

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SCORE-BASED MEMBERSHIP INFERENCE ON DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Membership inference attacks (MIAs) against diffusion models have emerged as a pressing privacy concern, as these models may inadvertently reveal whether a given sample was part of their training set. We present a theoretical and empirical study of score-based MIAs, focusing on the predicted noise vectors that diffusion models learn to approximate. We show that the expected denoiser output points toward a kernel-weighted local mean of nearby training samples, such that its norm encodes proximity to the training set and thereby reveals membership. Building on this observation, we propose **SimA**, a single-query attack that provides a principled, efficient alternative to existing multi-query methods. SimA achieves consistently strong performance across variants of DDPM, Latent Diffusion Model (LDM). Notably, we find that Latent Diffusion Models are surprisingly less vulnerable than pixel-space models, due to the strong information bottleneck imposed by their latent auto-encoder. We further investigate this by differing the regularization hyperparameters (β in β -VAE) in latent channel and suggest a strategy to make LDM training more robust to MIA. Our results solidify the theory of score-based MIAs, while highlighting that Latent Diffusion class of methods requires better understanding of inversion for VAE, and not simply inversion of the Diffusion process

1 INTRODUCTION

Generative image models leave evidence of their specific training data at deployment time in their generative process. While making draws from approximations of $p(x)$ or $p(x|y)$, they leave biases of the training samples (finite and fixed realizations from the real $p(x)$ or $p(x|y)$). These biases may be used in theory to reconstruct the training data, a process known as model inversion (Zhu et al., 2016; Creswell & Bharath, 2018; Carlini et al., 2023; Somepalli et al., 2023a;b; Gu et al., 2023).

The ability to invert these models raises concerns in privacy and intellectual property spaces for specific use-cases of generative models, but also possibly provides unique perspectives into the idiosyncrasies of the generative models themselves. If the models were perfect, they would sample from a distribution indistinguishable from the data generating process; the ways in which they deviate from this distribution inform upon their structure.

A critical precursor to model inversion is the *membership inference attack* (MIA), which determines whether a given image was included in the training set. MIA effectively constructs a classifier for identifying training examples, setting aside the problem of searching the domain for high-likelihood

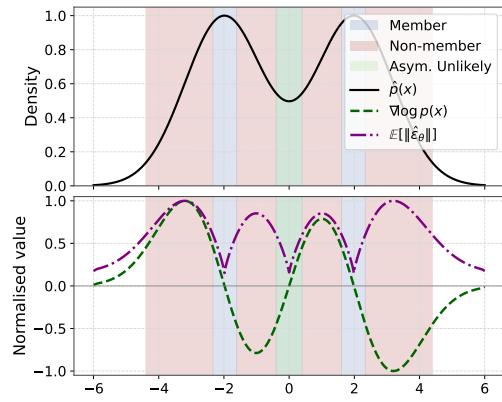


Figure 1: A diagram of our Membership Inference method in one dimension. In blue are regions of high membership likelihood, corresponding to low $\|\hat{e}_\theta\|$, plotted in purple. The green region is unlikely to be sampled in high dimensions (c.f. Sec. 3).

examples. While this may be the easier sub-problem of full model inversion, it is no less important, as without successful MIA, model inversion is impossible.

Building upon analytic results from the literature about diffusion models (Pridstrigach, 2022; Karras et al., 2022), we describe a performant MIA method that we believe simplifies other current methods into a consistent methodology: the norm of the estimated score at the test point across diffusion times (the t index). Our empirical results show this simple method has AUC scores at or above the previous state-of-the-art for DDPM-weightsets (Ho et al., 2020) on common smaller datasets, and well above the previous state-of-the-art for the related Guided Diffusion model (Dhariwal & Nichol, 2021) on ImageNet-1k.

In contrast to this, our experiments also show that Latent Diffusion Models (LDM) may be robust to MIA attacks of this general class; not only our own method but *every* method tested has decreased LDM performance. Running otherwise identical membership-inference attacks on publicly well-trained DDPM and LDM checkpoints using the same *member* and *held-out* splits, we find dramatic performance drops across all metrics and across all methods. We hypothesize that LDM robustness may be unrelated to the Diffusion part of the Latent Diffusion Model.

We further experiment by training new LDMs on new VAE encoders with differing regularization hyperparameters (the β KL-weight in the β -VAE framework (Burgess et al., 2018)) for the VAE pre-training. We find that MIA performance is susceptible to the KL-weight. We also vary the usage of an additional discriminator between the input image and reconstructed image during VAE training, as suggested by VQ-GAN (Esser et al., 2021). Our modifications show that we can at once reduce the vulnerability of LDMs to MIA while improving generation fidelity as measured by FID. This indicates that successful membership inference and model inversion on the Latent Diffusion class of methods requires better understanding of inversion for VAE, and not simply inversion of the Diffusion process.

In summary, our contributions are the following:

1. A derivation of a simple Membership Inference Attack method (**SimA**), which is a reduction of other methods into a general framework.
2. An empirical demonstration that **SimA** provides top performance on standard datasets and independently trained base models.
3. An empirical demonstration that this general class of methods seems to fail on Latent Diffusion Models, for reasons possibly unrelated to the diffusion generative process itself, indicating a gap in the literature.

All data splits, model checkpoints, training/fine-tuning scripts, and testing code are released on our GitHub repository <https://github.com/mx-ethan-rao/SimA>

2 BACKGROUND AND RELATED WORK

Diffusion Models: Our membership inference work is specific to diffusion-based generative image models. Originally introduced as score-based generative models (without the explicit connection to the Diffusion model) in Song & Ermon (2019), a very large number of publications have explored variations of these models since that point (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022).

While each contribution has its own particular training paradigm and architecture, our attack applies to the broad class of models that estimate a gradient flow field $\hat{\varepsilon}(x, t)$ at points x for a smoothing parameter/diffusion time t that approximates the gradient of the smoothed log-likelihood, $\nabla \log(p(x) * \mathcal{K}(t))$ (Kamb & Ganguli (2024), or Appendix A.4), which is often induced by a conceptual and/or training-time “forward” noise process $x_t = \sqrt{\bar{\alpha}_t}x_0 + \sigma_t\varepsilon$ and a “backward” denoising process similar to denoising auto-encoder processes (Alain & Bengio, 2014). These may be variance-preserving or variance-exploding (Song et al., 2020), based on the exact parameterization of the noise schedule. In this work we directly use weights from the following models: DDPM (Ho et al., 2020), Guided Diffusion (Dhariwal & Nichol, 2021), Latent Diffusion Model (LDM) (Esser et al., 2021), and Stable Diffusion (Rombach et al., 2022). Each of these directly estimate the noise

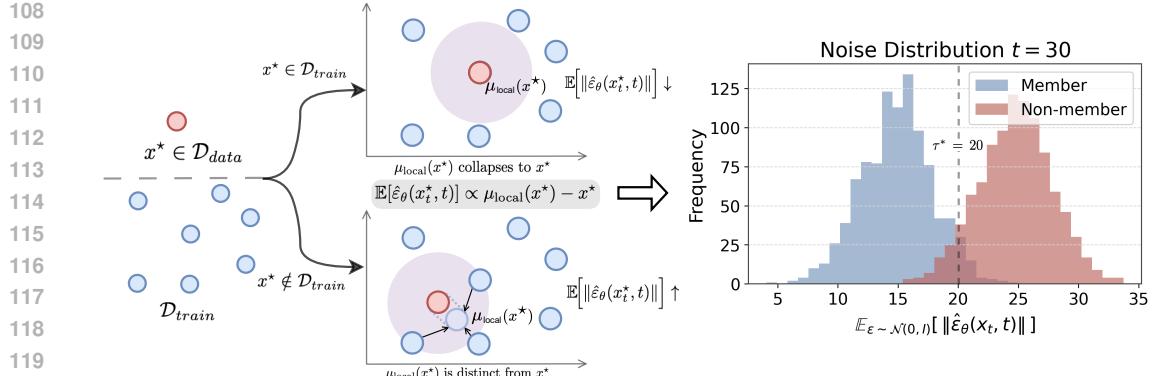


Figure 2: **Score-based MIA intuition with local-mean geometry.** In a small neighborhood (“local ball”) around a query x^* , let $\mu_{\text{local}}(x^*)$ be the kernel-weighted mean of nearby training samples. The model’s predicted noise (score) points from x^* toward this local mean, $\mathbb{E}[\hat{\epsilon}_\theta(x^*, t)] \propto \mu_{\text{local}}(x^*) - x^*$. For members ($x^* \in \mathcal{D}_{\text{train}}$), the local mean $\mu_{\text{local}}(x^*)$ collapses to training sample x^* , producing small norms, whereas for non-members ($x^* \notin \mathcal{D}_{\text{train}}$), $\mu_{\text{local}}(x^*)$ deviates from x^* , yielding larger norms. Right: the histogram at $t = 30$ shows the separation in $\mathbb{E}_{\epsilon \sim \mathcal{N}(0, 1)}[\|\hat{\epsilon}_\theta(x_t, t)\|]$.

vector ϵ using a neural network $\hat{\epsilon}(x, t)$. Our method manipulates x and t and analyze the networks’ outputs, but otherwise is agnostic to the exact architecture and weights.

Latent Diffusion Models (Esser et al., 2021; Rombach et al., 2022) perform their forward process on the latent space of some encoder-decoder structure (usually a Variational Auto-encoder (Kingma et al., 2013)). As we show, this encoder-decoder structure appears to be robust to membership inference, even though the particular diffusion model on its own may not be.

The analytic tractability of these models permits theory about their behavior (Kamb & Ganguli, 2024; Lukoianov et al., 2025), even pre-dating the publication of the DDPM, e.g., Alain & Bengio (2014). Our method is conceptually linked to results and intuition from Alain & Bengio (2014) and Kamb & Ganguli (2024).

Membership Inference Attack threat models: Model inversion and membership inference attacks pre-date the introduction of the DDPM and LDM generative image models; MIA was defined originally for general classification tasks (Shokri et al., 2017). A non-trivial amount of literature since that point has focused on MIA for generative image models (Chen et al., 2020) starting with GANs, due to its attack surface (pixel arrays) and its clear privacy and intellectual property implications.

