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ABSTRACT

Partial Label Learning (PLL) is known as a valuable learning technique that trains
Machine Learning (ML) models on partial label datasets, where the ground truth
label is concealed within the candidate label set of each data instance. It learns
label correlation based on a single centralized dataset to predict the latent true la-
bel. When data is non-independent and identically distributed (non-i.i.d.) among
workers in Federated Learning (FL), the label correlation interference problem
occurs. To address the issue, in this paper, we propose pFedPLL, a personalized
federated partial label learning algorithm with two new designs. In Label Correla-
tion Isolation (LCI), we first develop a twin-module architecture, where a feature-
level correlation matrix layer for each worker is isolated locally to prevent it from
being interfered with by others. In Label Correlation Personalization (LCP), we
then propose a bi-directional calibration loss to identify a more accurate learning
direction, where the positive calibration aligns the prediction result with the latent
true label, and the negative calibration pushes away the prediction result that falls
into the non-candidate label set. We provide a convergence analysis of pFedPLL

with a rate of O (, / %) for smooth non-convex problems. Experiment results

demonstrate that pFedPLL outperforms SOTA federated PLL algorithms and the
federated version of centralized PLL algorithms across nine datasets.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has become an emerging topic in recent years
due to its advantages in efficient parallel training processes and private data isolation across work-
ers/clients. The performance of FL is highly related to the quantity, quality, and heterogeneity of
data. However, due to different data collection environments (non-expert users, limited computa-
tional power, and varying geo-locations of edge devices, etc.), it is costly to collect a large amount
(high quantity) of high quality (with ground truth label) data instances. One possible solution is
to first assign a set of potential true labels to each specific data instance to quickly collect a large
quantity of data. Then, the Machine Learning (ML) model learns and analyzes the label correlation
to mitigate the negative effect of noisy labels during training. Such a learning method is within the
scope of Partial Label Learning (PLL) (Cour et al., 2011), where the candidate label set (containing
potential true labels) consists of one ground truth label and several correlated false positive labels
(noisy labels). Since the ground truth label is concealed in the candidate label set, PLL aims to
train a classifier to predict the latent true label (the most likely true label) for each data instance by
analyzing the correlations among the labels within the candidate label set. The model performance
is highly dependent on the accurate label correlation learned during training.

The label correlation in PLL has been proven to be a valuable component in centralized ML. It
finds a way of training a model with relatively large quantity but low quality data while maintaining
the model performance. However, when data is non-independent and identically distributed (non-
i.i.d.) among workers in FL, the centralized label correlation may not work in such heterogeneous
data scenario. Due to non-i.i.d. data, the label correlation learned from the local dataset is only
applicable to each worker. When aggregation occurs, it will cause the label correlation interference
problem. For example, in worker “A”, the image data instance of digit “2” is very similar to digit
“3” (high label correlation between digit “2” and “3”"), while in worker “B”, the digit “2” has a high
label correlation with digit “5”. During the aggregation phase, the global model aggregates each
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worker’s label correlation and learns that the digit “2” has a high label correlation with both “3” and
“5”. When the global model is distributed back to workers, such label correlation interference will
mislead each worker’s unique label correlation information, resulting in the degradation of model
performance.

To address this issue, we develop an all-in-one solution, pFedPLL, a personalized federated par-
tial label learning algorithm that efficiently trains FL. models on heterogeneous partial label data.
pFedPLL generally consists of two components: () Label Correlation Isolation (LCI) and 2) Label
Correlation Personalization (LCP).

LCI. We develop a new correlation matrix layer that is only updated on the local/worker dataset and
is not aggregated to the global model, preventing each worker’s unique label correlation information
from being interfered with by others. The training layers before the correlation matrix layer are
aggregated to obtain the global representative feature information. Please note that we insert the
correlation matrix layer in the second-to-last layer of the DNN model instead of the last layer. This is
because the last layer learns the exact label correlation (the same dimensions as the number of classes
of labels) with coarse granularity. To learn more correlation information, we push the correlation
matrix layer to the second-to-last layer by learning feature correlation with fine granularity, where
the second-to-last layer usually has more dimensions than the number of classes of labels.

LCP. Since the correlation matrix in LCI is isolated locally, the matrix itself is personalized. In order
to better utilize the personalized correlation matrix information to help identify a more accurate
learning direction, we further develop a bi-directional calibration loss. Apart from the basic well-
known summarization PLL loss (Feng et al., 2020), we propose positive calibration to align the
prediction result with the latent true label, and negative calibration to push away the prediction
result that falls into the non-candidate label set (labels that are not within the candidate label set).

We evaluate our pFedPLL algorithm both theoretically and experimentally. We prove that pFedPLL

converges for smooth non-convex problems at a rate of O (\/; ) over T’ global iterations. In the ex-

periments, we compare pFedPLL with mainstream federated PLL algorithms and federated version
of centralized PLL algorithms across nine datasets. The ablation study of LCI and LCP is also eval-
vated. The experiment results demonstrate that pFedPLL consistently outperforms all benchmark
algorithms with up to 49.93% accuracy increase in various ML settings.

2 RELATED WORK

Partial label learning. Current approaches to PLL disambiguation can be divided into two cate-
gories (Tian et al., 2023): averaging and identification methods. Averaging methods (Cour et al.,
2011; Hiillermeier & Beringer, 2005; Zhou & Gu, 2018) treat all candidate labels equally as ground
truth. Further advancing this, Gong et al. (2021) propose a discriminative metric learning approach
using a Mahalanobis distance metric to assess similarity between neighbors with similar labels.
However, such predictions are easily misled by false positive labels. On the other hand, identification
methods (Liu & Dietterich, 2012) aim to discover latent true labels during training, using techniques
such as Expectation Maximization (EM) algorithms (Jin & Ghahramani, 2002) and maximum mar-
gin methods (Nguyen & Caruana, 2008; Yu & Zhang, 2016) to resolve ambiguity. However, Both
approaches, however, rely on global information, such as label distribution in EM and distance met-
rics, which conflict with privacy requirements in federated learning (FL). As a result, traditional PLL
methods encounter significant challenges when applied directly in FL environments. Recently, DL-
based methodologies(Wen et al., 2021; Feng et al., 2020) have emerged to address the PLL problem.
Zhang et al. (2021) introduced Class Activation Value (CAV) to transform PLL into a supervised
learning problem. Although these methods perform well in centralized settings, simply migrating
them to an FL environment may still not work. Our proposed pFedPLL algorithm provides a series
of methods (LCI & LCP) to enable training models in federated partial label datasets.

Federated learning. FL (McMahan et al., 2017) allows local models to collaboratively train a
global model while keeping data private. However, the non-i.i.d. nature of local data can degrade
global model performance (Zhu et al., 2021). To address this, Personalized Federated Learning
(PFL) (Tan et al., 2022) was developed to adapt the global model to individual workers. Methods
like Split Learning (SL) (Vepakomma et al., 2018) and the “base layers + personalized layers”
design (Arivazhagan et al., 2019) help manage data heterogeneity by decoupling shared and local
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model components. However, these approaches have mostly been tested on supervised datasets and
have yet to be adapted for PLL scenarios. Our pFedPLL algorithm personalizes part of the worker’s
model (LCP) to address the issue of non-i.i.d. partial label datasets.

