
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PERSONALIZED FEDERATED PARTIAL LABEL LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial Label Learning (PLL) is known as a valuable learning technique that trains
Machine Learning (ML) models on partial label datasets, where the ground truth
label is concealed within the candidate label set of each data instance. It learns
label correlation based on a single centralized dataset to predict the latent true la-
bel. When data is non-independent and identically distributed (non-i.i.d.) among
workers in Federated Learning (FL), the label correlation interference problem
occurs. To address the issue, in this paper, we propose pFedPLL, a personalized
federated partial label learning algorithm with two new designs. In Label Correla-
tion Isolation (LCI), we first develop a twin-module architecture, where a feature-
level correlation matrix layer for each worker is isolated locally to prevent it from
being interfered with by others. In Label Correlation Personalization (LCP), we
then propose a bi-directional calibration loss to identify a more accurate learning
direction, where the positive calibration aligns the prediction result with the latent
true label, and the negative calibration pushes away the prediction result that falls
into the non-candidate label set. We provide a convergence analysis of pFedPLL

with a rate of O
(√

1
T

)
for smooth non-convex problems. Experiment results

demonstrate that pFedPLL outperforms SOTA federated PLL algorithms and the
federated version of centralized PLL algorithms across nine datasets.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has become an emerging topic in recent years
due to its advantages in efficient parallel training processes and private data isolation across work-
ers/clients. The performance of FL is highly related to the quantity, quality, and heterogeneity of
data. However, due to different data collection environments (non-expert users, limited computa-
tional power, and varying geo-locations of edge devices, etc.), it is costly to collect a large amount
(high quantity) of high quality (with ground truth label) data instances. One possible solution is
to first assign a set of potential true labels to each specific data instance to quickly collect a large
quantity of data. Then, the Machine Learning (ML) model learns and analyzes the label correlation
to mitigate the negative effect of noisy labels during training. Such a learning method is within the
scope of Partial Label Learning (PLL) (Cour et al., 2011), where the candidate label set (containing
potential true labels) consists of one ground truth label and several correlated false positive labels
(noisy labels). Since the ground truth label is concealed in the candidate label set, PLL aims to
train a classifier to predict the latent true label (the most likely true label) for each data instance by
analyzing the correlations among the labels within the candidate label set. The model performance
is highly dependent on the accurate label correlation learned during training.

The label correlation in PLL has been proven to be a valuable component in centralized ML. It
finds a way of training a model with relatively large quantity but low quality data while maintaining
the model performance. However, when data is non-independent and identically distributed (non-
i.i.d.) among workers in FL, the centralized label correlation may not work in such heterogeneous
data scenario. Due to non-i.i.d. data, the label correlation learned from the local dataset is only
applicable to each worker. When aggregation occurs, it will cause the label correlation interference
problem. For example, in worker “A”, the image data instance of digit “2” is very similar to digit
“3” (high label correlation between digit “2” and “3”), while in worker “B”, the digit “2” has a high
label correlation with digit “5”. During the aggregation phase, the global model aggregates each

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

worker’s label correlation and learns that the digit “2” has a high label correlation with both “3” and
“5”. When the global model is distributed back to workers, such label correlation interference will
mislead each worker’s unique label correlation information, resulting in the degradation of model
performance.

To address this issue, we develop an all-in-one solution, pFedPLL, a personalized federated par-
tial label learning algorithm that efficiently trains FL models on heterogeneous partial label data.
pFedPLL generally consists of two components: 1 Label Correlation Isolation (LCI) and 2 Label
Correlation Personalization (LCP).

LCI. We develop a new correlation matrix layer that is only updated on the local/worker dataset and
is not aggregated to the global model, preventing each worker’s unique label correlation information
from being interfered with by others. The training layers before the correlation matrix layer are
aggregated to obtain the global representative feature information. Please note that we insert the
correlation matrix layer in the second-to-last layer of the DNN model instead of the last layer. This is
because the last layer learns the exact label correlation (the same dimensions as the number of classes
of labels) with coarse granularity. To learn more correlation information, we push the correlation
matrix layer to the second-to-last layer by learning feature correlation with fine granularity, where
the second-to-last layer usually has more dimensions than the number of classes of labels.

LCP. Since the correlation matrix in LCI is isolated locally, the matrix itself is personalized. In order
to better utilize the personalized correlation matrix information to help identify a more accurate
learning direction, we further develop a bi-directional calibration loss. Apart from the basic well-
known summarization PLL loss (Feng et al., 2020), we propose positive calibration to align the
prediction result with the latent true label, and negative calibration to push away the prediction
result that falls into the non-candidate label set (labels that are not within the candidate label set).

We evaluate our pFedPLL algorithm both theoretically and experimentally. We prove that pFedPLL

converges for smooth non-convex problems at a rate of O
(√

1
T

)
over T global iterations. In the ex-

periments, we compare pFedPLL with mainstream federated PLL algorithms and federated version
of centralized PLL algorithms across nine datasets. The ablation study of LCI and LCP is also eval-
uated. The experiment results demonstrate that pFedPLL consistently outperforms all benchmark
algorithms with up to 49.93% accuracy increase in various ML settings.