Much of the terminology and structure were defined in the security context, where a threat model defines the scope and allowable resources for an attack vector. So-called “black box” attacks from the original MIA literature are performed without knowledge of the model weights or structure, and can only rely on input and output pairs from a deployed model. In contrast, “white box” attacks (Pang et al., 2023) have access to the full architecture/weight set. We consider the most common class of diffusion model MIAs, “grey-box” attacks (Duan et al., 2023; Zhai et al., 2024; Kong et al., 2023; Matsumoto et al., 2023; Carlini et al., 2023; Fu et al., 2023), which span a range of options between those two extrema; in general they have access to weights and/or internal representations, and may query the model for particular test points. We review each of these grey box attacks in detail in Section 3 and compare to each, with the exception of Zhai et al. (2024) as it performs membership inference on conditional generative models instead of the unconditioned case.

3 METHODOLOGY

METHOD OVERVIEW

The predicted noise $\hat{\epsilon}_\theta$ is outputted by the neural network, which is a scaled estimator of the score $-\sigma_t \nabla_{x_t} \log p_t(x_t)$ (Song et al., 2020; Ho et al., 2020; Luo, 2022), for data generating distribution $p(x)$ and its mollifications $p_t(x)$ on a noising schedule σ_t . Our Simple Attack (**SimA**) method is

$$\mathcal{A}(x, t) = \|\hat{\epsilon}_\theta(x, t)\|. \quad (1)$$

162 Here, x is the test point, which ostensibly was drawn from $p(x)$, but is either in the training data or
 163 not, and t is the diffusion time parameter. We provide a more rigorous derivation and its connections
 164 to other MIA methods in the following sections, but we feel that its intuition is also instructive on
 165 why such a simple method would work.

166 Figure 2 visualizes the intuition of our method: the expected norm of the predicted score for a query
 167 image x^* at time t is effectively the gradient of a Gaussian kernel density estimator (see Appendix
 168 A.4). For well-separated points, these estimators’ implicit distributions will have peaks at each
 169 training point; the gradient vanishes at critical points of the smoothed density, which include the
 170 peaks corresponding to the original data points (the blue region in the Fig. 1), up to a bias term from
 171 the smoothing. Manipulating this fact allows us to form a simple yet successful estimator.

172 There should be false positive terms at the other critical points (the green region in Fig 1). In
 173 high dimension, these should be by-in-large saddle points between maxima. Because these points
 174 occur directly between original datapoints at their arithmetic mean, if the data manifold (the support
 175 of $p(x)$) has any curvature, these points would be off manifold; empirically we do not seem to
 176 encounter many of them, as indicated by the TPR@1%FPR measurements (see Section 4).

178 3.1 FROM FORWARD DIFFUSION TO SCORE

180 **Notation:** Let $\{\beta_t\}_{t=1}^T$ be the variance schedule of the forward diffusion process in DDPM Ho et al.
 181 (2020). Define $\alpha_t := 1 - \beta_t$ and its cumulative product $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$. The total noise variance
 182 accumulated up to step t is $\sigma_t^2 := 1 - \bar{\alpha}_t$.

183 **Forward Diffusion as a Scaled Gaussian Convolution:** With the variance-preserving (VP) sched-
 184 ule of Ho et al. (2020), the forward model is

$$186 \quad x_t = \sqrt{\bar{\alpha}_t} x_0 + \sigma_t \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I), \quad \sigma_t^2 = 1 - \bar{\alpha}_t, \quad (2)$$

187 where $x_0 \sim p_{\text{data}}$. Marginalizing x_0 gives the perturbed data distribution (Song & Ermon, 2019).
 188 For a *clean* (without noise) sample $x \in \mathbb{R}^d$,

$$189 \quad p_t(x) = \int_{\mathbb{R}^d} p_{\text{data}}(x_0) \mathcal{N}(x | \sqrt{\bar{\alpha}_t} x_0, \sigma_t^2 I) dx_0. \quad (3)$$

192 Equation 3 is a Gaussian convolution of the original data distribution (see Appendix A.4 for an
 193 explicit derivation), followed by a global scaling by $\sqrt{\bar{\alpha}_t}$.

$$194 \quad p_t(x) = \frac{1}{\bar{\alpha}_t^{d/2}} \left(p_{\text{data}} * \mathcal{N}\left(0, \frac{\sigma_t^2}{\bar{\alpha}_t} I\right) \right) \left(\frac{x}{\sqrt{\bar{\alpha}_t}} \right). \quad (4)$$

197 Therefore, $p_t(x)$ is the data distribution convolved with scaled Gaussian distribution whose kernel’s
 198 covariance $\frac{\sigma_t^2}{\bar{\alpha}_t} I = (\bar{\alpha}_t^{-1} - 1)I$ grows monotonically with the timestep t .

200 **Gradient of $p_t(x)$:** Writing the kernel in standard form $\mathcal{K}_t(x, x_0) = (2\pi\sigma_t^2)^{-d/2} \exp(-\|x -$
 201 $\sqrt{\bar{\alpha}_t} x_0\|^2/2\sigma_t^2)$, we can compute its spatial gradient: $\nabla_x \mathcal{K}_t = -\sigma_t^{-2}(x - \sqrt{\bar{\alpha}_t} x_0) \mathcal{K}_t$. We then
 202 combine this with Eq. 3 to obtain

$$203 \quad \nabla_x p_t(x) = -\sigma_t^{-2} \int p_{\text{data}}(x_0) (x - \sqrt{\bar{\alpha}_t} x_0) \mathcal{K}_t(x, x_0) dx_0 \quad (5)$$

205 which requires continuity assumptions on p_{data} which are usually assumed by DDPM analyses (Alain
 206 & Bengio, 2014).

207 **Introducing exact likelihood of each datapoint $q_t(x_0 | x)$:** Define the exact distribution of the x_0
 208 given an observation from the Gaussian smoothed distribution:

$$210 \quad q_t(x_0 | x) = \frac{p_{\text{data}}(x_0) \mathcal{K}_t(x, x_0)}{p_t(x)}. \quad (6)$$

212 Because $p_t(x)$ normalizes Eq. 3, we can then rewrite Eq. 5 as

$$214 \quad \nabla_x p_t(x) = -\frac{p_t(x)}{\sigma_t^2} \left[x - \sqrt{\bar{\alpha}_t} \underbrace{\mathbb{E}_{q_t(x_0|x)}[x_0|x]}_{\mu_t(x)} \right]. \quad (7)$$

We call $\mathbb{E}_{q_t(x_0|x)}[x_0|x] = \mu_t(x)$ the *denoising mean*; it is the likelihood-weighted average of the positions of the datapoints that could have generated x at time t through the forward process, which is the same as the mean optimal solution to the denoising problem.

Obtaining the exact score: Dividing Eq. equation 7 by $p_t(x)$ yields the score of distribution $p_t(x)$ at x (Lemma 6 of Pidstrigach (2022), or, alternatively, applying the chain rule to $\nabla_x \log p_t(x)$ and then substituting in values):

$$s_t(x) = \nabla_x \log p_t(x) = -\frac{x - \sqrt{\bar{\alpha}_t} \mu_t(x)}{\sigma_t^2}. \quad (8)$$

This score function $s_t(x)$ is the desired output of the ε -parameterization of Score-based Denoising (Song et al., 2020) and the original DDPM (Ho et al., 2020). During training the UNet is asked to predict the standard noise (Ho et al., 2020):

$$\hat{\varepsilon}_\theta(x, t) \approx \frac{x_t - \sqrt{\bar{\alpha}_t} \mu_t(x)}{\sigma_t} = -\sigma_t \nabla_x \log p_t(x) \quad (9)$$

This is consistent with Eq. 151 of Luo (2022). For $x \in \text{supp } p_t$ (with or without noise), the estimator $\hat{\varepsilon}_\theta(x, t)$ should approximate the negative score of $p_t(x)$. However, in practice the data distribution p_{data} becomes the empirical distribution p_{training} , which is a finite sample of points. The noised distribution $p_t(x)$ is then a kernel smoothing of that empirical distribution, and its finite-sample denoising mean is described in Kamb & Ganguli (2024) and refined in Lukoianov et al. (2025). Equation 3 of Lukoianov et al. (2025) states it as:

$$\mu_t^{\text{finite}}(x) = \sum_{i=1}^N w_i(x, t) x_0^{(i)}, \quad w_i(x, t) = \text{softmax}_i \left\{ -\frac{1}{2\sigma_t^2} \|x - \sqrt{\bar{\alpha}} x_0^{(i)}\|_2^2 \right\}_{j \in [N]} \quad (10)$$

where the $x_0^{(i)}$ are training data, and softmax_i is the i^{th} index of a softmax function over the N training data points. The discrepancy between the finite sample optimal denoised x distribution and the large sample limite $q_t(x_0|x)$ gives rise to our membership inference attack; the model “overfits” to the training set, and that overfitting gap is the discrepancy which **SimA** seeks to exploit.

3.2 MEMBERSHIP INFERENCE ATTACK

Given a datapoint $x \in \mathbb{R}^d$ and a $t = 1, \dots, T$, our membership decision criterion \mathcal{A} is defined as

$$\mathcal{A}(x, t) = \|\hat{\varepsilon}_\theta(x, t)\|_p. \quad (11)$$

Using ℓ_p norms other than $p = 2$ provide slightly improved performance. This trend is also found in another MIA method, Kong et al. (2023). While this is somewhat mysterious, the ℓ_4 norm appears in sum-of-squares computations (Barak et al., 2015), spherical harmonics (Stanton & Weinstein, 1981), and blind source separation (Hyvärinen, 1997) with surprising regularity.

Following the Bayes-optimal loss–threshold formulation of membership inference in classification models by Sablayrolles et al. (2019), we recast the decision rule for diffusion models. Specifically, we define

$$\mathcal{M}_{\text{opt}}(x, t) = \mathbb{1}[\mathcal{A}(x, t) \leq \tau], \quad (12)$$

where τ is a threshold calibrated on a held-out validation set and $\mathcal{A}(x, t) = \|\hat{\varepsilon}_\theta(x, t)\|_2$ is the estimated noise at x for diffusion step t . If the predicted noise norm is *smaller* than τ , the sample is inferred to be a *member*; otherwise, it is classified as a *non-member*.

