], the
inter-mode region is low-density, so the score
extrapolates erratically (shaded band). Opti-
mal t ∈ [10, 300]: moderate Gaussian convo-
lution enlarges the support and regularizes the
estimator—density bridges the modes and the
score points coherently toward them, yielding
the strongest separation between members and
held-out points. For late t ∈ [300, 1000], pt
approaches an isotropic Gaussian and the score
collapses toward the global mean, diminishing
membership signal.

Intuitively, ε̂θ(x, t)|t=0 is expected to achieve
the best performance. Because the noise added
to a member at t = 0 is expected to be zero
(as shown in case 1) and non-zero for a non-
member. However, in region of low data density,
score-matching lacks sufficient evidence to reli-
ably estimate the score function (Song & Ermon,
2019). Song & Ermon (2019) argues that train-
ing minimizes the expected value of score esti-
mates (here is Ept=0

[
∥ε̂θ(xt=0, t)− ε∥2

]
), which

provides inaccurate scores where pt=0(x) is in-
finitesimal. To be specific, for the input

{
x ∈

R | {xi}Ni=1 ∩ R = ∅, R ⊂ Rd
}

, ∇xpt=0(x)
extrapolates erratically. Consequently, for very
early timesteps (σt ≪ 1) the learned field out-
side the tightly supported member set can plateau
or even shrink, nullifying the privacy signal. In-
creasing t corresponds to extra Gaussian convo-
lution, expanding the effective support and reg-
ularising the score. Figure 6 plots the average
normalised estimator magnitude ||ε̂θ(x, t)|| for
t ∈ [0, 300] on the member and held-out splits
across datasets. Transient fluctuations are con-
fined to the very earliest timesteps (t ≈ 0), and
the maximal gap between the curves typically oc-
curs at early—but not initial—timesteps, indicat-
ing that moderately early diffusion steps provide
the strongest membership signal.

Conversely, for late steps (σt ≈ 1) the forward
process approaches an isotropic Gaussian (data information gradually diminish); pt is nearly homo-
geneous, so the posterior µt(x) = qt(x0 ∼ ptraining | x) collapses to µt(x) = qt(x0 ∼ N (0, I) | x),
which depends on test images and membership information is lost. Figure 4 illustrates the phe-
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Figure 5: Average ranks (±1σ) of the five benchmark methods across
15 experiments for four evaluation metrics. Higher values indicate
better AUC, ASR, and TPR@1%FPR; lower values indicate fewer
#Queries
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Figure 6: The average normalised estimator magnitude ||ε̂θ(x, t)|| for
t ∈ [0, 300] on the member and held-out splits across datasets

nomenon. The optimal timestep t∗ is therefore dataset-specific and also depends on the noise sched-
ule.
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