2 RELATED WORK

Partial label learning. Current approaches to PLL disambiguation can be divided into two cate-
gories (Tian et al., 2023): averaging and identification methods. Averaging methods (Cour et al.,
2011; Hüllermeier & Beringer, 2005; Zhou & Gu, 2018) treat all candidate labels equally as ground
truth. Further advancing this, Gong et al. (2021) propose a discriminative metric learning approach
using a Mahalanobis distance metric to assess similarity between neighbors with similar labels.
However, such predictions are easily misled by false positive labels. On the other hand, identification
methods (Liu & Dietterich, 2012) aim to discover latent true labels during training, using techniques
such as Expectation Maximization (EM) algorithms (Jin & Ghahramani, 2002) and maximum mar-
gin methods (Nguyen & Caruana, 2008; Yu & Zhang, 2016) to resolve ambiguity. However, Both
approaches, however, rely on global information, such as label distribution in EM and distance met-
rics, which conflict with privacy requirements in federated learning (FL). As a result, traditional PLL
methods encounter significant challenges when applied directly in FL environments. Recently, DL-
based methodologies(Wen et al., 2021; Feng et al., 2020) have emerged to address the PLL problem.
Zhang et al. (2021) introduced Class Activation Value (CAV) to transform PLL into a supervised
learning problem. Although these methods perform well in centralized settings, simply migrating
them to an FL environment may still not work. Our proposed pFedPLL algorithm provides a series
of methods (LCI & LCP) to enable training models in federated partial label datasets.

Federated learning. FL (McMahan et al., 2017) allows local models to collaboratively train a
global model while keeping data private. However, the non-i.i.d. nature of local data can degrade
global model performance (Zhu et al., 2021). To address this, Personalized Federated Learning
(PFL) (Tan et al., 2022) was developed to adapt the global model to individual workers. Methods
like Split Learning (SL) (Vepakomma et al., 2018) and the “base layers + personalized layers”
design (Arivazhagan et al., 2019) help manage data heterogeneity by decoupling shared and local

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

model components. However, these approaches have mostly been tested on supervised datasets and
have yet to be adapted for PLL scenarios. Our pFedPLL algorithm personalizes part of the worker’s
model (LCP) to address the issue of non-i.i.d. partial label datasets.

Weakly supervised learning in FL. Weakly supervised learning includes Semi-supervised Learn-
ing (SSL), Noise Label Learning (NLL), Multi-instance Learning (MIL), and PLL, but studies on
PLL in FL are limited. Recently, Yan & Guo (2024) introduced FedPLL LAAR, which reduces
client drift via adaptive gradient alignment regularization but neglects label correlations. The method
assumes a class-dependent generation process (Lv et al., 2020), but in realistic scenarios, partial label
datasets should follow an instance-dependent generation process (Xu et al., 2021), where feature-
related false labels are more likely to enter the candidate label set, leading to stronger label cor-
relations. Besides PLL, other weakly supervised learning methods like SSL, NLL, and MIL are
well-studied in FL. Unlike PLL, these methods deal with single or unlabeled data and don’t involve
selecting the correct label from a candidate set. For example, FedMatch (Jeong et al., 2020) in SSL
uses labeled data as anchors to improve performance, while PLL faces greater challenges due to
uncertain true labels. NLL in FL, studied by (Song et al., 2022), focuses on mitigating the effect
of noisy data (incorrectly labeled), while PLL must identify the correct one from a set. FedMIL
(Bastola et al., 2024) focuses on bag-level predictions in MIL rather than identifying the latent true
label. By developing a feature-level correlation matrix layer in LCI, pFedPLL utilizes knowledge
from label correlations to effectively identify the latent true label from the candidate label set.

Considering the growing concerns about data privacy and the high costs of data labeling, exploring
PLL in an FL environment is essential. This paper investigates the PLL problem in FL, synergisti-
cally utilizing the advantages of DL-based PLL methods and FL.

3 METHOD: PFEDPLL

3.1 PROBLEM FORMULATION

We consider a typical FL system consisting of K workers/clients (indexed by k) and one aggregator.
The worker k maintains a local partial label dataset Dk ≜ {(xk

i , Y
k
i )}|Dk|

i=1 , where |Dk| is the total
number of data samples in Dk, xk

i is the ith data instance in worker k, and Y k
i ∈ {0, 1}C is the label

set of xk
i across C label classes. Let Mk

i = {j ∈ C | yki,j = 1, yki,j ∈ Y k
i } denote the candidate

label set and M̄k
i = {j ∈ C | yki,j = 0, yki,j ∈ Y k

i } denote the non-candidate label set. The ground
truth label is known to reside in the corresponding candidate label set, i.e., yki,j ∈ Y k

i ,∃j ∈ Mk
i , but

cannot be directly accessible, bringing significant challenges for training. The objective is to find
the optimal model w∗ that minimizes the global loss function

min
w∈Rd

F (w) ≜
K∑

k=1

Fk(w, Dk), (1)

where d is the dimension of model w, F (w) is the global loss function, and Fk(w) is the worker
k’s loss function. Here, we define the global loss function F (w) as the sum of all workers’ loss
functions Fk(w), because the weight/contribution of each worker loss function is learnt during the
training, rather than being predefined.

3.2 LCI: LABEL CORRELATION ISOLATION

The typical label correlation mechanism works well in centralized PLL (Xu et al., 2020). It learns
the label correlation from a single centralized dataset. When training FL models on decentralized
heterogeneous (non-i.i.d.) datasets, each worker can only learn its own label correlation from its own
dataset. When aggregation occurs, one worker’s label correlation might mislead others due to non-
i.i.d. data. To this end, we develop the Label Correlation Isolation (LCI) mechanism, which keeps
the label correlation information local and thus prevents it from being interfered with by others.