The attack criterion \mathcal{A} can be applied to three cases, which we expand upon below (see appendix A.5 for detailed derivation of the first two cases).

Case 1 — Member of the Training Set: Let $x^{(k)}$ denote one of the training images $\{x^{(i)}\}_{i=1}^N$. As $t \rightarrow 0$, the finite sample denoising mean collapses to the input (full derivation is in case 1 of Appendix A.5):

$$\mu_t^{\text{finite}}(x^{(k)}) \xrightarrow[t \rightarrow 0]{} x^{(k)} \quad (13)$$

270 Consequently, the estimated noise vector shrinks to zero as well, meaning our criterion $\mathcal{A}(x^{(k)}, t \rightarrow 0)$ should be small:
 271
 272

$$273 \quad \hat{\varepsilon}_\theta(x^{(k)}, t) = \frac{x^{(k)} - \sqrt{\alpha_t} x^{(k)}}{\sigma_t} \sim \frac{\sigma_t}{2} x^{(k)} \xrightarrow[t \rightarrow 0]{} 0. \quad (14)$$

274
 275

276 While the actual value at zero is undefined, and values for small $t < 10$ are empirically unstable
 277 for non-member $x^{(k)}$ (leading to a poor estimator, see Appendix A.7 for the detailed reason), we
 278 find that for $t \in [10, 300]$, these values will still be smaller than the case 2. These time frames are
 279 unfortunately noise schedule and data dependent.
 280

281 **Case 2 — Held-out but On-Manifold:** Here x^\dagger is sampled from the same data distribution p_{data}
 282 as the training set, yet was *never* shown during training. We use the notation of local moment
 283 matching (Bengio et al., 2012; Alain & Bengio, 2014) to describe these points. Consider the local
 284 mean defined with respect to that $B_r(x^\dagger)$:

$$285 \quad \mu_t(x^\dagger)_{\text{local}} = m_r(x^\dagger) = \int_{B_r(x^\dagger)} x p_t(x|x^\dagger) dx \quad (15)$$

286
 287

288 where $r \asymp \sigma_t / \sqrt{\alpha_t}$. Theorems 2 and 3 of Alain & Bengio (2014) put together produce a statement
 289 about a term that is equivalent to $\hat{\varepsilon}$ (Eq. 28 of Alain & Bengio (2014)) (Full derivation is in case 2
 290 of Appendix A.5):
 291

$$292 \quad m_r(x^\dagger) - x^\dagger \approx \frac{r^2}{d+2} \left. \frac{\partial \log p_t(x)}{\partial x} \right|_{x^\dagger} = \frac{r^2}{d+2} \left(\frac{x^\dagger - \sqrt{\alpha_t} \mu_t^{\text{finite}}(x^\dagger)}{\sigma_t^2} \right) = -\frac{r^2}{\sigma_t(d+2)} \hat{\varepsilon}_\theta(x^\dagger, t) \quad (16)$$

293
 294
 295

296 We claim that for in-support regions of Gaussian mollified empirical distributions with well sepa-
 297 rated points, these regions will generally not be flat, and thus $\|\hat{\varepsilon}_\theta(x^\dagger, t)\|$ will tend away from zero.
 298 The magnitude to which $\|\hat{\varepsilon}_\theta(x^\dagger, t)\|$ diverges from zero clearly depends on the maximal density of
 299 the dataset, but as high dimensional spaces have exponentially larger volumes than lower dimen-
 300 sional spaces, even for large datasets (e.g. ImageNet in ResNet resolution) we can expect these
 301 voids to be non-trivially large.
 302

303 **Case 3 — Out-of-Distribution (OOD).** Since no training data support is available in out-of-
 304 distribution (OOD) regions, the diffusion model lacks information about these areas. Consequently,
 305 the learned score field in such regions is necessarily an extrapolation, and the theoretical derivations
 306 established under the in-distribution assumption no longer hold. We do not expect either the diffu-
 307 sion model or our attack criterion to perform well in these regions. First, even though the theoretical
 308 finite-sample optimal denoiser is well defined (Eq. 10), a neural network approximation to it will
 309 have very little training data in these regions. Second, a trial datapoint x^* is by-definition not from
 310 p_{data} in these regions.
 311

312 **Monte Carlo variant of SimA:** As we mentioned in Figure 2, the intuitive attack method is the
 313 expected norm of the predicted score for a query image x^* at time t , i.e. $\mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)}[\|\hat{\varepsilon}_\theta(x_t, t)\|]$,
 314 where $x_t = \sqrt{\alpha_t} x_0 + \sigma_t \varepsilon$. In fact, it is not hard to see that SimA is a point estimate of this estimator
 315 at $\varepsilon = 0$ (mode and median of the standard Gaussian). To evaluate this method, one should resort
 316 to Monte Carlo method. Therefore, we name it the **Monte Carlo variant of SimA (SimA-MC)**.
 317 We originally thought that such a high-dimensional Monte Carlo would perform poorly until a very
 318 large number of samples. However, this method turns out to be surprisingly tractable. The Monte
 319 Carlo variant of SimA method provides SoTA performance within 30 samples, often within 10. For
 320 sufficient ($n \in [10, 30]$) samples, it improves all performance metrics on all datasets of our LDM
 321 experiments. The results is summarized in Table 3 and 6. **The table results are still incomplete due
 322 to rebuttal time for computation. We will make it ready if it goes to camera-ready.**
 323

SimA in comparison to other Diffusion MIA models: A standard concept in MIA is the use
 of the training loss function evaluated on the data points in question as the member/non-member

324 Table 1: Performance of benchmark methods on **DDPM** across four datasets. Best results in **bold**
325

326 Method	#Query↓	327 CIFAR-10 (%)			328 CIFAR-100 (%)			329 STL10-U (%)			330 CelebA (%)		
		331 ASR↑	332 AUC↑	333 TPR↑↑	334 ASR↑	335 AUC↑	336 TPR↑↑	337 ASR↑	338 AUC↑	339 TPR↑↑	340 ASR↑	341 AUC↑	342 TPR↑↑
PIA	2	85.06	91.86	29.54	82.31	89.58	28.75	90.83	96.34	66.30	74.27	82.22	18.36
PFAMI _{Met}	20	73.64	80.32	8.16	70.58	77.05	8.44	74.78	83.74	17.00	64.34	70.18	8.13
SecMI _{stat}	12	82.71	89.72	33.44	81.55	88.62	29.95	89.40	95.16	66.20	73.94	81.45	14.55
Loss	1	77.67	84.73	24.14	74.85	82.19	19.56	84.60	91.42	47.67	69.13	75.96	15.15
SimA	1	83.62	90.45	35.86	82.51	89.85	38.84	91.15	96.34	72.75	74.90	82.85	20.86

333 Table 2: Performance of **Guided Diffusion** and **Latent Diffusion** pretrained on ImageNet1K. Best
334 results in **bold**. *Member* set: ImageNet-1K (3000); *Held-out*: ImageNetV2 (3000).
335

336 Method	#Query↓	337 ImageNet, Guided			338 ImageNet, LDM		
		339 ASR↑	340 AUC↑	341 TPR↑↑	342 ASR↑	343 AUC↑	344 TPR↑↑
PIA	2	64.65	66.44	9.93	55.13	56.8	2.13
PFAMI _{Met}	20	67.85	72.22	3.77	50.77	48.76	0.57
SecMI _{stat}	12	77.97	82.55	34.73	56.80	56.85	2.33
Loss	1	57.27	60.38	7.00	50.48	47.9	0.6
SimA	1	85.73	89.77	21.73	55.78	56.14	1.97

345 [†] True Positive Rate at 1 % False Positive Rate.
346347 decision criterion. This is the Loss criterion, and is proposed in Matsumoto et al. (2023). They use
348 a stochastic sample ε to estimate this criterion, adding it to the test point x^* .
349

350
$$\text{Loss} = \|\varepsilon - \hat{\varepsilon}_\theta(\sqrt{\bar{\alpha}_t}x^* + \sqrt{1 - \bar{\alpha}_t}\varepsilon, t)\| \quad (\text{Matsumoto et al., 2023}) \quad (17)$$

351

352 In theory this should be evaluated across a large number of ε measurements, but for each point they
353 choose to use only one. This method is predicated on the idea that for points in the training set, the
354 noise estimation will be better or even overfit in comparison to points not in the training set. **SimA** is
355 the evaluation of this method at $\varepsilon = 0$, which is the mean and mode of the ε distribution. Effectively,
356 Matsumoto et al. (2023) are measuring draws from lower likelihood areas, which may not exhibit
357 the overfit phenomenon as well as $\varepsilon = 0$. Fu et al. (2023) provide this same loss estimate as the
358 selection criterion, but increase the Monte Carlo sampling to 20 and perform it only for a single step,
359 sampling ε_t the stepwise noise instead of sampling ε .
360361 SecMI of Duan et al. (2023) takes this one step further, evaluating not only a score term but also a
362 single step term, which measures sensitivity to single step differences in t :
363

364
$$\text{SecMI} = \|\sqrt{1 - \bar{\alpha}}(\hat{\varepsilon}_\theta(x, t) - \hat{\varepsilon}_\theta(\sqrt{\bar{\alpha}_{t+1}}x^* + \sqrt{1 - \bar{\alpha}_{t+1}}\varepsilon, t+1))\| \quad (18)$$

365

366 SecMI is dependent on sampling ε 's as well; the authors prescribe using $N = 12$ samples.
367368 The closely related PIA method computes this same loss quantity again, but using a $t = 0$ term
369 instead of the ε sample.
370

371
$$\text{PIA} = \|\hat{\varepsilon}_\theta(x, t=0) - \hat{\varepsilon}_\theta(\sqrt{\bar{\alpha}_t}x^* + \sqrt{1 - \bar{\alpha}_t}\hat{\varepsilon}_\theta(x, t=0), t)\| \quad (19)$$

372

373 While in theory diffusion models might not be well defined at $t = 0$, in practice they often can
374 extrapolate as they are trained on nearby t ; in the continuous time case they are trained on the
375 interval $[0, 1]$. Our method has similar components to this method, manipulating t around the test
376 point, but again replacing its “ground-truth” noise with $\varepsilon = 0$ (here replaced by $\hat{\varepsilon}(x_0, t = 0)$).
377378

4 EXPERIMENTS

379380

4.1 SETUP

381382 We evaluated our attack on **15 member–held-out pairs** drawn from **11 datasets** (see Appendix
383 A.1). The experiments were conducted on the following target models:
384

378 Table 3: Attack performance of four baseline methods used to evaluate memorization of **LDMs**.
 379 Apart from SimA(#mc), best results of in **bold**. The gray area denotes the Monte Carlo variant of
 380 SimA. #mc denotes the number of Monte Carlo samples. At #mc=10, SimA advances the state-of-
 381 the-art across all reported metrics. For ImageNet, ImageNet-1K (train split); *Held-out*: ImageNetV2
 382 (validation split).