Weakly supervised learning in FL. Weakly supervised learning includes Semi-supervised Learn-
ing (SSL), Noise Label Learning (NLL), Multi-instance Learning (MIL), and PLL, but studies on
PLL in FL are limited. Recently, Yan & Guo (2024) introduced FedPLL_LAAR, which reduces
client drift via adaptive gradient alignment regularization but neglects label correlations. The method
assumes a class-dependent generation process (Lv et al., 2020), but in realistic scenarios, partial label
datasets should follow an instance-dependent generation process (Xu et al., 2021), where feature-
related false labels are more likely to enter the candidate label set, leading to stronger label cor-
relations. Besides PLL, other weakly supervised learning methods like SSL, NLL, and MIL are
well-studied in FL. Unlike PLL, these methods deal with single or unlabeled data and don’t involve
selecting the correct label from a candidate set. For example, FedMatch (Jeong et al., 2020) in SSL
uses labeled data as anchors to improve performance, while PLL faces greater challenges due to
uncertain true labels. NLL in FL, studied by (Song et al., 2022), focuses on mitigating the effect
of noisy data (incorrectly labeled), while PLL must identify the correct one from a set. FedMIL
(Bastola et al., 2024) focuses on bag-level predictions in MIL rather than identifying the latent true
label. By developing a feature-level correlation matrix layer in LCI, pFedPLL utilizes knowledge
from label correlations to effectively identify the latent true label from the candidate label set.

Considering the growing concerns about data privacy and the high costs of data labeling, exploring
PLL in an FL environment is essential. This paper investigates the PLL problem in FL, synergisti-
cally utilizing the advantages of DL-based PLL methods and FL.

3 METHOD: PFEDPLL

3.1 PROBLEM FORMULATION

We consider a typical FL system consisting of K workers/clients (indexed by k) and one aggregator.

The worker & maintains a local partial label dataset Dy, 2 {(x*, Y})}2%! where |Dy| is the total
number of data samples in Dy, ¥ is the ith data instance in worker k, and Y}* € {0,1}¢ is the label
set of &} across C' label classes. Let M} = {j € C' | yf; = 1,yF; € Y/} denote the candidate
label set and M} = {j € C | yf; = 0,y;; € Y[} denote the non-candidate label set. The ground

truth label is known to reside in the corresponding candidate label set, i.e., y'; € Y}*,3j € M, but
cannot be directly accessible, bringing significant challenges for training. The objective is to find
the optimal model w* that minimizes the global loss function

K
. A
Inin F(w) 23 Fy(w, D), (1)
k=1

where d is the dimension of model w, F(w) is the global loss function, and F}, (w) is the worker
k’s loss function. Here, we define the global loss function F(w) as the sum of all workers’ loss
functions F,(w), because the weight/contribution of each worker loss function is learnt during the
training, rather than being predefined.

3.2 LCI: LABEL CORRELATION ISOLATION

The typical label correlation mechanism works well in centralized PLL (Xu et al., 2020). It learns
the label correlation from a single centralized dataset. When training FL. models on decentralized
heterogeneous (non-i.i.d.) datasets, each worker can only learn its own label correlation from its own
dataset. When aggregation occurs, one worker’s label correlation might mislead others due to non-
i.i.d. data. To this end, we develop the Label Correlation Isolation (LCI) mechanism, which keeps
the label correlation information local and thus prevents it from being interfered with by others.

We start by considering a general Deep Neural Network (DNN) with n layers. We first propose
a label correlation matrix layer with the dimension of p x p. Then, we insert the layer into the
second-to-last position of the original DNN to form a new (n + 1) layers DNN, where the label
correlation matrix is the nth layer. Here, p varies depending on the architecture of the DNN model
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Figure 1: An overview of pFedPLL. Each data instance in the partial label dataset is linked to a can-
didate label set, with only one true label that remains unknown during training. Label Correlation
Isolation (LCI) is achieved through the twin-module architecture (w,..,&w..;), where only the rep-
resentation module is aggregated in the server. Label Correlation Personalization (LCP) is accom-
plished by training the model with the triplet loss including bi-directional calibration (£,.&L,.).

but is larger than the number of label classes (p > C'). Therefore, the matrix contains more fine-
grained information for better performance (feature-level correlation vs. label-level correlation). Let
w"? w*, and w° denote the 1st to (n — 1)th layers, nth layer, and (n + 1)th layer respectively. The
label prediction y; for x; is calculated as

g, = w(w(w" P (x;)). ()
Since the correlation matrix is isolated within each worker, we introduce a twin-module architecture
where w"®? is the representation module and w™® 2 [w®, w°] denotes the relation module. w"e?
is aggregated and redistributed back to each worker to obtain robust/global feature representation
information. w"® contains the worker’s unique feature-level correlation and is kept locally (not
being aggregated). w° is initialized as a p X p diagonal matrix with “1” on the diagonal and “0”
elsewhere when training begins. By adding superscript k (worker index), and subscripts ¢ (data
instance index), ¢ (global iteration index), and / (local iteration index), the prediction of the ith data
instance for kth worker at the hth local iteration in the ¢th global iteration is calculated as

- kel s, k, .
Yit,h = wt,i:e (wt,i:ep(wi))vw € |Dgl. (3)
The complete worker ks model is then denoted by wf, £ [w}y ", w7 ).
In summary, by implementing the twin-module architecture, we address the label correlation inter-
ference issue while maintaining the robust model performance.

3.3 LCP: LABEL CORRELATION PERSONALIZATION

We have utilized LCI in Section 3.2 to prevent each worker’s correlation information from being in-
terfered with by others. In this circumstance, the worker’s unique correlation matrix is personalized.
The next step is to further utilize this information to help identify a more accurate learning direc-
tion for each worker. On the basis of the summarization PLL loss (Feng et al., 2020), we propose
bi-directional calibration loss for each worker to encourage the correct prediction (aligning with
the latent true label) while discouraging the false prediction (prediction falls into the non-candidate
label set).

Summarization. We begin by introducing the summarization loss, a well-known loss used in PLL
which lets the model’s prediction fall into the candidate label set. For convenient presentation,
we omit iteration indexes and worker index (¢, h, and k) for now. Let g; denote the prediction
(distribution) of the model after normalization (softmax) of y;, i.e.,

exp (§i,)

Jij = softmax(fi;) = —¢——
5, e i)

Vi € Ui, Uij € Yi- )
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Then, we define the summarization loss as

Lo=—1og( Y ;). (5)

JjEM;

It calculates the predicted values of all labels within the candidate label set, but treats them equally
(simple summation without weight). Therefore, by minimizing £, we can only foster the prediction
result falling into the candidate label set.