We start by considering a general Deep Neural Network (DNN) with n layers. We first propose
a label correlation matrix layer with the dimension of p × p. Then, we insert the layer into the
second-to-last position of the original DNN to form a new (n + 1) layers DNN, where the label
correlation matrix is the nth layer. Here, p varies depending on the architecture of the DNN model

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Global representation module

:   Representation module
 :   Relation module
 :   Label correlation matrix layer 
 :   Last layer 

Aggregator

 :   Positive calibration term 
 :   Negative calibration term 

 :   Summarization term 

Label: {Cat, Dog}

Label Correlation Isolation

Label Correlation Personalization

 +

 +

Triplet loss

Worker n

KL score function
Worker nWorker 1

Figure 1: An overview of pFedPLL. Each data instance in the partial label dataset is linked to a can-
didate label set, with only one true label that remains unknown during training. Label Correlation
Isolation (LCI) is achieved through the twin-module architecture (wrep&wrel), where only the rep-
resentation module is aggregated in the server. Label Correlation Personalization (LCP) is accom-
plished by training the model with the triplet loss including bi-directional calibration (Lpc&Lnc).

but is larger than the number of label classes (p > C). Therefore, the matrix contains more fine-
grained information for better performance (feature-level correlation vs. label-level correlation). Let
wrep,wc, and wo denote the 1st to (n−1)th layers, nth layer, and (n+1)th layer respectively. The
label prediction ŷi for xi is calculated as

ŷi = wo(wc(wrep(xi)). (2)

Since the correlation matrix is isolated within each worker, we introduce a twin-module architecture
where wrep is the representation module and wrel ≜ [wc,wo] denotes the relation module. wrep

is aggregated and redistributed back to each worker to obtain robust/global feature representation
information. wrel contains the worker’s unique feature-level correlation and is kept locally (not
being aggregated). wc is initialized as a p × p diagonal matrix with “1” on the diagonal and “0”
elsewhere when training begins. By adding superscript k (worker index), and subscripts i (data
instance index), t (global iteration index), and h (local iteration index), the prediction of the ith data
instance for kth worker at the hth local iteration in the tth global iteration is calculated as

ŷk
i,t,h = wk,rel

t,h (wk,rep
t,h (xi)),∀i ∈ |Dk|. (3)

The complete worker k’s model is then denoted by wk
t,h ≜ [wk,rep

t,h ,wk,rel
t,h ].

In summary, by implementing the twin-module architecture, we address the label correlation inter-
ference issue while maintaining the robust model performance.

3.3 LCP: LABEL CORRELATION PERSONALIZATION

We have utilized LCI in Section 3.2 to prevent each worker’s correlation information from being in-
terfered with by others. In this circumstance, the worker’s unique correlation matrix is personalized.
The next step is to further utilize this information to help identify a more accurate learning direc-
tion for each worker. On the basis of the summarization PLL loss (Feng et al., 2020), we propose
bi-directional calibration loss for each worker to encourage the correct prediction (aligning with
the latent true label) while discouraging the false prediction (prediction falls into the non-candidate
label set).

Summarization. We begin by introducing the summarization loss, a well-known loss used in PLL
which lets the model’s prediction fall into the candidate label set. For convenient presentation,
we omit iteration indexes and worker index (t, h, and k) for now. Let ỹi denote the prediction
(distribution) of the model after normalization (softmax) of ŷi, i.e.,

ỹi,j = softmax(ŷi,j) =
exp (ŷi,j)∑C
c=1 exp (ŷi,c)

,∀ŷi,c ∈ ŷi, ỹi,j ∈ ỹi. (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Then, we define the summarization loss as

Ls = − log(
∑
j∈Mi

ỹi,j). (5)

It calculates the predicted values of all labels within the candidate label set, but treats them equally
(simple summation without weight). Therefore, by minimizing Ls, we can only foster the prediction
result falling into the candidate label set.

Positive calibration. Ls has made the prediction fall into the candidate label set. Then, we zoom
in on the candidate label set to distinguish each candidate label so as to find the latent true label.
Let αi = [αi,1, αi,2, . . . , αi,C ]

⊤ denote the confidence of each label for data instance xi, where∑
j∈Mi

αi,j = 1, αi,j ≥ 0,∀j ∈ Mi, and αi,j = 0,∀j ∈ M̄i. Please note αi dynamically evolves
during the training, and we only use the confidence related to candidate labels. When training begins,
αi,j is initialized as 1

|Mi| ,∀j ∈ Mi, where |Mi| is the size of Mi. During training, αi,j is updated as

αi,j =
ỹi,j∑

m∈Mi
ỹi,m

,∀j ∈ Mi. (6)

Then, we define the positive calibration loss as

Lpc = −
∑
j∈Mi

αi,j log(ỹi,j). (7)

Here, we put the confidence αi,j as the weight/factor of log(ỹi,j), which aligns the confidence with
the predicted result for a specific label j in data instance xi. Therefore, when both αi,j and ỹi,j
are large, the Lpc is minimized, implying the nature of positive calibration, where the predicted
label with high weight (latent true label) should have high confidence. In the meanwhile, the noisy
information from potential false-positive labels is alleviated.

Negative calibration. When we zoom out on the whole label set (candidate label set vs. non-
candidate label set), any prediction that falls into the non-candidate label set is wrong. To this end,
we develop a negative calibration that pushes the prediction away from the non-candidate label set.
We select the label with the highest weight in the non-candidate label set and give a penalty to this
label (adding a “minus”). The negative calibration loss is calculated as

Lnc = − log(1−max{ỹi,j ∈ ỹi | j ∈ M̄i}). (8)

By minimizing Lnc, the probability of the highest label prediction in non-candidate label set is
minimized, implying the more likely prediction in the candidate label set.

Triplet loss. To summarize, we construct the final triplet loss for each worker k as follows (iteration
indexes and worker index (t, h, and k) are omitted on the right hand side):

Fk(·) = λ1Ls + λ2Lpc + λ3Lnc, (9)

where λ1, λ2, and λ3 are hyperparameters that can be adjusted before the training begins.

In summary, by implementing bi-directional calibration, we better utilize the personalized worker
correlation information to predict the latent true label for better model performance.