Method	#Query↓	CIFAR-10 (%)			CelebA (%)			ImageNet (%)		
		AUC↑	ASR↑	TPR@1%FPR↑	AUC↑	ASR↑	TPR@1%FPR↑	AUC↑	ASR↑	TPR@1%FPR↑
Loss	1	73.28	67.48	7.86	68.65	63.47	6.39	67.49	63.16	4.09
SecMI	12	87.42	80.12	19.11	83.09	75.85	10.53	68.21	63.44	3.71
PIA	2	85.73	78.19	15.90	83.36	75.87	9.41	66.09	62.52	2.95
SimA ($\epsilon = 0$)	1	89.10	81.63	19.88	84.66	77.04	11.09	69.62	64.92	3.87
SimA (#mc=10)	10	90.68	82.71	39.86	91.55	83.56	39.76	71.13	65.95	7.44

391 **Denoising Diffusion Probabilistic Model:** For CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
 392 STL10-U (unlabeled split) (Coates et al., 2011), and CelebA (Liu et al., 2015), we trained a vanilla
 393 DDPM (Ho et al., 2020) from scratch on the *member* set. From each training split we subsample n
 394 images and partition them equally into a *member* set and a *held-out* set.

395 **Pre-trained Guided Diffusion:** We examined the publicly released Guided Diffusion model¹
 396 (Dhariwal & Nichol, 2021) trained on ImageNet-1K (Russakovsky et al., 2015). ImageNetV2 (Recht
 397 et al., 2019), collected to mirror the original distribution (same data collection process and same year
 398 range), serves as the *held-out* set.

399 Full statistics including dataset splits, resolutions, etc. are summarized in Table 4 of Appendix A.1.
 400 Additional experiments on LDM models (Stable Diffusion) similar to the experiments in Zhai et al.
 401 (2024) are included in Appendix A.3. These exhibit the same low performance across all methods
 402 as the LDM on ImageNet experiments.

403 **Baselines:** Earlier membership-inference attacks (MIAs) aimed at GANs and VAEs—e.g., (Chen
 404 et al., 2020; Hilprecht et al., 2019; Hu & Pang, 2021)—do not transfer well to diffusion models,
 405 as shown by Duan et al. (2023). Consequently, we restricted our evaluation to attacks specifically
 406 designed for diffusion models. We compared our method with four baselines: SecMI (Duan et al.,
 407 2023), PIA (Kong et al., 2023), PFAMI (Fu et al., 2023), Loss (Matsumoto et al., 2023). We omitted
 408 CLID (Zhai et al., 2024), a text-conditioned MIA, because its text-supervision is incompatible with
 409 the setup used in most of our experiments, and the provided code is not usable.

410 **Evaluation Metrics:** We evaluated attack performance using several metrics: ASR (attack suc-
 411 cess rate, i.e., membership inference accuracy), AUC (Area Under ROC Curve), TPR at 1% FPR
 412 (TPR@1%FPR), and the number of queries per attack (#Query). The TPR@1%FPR is computed
 413 by selecting the threshold τ at which the false positive rate falls just below 0.01, and reporting the
 414 corresponding true positive rate at that operating point. The ASR is defined as the maximum accu-
 415 racy achieved over all thresholds, i.e. $\tau^* = \max_{\tau} \frac{1}{2}(\text{TPR}(\tau) + 1 - \text{FPR}(\tau))$ in the balanced setting.
 416 The AUC is computed as the trapezoidal integral of TPR(τ) against FPR(τ) across all thresholds.

417 **Implementation details:** Some baselines (Duan et al., 2023; Kong et al., 2023; Zhai et al., 2024)
 418 augmented their score- or feature-vector statistic with an auxiliary neural classifier; to focus on the
 419 statistic itself we evaluated only the norm-based versions, which were SecMI_{stat} and PFAMI_{Met}. Of
 420 the two variants (PIA and PIAN) introduced by Kong et al. (2023), we benchmarked only PIA, as
 421 PIAN showed no statistically significant gain in general from their experiments.

423 To minimise re-implementation error, our codebase reused the official releases of SecMI, PIA, and
 424 Guided Diffusion wherever possible. We failed to re-use PFAMI’s code as the provided code was
 425 inoperable. A reimplemented copy is provided in our code base. PFAMI, in several cases, failed to
 426 attack the victim model (ASR $\approx 50\%$). We hypothesize that this degradation arose from the sen-
 427 sitivity of its Monte Carlo estimator to the effective sample size, which varied with dataset charac-
 428 teristics and latent dimensionality, yielding high-variance estimates. For each method, we followed
 429 the hyperparameter suggestion in their original paper. Notably, l_2 -norm, l_4 -norm and l_2 -norm were
 430 used for SecMI, PIA and Loss as suggested. l_4 -norm was used for SimA as it achieved the best
 431 performance in general. For the timestep-dependent attacks (SimA, SecMI, PIA, Loss), we swept

¹<https://github.com/openai/guided-diffusion>

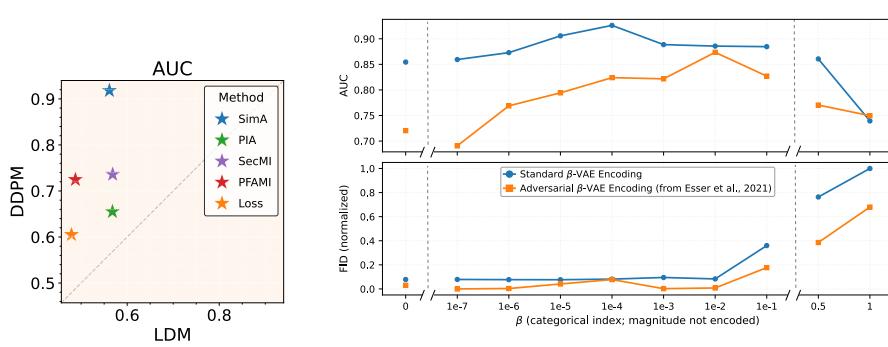


Figure 3: **Left:** The performance comparison of AUC between DDPM and Latent Diffusion Model on the same *member/held-out* splits for ImageNet-1K and ImageNetV2. **Right:** Comparison of AUC of MIA (top) and normalized FID (bottom) across categorical β settings for Standard β -VAE (Burgess et al., 2018) Encoding and Adversarial β -VAE (Esser et al., 2021) on CIFAR-10. The x-axis represents categorical indices of β values, without encoding their numerical magnitude.

$t = 0 : 300$ and reported the best-performing value for each method (PFAMI is timestep-free and therefore needed no sweep). More implementation details can be found in Section 4.2.

4.2 MAIN RESULTS

In Table 1, all DDPM baselines were trained on a member split and evaluated on an held-out split of equal sizes: 25 k/25 k for CIFAR-10 and CIFAR-100, 50 k/50 k for STL10-U, and 30 k/30 k for CelebA, all at a spatial resolution of 32×32 . We adopted the public checkpoints and splits released by SecMI for CIFAR-10/100, and retrained STL10-U and CelebA for 18 k and 60 k steps, respectively. Across all datasets and metrics, SimA achieved the best in almost all the experiments over three metrics (ASR, AUC, TPR@1%FPR) while requiring the fewest queries, underscoring its efficiency and practical advantage.

In Table 2, we further evaluated Guided Diffusion (Dhariwal & Nichol, 2021) and LDM (Rombach et al., 2022) at their public class-conditional ImageNet-1K checkpoints (256×256). We find that for Guided Diffusion SimA has the highest ASR and AUC by a wide margin, while SecMI has a very high TPR@1%FPR. For the Latent Diffusion *on the same dataset and holdout*, SecMI technically has the best performance, but all methods are extremely bad, achieving less than 57 AUC and 2.3% TPR@1%FPR.

DDPM vs. Latent Diffusion Model: In the original LDM (Rombach et al., 2022), the encoder is a VQ-VAE (Van Den Oord et al., 2017); its discrete code-book forces quantization on patches. A continuous VAE (Kingma et al., 2013) is used in Stable Diffusion and passes richer detail, but still compresses pixel-level information. In both cases, embeddings may express high-level coarse-grained information, and pathological memorization of pixel patterns might be reduced. To investigate this, recap from experiments on Table 2, we used the same *member* and *held-out* sets on Guided Diffusion Model and LDM, and All other variables (seed, code, versions) are held constant.

As shown in Fig. 3 (Left) and Table 2, performance drops markedly from DDPM to LDM: SimA, PIA, and SecMI_{stat} fall to $\sim 55\%$ in ASR, 56% in AUC, and 2% in TPR@1%FPR, while PFAMI_{Met} and Loss perform no better than random guessing.

To further investigate why this particular LDM checkpoint exhibits reduced vulnerability to MIA, we conduct a controlled study on CIFAR-10. We train a series of VAEs with varying β values in the β -VAE framework (Burgess et al., 2018). The LDMs are subsequently trained based on these frozen VAE encoders. We perform attack on latent diffusion model. As shown in Fig. 3 (Right-Top), MIA performance is sensitive to the KL-divergence weight β . Introducing a small KL regularization on VAE training increases AUC, but stronger constraints lead to a monotonic decline, consistent with the expectation that a tighter information bottleneck reduces membership leakage during encoding. Importantly, however, the FID performance is relatively unaffected by the β parameter until much

486 larger values, indicating that it is possible to preserve generative quality (at least up to the FID
 487 metric) while also increasing robustness to MIA.