Positive calibration. £ has made the prediction fall into the candidate label set. Then, we zoom
in on the candidate label set to distinguish each candidate label so as to find the latent true label.
Let a; = |1, 2, .- ,aiyc]—r denote the confidence of each label for data instance x;, where
ZjeM,i o5 =105 >0,Vj € M,and o; j = 0,Vj € M;. Please note o; dynamically evolves
during the training, and we only use the confidence related to candidate labels. When training begins,
« ; is initialized as L Vj € M;, where |M;] is the size of M;. During training, o ; is updated as

1M, ]
o Lﬂ,w € M. (6)
Z77LEM13 Yim
Then, we define the Eositive calibration loss as
Loe=— Y ai;log(fi;)- @)

JEM;

Here, we put the confidence «; ; as the weight/factor of log(g;, ;), which aligns the confidence with
the predicted result for a specific label j in data instance «;. Therefore, when both o; ; and §; ;
are large, the £, is minimized, implying the nature of positive calibration, where the predicted
label with high weight (latent true label) should have high confidence. In the meanwhile, the noisy
information from potential false-positive labels is alleviated.

Negative calibration. When we zoom out on the whole label set (candidate label set vs. non-
candidate label set), any prediction that falls into the non-candidate label set is wrong. To this end,
we develop a negative calibration that pushes the prediction away from the non-candidate label set.
We select the label with the highest weight in the non-candidate label set and give a penalty to this
label (adding a “minus”). The negative calibration loss is calculated as

Ly = —log(1 —max{f;; € i | 7 € M;}). ®)

By minimizing £,., the probability of the highest label prediction in non-candidate label set is
minimized, implying the more likely prediction in the candidate label set.

Triplet loss. To summarize, we construct the final triplet loss for each worker k as follows (iteration
indexes and worker index (¢, h, and k) are omitted on the right hand side):

Fk() =ML+ >\2['pc + A3Lpe, &)
where A1, Ao, and A3 are hyperparameters that can be adjusted before the training begins.

In summary, by implementing bi-directional calibration, we better utilize the personalized worker
correlation information to predict the latent true label for better model performance.

3.4 IMPLEMENTATION

The pFedPLL is implemented in Algorithm 1 with 7" total global iterations (indexed by ¢) and 7 local
iterations (indexed by h € [0,...,7 — 1]) between two consecutive global iterations. As shown in
Fig. 1, the pFedPLL generally comprises worker update with triplet loss calculations for LCP, and
aggregator update with LCI and KL score calculation for dynamic model weight/contribution.

Worker update. At each local iteration h € [0, ..., 7 — 1] for the ¢th global iteration, each worker
first randomly fetches a mini-batch £ from Dy, (Line 6) and calculates the worker model loss (Line 7).
Then, each worker updates its representation module (Line 8) and relation module (Line 9) via
related gradient descent with Vw" P F; k(wz{c 1, &) for representation module and Vw" F; k(wéc &)
for relation module. 7 is the learning rate. Afterward, the confidence of each data instance in £ is
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Algorithm 1 pFedPLL algorithm

Input: 7, 7,70, K
Output: Final global representation module w:

ep

1: For each worker k, initialize: wg 0P, wk 7 Wk € K, as the same value respectively,

and of ; le‘ ,Vj e MF ke K, where|M.k|1sthes1zeofMik.
2: For the aggregator, initialize: w,” = wg 0.
3: fort=0,1,...,7T —1do
4:  For each worker k = 1, ..., K in parallel:
5 forh=0,1,...,7—1do
6: Randomly fetch mini-batch & from Dy.
7: Calculate triplet loss Fk('wiC n» &) as equation 9.
8: wﬁ}fj_ﬁ = wk y P =V ogrer Fr(wy ), €)
//Update worker k’s representation module
9: wﬁ’,ffl = wﬁ’,:d — nvwresz(th, €)
//Update worker k’s relation module
10: For each instance ¢ in mini-batch &, update confidence
11: QG5 = #Z?Lm’v] € M;.
12: if h == 7 — 1 then
13: Send wf T to the aggregator.
14: end if
15:  end for
16:  For the aggregator:
17: S, =KL_Score (w;?, wtl,:wl, . wf:wl,K, B)

/lcall KL,Score function in Algorithm 2
. rep K k,rep k
18w =370 sfw 0 Vsy €S,
ﬂAggregate global representation module
19:  w) T = wit for each worker k.
ﬂDlstrlbute global representation module to workers
20:  For each worker £ = 1,..., K in parallel:
21 k,rel _ _ k,rel
A L )
//Retain worker’s own relation module
2: k [ k,rep k,rel ]
oWy 0 = [ Wilq00 Wit 0
/IConstruct worker’s complete model

23: end for

Algorithm 2 KL_Score function

Input: w, ", wtlfepl, o wf:eth B
Output: S; = {s},s2,...,s5}
1: For each batch b € B and worker k € K:
2: Calculate KL divergence L}, , = KL(wf;(’pl(ab)||wf6p(ab)).
3: For each worker k € K: 5
4: Obtain the averaged distance ; = 5 >.,", L},
k
5: Obtain the score s} = Kéit
.(4)

updated (Line 11). Finally, when h == 7 — 1 (the end of local iteration for the ¢th global iteration),
each worker sends its representation module to the aggregator (Line 13).

Aggregator update. At each global iteration ¢t € [0,...,7 — 1], when h == 7 — 1 (the end
of the local iteration for the tth global iteration), the aggregator first calls the KL_Score function
(Algorithm 2) to calculate scores for all workers (Line 17). Then, the aggregator aggregates the
global representation module using the scores as weights (Line 18) and distributes it back to each
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worker (Line 19). Each worker’s unique relation module is kept locally (Line 21), and the updated
complete worker model is constructed for the next round of local iteration (Line 22).

KL score. To better measure the weight/contribution of worker models towards the global model, we
develop a dynamic weight assignment algorithm in Algorithm 2, using the Kullback—Leibler (KL)
divergence (Press et al., 2007) to measure the distance/similarity between the global representation

module w;“” and each worker &’s representation module w;; Tep . We first feed the same B batches

of data A = {ay,...,ap} (randomly selected from the Valldatlon dataset') to w; " and wﬁ e,
and then compare the predlctlons using the KL divergence (Line 2 in Algorithm 2),
L,y = KL(wyh (ap)|[w] P (as)), Vb € B, (10)

where a; is the bth batch in A. We repeat the process for each batch and each worker to obtain
the distance matrix L' = [D}C b} . Finally, we average the values in each row to obtain the
PlKxB

averaged distance for each worker ¢} = L Zszl L}, (Line 4), which is then normalized to obtain

k

the final score sf = Kéitm, Vk € K (Line 5). A higher score means a longer distance between
i=1\"t

the worker and global representation modules, suggesting that such worker representation module

should contribute more to the global representation module, and thus we assign such score as the

weight (Line 18 in Algorithm 1). The output for Algorithm 2 are scores for all workers in the tth

global iteration S; = {s{,..., s}, where >, . s = 1.

4 CONVERGENCE ANALYSIS

To prove the convergence, we propose a virtual relation module update as if each worker’s isolated

. ) o . k,rel k,rel
relation module is aggregated and redistributed, i.e., wj ¢ = Z jt SPwy T and wilT = wih.