3.4 IMPLEMENTATION

The pFedPLL is implemented in Algorithm 1 with T total global iterations (indexed by t) and τ local
iterations (indexed by h ∈ [0, . . . , τ − 1]) between two consecutive global iterations. As shown in
Fig. 1, the pFedPLL generally comprises worker update with triplet loss calculations for LCP, and
aggregator update with LCI and KL score calculation for dynamic model weight/contribution.

Worker update. At each local iteration h ∈ [0, . . . , τ − 1] for the tth global iteration, each worker
first randomly fetches a mini-batch ξ from Dk (Line 6) and calculates the worker model loss (Line 7).
Then, each worker updates its representation module (Line 8) and relation module (Line 9) via
related gradient descent with ∇wrepFk(w

k
t,h, ξ) for representation module and ∇wrelFk(w

k
t,h, ξ)

for relation module. η is the learning rate. Afterward, the confidence of each data instance in ξ is

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 pFedPLL algorithm
Input: τ , T , η, K
Output: Final global representation module wrep

T

1: For each worker k, initialize: wk,rep
0,0 , wk,rel

0,0 ,∀k ∈ K, as the same value respectively,
and αk

i,j =
1

|Mk
i | ,∀j ∈ Mk

i , k ∈ K, where |Mk
i | is the size of Mk

i .

2: For the aggregator, initialize: wrep
0 = wk,rep

0,0 .
3: for t = 0, 1, . . . , T − 1 do
4: For each worker k = 1, . . . ,K in parallel:
5: for h = 0, 1, . . . , τ − 1 do
6: Randomly fetch mini-batch ξ from Dk.
7: Calculate triplet loss Fk(w

k
t,h, ξ) as equation 9.

8: wk,rep
t,h+1 = wk,rep

t,h − η∇wrepFk(w
k
t,h, ξ)

//Update worker k’s representation module

9: wk,rel
t,h+1 = wk,rel

t,h − η∇wrelFk(w
k
t,h, ξ)

//Update worker k’s relation module
10: For each instance i in mini-batch ξ, update confidence
11: αi,j =

ỹi,j∑
m∈Mi

ỹi,m
,∀j ∈ Mi.

12: if h == τ − 1 then
13: Send wk,rep

t,τ−1 to the aggregator.
14: end if
15: end for
16: For the aggregator:
17: St = KL Score (wrep

t , w1,rep
t,τ−1, . . . , w

k,rep
t,τ−1,K,B)

//Call KL Score function in Algorithm 2

18: wrep
t+1 =

∑K
k=1 s

k
tw

k,rep
t,τ−1,∀skt ∈ St

//Aggregate global representation module

19: wk,rep
t+1,0 = wrep

t+1 for each worker k.
//Distribute global representation module to workers

20: For each worker k = 1, . . . ,K in parallel:
21: wk,rel

t+1,0 = wk,rel
t,τ−1

//Retain worker’s own relation module
22: wk

t+1,0 = [wk,rep
t+1,0,w

k,rel
t+1,0]

//Construct worker’s complete model
23: end for

Algorithm 2 KL Score function

Input: wrep
t , w1,rep

t,τ−1, . . . , w
k,rep
t,τ−1,K,B

Output: St = {s1t , s2t , . . . , sKt }
1: For each batch b ∈ B and worker k ∈ K:
2: Calculate KL divergence Lt

k,b = KL(wk,rep
t,τ−1(ab)||w

rep
t (ab)).

3: For each worker k ∈ K:
4: Obtain the averaged distance ℓkt = 1

B

∑B
b=1 Lt

k,b.

5: Obtain the score skt =
ℓkt∑K

i=1(ℓit)
.

updated (Line 11). Finally, when h == τ − 1 (the end of local iteration for the tth global iteration),
each worker sends its representation module to the aggregator (Line 13).

Aggregator update. At each global iteration t ∈ [0, . . . , T − 1], when h == τ − 1 (the end
of the local iteration for the tth global iteration), the aggregator first calls the KL Score function
(Algorithm 2) to calculate scores for all workers (Line 17). Then, the aggregator aggregates the
global representation module using the scores as weights (Line 18) and distributes it back to each

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

worker (Line 19). Each worker’s unique relation module is kept locally (Line 21), and the updated
complete worker model is constructed for the next round of local iteration (Line 22).

KL score. To better measure the weight/contribution of worker models towards the global model, we
develop a dynamic weight assignment algorithm in Algorithm 2, using the Kullback–Leibler (KL)
divergence (Press et al., 2007) to measure the distance/similarity between the global representation
module wrep

t and each worker k’s representation module wk,rep
t,τ−1. We first feed the same B batches

of data A = {a1, . . . , aB} (randomly selected from the validation dataset1) to wrep
t and wk,rep

t,τ−1,
and then compare the predictions using the KL divergence (Line 2 in Algorithm 2),

Lt
k,b = KL(wk,rep

t,τ−1(ab)||w
rep
t (ab)),∀b ∈ B, (10)

where ab is the bth batch in A. We repeat the process for each batch and each worker to obtain
the distance matrix Lt =

[
Lt
k,b

]
K×B

. Finally, we average the values in each row to obtain the

averaged distance for each worker ℓkt = 1
B

∑B
b=1 Lt

k,b (Line 4), which is then normalized to obtain

the final score skt =
ℓkt∑K

i=1(ℓit)
,∀k ∈ K (Line 5). A higher score means a longer distance between

the worker and global representation modules, suggesting that such worker representation module
should contribute more to the global representation module, and thus we assign such score as the
weight (Line 18 in Algorithm 1). The output for Algorithm 2 are scores for all workers in the tth
global iteration St = {s1t , . . . , sKt }, where

∑
k∈K skt = 1.

4 CONVERGENCE ANALYSIS

To prove the convergence, we propose a virtual relation module update as if each worker’s isolated
relation module is aggregated and redistributed, i.e., wrel

t+1 =
∑K

k=1 s
k
tw

k,rel
t,τ−1 and wk,rel

t+1,0 = wrel
t+1.