488 Interestingly, incorporating a discriminator between the input image and reconstructed image during
 489 VAE training, an approach originally developed for VQ-GAN (Esser et al., 2021), also reduces MIA
 490 effectiveness in LDMs while improving sample fidelity. As illustrated in Fig. 3 (Right), this minor
 491 architectural modification yields models that are both more robust to membership inference and
 492 capable of generating images with lower FID relative to the data distribution. Full training details
 493 are provided in Section A.6 of the Appendix.

494 This series of experiments, as well as the disparate results on ImageNet-1K between image-domain
 495 diffusion and a latent domain diffusion model indicate a gap in the model inversion literature. Pre-
 496 viously models have focused on the Diffusion process itself; our results in Table 2 indicate that
 497 Diffusion processes on their own can already be solved for MIA to a high degree of fidelity with
 498 a very simple estimator. On the otherhand, the LDM class of models have MIA performance only
 499 marginally above at-random. We believe that this should be the focus of model inversion efforts
 500 moving forward.

502 5 CONCLUSION

503 In the present work we have described a simple membership inference estimator, giving theoretical
 504 justification for its performance, and for the performance of similar estimators in the literature which
 505 previously lacked a unified theoretical backing. We demonstrate that this estimator has competitive
 506 performance on many baselines, including state-of-the-art performance on ImageNet-1K image-
 507 domain inversion. Our experiments also elucidate a hole in the current literature concerning latent-
 508 domain diffusion methods, where all tested membership inference methods currently fail.

511 REFERENCES

513 Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating
 514 distribution. *The Journal of Machine Learning Research*, 15(1):3563–3593, 2014.

516 Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and tensor decomposition
 517 via the sum-of-squares method. In *Proceedings of the forty-seventh annual ACM symposium on
 518 Theory of computing*, pp. 143–151, 2015.

519 Yoshua Bengio, Guillaume Alain, and Salah Rifai. Implicit density estimation by local moment
 520 matching to sample from auto-encoders. *arXiv preprint arXiv:1207.0057*, 2012.

522 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
 523 jardins, and Alexander Lerchner. Understanding disentangling in β -vae. *arXiv preprint
 524 arXiv:1804.03599*, 2018.

525 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
 526 Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *32nd
 527 USENIX security symposium (USENIX Security 23)*, pp. 5253–5270, 2023.

529 Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. Gan-leaks: A taxonomy of membership
 530 inference attacks against generative models. In *Proceedings of the 2020 ACM SIGSAC conference
 531 on computer and communications security*, pp. 343–362, 2020.

532 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
 533 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-
 534 gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

536 Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial
 537 network. *IEEE transactions on neural networks and learning systems*, 30(7):1967–1974, 2018.

538 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
 539 in neural information processing systems*, 34:8780–8794, 2021.

540 Jinhao Duan, Fei Kong, Shiqi Wang, Xiaoshuang Shi, and Kaidi Xu. Are diffusion models vuln-
 541 erable to membership inference attacks? In *International Conference on Machine Learning*, pp.
 542 8717–8730. PMLR, 2023.

543

544 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 545 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 546 *tion*, pp. 12873–12883, 2021.

547 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. A proba-
 548 bility fluctuation based membership inference attack for diffusion models. *arXiv preprint*
 549 *arXiv:2308.12143*, 2023.

550

551 Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization
 552 in diffusion models. *arXiv preprint arXiv:2310.02664*, 2023.

553

554 Benjamin Hilprecht, Martin Härterich, and Daniel Bernau. Monte carlo and reconstruction member-
 555 ship inference attacks against generative models. *Proceedings on Privacy Enhancing Technolo-*
 556 *gies*, 2019.

557

558 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 559 *neural information processing systems*, 33:6840–6851, 2020.

560

561 Hailong Hu and Jun Pang. Membership inference attacks against gans by leveraging over-
 562 representation regions. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and*
 563 *Communications Security*, pp. 2387–2389, 2021.

564

565 Aapo Hyvärinen. A family of fixed-point algorithms for independent component analysis. In *1997*
 566 *IEEE International Conference on Acoustics, Speech, and Signal Processing*, volume 5, pp. 3917–
 567 3920. IEEE, 1997.

568

569 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
 570 conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and*
 571 *pattern recognition*, pp. 1125–1134, 2017.

572

573 Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models.
 574 *arXiv preprint arXiv:2412.20292*, 2024.

575

576 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the de-
 577 sign space of diffusion-based generative models. In S. Koyejo, S. Mohamed,
 578 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-*
 579 *mation Processing Systems*, volume 35, pp. 26565–26577. Curran Associates, Inc.,
 580 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf.

581

582 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

583

584 Fei Kong, Jinhao Duan, RuiPeng Ma, Hengtao Shen, Xiaofeng Zhu, Xiaoshuang Shi, and Kaidi Xu.
 585 An efficient membership inference attack for the diffusion model by proximal initialization. *arXiv*
 586 *preprint arXiv:2305.18355*, 2023.

587

588 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 589 2009.

590

591 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 592 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 593 *conference on computer vision*, pp. 740–755. Springer, 2014.

594

595 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 596 In *Proceedings of the IEEE international conference on computer vision*, pp. 3730–3738, 2015.

597

598 Artem Lukoianov, Chenyang Yuan, Justin Solomon, and Vincent Sitzmann. Locality in image dif-
 599 fusion models emerges from data statistics. *arXiv preprint arXiv:2509.09672*, 2025.

594 Calvin Luo. Understanding diffusion models: A unified perspective. *arXiv preprint*
 595 *arXiv:2208.11970*, 2022.

596

597 Tomoya Matsumoto, Takayuki Miura, and Naoto Yanai. Membership inference attacks against
 598 diffusion models. In *2023 IEEE Security and Privacy Workshops (SPW)*, pp. 77–83. IEEE, 2023.

599

600 Elizbar A Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1):
 601 141–142, 1964.

602

603 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 604 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

605

606 Yan Pang, Tianhao Wang, Xuhui Kang, Mengdi Huai, and Yang Zhang. White-box membership
 607 inference attacks against diffusion models. *arXiv preprint arXiv:2308.06405*, 2023.

608

609 Jakiw Pidstrigach. Score-based generative models detect manifolds. *Advances in Neural Information
 610 Processing Systems*, 35:35852–35865, 2022.

611

612 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 613 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 614 2019.

615

616 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 617 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 618 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

619

620 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 621 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 622 recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

623

624 Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou. White-
 625 box vs black-box: Bayes optimal strategies for membership inference. In *International Confer-
 626 ence on Machine Learning*, pp. 5558–5567. PMLR, 2019.

627

628 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 629 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 630 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 631 formation processing systems*, 35:25278–25294, 2022.

632

633 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 634 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 635 pp. 3–18. IEEE, 2017.

636

637 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
 638 art or digital forgery? investigating data replication in diffusion models. In *Proceedings of the
 639 IEEE/CVF conference on computer vision and pattern recognition*, pp. 6048–6058, 2023a.

640

641 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
 642 standing and mitigating copying in diffusion models. *Advances in Neural Information Processing
 643 Systems*, 36:47783–47803, 2023b.

644

645 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 646 *Advances in neural information processing systems*, 32, 2019.

647

648 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 649 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 650 arXiv:2011.13456*, 2020.

651

652 Robert J Stanton and Alan Weinstein. On the l4 norm of spherical harmonics. In *Mathematical Pro-
 653 ceedings of the Cambridge Philosophical Society*, volume 89, pp. 343–358. Cambridge University
 654 Press, 1981.

655

656 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 657 neural information processing systems*, 30, 2017.

648 Geoffrey S Watson. Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series*
649 *A*, pp. 359–372, 1964.
650

651 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
652 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
653 *of the association for computational linguistics*, 2:67–78, 2014.

654 Shengfang Zhai, Huanran Chen, Yinpeng Dong, Jiajun Li, Qingni Shen, Yansong Gao, Hang Su,
655 and Yang Liu. Membership inference on text-to-image diffusion models via conditional likelihood
656 discrepancy. *Advances in Neural Information Processing Systems*, 37:74122–74146, 2024.