Then, the complete virtual global model is denoted by w41 = [wfﬁ, wy +1] According to the up-

date rules (Lines 8-9 and 18-19) in Algorithm 1, after performing the mathematical transformations,
we derive

Wi = Wy — nZst Z Vowrer Fi(wy k), Vwresz(wf,h)], (11)
k=1 h=0

which is the basis to prove the convergence. We assume that the gradient of Fj(-) and F'(-) is L-
Lipschitz and has bounded diversity, i.e., |VEF (w1) — VF(ws2)|2 < Lljw; — w22, |VFi(w1) —
VFk(w2)H2 < L||w1 - w2”2, and ]EENDk||VFk(w17§) — VFk(wl)H% < 62,Vw17w2, k, which
are necessary conditions for convergence analysis in the literature (Wang et al., 2019; Yang et al.,
2022; Huo et al., 2020).

Theorem 1. Suppose (1) n < 2L , and (2) 3F;y, 5 is the lower bound of F(-), we have

T’

4L
i E F 2<—F‘ fF”L 2L262. 12
o™ Bkl V(w2 < 7 (F(wo) = Fing)) + 31 (12)
Proof. See complete proof in Appendix A. -

Theorem 1 demonstrates that the square of the global model gradient is upper bounded by a function
that is inversely proportional to 7. The output of the Algorithm 1, w"? is included in the global
model w, ie., w = [wW"P, wml]. Therefore, we prove that the pFedPLL is convergent with the

convergence rate of O (\/; ) for smooth non-convex problems.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Comparison methods. We compare pFedPLL with the federated PLL algorithm (FedPLL_LAAR),
federated version of centralized PLL algorithms (Fed_CC, Fed_RC, Fed_CVAL, and Fed LW), and

!The validation dataset is randomly selected, comprising 20% of the test dataset, and is not used for training.
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the classic FedAvg (McMahan et al., 2017). For FedPLL_LAAR (Yan & Guo, 2024), most hyperpa-
rameter settings are from the original paper, but others are fine-tuned to improve performance in our
settings. For the federated version of centralized PLL algorithms, Fed_CC, Fed_RC, Fed_CVAL, and
Fed_LW are from the classifier-consistent approach (Feng et al., 2020), the risk-consistent approach
(Feng et al., 2020), CVAL (Zhang et al., 2021), and Leverage Weighted loss (Wen et al., 2021)
respectively.

Datasets. We utilize four benchmark datasets (MNIST (LeCun et al., 1998), Fashion-MNIST (F-
MNIST) (Xiao et al., 2017), Kuzushiji-MNIST (K-MNIST) (Clanuwat et al., 2018), and CIFAR-
10 (Krizhevsky et al., 2009)) and five real-world partial label datasets (Lost (Cour et al., 2011),
BirdSong (Briggs et al., 2012), MSRCv2 (Liu & Dietterich, 2012), Soccer Player (Zeng et al., 2013),
and Yahoo!News (Guillaumin et al., 2010)). Please note that the benchmark datasets are originally
intended for supervised learning, and we manually convert them into partial label datasets. Details
of these datasets can be found in Appendix B.1.

Data generation. To convert benchmark datasets into partial label datasets, we follow the instance-
dependent generation process (Xu et al., 2021), where the flipping probability of each incorrect
label is determined by the confidence prediction of a clean neural network trained on a supervised
dataset, and p € [0, 1] is the temperature hyperparameter used to control the size of the candidate
label set. Please refer to Appendix B.2 for the detailed process. For non-i.i.d. data generation, we
use a Dirichlet distribution Dir(/3) (Minka, 2000) to generate local data for each worker, where
B € (0,400) is a hyperparameter that controls the level of data heterogeneity. A smaller /3 indicates
a higher level of non-i.i.d. In all experiments, we set § = 0.5. For accuracy assessment, since
the aggregator lacks a complete model (only a global representation module exists), we assess the
final accuracy as the averaged accuracy from all workers. Following the same methods (Tan et al.,
2023; Lu et al., 2022), we split each worker’s dataset into training (80%) and testing (20%) datasets
without any data instance overlap and then test each worker’s accuracy to obtain the final accuracy.

Equipment and hyperparameter settings. The experiments are carried out on a GPU tower server
equipped with 4 NVIDIA GeForce RTX 3090 GPUs. In all experiments, models are updated by
mini-batch SGD with learning rate 7 = 0.01, momentum factor = 0.9, and \; = Ao = A3 = 1.
Other hyperparameter settings are specified in Appendix B.3 Table 4.

5.2 MAIN EXPERIMENT RESULT

Table 1: Accuracy (%) comparisons on benchmark and real-world partial label datasets when T' =
100. We use a 5-layer LeNet (LeCun et al., 1998) for MNIST, K-MNIST, and F-MNIST, a 34-layer
ResNet (He et al., 2016) for CIFAR-10, and a 2-layer MLP for real-world datasets.

pFedPLL Fed LW Fed_CC Fed RC Fed_CVAL | FedPLL_LAAR FedAvg
MNIST 98.14 +0.06 | 97.04+0.05 | 96.60 = 0.08 | 96.44 +0.03 | 48.21 £ 0.06 82.01 £0.03 92.69 £0.04
Benchmark | K-MNIST 89.15+0.03 | 81.77+0.08 | 79.87+0.09 | 78.81 £0.08 | 47.79 £ 0.08 68.31 £ 0.04 73.82£0.05
dataset F-MNIST 84.06 +0.07 | 82.894+0.11 | 82.35+0.13 | 80.17+0.09 | 46.35 £ 0.15 51.23 £0.05 80.12 £ 0.09
CIFAR-10 82.10+0.11 | 67.94+0.07 | 70.91+£0.09 | 59.56 £ 0.14 | 45.96 £0.11 48.10 £0.13 62.10 £0.19
Lost 56.04 +0.04 | 55.29+0.13 | 55.03 +£0.06 | 53.87 £0.04 | 38.82+£0.07 | 52.96 £ 0.05 47.69 £0.03

Real-world | Birdsong 77944+ 0.05 | 72.714+0.09 | 71.324+0.05 | 72.19£0.05 | 63.76 & 0.08 66.78 £0.07 | 65.59 & 0.05
partial label | MSRCv2 56.10 +0.03 | 49.98 +0.07 | 49.16 +0.04 | 50.19 £ 0.07 | 35.43 +£0.07 | 46.31 £0.05 | 41.60+0.08
dataset Yahoo!News | 62.35 +0.07 | 52.48+0.09 | 52.10+£0.05 | 52.16 +0.11 | 44.13+0.11 50.98 £0.13 49.35 £0.17
SoccerPlayer | 40.68 & 0.09 | 37.58 +0.06 | 37.404+0.12 | 37.6540.09 | 37.16 + 0.10 39.17£0.11 40.31 £0.12

Benchmark datasets. We evaluate our pFedPLL algorithm using four benchmark datasets: MNIST,
F-MNIST, K-MNIST, and CIFAR-10, all adapted to partial label datasets. Table 1 demonstrates that
pFedPLL outperforms all benchmarks, with a 1.1% accuracy improvement on MNIST, 7.38% on K-
MNIST, and 1.17% on F-MNIST compared to Fed LW, the second-best algorithm. On CIFAR-10,
pFedPLL exceeds Fed_CC, the second-best algorithm, by 11.19%. Federated version of centralized
PLL methods (Fed_LW, Fed_CC, Fed_RC, Fed_CVAL) lack mechanisms to mitigate the non-i.i.d.
issue in FL, leading to suboptimal performance. In contrast, pFedPLL’s LCI design effectively ad-
dresses this issue by preventing interference from other workers’ models. We also observe that
FedPLL_LAAR does not perform well. This is because it utilizes a class-dependent generation pro-
cess, where only labels with large differences are included in the candidate label set (e.g., horse
vs. cat). Nevertheless, in our experiment, we implement an instance-dependent generation process,
where similar labels are included in the candidate label set (e.g., horse vs. donkey), making disam-
biguation more difficult. In pFedPLL, we implement a fine-grained feature-level correlation matrix
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and bi-directional calibration loss to distinguish similar labels, leading to superior performance.
Overall, pFedPLL consistently outperforms all benchmarks, with training accuracy improvements
ranging from 1.1-49.93%.