Then, the complete virtual global model is denoted by wt+1 ≜ [wrep
t+1,w

rel
t+1]. According to the up-

date rules (Lines 8–9 and 18–19) in Algorithm 1, after performing the mathematical transformations,
we derive

wt+1 = wt − η

K∑
k=1

skt

τ−1∑
h=0

[∇wrepFk(w
k
t,h),∇wrelFk(w

k
t,h)], (11)

which is the basis to prove the convergence. We assume that the gradient of Fk(·) and F (·) is L-
Lipschitz and has bounded diversity, i.e., ∥∇F (w1)−∇F (w2)∥2 ≤ L∥w1 −w2∥2, ∥∇Fk(w1)−
∇Fk(w2)∥2 ≤ L∥w1 − w2∥2, and Eξ∼Dk

∥∇Fk(w1, ξ) − ∇Fk(w1)∥22 ≤ δ2,∀w1,w2, k, which
are necessary conditions for convergence analysis in the literature (Wang et al., 2019; Yang et al.,
2022; Huo et al., 2020).
Theorem 1. Suppose (1) η ≤ 1

2Lτ , and (2) ∃Finf is the lower bound of F (·), we have

min
t∈[0,...,T−1]

Eξ,k∥∇F (wt)∥22 ≤ 4L

T
(F (w0)− Finf )) + 3η2L2δ2. (12)

Proof. See complete proof in Appendix A.

Theorem 1 demonstrates that the square of the global model gradient is upper bounded by a function
that is inversely proportional to T . The output of the Algorithm 1, wrep is included in the global
model w, i.e., w = [wrep,wrel]. Therefore, we prove that the pFedPLL is convergent with the

convergence rate of O
(√

1
T

)
for smooth non-convex problems.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Comparison methods. We compare pFedPLL with the federated PLL algorithm (FedPLL LAAR),
federated version of centralized PLL algorithms (Fed CC, Fed RC, Fed CVAL, and Fed LW), and

1The validation dataset is randomly selected, comprising 20% of the test dataset, and is not used for training.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the classic FedAvg (McMahan et al., 2017). For FedPLL LAAR (Yan & Guo, 2024), most hyperpa-
rameter settings are from the original paper, but others are fine-tuned to improve performance in our
settings. For the federated version of centralized PLL algorithms, Fed CC, Fed RC, Fed CVAL, and
Fed LW are from the classifier-consistent approach (Feng et al., 2020), the risk-consistent approach
(Feng et al., 2020), CVAL (Zhang et al., 2021), and Leverage Weighted loss (Wen et al., 2021)
respectively.

Datasets. We utilize four benchmark datasets (MNIST (LeCun et al., 1998), Fashion-MNIST (F-
MNIST) (Xiao et al., 2017), Kuzushiji-MNIST (K-MNIST) (Clanuwat et al., 2018), and CIFAR-
10 (Krizhevsky et al., 2009)) and five real-world partial label datasets (Lost (Cour et al., 2011),
BirdSong (Briggs et al., 2012), MSRCv2 (Liu & Dietterich, 2012), Soccer Player (Zeng et al., 2013),
and Yahoo!News (Guillaumin et al., 2010)). Please note that the benchmark datasets are originally
intended for supervised learning, and we manually convert them into partial label datasets. Details
of these datasets can be found in Appendix B.1.

Data generation. To convert benchmark datasets into partial label datasets, we follow the instance-
dependent generation process (Xu et al., 2021), where the flipping probability of each incorrect
label is determined by the confidence prediction of a clean neural network trained on a supervised
dataset, and ρ ∈ [0, 1] is the temperature hyperparameter used to control the size of the candidate
label set. Please refer to Appendix B.2 for the detailed process. For non-i.i.d. data generation, we
use a Dirichlet distribution Dir(β) (Minka, 2000) to generate local data for each worker, where
β ∈ (0,+∞) is a hyperparameter that controls the level of data heterogeneity. A smaller β indicates
a higher level of non-i.i.d. In all experiments, we set β = 0.5. For accuracy assessment, since
the aggregator lacks a complete model (only a global representation module exists), we assess the
final accuracy as the averaged accuracy from all workers. Following the same methods (Tan et al.,
2023; Lu et al., 2022), we split each worker’s dataset into training (80%) and testing (20%) datasets
without any data instance overlap and then test each worker’s accuracy to obtain the final accuracy.

Equipment and hyperparameter settings. The experiments are carried out on a GPU tower server
equipped with 4 NVIDIA GeForce RTX 3090 GPUs. In all experiments, models are updated by
mini-batch SGD with learning rate η = 0.01, momentum factor = 0.9, and λ1 = λ2 = λ3 = 1.
Other hyperparameter settings are specified in Appendix B.3 Table 4.

5.2 MAIN EXPERIMENT RESULT

Table 1: Accuracy (%) comparisons on benchmark and real-world partial label datasets when T =
100. We use a 5-layer LeNet (LeCun et al., 1998) for MNIST, K-MNIST, and F-MNIST, a 34-layer
ResNet (He et al., 2016) for CIFAR-10, and a 2-layer MLP for real-world datasets.

pFedPLL Fed LW Fed CC Fed RC Fed CVAL FedPLL LAAR FedAvg

Benchmark
dataset

MNIST 98.1498.1498.14± 0.06 97.04± 0.05 96.60± 0.08 96.44± 0.03 48.21± 0.06 82.01± 0.03 92.69± 0.04
K-MNIST 89.1589.1589.15± 0.03 81.77± 0.08 79.87± 0.09 78.81± 0.08 47.79± 0.08 68.31± 0.04 73.82± 0.05
F-MNIST 84.0684.0684.06± 0.07 82.89± 0.11 82.35± 0.13 80.17± 0.09 46.35± 0.15 51.23± 0.05 80.12± 0.09
CIFAR-10 82.1082.1082.10± 0.11 67.94± 0.07 70.91± 0.09 59.56± 0.14 45.96± 0.11 48.10± 0.13 62.10± 0.19