657

658 Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipu-
659 lation on the natural image manifold. In *European conference on computer vision*, pp. 597–613.
660 Springer, 2016.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX
703704
705 A.1 DATASETS AND SPLITS
706707 Datasets and splits used for our experiments are summarized in Table 4.
708709
710 A.2 PERFORMANCE RANK ACROSS 15 EXPERIMENTS
711712
713 A rank distribution over 5 benchmark methods (Duan et al., 2023; Kong et al., 2023; Matsumoto
714 et al., 2023; Fu et al., 2023) across 15 experiments is provided in Figure 5.
715716
717 A.3 ADDITIONAL EXPERIMENTS ON CLASS CONDITIONAL IMAGENET, AND
718 STABLE DIFFUSION PRE-TRAINED ON LAION-AESTHETICS V2 5+.
719720 For the unconditional case of Guided Diffusion, please see Table 5.
721722
723 **Pre-trained Latent Diffusion Models:** For Pokémon², COCO2017-Val (Lin et al., 2014),
724 and Flickr30k (Young et al., 2014), we fine-tuned Stable Diffusion v1-4³ on a randomly
725 selected subset of each training split, reserving an equally sized subset as the held-out
726 set. We also studied the original Stable Diffusion v1-5⁴ checkpoint, pre-trained on
727 LAION-Aesthetics v2 5+ (Schuhmann et al., 2022) (*member* set). Here we sampled 2500 im-
728 ages from LAION-2B-MultiTranslated⁵ and COCO2017-Val as non-members, respectively. No-
729 tably, the images from LAION-2B-MultiTranslated are filtered with attributes *pwatmark* < 0.5;
730 *prediction(aesthetic_score)* > 5.0 and *similarity* > 0.3. *pwatmark* and *prediction* are to mini-
731 mize the domain shift between the member set and the held-out set. And *similarity* is to ensure the
732 alignment of the text-image pairs.733 Stable Diffusion v1-4 was fine-tuned for **15k**, **50k**, and **200k** steps on the member splits of Pokémon,
734 COCO-2017-Val, and Flickr30k, respectively, with a fixed learning rate of 1×10^{-5} (AdamW). None
735 of these datasets are in the original pre-training corpus. Additionally, we adopted the default data
736 augmentation (Random-Crop and Random-Flip) while training.737 The results are summarized on Table 7 and 8, which followed the experimental protocol of Zhai
738 et al. (2024) and evaluated membership-inference attacks on Stable Diffusion under two scenarios:739 *Fine-tuning.* A Stable Diffusion v1-4 checkpoint was fine-tuned on the designated *member* split of
740 each target dataset; attacks were launched on paired *member/held-out* splits.741 *Pre-training.* A pre-trained Stable Diffusion v1-5 model was attacked directly, without additional
742 fine-tuning. The *member* set was a subset of LAION-Aesthetics v2 5+ that was used during pre-
743 training, while the *held-out* set was an equally-sized split drawn from the target dataset.744 For every dataset we created five random *member/held-out* partitions. All experiments were run
745 in both text-conditional and unconditional modes, except on the Pokémon dataset where only the
746 conditional mode was considered because the model over-fit rapidly. The unconditional baseline was
747 obtained by passing an empty string to the CLIP text encoder. For datasets evaluated in both modes,
748 the absolute gain of the conditional attack over the unconditional one was reported in blue. Across
749 all datasets and metrics, conditioning on text consistently strengthened the attack, indicating that
750 text-conditional generation memorised training data more severely than unconditional generation.
751752
753 ²<https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions>754 ³<https://huggingface.co/CompVis/stable-diffusion-v1-4>755 ⁴<https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5>⁵<https://huggingface.co/datasets/laion/laion2B-multi-joined-translated-to-en>

Table 4: Datasets and splits used for our experiments.

Model	Member	Held-out	Pre-trained	Fine-tuned	Splits	Resolution	Cond.
DDPM	CIFAR-10	CIFAR-10	No	–	25k/25k	32	–
	CIFAR-100	CIFAR-100	No	–	25k/25k	32	–
	STL10-U	STL10-U	No	–	50k/50k	32	–
	CelebA	CelebA	No	–	30k/30k	32	–
Guided Diffusion	ImageNet-1k	ImageNetV2	Yes	No	3k/3k	256	class
Stable Diffusion V1-4	Pokémon	Pokémon	Yes	Yes	416/417	512	text
	COCO2017-Val	COCO2017-Val	Yes	Yes	2.5k/2.5k	512	text
	Flickr30k	Flickr30k	Yes	Yes	10k/10k	512	text
Stable Diffusion V1-5	LAION-Aesthetics v2 5+	LAION-2B-MultiTranslated	Yes	No	2.5k/2.5k	512	text
	LAION-Aesthetics v2 5+	COCO2017-Val	Yes	No	2.5k/2.5k	512	text

A.4 FROM MARGINAL DENSITY TO EXPLICIT GAUSSIAN CONVOLUTION

Let $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ and $\sigma_t^2 = 1 - \bar{\alpha}_t$. The VP forward marginal is

$$p_t(x) = \int_{\mathbb{R}^d} p_{\text{data}}(x_0) \mathcal{N}(x \mid \sqrt{\bar{\alpha}_t} x_0, \sigma_t^2 I) dx_0. \quad (20)$$

Set $u = \sqrt{\bar{\alpha}_t} x_0$ so that $x_0 = u / \sqrt{\bar{\alpha}_t}$ and $dx_0 = \bar{\alpha}_t^{-d/2} du$. Then

$$p_t(x) = \bar{\alpha}_t^{-d/2} \int_{\mathbb{R}^d} p_{\text{data}}\left(\frac{u}{\sqrt{\bar{\alpha}_t}}\right) \mathcal{N}(x \mid u, \sigma_t^2 I) du. \quad (21)$$

Introduce $\tilde{x} := x / \sqrt{\bar{\alpha}_t}$ and $\tilde{u} := u / \sqrt{\bar{\alpha}_t}$, so $u = \sqrt{\bar{\alpha}_t} \tilde{u}$ and $du = \bar{\alpha}_t^{d/2} d\tilde{u}$. Substituting into equation 21 cancels the Jacobians and yields

$$p_t(x) = \int_{\mathbb{R}^d} p_{\text{data}}(\tilde{u}) \mathcal{N}(\sqrt{\bar{\alpha}_t} (\tilde{x} - \tilde{u}) \mid 0, \sigma_t^2 I) d\tilde{u}. \quad (22)$$

Use the Gaussian scaling identity

$$\mathcal{N}(az \mid 0, \sigma^2 I) = a^{-d} \mathcal{N}\left(z \mid 0, \frac{\sigma^2}{a^2} I\right) \quad (\text{for } a > 0),$$

with $a = \sqrt{\bar{\alpha}_t}$ and $z = \tilde{x} - \tilde{u}$. Then equation 22 becomes

$$p_t(x) = \bar{\alpha}_t^{-d/2} \int_{\mathbb{R}^d} p_{\text{data}}(\tilde{u}) \mathcal{N}\left(\tilde{x} - \tilde{u} \mid 0, \frac{\sigma_t^2}{\bar{\alpha}_t} I\right) d\tilde{u}. \quad (23)$$

The integral in equation 23 is a (Euclidean) convolution evaluated at \tilde{x} :

$$(p_{\text{data}} * \mathcal{N}(0, \frac{\sigma_t^2}{\bar{\alpha}_t} I))(\tilde{x}) = \int_{\mathbb{R}^d} p_{\text{data}}(\tilde{u}) \mathcal{N}\left(\tilde{x} - \tilde{u} \mid 0, \frac{\sigma_t^2}{\bar{\alpha}_t} I\right) d\tilde{u}.$$

Therefore,

$$p_t(x) = \bar{\alpha}_t^{-d/2} \left(p_{\text{data}} * \mathcal{N}(0, \frac{\sigma_t^2}{\bar{\alpha}_t} I) \right) \left(\frac{x}{\sqrt{\bar{\alpha}_t}} \right) \quad (24)$$

with $\sigma_t^2 / \bar{\alpha}_t = \bar{\alpha}_t^{-1} - 1$.

A.5 MIA IN THREE CASES

When the *data prior* is the empirical distribution constructed from the training set $\{x^{(i)}\}_{i=1}^N$. We have $p_{\text{train}}(x_0) = \frac{1}{N} \sum_i \delta(x_0 - x^{(i)})$. For any test image x , the UNet predicts

$$\hat{\varepsilon}_\theta(x, t) \approx \frac{x - \sqrt{\bar{\alpha}_t} \mu_t(x)}{\sigma_t}, \quad (25)$$

Table 5: Performance of **Guided Diffusion** pretrained on ImageNet1K with class conditional changes. Best results in **bold**, second-best underlined. *Member* set: ImageNet-1K (3000); *Held-out*: ImageNetV2 (3000). The performance difference of the class-conditional attack from the unconditional one is in **blue**. Format: *uncond.%* ($\Delta = \text{cond.} - \text{uncond.}$).

Method	#Query↓	ASR↑	AUC↑	TPR@1%FPR↑
PIA	2	64.65(-1.98)	66.44(-0.93)	9.93(-3.96)
PFAMI _{Met}	20	67.85(<u>+0.22</u>)	72.22(<u>+0.25</u>)	3.77(<u>+0.50</u>)
SecMI _{stat}	12	<u>77.97</u> (-9.09)	<u>82.55</u> (-8.94)	<u>34.73</u> (-19.53)
Loss	1	57.27(<u>+0.10</u>)	60.38(<u>+0.15</u>)	7.00(<u>+0.07</u>)
SimA	1	85.73 (<u>+2.57</u>)	89.77 (<u>+2.03</u>)	<u>21.73</u> (<u>+6.87</u>)

Table 6: **Updated table**, we leave the old table for rebuttal use. See our rebuttal for additional explanation. This table is still incomplete; we will make it ready if it goes to camera-ready. Attack performance of four baseline methods used to evaluate memorization of **Stable Diffusion**. Apart from SimA(#mc), best results in **bold**. The gray area is the Monte Carlo variant of SimA. #mc denotes the number of Monte Carlo samples. Notably, at #mc=10 and 30, SimA pushes the state-of-the-art forward across all reported metrics.

Method	#Query↓	Pokémon (%)			MS-COCO (%)			Flickr (%)		
		AUC↑	ASR↑	TPR@1%FPR↑	AUC↑	ASR↑	TPR@1%FPR↑	AUC↑	ASR↑	TPR@1%FPR↑
Loss	1	92.03	85.47	40.77	83.26	75.80	13.48	63.13	59.74	2.35
SecMI	12	88.12	81.04	29.02	91.35	84.00	39.16	71.81	66.54	5.29
PIA	2	94.93	90.52	32.85	92.51	85.72	24.76	68.88	64.61	2.67
SimA ($\varepsilon = 0$)	1	93.50	87.87	20.38	93.71	87.34	29.80	70.04	65.96	2.59
SimA (#mc=10)	10	96.75	91.47	63.79	93.21	85.76	45.36	70.26	65.65	4.47
SimA (#mc=30)	30	97.01	92.31	70.50	94.24	86.66	52.48	72.23	66.85	6.33

We are interested in the quantity

$$\begin{aligned} \mu_t^{\text{finite}}(x) &= \mathbb{E}_{q_t(x_0|x)}[x_0] = \sum_{i=1}^N w_i(x, t) x^{(i)}, \\ w_i(x, t) &= \frac{\exp[-\|x - \sqrt{\bar{\alpha}_t} x^{(i)}\|^2 / (2\sigma_t^2)]}{\sum_{j=1}^N \exp[-\|x - \sqrt{\bar{\alpha}_t} x^{(j)}\|^2 / (2\sigma_t^2)]}. \end{aligned} \quad (26)$$

Equations equation 26 express the posterior mean as a weighted average of the training samples, where each kernel weight $w_i(x, t)$ depends on the Euclidean distance between the noisy query x and the down-scaled datum $\sqrt{\bar{\alpha}_t} x^{(i)}$.