Real-world partial label datasets. We evaluate our pFedPLL algorithm using five real-world
datasets: Lost, BirdSong, MSRCv2, Soccer Player, and Yahoo!News. A 2-layer Multi-Layer Per-
ceptron (MLP) model is implemented as the base model. In the pFedPLL, the correlation matrix
layer is inserted in the middle to form a three-layer MLP. We observe the same trend as in bench-
mark datasets, where the pFedPLL achieves the best accuracy with a 0.37-20.67% improvement.
Also, FedPLL_LAAR does not perform well. This is because labels in the candidate label set of
real-world datasets often have strong correlations (similar labels), making disambiguation harder.

5.3 ABLATION STUDY

Ablation study of pFedPLL components Ablation study of triplet loss
wo{ - 100
Triplet I
%0 80 — Ls+L,
:\"\ :\3 Ls+Ln
=~ = w0 o] Ll
g o z I~ L
g o Fe £ Sl Lpc
§ 20 J - zic:ﬁtu:uw é 40 == Lnc
< ! / —— pFedPLL_LCP_KL <
LY pFedPLL_LCP ] | A o, 975 1000 T
2 —— pFedPLL wio A \‘\/’ b gy s ',-"\"\’_I\_ !‘v /ﬁij/\l \_\j\liv\»/ \jr~ J\f\ﬂ.il\;' v\ /’ lu_i‘.\
0 10 20 30 40 50 0 0 20 40 60 80 100
Global iterations (T) Global iterations (T)
(@
Figure 2: Ablation study: (a) pFedPLL components, (b) triplet loss.
Table 2: Settings for the ablation study of Table 3: Settings for the ablation study of
pFedPLL components. All ablations are triplet loss. All ablations are trained using
trained using LeNet on the MNIST dataset. LeNet on the MNIST dataset.
Ablation LCI [ LCP | KL score Ablation Ly Lpe | Lne
pFedPLL v v v Tripletloss | v v v
pFedPLLLCILCP| v | v Lo+ Loy v v
pFedPLL_LCP_KL v v Lo+ Loe v v
pFedPLL_LCP v Lpe + Lne v v
pFedPLL_w/o r v
S
Lpe v
Loe v

Ablation study of pFedPLL components. To validate the effectiveness of the components in pFed-
PLL, we break down the full pFedPLL into four reduced versions by dropping LCI, LCP, and the
KL score respectively, as shown in Table 2. Specifically, unchecking LCI removes the twin-module
architecture and the correlation matrix layer. Unchecking LCP replaces the triplet loss with the loss
function from Fed LW (which has the second-best performance). Unchecking the KL score uses
standard FedAvg aggregation method.

For better presentation, we use > to indicate “is better than”. In Figure 2(a), we observe that pFed-
PLL outperforms all reduced versions of pFedPLL, demonstrating that applying all components
in pFedPLL enhances both the accuracy and the convergence speed. (1) Comparing LCI, we ob-
serve that pFedPLL > pFedPLL_LCP_KL and pFedPLL_LCI_LCP > pFedPLL_LCP. This demon-
strates that LCI isolates and protects each worker’s unique label correlation, enhancing model per-
formance. 2) Comparing LCP, we observe that pFedPLL_LCP > pFedPLL_w/o. This shows that the
bi-directional calibration in triplet loss helps effectively distinguish the latent true label. 3) Com-
paring the KL score, we observe that pFedPLL > pFedPLL_LCI_LCP and pFedPLL_LCP_KL >
pFedPLL_w/o, indicating that the KL score helps measure each worker’s real contribution, leading
to better performance.

Ablation study of triplet loss. To validate the effectiveness of the triplet loss in LCP, we evaluate
the performance of each individual loss term, all combinations of every two terms, and the complete
triplet loss function, as shown in Table 3.
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We have the following observations from Figure 2(b). () The full triplet loss outperforms all vari-
ant settings. Each ablation variant shows performance degradation, indicating that every loss term
contributes to the effectiveness of pFedPLL. () The triplet loss > L. + L., and it also increases
rapidly in the early stage of training. Both demonstrate that the summarization term £, helps guide
the model’s update direction by aligning the prediction with the candidate label set. It becomes
the cornerstone of the subsequent bi-directional calibration (L,.&Ly,c). AL, + Lype > L. This
demonstrates that £, plays a crucial role in effectively identifying the latent true label. L first
helps point a correct update direction (falling into the candidate label set) and £,,. then distinguishes
between the labelsl in the candidate label set (finding the latent true label). (4. The negative calibra-
tion term £, acts as a double-edged sword. We observe that £ + L. and L. + L,,. outperform
L, and £, when model converges but underperform during the early stages. This can be explained
by the larger £,,. during the initial training phase when the model has not yet identified the correct
update direction, causing unstable loss calculations. Once the model finds the correct direction, £,
enhances the performance. When only applying £,,. alone, the model may fail to converge, because
it merely prevents predictions from falling into the non-candidate label set without considering the
latent true label.

In summary, every term contributes to the model performance. Implementing the triplet loss (Ls +
Lpe + L) can achieve the best performance.

5.4 EFFECT OF CANDIDATE LABEL SET SIZE

Candidate label temperature p=0.2 Candidate label temperature p=0.3 Candidate label temperature p=0.4

—-- pRedPLL  TTTmmTToTTTTTooooscosssassens
— Fed LW 7

-== pFedPLL
— Fed LW
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—— Fed RC

Fed CVAL BT
— = FedPLL_LAAR

FedAVG e
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Figure 3: (a)-(c): Accuracy comparison for pFedPLL under different temperature hyperparameters
p to control the size of the candidate label set: p = 0.2 (a), p = 0.3 (b), and p = 0.4 (c).