Real-world
partial label
dataset

Lost 56.0456.0456.04± 0.04 55.29± 0.13 55.03± 0.06 53.87± 0.04 38.82± 0.07 52.96± 0.05 47.69± 0.03
Birdsong 77.9477.9477.94± 0.05 72.71± 0.09 71.32± 0.05 72.19± 0.05 63.76± 0.08 66.78± 0.07 65.59± 0.05
MSRCv2 56.1056.1056.10± 0.03 49.98± 0.07 49.16± 0.04 50.19± 0.07 35.43± 0.07 46.31± 0.05 41.60± 0.08
Yahoo!News 62.3562.3562.35± 0.07 52.48± 0.09 52.10± 0.05 52.16± 0.11 44.13± 0.11 50.98± 0.13 49.35± 0.17
SoccerPlayer 40.6840.6840.68± 0.09 37.58± 0.06 37.40± 0.12 37.65± 0.09 37.16± 0.10 39.17± 0.11 40.31± 0.12

Benchmark datasets. We evaluate our pFedPLL algorithm using four benchmark datasets: MNIST,
F-MNIST, K-MNIST, and CIFAR-10, all adapted to partial label datasets. Table 1 demonstrates that
pFedPLL outperforms all benchmarks, with a 1.1% accuracy improvement on MNIST, 7.38% on K-
MNIST, and 1.17% on F-MNIST compared to Fed LW, the second-best algorithm. On CIFAR-10,
pFedPLL exceeds Fed CC, the second-best algorithm, by 11.19%. Federated version of centralized
PLL methods (Fed LW, Fed CC, Fed RC, Fed CVAL) lack mechanisms to mitigate the non-i.i.d.
issue in FL, leading to suboptimal performance. In contrast, pFedPLL’s LCI design effectively ad-
dresses this issue by preventing interference from other workers’ models. We also observe that
FedPLL LAAR does not perform well. This is because it utilizes a class-dependent generation pro-
cess, where only labels with large differences are included in the candidate label set (e.g., horse
vs. cat). Nevertheless, in our experiment, we implement an instance-dependent generation process,
where similar labels are included in the candidate label set (e.g., horse vs. donkey), making disam-
biguation more difficult. In pFedPLL, we implement a fine-grained feature-level correlation matrix

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and bi-directional calibration loss to distinguish similar labels, leading to superior performance.
Overall, pFedPLL consistently outperforms all benchmarks, with training accuracy improvements
ranging from 1.1–49.93%.

Real-world partial label datasets. We evaluate our pFedPLL algorithm using five real-world
datasets: Lost, BirdSong, MSRCv2, Soccer Player, and Yahoo!News. A 2-layer Multi-Layer Per-
ceptron (MLP) model is implemented as the base model. In the pFedPLL, the correlation matrix
layer is inserted in the middle to form a three-layer MLP. We observe the same trend as in bench-
mark datasets, where the pFedPLL achieves the best accuracy with a 0.37–20.67% improvement.
Also, FedPLL LAAR does not perform well. This is because labels in the candidate label set of
real-world datasets often have strong correlations (similar labels), making disambiguation harder.

5.3 ABLATION STUDY

0 10 20 30 40 50

Global iterations (T)
(a)

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Ablation study of pFedPLL components

pFedPLL
pFedPLL_LCI_LCP
pFedPLL_LCP_KL
pFedPLL_LCP
pFedPLL_w/o

0 20 40 60 80 100

Global iterations (T)
(b)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Ablation study of triplet loss

Triplet loss
Ls+ Lpc
Ls+ Lnc
Lpc+ Lnc
Ls
Lpc
Lnc

95.0 97.5 100.0
97.0

97.5

98.0

98.5

Figure 2: Ablation study: (a) pFedPLL components, (b) triplet loss.

Table 2: Settings for the ablation study of
pFedPLL components. All ablations are
trained using LeNet on the MNIST dataset.

Ablation LCI LCP KL score
pFedPLL ✓ ✓ ✓
pFedPLL LCI LCP ✓ ✓
pFedPLL LCP KL ✓ ✓
pFedPLL LCP ✓
pFedPLL w/o

Table 3: Settings for the ablation study of
triplet loss. All ablations are trained using
LeNet on the MNIST dataset.

Ablation Ls Lpc Lnc

Triplet loss ✓ ✓ ✓
Ls + Lpc ✓ ✓
Ls + Lnc ✓ ✓
Lpc + Lnc ✓ ✓
Ls ✓
Lpc ✓
Lnc ✓

Ablation study of pFedPLL components. To validate the effectiveness of the components in pFed-
PLL, we break down the full pFedPLL into four reduced versions by dropping LCI, LCP, and the
KL score respectively, as shown in Table 2. Specifically, unchecking LCI removes the twin-module
architecture and the correlation matrix layer. Unchecking LCP replaces the triplet loss with the loss
function from Fed LW (which has the second-best performance). Unchecking the KL score uses
standard FedAvg aggregation method.

For better presentation, we use > to indicate “is better than”. In Figure 2(a), we observe that pFed-
PLL outperforms all reduced versions of pFedPLL, demonstrating that applying all components
in pFedPLL enhances both the accuracy and the convergence speed. 1 Comparing LCI, we ob-
serve that pFedPLL > pFedPLL LCP KL and pFedPLL LCI LCP > pFedPLL LCP. This demon-
strates that LCI isolates and protects each worker’s unique label correlation, enhancing model per-
formance. 2 Comparing LCP, we observe that pFedPLL LCP > pFedPLL w/o. This shows that the
bi-directional calibration in triplet loss helps effectively distinguish the latent true label. 3 Com-
paring the KL score, we observe that pFedPLL > pFedPLL LCI LCP and pFedPLL LCP KL >
pFedPLL w/o, indicating that the KL score helps measure each worker’s real contribution, leading
to better performance.