CASE 1 — TRAINING MEMBER

Pick $x = x^{(k)} \in \{x^{(i)}\}$. Set $x = x^{(k)}$ in equation 26. Define the squared distances

$$d_{ik}(t) := \|x^{(k)} - \sqrt{\bar{\alpha}_t} x^{(i)}\|^2, \quad \Delta_{ik}(t) := \frac{d_{ik}(t) - d_{kk}(t)}{2\sigma_t^2}. \quad (27)$$

Using equation 26 and equation 27 we obtain

$$w_k(x^{(k)}, t) = \left[1 + \sum_{i \neq k} \exp(-\Delta_{ik}(t)) \right]^{-1}, \quad (28)$$

$$w_{i \neq k}(x^{(k)}, t) = \exp(-\Delta_{ik}(t)) w_k(x^{(k)}, t). \quad (29)$$

SMALL-NOISE LIMIT $t \rightarrow 0$. Because $\sigma_t^2 = 1 - \bar{\alpha}_t \rightarrow 0$ and

$$1 - \sqrt{\bar{\alpha}_t} = O(\sigma_t^2), \quad d_{kk}(t) = (1 - \sqrt{\bar{\alpha}_t})^2 \|x^{(k)}\|^2 = O(\sigma_t^4),$$

Table 7: Performance of **Stable Diffusion** that is pretrianed on LAION-Aesthetics v2 5+. COCO2017-Val and Flickr30k here follows the fine-tuning setting. LAION-2B-MultiTranslated is the pre-training setting. The performance difference of the text-conditional attack from the unconditional one is in blue. Format: *uncond.%* ($\Delta = \text{cond.} - \text{uncond.}$).

Method	#Query \downarrow	COCO2017-Val (%)			Flickr30k (%)			LAION-2B-MultiTranslated (%)		
		ASR \uparrow	AUC \uparrow	TPR $^{\dagger}\uparrow$	ASR \uparrow	AUC \uparrow	TPR $^{\dagger}\uparrow$	ASR \uparrow	AUC \uparrow	TPR $^{\dagger}\uparrow$
PIA	2	62.4(+0.7)	65.8(+1.2)	2.88(+0.32)	59.3(+0.6)	61.8(+0.8)	1.64(+0.17)	60.6(-0.0)	63.8(+0.0)	4.12(+0.08)
PFAMI _{Met}	20	61.9(+0.7)	65.4(+0.9)	2.28(+0.20)	59.2(+0.4)	61.6(+0.6)	1.75(+0.11)	50.0(+0.0)	40.8(+0.2)	0.80(+0.08)
SecMI _{stat}	12	64.4(+0.7)	69.1(+1.0)	4.32(+0.60)	61.1(+0.5)	64.6(+0.9)	2.85(+0.57)	56.7(+0.1)	58.6(+0.0)	2.92(-0.16)
Loss	1	58.5(+0.6)	61.7(+1.0)	<u>3.44(+0.12)</u>	56.1(+0.4)	58.3(+0.6)	1.83(+0.08)	50.1(+0.0)	37.0(+0.0)	0.80(+0.00)
SimA	1	<u>63.1(+0.9)</u>	<u>66.5(+1.3)</u>	3.04(+0.28)	<u>60.1(+0.6)</u>	62.5(+0.9)	1.71(+0.17)	<u>60.3(-0.0)</u>	<u>63.3(-0.0)</u>	3.20(-0.08)

\dagger True Positive Rate at 1 % False Positive Rate

Table 8: Performance of **Stable Diffusion** pre-trained on LAION-Aesthetics v2 5+. Pokémon uses SD v1-4 (fine-tuned) and reports *conditional only* (no parentheses). COCO2017-Val uses SD v1-5 (held-out) and reports in the format *uncond.%* ($\Delta = \text{cond.} - \text{uncond.}$). Best in **bold**, second-best underlined.

Method	#Query \downarrow	Pokémon (fine-tune) (%)			COCO2017-Val (pre-training) (%)		
		ASR \uparrow	AUC \uparrow	TPR $^{\dagger}\uparrow$	ASR \uparrow	AUC \uparrow	TPR $^{\dagger}\uparrow$
PIA	2	89.9	94.6	<u>30.9</u>	53.7(-0.06)	52.3(-0.14)	2.1(-0.12)
PFAMI _{Met}	20	50.0	19.0	0.0	52.0(+0.08)	48.7(+0.12)	0.4(+0.00)
SecMI _{stat}	12	81.4	87.8	34.1	55.7(-0.06)	56.0(-0.13)	1.2(+0.08)
Loss	1	80.2	87.9	24.7	<u>55.4(+0.02)</u>	49.3(-0.01)	0.4(+0.00)
SimA	1	<u>87.6</u>	<u>93.0</u>	21.8	54.5(-0.04)	<u>53.7(-0.07)</u>	<u>1.5(+0.12)</u>

\dagger True Positive Rate at 1 % False Positive Rate.

we have, for $i \neq k$,

$$\Delta_{ik}(t) \sim \frac{\|x^{(k)} - x^{(i)}\|^2}{2\sigma_t^2} \xrightarrow[t \rightarrow 0]{} +\infty, \quad \Delta_{kk}(t) = 0.$$

Hence

$$w_k(x^{(k)}, t) \xrightarrow[t \rightarrow 0]{} 1, \quad w_{i \neq k}(x^{(k)}, t) \xrightarrow[t \rightarrow 0]{} 0. \quad (30)$$

This implies

$$\boxed{\mu_t^{\text{finite}}(x^{(k)}) \xrightarrow[t \rightarrow 0]{} x^{(k)}}. \quad (31)$$

Moreover, substituting into the estimator equation 25,

$$\|\hat{\varepsilon}_\theta(x^{(k)}, t)\|_2 \approx \left\| \frac{x^{(k)} - \sqrt{\bar{\alpha}_t} x^{(k)}}{\sigma_t} \right\|_2 = \frac{|1 - \sqrt{\bar{\alpha}_t}|}{\sigma_t} \|x^{(k)}\|_2. \quad (32)$$

To see the asymptotic form using Taylor expansion around $\sigma_t^2 = 0$, note that

$$\sqrt{\bar{\alpha}_t} = \sqrt{1 - \sigma_t^2} = 1 - \frac{1}{2}\sigma_t^2 - \frac{1}{8}\sigma_t^4 + O(\sigma_t^6),$$

so that

$$1 - \sqrt{\bar{\alpha}_t} = \frac{1}{2}\sigma_t^2 + O(\sigma_t^4).$$

Therefore

$$\frac{1 - \sqrt{\bar{\alpha}_t}}{\sigma_t} = \frac{1}{2}\sigma_t + O(\sigma_t^3),$$

and hence

$$\|\hat{\varepsilon}_\theta(x^{(k)}, t)\|_2 \sim \frac{\sigma_t}{2} \|x^{(k)}\|_2 \xrightarrow[t \rightarrow 0]{} 0. \quad (33)$$

918 CASE 2 — HELD-OUT BUT ON-MANIFOLD
919

920 Consider a test data point x^\dagger which is not in our original dataset (i.e., $x^\dagger \notin \{x^{(i)}\}_{i=1}^N$), but sampled
921 from the same generating distribution p_{data} . Under the diffusion process assumptions, the local
922 weighted mean $\mu_t(x)$ in equation 26 has the same algebraic form as a kernel regression (Nadaraya,
923 1964; Watson, 1964), using training dataset $\{x^{(i)}\}_{i=1}^N$ with (effective) Gaussian bandwidth

$$924 \quad h(t) := \frac{\sigma_t}{\sqrt{\alpha_t}}. \quad (34)$$

925 The weights $w_i(x, t)$ in equation 26 are proportional to $\exp(-\|x^\dagger - \sqrt{\alpha_t}x^{(i)}\|_2^2/(2h(t)^2))$, so
926 $\mu_t^{\text{finite}}(x^\dagger)$ coincides with a Gaussian-kernel local average of “nearby” training points, where
927 “nearby” is on the order of bandwidth $h(t)$. The kernel-weighted local mean with radius r around
928 x^\dagger is defined as

$$929 \quad m_r(x^\dagger) := \frac{\int_{B_r(x^\dagger)} u K_r(u - x^\dagger) p(u) du}{\int_{B_r(x^\dagger)} K_r(u - x^\dagger) p(u) du}, \quad (35)$$

$$930 \quad K_r(z) \propto \exp\left(-\frac{\|z\|^2}{2r^2}\right), \quad (36)$$

931 where $r \asymp h(t)$ and $p(u)$ is the empirical distribution. This is a normalization of the local mean
932 defined in Eq. 15 of this paper, and Appendix 6.4.1 of Alain & Bengio (2014). By local moment
933 matching (Bengio et al., 2012; Alain & Bengio, 2014), combining Theorems 2 and 3 of Alain &
934 Bengio (2014) (see their Eq. (28)) yields the second-order expansion

$$935 \quad m_r(x^\dagger) - x^\dagger = \frac{r^2}{d+2} \frac{\partial \log p_t(x)}{\partial x} \Big|_{x^\dagger} + o(r^3), \quad (37)$$

936 where p_t is the Gaussian-mollified density at scale σ_t . Using equation 9, we obtain the proportionality
937 stated in the main text:

$$938 \quad m_r(x^\dagger) - x^\dagger \approx \frac{r^2}{d+2} \frac{\partial \log p_t(x)}{\partial x} \Big|_{x^\dagger} = \frac{r^2}{d+2} \left(\frac{x^\dagger - \sqrt{\alpha_t} \mu_t^{\text{finite}}(x^\dagger)}{\sigma_t^2} \right) = -\frac{r^2}{\sigma_t(d+2)} \hat{\varepsilon}_\theta(x^\dagger, t) \quad (38)$$

939 Notably, this equation should *not* be correct if x^\dagger is in a low density region of the support of p_{data} ,
940 but these points should generally be rarely sampled by definition. Moreover, the $\hat{\varepsilon}$ estimate of the
941 score will also be extrapolating at those points.