Adjusting the temperature hyperparameter p controls the candidate label set size. A larger set means
a more complicated label correlation, making disambiguation harder for PLL algorithms. In this
experiment, we train LeNet on the MNIST dataset and set p = 0.2, 0.3, 0.4 to obtain average candi-
date label set sizes of 2.99, 3.97, and 4.93 respectively. The rest of the settings are the same as those
used in the benchmark dataset experiment. In Figure 3(a)-(c), we observe that pFedPLL consistently
outperforms other algorithms, with a slight performance degradation as p increases, while other al-
gorithms degrade quickly. The pFedPLL algorithm surpasses the second-best algorithm by 0.32%,
0.59%, and 1.14% for p = 0.2, 0.3, and 0.4, respectively. With the help of the label correlation iso-
lation mechanism and bi-directional calibration loss, pFedPLL first protects each worker’s unique
label correlation and then accurately identifies the latent true label, both of which are beneficial for
handling different levels of candidate label set complexity.

6 CONCLUSION

In this paper, we propose pFedPLL, a personalized federated partial label learning algorithm. We de-
velop label correlation isolation and label correlation personalization to prevent the workers’ unique
label correlation information from being interfered with while helping identify more accurate learn-
ing direction for better performance. We provide a convergence analysis for pFedPLL, demonstrat-

ing a convergence rate of O (, / %) for smooth non-convex problems. Extensive experiments on

both benchmark and real-world datasets illustrate that pFedPLL consistently outperforms SOTA al-
gorithms in a variety of settings. Notably, pFedPLL improved training accuracy by 1.1-49.93% on
benchmark datasets and 0.37-17.22% on real-world datasets.

10
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Reproducibility Statement.  Please refer to Appendix B.3, Table 4 for detailed hy-
perparameter settings. The source code is available at https://www.dropbox.
com/scl/fo/3abcjortvt8iyfle91lvir/AJp2Sf2euxkZPTONNDAXciw?rlkey=
crd4gz2g69d3upyzivulv99vmm&st=08cllik1l&dl=0.

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Ashish Bastola, Hao Wang, Xiwen Chen, and Abolfazl Razi. Fedmil: Federated-multiple instance
learning for video analysis with optimized dpp scheduling. arXiv preprint arXiv:2403.17331,
2024.

Forrest Briggs, Xiaoli Z Fern, and Raviv Raich. Rank-loss support instance machines for miml in-
stance annotation. In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 534-542, 2012.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. Journal of Machine
Learning Research, 12(42):1501-1536, 2011.

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Prov-
ably consistent partial-label learning. Advances in neural information processing systems, 33:
10948-10960, 2020.

Xiuwen Gong, Dong Yuan, and Wei Bao. Discriminative metric learning for partial label learning.
1IEEE Transactions on Neural Networks and Learning Systems, 34(8):4428-4439, 2021.

Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Multiple instance metric learning from
automatically labeled bags of faces. In Computer Vision—-ECCV 2010: 11th European Conference
on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part I 11, pp.
634—647. Springer, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Eyke Hiillermeier and Jiirgen Beringer. Learning from ambiguously labeled examples. In Advances
in Intelligent Data Analysis VI, pp. 168—-179, 2005. ISBN 978-3-540-31926-9.

Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin Huang, et al. Faster on-device training using
new federated momentum algorithm. arXiv preprint arXiv:2002.02090, 2020.

Wonyong Jeong, Jachong Yoon, Eunho Yang, and Sung Ju Hwang. Federated semi-supervised
learning with inter-client consistency & disjoint learning. arXiv preprint arXiv:2006.12097, 2020.

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances in Neural Information
Processing Systems, volume 15, 2002.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. N/A, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Liping Liu and Thomas Dietterich. A conditional multinomial mixture model for superset label
learning. In Advances in Neural Information Processing Systems, volume 25, 2012.

Wang Lu, Jindong Wang, Yigiang Chen, Xin Qin, Renjun Xu, Dimitrios Dimitriadis, and Tao Qin.
Personalized federated learning with adaptive batchnorm for healthcare. IEEE Transactions on
Big Data, 2022.

11


https://www.dropbox.com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0
https://www.dropbox.com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0
https://www.dropbox.com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0

Under review as a conference paper at ICLR 2025

Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identifica-
tion of true labels for partial-label learning. In international conference on machine learning, pp.
6500-6510. PMLR, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, and etc. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelligence and Statistics, pp. 1273—-1282.
PMLR, 2017.

Thomas Minka. Estimating a dirichlet distribution, 2000.

Nam Nguyen and Rich Caruana. Classification with partial labels. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 551-559, 2008.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes: The Art of Scientific Computing (3rd Edition). Cambridge University Press, 2007. ISBN
978-0-521-88068-8.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE transactions on neural networks and learning
systems, 34(11):8135-8153, 2022.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Jiahao Tan, Yipeng Zhou, Gang Liu, Jessie Hui Wang, and Shui Yu. pfedsim: Similarity-aware
model aggregation towards personalized federated learning. arXiv preprint arXiv:2305.15706,
2023.

Yingjie Tian, Xiaotong Yu, and Saiji Fu. Partial label learning: Taxonomy, analysis and outlook.
Neural Networks, 161:708-734, 2023. ISSN 0893-6080.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. CoRR, abs/1812.00564, 2018. URL
http://arxiv.org/abs/1812.00564.

Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive federated learning in resource constrained edge computing systems. /[EEE
JSAC, 2019.

Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Leveraged
weighted loss for partial label learning. In International conference on machine learning, pp.
11091-11100. PMLR, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ning Xu, Yun-Peng Liu, and Xin Geng. Partial multi-label learning with label distribution. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 6510-6517, 2020.

Ning Xu, Yun-Peng Liu, Yan Zhang, and Xin Geng. Progressive enhancement of label distributions
for partial multilabel learning. IEEE Transactions on Neural Networks and Learning Systems, 34
(8):4856-4867, 2021.

Yan Yan and Yuhong Guo. Federated partial label learning with local-adaptive augmentation and
regularization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
16272-16280, 2024.

Zhengjie Yang, Wei Bao, Dong Yuan, Nguyen H Tran, and Albert Y Zomaya. Federated learning
with nesterov accelerated gradient. IEEE Transactions on Parallel and Distributed Systems, 2022.

Fei Yu and Min-Ling Zhang. Maximum margin partial label learning. In Asian conference on
machine learning, pp. 96—-111. PMLR, 2016.

12


http://arxiv.org/abs/1812.00564

Under review as a conference paper at ICLR 2025

Zinan Zeng, Shijie Xiao, Kui Jia, Tsung-Han Chan, Shenghua Gao, Dong Xu, and Yi Ma. Learning
by associating ambiguously labeled images. In Proceedings of the IEEE Conference on computer
vision and pattern recognition, pp. 708-715, 2013.

Fei Zhang, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Tao Qin, and Masashi Sugiyama. Ex-
ploiting class activation value for partial-label learning. In International conference on learning
representations, 2021.

Yu Zhou and Hong Gu. Geometric mean metric learning for partial label data. Neurocomputing,
275:394-402, 2018. ISSN 0925-2312.

Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A survey.
Neurocomputing, 465:371-390, 2021.

13



Under review as a conference paper at ICLR 2025

A  SUPPLEMENTARY MATERIAL: DETAILED CONVERGENCE ANALYSIS

A.1 PRELIMINARIES

To prove the convergence, we propose a virtual relation module update just like real representation
module update (Lines 18—19 in Algorithm 1) as follows:

K
rel __ k.. krel
Wiy = E St Wy 715 (13)
k=1
k,rel _ rel
Wyi10~ Weg- (14)

Thus, we define the complete virtual global model as
wi £ [wp i, with], (15)

where w1 represents the complete global model at the (¢ + 1)th global iteration. Based on equa-
tion 14 and Line 19 of Algorithm 1, the local complete model is given as

k _ k,rep k,rel
w0 = (Wi o, wiiy o), Yk € K. (16)

At the start of local training, the initial worker’s representation and relation modules are assigned
from the global representation and relation modules as described in equation 16. At this point, the
local model is identical to the global model. Thus,

wfy g = w1, Yk € K. (17)

The gradient of the global loss function can be decomposed into two components, which we define
as

VF(’lUt+1) £ [vww‘ep F(wt+1)7 Vw'r'elF(wt+1)}. (18)

The gradient of the worker’s loss function can be decomposed into two components, which we define
as

VEF (W 5) 2 Ve Fe(wig 1)), Vagra Fo(wiy )], Vk € K,Vh € [0,...,7—1].  (19)

Based on the definition in equation 19, we have

IV Fi (w1 )3 = [Vaorer Fio(wi1 1)), Varer Fio(wii g )13
=([[Vaorer Fi (w1 1)), 0] + [0, Vagrer Fio(wiiy 1 1)) [12)°
:va”PFk(wf-f-l,h)H% + 2<[Vw”T’Fk(wf+1,h))a O], [O, Vwrele(wf-i-l,hD
+ [V aret (w1 1] 13-

=l Vawrer Fi (w1 p)lI3 + [Vagrer Fi(wiyy )3, VE € K.Vh € [0, 7 — 1]
(20)

According to Lines 8-9 in Algorithm 1, equation 16 and equation 19, we have the local update rule
as

wf,h+1 = ’wf,h - UVFk(wf,h)~ 21
To calculate the difference between h = 0 and h = 7 — 1 according to equation 21, we have

T—1

wiy—wf, =0 VE.(wf,). (22)
h=0

According to equation 17, equation 19, and rearranging equation 22, we obtain

7—1

w—w, =0 [Varer Fo(wf ), Vigra Fi(wf )], (23)
h=0

14
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Based on Lines19 in Algorithm 1, equation 13, and equation 15, we have

K K
k(o k k k
Wi — Wit = Wi — Z si(wi, ) = Z s (wy —wy, ) 24
k=1 k=1

Substituting the equation 23 into equation 24, we have

K T—1
Wy — Wi =1 Z sk Z[Vwreka(wf’h), Vwresz(wf’h)] (25)
k=1  h=0

By rearranging equation 25, we derive the global update rule as

K T—1
Wyt =W — 1 Z st Z[Vwmr’Fk(wf,h), Vwrele(wf,h)} (26)
k=1 h=0

We assume FJ(-) satisfies the following standard conditions that are necessary for theoretical anal-
ysis (Wang et al., 2019; Yang et al., 2022; Huo et al., 2020).

Assumption 1. (Bounded diversity). The variance of stochastic gradient on local workers is upper
bounded. So that any k € {1, ceey K}, it is satisfied that

Eep, | VFi(w, €) — VE(w)]3 < 6%, Yw, k.

This is equivalent to
B0, [V, Fi(0,) = Vo, o Fie(w) 3 + [ Vo, ., Fie(w,§) = V

Assumption 2. (L-Lipschitz). The gradients of Fy, and F' are Lipschitz continuous with a constant
L > 0, so that any k € {1, - ,K}, it is satisfied that

wrep Fe(W)[[3] < 0%, Ve, k.
[V E(w1) = VE(w2)][2 < L|lwy — w22, Yoy, wa, k,
||VF(’LU1) - VF(’LUQ)HQ S LHw1 - 1U2H27le,’lU2.

A.2 CONVERGENCE ANALYSIS

In Lemma 1, we first prove the upper bound of pFedPLL between F'(w;y1) and F'(w;).

Lemma 1. Under Assumptions 1 and 2, the update of w; on the server at each global aggregation
is upper bounded as

k
Ln+1
Eg i (wr) SF(wi) = 57 3 sPE [V Fi(w,)[3 + (55— )’ Lo
k=1
" n I k T—1
-5~ §L277272 - 57727) D sE> Bkl VE(wf )3
k=1 h=0

Proof. According to Assumptions 2 and equation 18, it holds that
EF(wiy1) <F(wy) + E(V et F(wy), wigh — wi)
+ E(V yyret F(wy), wi$h — wi)
L rel rel||2 L rep rep| 2
+ §E‘|wt+1 — w3 + §E||wt+1 — w3 27

By taking the expectation over the samples, rearranging the inequality in equation 27, and consider-
ing equation 25 and equation 26, we obtain

K T—1
B¢ F(wiy1) <F(wi) = (Vagres F(wi), 1Y 58y Vagres Fr(wf, €))
k=1 h=0

15



Under review as a conference paper at ICLR 2025

K T—1
L
+ ZBelln Y sk S Vares Bk, )13

k=1 h=0
K T—1
= (VaraF(w;), 1) 57 Vapret Fr(wfy, €))
k=1 h=0
I K T—1
+ 5 Eelln Y st Y Viret Fi(wf, )3, (28)
k=1 h=0

where the inequality follows from E¢[Voyrer Fi (W, £)] = Vprer Fi(w) and E¢ [V yret Fi(w, §)] =
V wret Fi.(w). Taking the expectations over the workers, we have

k
n
Ee i F(wii1) <F(we) = 5 D st > Bekl|VEx(wi)]3]

Q1

k T—1
L ,
+ 50 > st Belll Y VE(win )3, (29)
k=1 h=0

Q2

where the inequality follows from Jensen’s inequality, (a, b) = (||a[|3 4 [b]|3 — |la — b]|3). We next
prove the upper bound of Q1 as

h—1
QL <L*Be ]| Y (Varer Fr(wf ;,€) = Vagren Fi(w} ;)13
j=0
h—1
+ L0Ee il Y (Vapra Fr(wf 5, €) = Vipret Fi(wf )13
j=0
h—1 h—1
+ LB (IO Vawrer Fr(wf )3 + 1 Vigrer Fi(wf ) 13)
j=0 j=0
h—1
<SL*P6%h + LPnh Y Ee iV Fi(wf )3, (30)
j=0

where the first inequality follows from Assumption 1, w; = w}, and El|zy + ... + 2,3 <

E[||z1||3 + ... + ||zn]|3] for any 21,...,22. The last inequality is from the Assumption 2, and
equation 20. It sums the gradient difference from j = 0 to 5 = h — 1. Since the maximum value of
h is 7, we replace h with 7 in equation 30 and sum from A = 0 to h = 7 — 1. This still satisfies the
inequality in equation 30. Then, we have

T—1
QL <L*p*6°r + L?n*7 Y Be il VEL(wf )13, 31)
h=0

Summing the inequality in equation 31 from h = 0 to 7 — 1, we have

T—1 T—1
ST Q1< L2027 + P2 Y Ee s VEc(w))|3, (32)
h=0 h=0
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where the inequality comes from i < 7 — 1. Then we going to prove the upper bound of Q2 as

T—1 T—1
Q2 =B Y VEu(wp, &) = VE(wfy) + VE(w] )| < 81+ 1) Ber| VEu(wf))3,
h=0 h=0

(33)

where the inequality comes from Assumption 1. Substituting the upper bound of Q1 and Q2 into
inequality equation 29, we have

k
L+1
E¢ p F(wig1) <F(wg) — gTZ SFEe ||V Fy (we) |3 + (777)772117'62
k=1

n n L k T—1
- (5 - §L277272 - 57727) ZSf ZEé,k”VFk(wf,h)H%- (34)

k=1 h=0
We have completed the proof of Lemma 1. O

Based on Lemma 1, we can prove the convergence of pFedPLL by telescopically summing from
t=0tot=T—1.