942 **Implication for the attack statistic.** In in-support regions of the empirical distribution, the local
943 geometry is generally *not* flat, so $\|m_r(x^\dagger) - x^\dagger\| > 0$ for $r > 0$ sufficiently small. By equation 38,
944 this implies $\|\hat{\varepsilon}_\theta(x^\dagger, t)\|$ is bounded away from zero (at fixed t), hence $\mathcal{A}(x^\dagger, t) = \|\hat{\varepsilon}_\theta(x^\dagger, t)\|_p$
945 exceeds the member case (Case 1). This matches the intuition summarized in the main text: on-
946 manifold, held-out queries denoise less precisely than memorized training points, yielding a moderately
947 larger attack statistic without the divergence seen off-manifold.

948 CASE 3 — OUT-OF-DISTRIBUTION (FAR OFF-MANIFOLD)

949 Since no training data support is available in out-of-distribution (OOD) regions, the diffusion model
950 lacks information about these areas. Consequently, the learned score field in such regions is necessarily
951 an extrapolation, and the theoretical derivations established under the in-distribution assumption
952 no longer hold.

953 A.6 TRAINING DETAILS OF ADVERSARIAL β -VAE ON CIFAR-10

954 We train a series of β -VAE on the CIFAR-10 dataset using AdamW optimization with a learning
955 rate of 2×10^{-4} , and investigate the relationship between membership information leakage
956 and latent space regularization. The model was trained with a batch size of 128 and $\beta =$

972 $\{0.0, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 0.5, 1.0\}$ to balance reconstruction fidelity with la-
 973 tent space regularization.

974 For comparison, we considered two variants: (i) a standard β -VAE trained solely with pixel-level
 975 reconstruction and KL divergence losses, and (ii) a β -VAE augmented with an adversarial discrim-
 976 inator (adversarial β -VAE) applied between input and reconstructed images. In the latter case, a
 977 hinge-loss-based PatchGAN (Isola et al., 2017) discriminator was introduced partway through train-
 978 ing, encouraging the reconstructions to be not only faithful but also visually sharper. Across both
 979 setups, training was conducted for sufficient epochs to ensure convergence (120 epochs). The latter
 980 LDMs are trained based on these frozen VAE encoders. For phase two LDM training, we deliber-
 981 ately train 2048 epochs to ensure the membership information leakage. For training split, we reuse
 982 the member split from previous experiments as shown in Table 4. We sample 1000 images from the
 983 well-trained LDM checkpoints and calculate the FID to training split.

984 Specifically, in the adversarial setup, optimization proceeds in two steps per iteration. First, we up-
 985 date the VAE with the usual reconstruction+KL objective and, after a warm-up, add a non-saturating
 986 adversarial term (hinge form; equivalent to $-\mathbb{E}[D(\hat{x})]$) gated to turn on only after a chosen global-
 987 step threshold (we set this to 2,000 steps in our runs). The adversarial term is weighted adaptively
 988 using a VQGAN-style (Esser et al., 2021) gradient-norm ratio on the decoder’s last layer and then
 989 scaled by a constant factor of 0.8; before the start step, its weight is zero by design. Second, we
 990 update the discriminator with a hinge loss on real images x versus reconstructions \hat{x} recomputed
 991 in a no-grad branch (to avoid generator gradient leakage), using AdamW with the same learning
 992 rate/betas/weight-decay as the VAE optimizer.

993

994 A.7 WHY EXTREMELY EARLY AND LATE t ARE PROBLEMATIC:

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Intuitively, $\hat{\varepsilon}_\theta(x, t)|_{t=0}$ is expected to achieve the best performance. Because the noise added to a member at $t = 0$ is expected to be zero (as shown in **case 1**) and non-zero for a non-member. However, in region of low data density, score-matching lacks sufficient evidence to *reliably* estimate the score function (Song & Ermon, 2019). Song & Ermon (2019) argues that training minimizes the expected value of score estimates (here is $\mathbb{E}_{p_{t=0}}[\|\hat{\varepsilon}_\theta(x_{t=0}, t) - \varepsilon\|^2]$), which provides *inaccurate scores* where $p_{t=0}(x)$ is infinitesimal. To be specific, for the input $\{x \in \mathcal{R} \mid \{x_i\}_{i=1}^N \cap \mathcal{R} = \emptyset, \mathcal{R} \subset \mathbb{R}^d\}, \nabla_x p_{t=0}(x)$ extrapolates erratically. Consequently, for **very early timesteps** ($\sigma_t \ll 1$) the learned field outside the tightly supported member set can plateau or even shrink, nullifying the privacy signal. Increasing t corresponds to *extra Gaussian convolution*, expanding the effective support and regularising the score. Figure 6 plots the average normalised estimator magnitude $\|\hat{\varepsilon}_\theta(x, t)\|$ for $t \in [0, 300]$ on the *member* and *held-out* splits across datasets. Transient fluctuations are confined to the very earliest timesteps ($t \approx 0$), and the maximal gap between the curves typically occurs at early—but not initial—timesteps, indicating that moderately early diffusion steps provide the strongest membership signal.

Conversely, for **late steps** ($\sigma_t \approx 1$) the forward process approaches an isotropic Gaussian (data information gradually diminish); p_t is nearly homogeneous, so the posterior $\mu_t(x) = q_t(x_0 \sim p_{\text{training}} \mid x)$ collapses to $\mu_t(x) = q_t(x_0 \sim \mathcal{N}(0, I) \mid x)$, which depends on test images and membership information is lost. Figure 4 illustrates the phe-

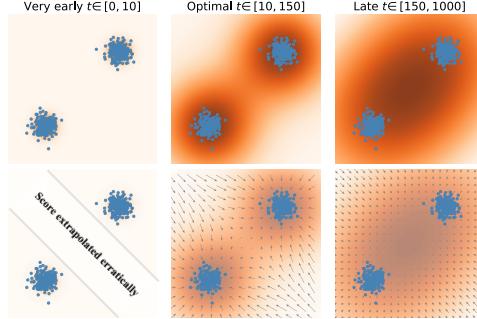


Figure 4: Top: density $p_t(x)$; blue dots are training samples. Bottom: estimated score $\nabla_x \log p_t(x)$. For **very early** $t \in [0, 10]$, the inter-mode region is low-density, so the score extrapolates erratically (shaded band). **Optimal** $t \in [10, 300]$: moderate Gaussian convolution enlarges the support and regularizes the estimator—density bridges the modes and the score points coherently toward them, yielding the strongest separation between members and held-out points. For **late** $t \in [300, 1000]$, p_t approaches an isotropic Gaussian and the score collapses toward the global mean, diminishing membership signal.

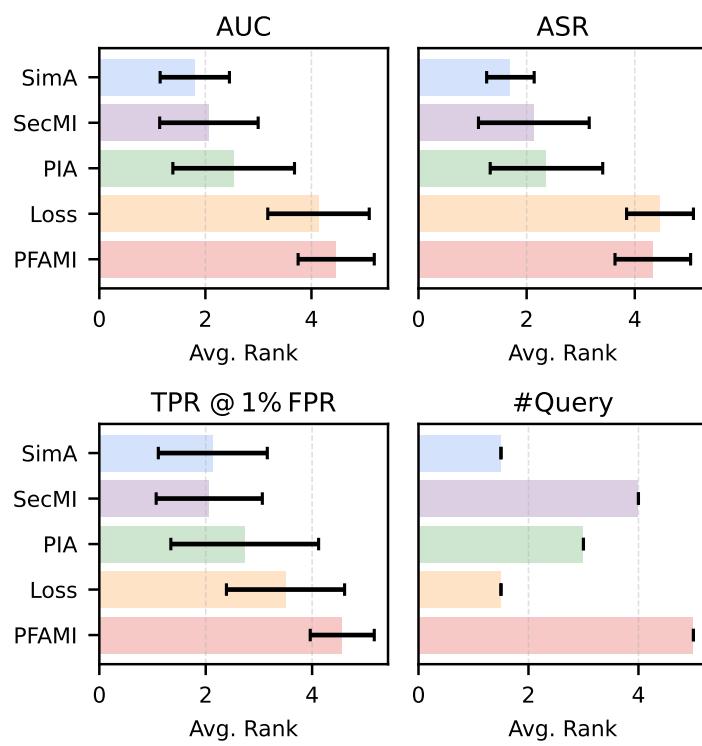


Figure 5: Average ranks ($\pm 1\sigma$) of the five benchmark methods across 15 experiments for four evaluation metrics. Higher values indicate better AUC, ASR, and TPR@1%FPR; lower values indicate fewer #Queries

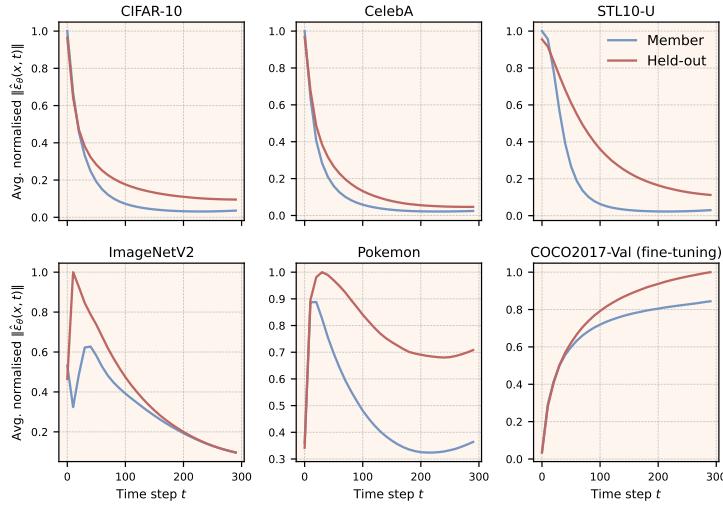


Figure 6: The average normalised estimator magnitude $\|\hat{\varepsilon}_\theta(x, t)\|$ for $t \in [0, 300]$ on the *member* and *held-out* splits across datasets

nomenon. The *optimal* timestep t^* is therefore dataset-specific and also depends on the noise schedule.