Theorem 2. Suppose (1) n <
we have

2L7’Vt €0,...,T —1, and (2) 3F;y,y is the lower bound of F(-),

4L
i E F 2 < 2(F —F, 21262,
e ekl VF (w5 < T( (wo) 7)) +3n

Proof. According to Lemma 1, by setting < 57—, we ensure that 2 — 2L?p%72 — Lp27 > 0.
This condition allows us to prove that the algorithm is guaranteed to converge to crltlcal points
for smooth non-convex problems. Considering the above condition and taking the expectation of
inequality equation 34, upon rearranging, it holds that

Ee || VF(wy) |5 <4L(Ee 1 F(wy) — Be 1 F(wig1)) + 302 L2652 (35)
Summing it from¢ = 0to T — 1 we have
T-1
Ee || VF(wy) |3 <AL(F(wo) — F(wr)) + 3n°L?6°T. (36)
t=0

Let Fi,; < F(wr), we have that
min B¢ x||VF(w,)|3 <g(F(w0) — Finyp)) + 30*L%6%,
{0.,....T—1} - T
We have completed the proof of the Theorem 2. O

Under the condition 1 < we have proven that pFedPLL is guaranteed to converge to critical

points for smooth non-convex problems at a rate of O ( l).

2L’

T

B SUPPLEMENTARY MATERIAL: ADDITIONAL EXPERIMENT SETUP AND
RESULT

B.1 EXPERIMENT DATASET

Benchmark datasets. We utilize MNIST (LeCun et al., 1998), Fashion-MNIST (F-MNIST) (Xiao
et al., 2017), Kuzushiji-MNIST (K-MNIST) (Clanuwat et al., 2018), and CIFAR-10 (Krizhevsky
et al., 2009). The MNIST, F-MNIST, and K-MNIST datasets, each consists of 60,000 training im-
ages and 10,000 test images. Each image is a grayscale 28 x 28 pixel grid categorized into 10
classes. MNIST, F-MNIST, and K-MNIST are designed for handwritten digit classification, fash-
ion item classification, and Japanese character classification, respectively. The CIFAR-10 dataset
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includes 50,000 training images and 10,000 test images, with each 32 x 32 x 3 colored image in
RGB format organized into 10 classes for object classification tasks.

Real-world partial label datasets. We use five real-world partial label datasets, including Lost
(Cour et al., 2011), BirdSong (Briggs et al., 2012), MSRCv2 (Liu & Dietterich, 2012), Soccer
Player (Zeng et al., 2013), and Yahoo!News (Guillaumin et al., 2010). The Lost dataset, based on
the TV series “Lost”, includes 1,122 face images with 108 features, categorized into 16 names with
an average candidate label set size of 2.23. The Birdsong dataset focuses on bird song classification,
featuring 4,998 data points and 38 features, grouped into 13 categories with an average candidate
label set size of 2.18. The MSRCv2 dataset, aimed at object classification, contains 1,758 data
points with 48 features, categorized into 23 objects and an average candidate label set size of 3.16.
The Soccer Player dataset includes 17,472 data points with 279 features for naming soccer players,
categorized into 171 names, and an average candidate label set size of 2.09. Lastly, the Yahoo!News
dataset for automatic face naming in news articles includes 22,991 data points with 163 features,
grouped into 219 names, with an average candidate label set size of 1.91.

B.2 THE PARTIAL LABEL DATASET GENERATION

Since the benchmark datasets are primarily for supervised learning, we follow the instance-
dependent generation process (Xu et al., 2021) to manually corrupt them into partial label datasets.
Specifically, we determine the flipping probability for each incorrect label corresponding to an in-
stance x; using the confidence predictions from a clean neural network, é, trained on the original
supervised dataset. The flip probability for each incorrect label for instance x; is calculated as:

j i;é Y
G=—A1E0 iy, (37)
max, .y fo(xi;0)

where Y; is the set of all incorrect labels except for the true label of x;, and f; (x;0) is the con-

fidence prediction of the clean neural network 0. p € [0,1] is the temperature hyperparameter to
control the candidate label set size.

B.3 EXPERIMENT HYPERPARAMETER SETTINGS

Table 4: Experiment hyperparameter settings.

. Hyperparameters
Experiments T |1 7 B P K Batch size
Performance comparison (Table 1) 100 | 40 | 0.01 | 0.5 04 4 0 (szﬂé_ ﬁf{(‘f;mﬁ f;‘;i;fi‘imet)
Ablation study 'of pFedPLL 100 | 40 | 0.01 | 05 0.4 4 256
components (Fig. 2(a))
Ablation study of triplet loss (Fig. 2(b)) | 100 | 40 | 0.01 | 0.5 0.4 4 256
Effect of Candidate Label Set Size 100 | 40 | 0.01 | 05 02.03.04 4 256
(Fig. 3@)—(c)
Effects of number of workers (Fig. 4) 100 | 40 |{ 0.01 | 0.5 0.4 20,40,80 256
B.4 EFFECT OF NUMBER OF WORKERS
To demonstrate the impact of varying the number of workers on 0 Effect of no. of workers

the performance of pFedPLL methods, we set the number of work-
ers, K, to 20, 40, and 80. This experiment employs LeNet on the
MNIST dataset. In Figure 4, the results show that as the number of
workers increases, the convergence performance of pFedPLL de-
grades, aligning with our expectations, i.e., as the number of work-
ers grows, the data variance among workers increases, leading to
decreased convergence performance. Notably, even with up to 80
workers, pFedPLL maintains reasonable convergence performance.
In summary, the results demonstrate that pFedPLL effectively han- Figure 4: Effect of numbers
dles PLL tasks in an FL setting, maintaining performance even with of workers in pFedPLL.

an increased number of workers.

Accuracy (%)

50

18



	Introduction
	Related Work
	Method: pFedPLL
	Problem Formulation
	LCI: Label Correlation Isolation
	LCP: Label Correlation Personalization
	Implementation

	Convergence Analysis
	Experiments
	Experiment Setup
	Main Experiment Result
	Ablation Study
	Effect of Candidate Label Set Size

	Conclusion
	Supplementary Material: Detailed Convergence Analysis
	Preliminaries
	Convergence Analysis

	Supplementary Material: Additional Experiment Setup and Result
	Experiment Dataset
	The Partial Label Dataset Generation
	Experiment hyperparameter Settings
	Effect of Number of Workers