Ablation study of triplet loss. To validate the effectiveness of the triplet loss in LCP, we evaluate
the performance of each individual loss term, all combinations of every two terms, and the complete
triplet loss function, as shown in Table 3.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We have the following observations from Figure 2(b). 1 The full triplet loss outperforms all vari-
ant settings. Each ablation variant shows performance degradation, indicating that every loss term
contributes to the effectiveness of pFedPLL. 2 The triplet loss > Lpc + Lnc, and it also increases
rapidly in the early stage of training. Both demonstrate that the summarization term Ls helps guide
the model’s update direction by aligning the prediction with the candidate label set. It becomes
the cornerstone of the subsequent bi-directional calibration (Lpc&Lnc). 3 Ls + Lpc > Ls. This
demonstrates that Lpc plays a crucial role in effectively identifying the latent true label. Ls first
helps point a correct update direction (falling into the candidate label set) and Lpc then distinguishes
between the labelsl in the candidate label set (finding the latent true label). 4 . The negative calibra-
tion term Lnc acts as a double-edged sword. We observe that Ls + Lnc and Lpc + Lnc outperform
Ls and Lpc when model converges but underperform during the early stages. This can be explained
by the larger Lnc during the initial training phase when the model has not yet identified the correct
update direction, causing unstable loss calculations. Once the model finds the correct direction, Lnc

enhances the performance. When only applying Lnc alone, the model may fail to converge, because
it merely prevents predictions from falling into the non-candidate label set without considering the
latent true label.

In summary, every term contributes to the model performance. Implementing the triplet loss (Ls +
Lpc + Lnc) can achieve the best performance.

5.4 EFFECT OF CANDIDATE LABEL SET SIZE

0 20 40 60 80 100

Global iterations (T)
(a)

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Candidate label temperature ρ=0.2

pFedPLL
Fed_LW
Fed_CC
Fed_RC
Fed_CVAL
FedPLL_LAAR
FedAVG

0 20 40 60 80 100

Global iterations (T)
(b)

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Candidate label temperature ρ=0.3

pFedPLL
Fed_LW
Fed_CC
Fed_RC
Fed_CVAL
FedPLL_LAAR
FedAVG

0 20 40 60 80 100

Global iterations (T)
(c)

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Candidate label temperature ρ=0.4
pFedPLL
Fed_LW
Fed_CC
Fed_RC
Fed_CVAL
FedPLL_LAAR
FedAVG

Figure 3: (a)-(c): Accuracy comparison for pFedPLL under different temperature hyperparameters
ρ to control the size of the candidate label set: ρ = 0.2 (a), ρ = 0.3 (b), and ρ = 0.4 (c).

Adjusting the temperature hyperparameter ρ controls the candidate label set size. A larger set means
a more complicated label correlation, making disambiguation harder for PLL algorithms. In this
experiment, we train LeNet on the MNIST dataset and set ρ = 0.2, 0.3, 0.4 to obtain average candi-
date label set sizes of 2.99, 3.97, and 4.93 respectively. The rest of the settings are the same as those
used in the benchmark dataset experiment. In Figure 3(a)-(c), we observe that pFedPLL consistently
outperforms other algorithms, with a slight performance degradation as ρ increases, while other al-
gorithms degrade quickly. The pFedPLL algorithm surpasses the second-best algorithm by 0.32%,
0.59%, and 1.14% for ρ = 0.2, 0.3, and 0.4, respectively. With the help of the label correlation iso-
lation mechanism and bi-directional calibration loss, pFedPLL first protects each worker’s unique
label correlation and then accurately identifies the latent true label, both of which are beneficial for
handling different levels of candidate label set complexity.

6 CONCLUSION

In this paper, we propose pFedPLL, a personalized federated partial label learning algorithm. We de-
velop label correlation isolation and label correlation personalization to prevent the workers’ unique
label correlation information from being interfered with while helping identify more accurate learn-
ing direction for better performance. We provide a convergence analysis for pFedPLL, demonstrat-

ing a convergence rate of O
(√

1
T

)
for smooth non-convex problems. Extensive experiments on

both benchmark and real-world datasets illustrate that pFedPLL consistently outperforms SOTA al-
gorithms in a variety of settings. Notably, pFedPLL improved training accuracy by 1.1–49.93% on
benchmark datasets and 0.37–17.22% on real-world datasets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement. Please refer to Appendix B.3, Table 4 for detailed hy-
perparameter settings. The source code is available at https://www.dropbox.
com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=
cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0.

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Ashish Bastola, Hao Wang, Xiwen Chen, and Abolfazl Razi. Fedmil: Federated-multiple instance
learning for video analysis with optimized dpp scheduling. arXiv preprint arXiv:2403.17331,
2024.

Forrest Briggs, Xiaoli Z Fern, and Raviv Raich. Rank-loss support instance machines for miml in-
stance annotation. In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 534–542, 2012.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. Journal of Machine
Learning Research, 12(42):1501–1536, 2011.

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Prov-
ably consistent partial-label learning. Advances in neural information processing systems, 33:
10948–10960, 2020.

Xiuwen Gong, Dong Yuan, and Wei Bao. Discriminative metric learning for partial label learning.
IEEE Transactions on Neural Networks and Learning Systems, 34(8):4428–4439, 2021.

Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Multiple instance metric learning from
automatically labeled bags of faces. In Computer Vision–ECCV 2010: 11th European Conference
on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part I 11, pp.
634–647. Springer, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously labeled examples. In Advances
in Intelligent Data Analysis VI, pp. 168–179, 2005. ISBN 978-3-540-31926-9.

Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin Huang, et al. Faster on-device training using
new federated momentum algorithm. arXiv preprint arXiv:2002.02090, 2020.

Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Federated semi-supervised
learning with inter-client consistency & disjoint learning. arXiv preprint arXiv:2006.12097, 2020.

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances in Neural Information
Processing Systems, volume 15, 2002.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. N/A, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Liping Liu and Thomas Dietterich. A conditional multinomial mixture model for superset label
learning. In Advances in Neural Information Processing Systems, volume 25, 2012.

Wang Lu, Jindong Wang, Yiqiang Chen, Xin Qin, Renjun Xu, Dimitrios Dimitriadis, and Tao Qin.
Personalized federated learning with adaptive batchnorm for healthcare. IEEE Transactions on
Big Data, 2022.

11

https://www.dropbox.com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0
https://www.dropbox.com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0
https://www.dropbox.com/scl/fo/3abcjortvt8iyf1e9lv7r/AJp2Sf2euxkZPTQNNDAxciw?rlkey=cr4qz2g69d3upyzivu1v99vmm&st=08c1likl&dl=0


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identifica-
tion of true labels for partial-label learning. In international conference on machine learning, pp.
6500–6510. PMLR, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, and etc. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelligence and Statistics, pp. 1273–1282.
PMLR, 2017.

Thomas Minka. Estimating a dirichlet distribution, 2000.

Nam Nguyen and Rich Caruana. Classification with partial labels. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 551–559, 2008.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes: The Art of Scientific Computing (3rd Edition). Cambridge University Press, 2007. ISBN
978-0-521-88068-8.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE transactions on neural networks and learning
systems, 34(11):8135–8153, 2022.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Jiahao Tan, Yipeng Zhou, Gang Liu, Jessie Hui Wang, and Shui Yu. pfedsim: Similarity-aware
model aggregation towards personalized federated learning. arXiv preprint arXiv:2305.15706,
2023.

Yingjie Tian, Xiaotong Yu, and Saiji Fu. Partial label learning: Taxonomy, analysis and outlook.
Neural Networks, 161:708–734, 2023. ISSN 0893-6080.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. CoRR, abs/1812.00564, 2018. URL
http://arxiv.org/abs/1812.00564.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive federated learning in resource constrained edge computing systems. IEEE
JSAC, 2019.

Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Leveraged
weighted loss for partial label learning. In International conference on machine learning, pp.
11091–11100. PMLR, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ning Xu, Yun-Peng Liu, and Xin Geng. Partial multi-label learning with label distribution. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 6510–6517, 2020.

Ning Xu, Yun-Peng Liu, Yan Zhang, and Xin Geng. Progressive enhancement of label distributions
for partial multilabel learning. IEEE Transactions on Neural Networks and Learning Systems, 34
(8):4856–4867, 2021.

Yan Yan and Yuhong Guo. Federated partial label learning with local-adaptive augmentation and
regularization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
16272–16280, 2024.

Zhengjie Yang, Wei Bao, Dong Yuan, Nguyen H Tran, and Albert Y Zomaya. Federated learning
with nesterov accelerated gradient. IEEE Transactions on Parallel and Distributed Systems, 2022.

Fei Yu and Min-Ling Zhang. Maximum margin partial label learning. In Asian conference on
machine learning, pp. 96–111. PMLR, 2016.

12

http://arxiv.org/abs/1812.00564


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zinan Zeng, Shijie Xiao, Kui Jia, Tsung-Han Chan, Shenghua Gao, Dong Xu, and Yi Ma. Learning
by associating ambiguously labeled images. In Proceedings of the IEEE Conference on computer
vision and pattern recognition, pp. 708–715, 2013.

Fei Zhang, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Tao Qin, and Masashi Sugiyama. Ex-
ploiting class activation value for partial-label learning. In International conference on learning
representations, 2021.

Yu Zhou and Hong Gu. Geometric mean metric learning for partial label data. Neurocomputing,
275:394–402, 2018. ISSN 0925-2312.

Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A survey.
Neurocomputing, 465:371–390, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY MATERIAL: DETAILED CONVERGENCE ANALYSIS

A.1 PRELIMINARIES

To prove the convergence, we propose a virtual relation module update just like real representation
module update (Lines 18–19 in Algorithm 1) as follows:

wrel
t+1 =

K∑
k=1

sktw
k,rel
t,τ−1, (13)

wk,rel
t+1,0 = wrel

t+1. (14)

Thus, we define the complete virtual global model as

wt+1 ≜ [wrep
t+1,w

rel
t+1], (15)

where wt+1 represents the complete global model at the (t+ 1)th global iteration. Based on equa-
tion 14 and Line 19 of Algorithm 1, the local complete model is given as

wk
t+1,0 = [wk,rep

t+1,0,w
k,rel
t+1,0],∀k ∈ K. (16)

At the start of local training, the initial worker’s representation and relation modules are assigned
from the global representation and relation modules as described in equation 16. At this point, the
local model is identical to the global model. Thus,

wk
t+1,0 = wt+1,∀k ∈ K. (17)

The gradient of the global loss function can be decomposed into two components, which we define
as

∇F (wt+1) ≜ [∇wrepF (wt+1),∇wrelF (wt+1)]. (18)

The gradient of the worker’s loss function can be decomposed into two components, which we define
as

∇Fk(w
k
t+1,h) ≜ [∇wrepFk(w

k
t+1,h)),∇wrelFk(w

k
t+1,h)],∀k ∈ K,∀h ∈ [0, . . . , τ − 1]. (19)

Based on the definition in equation 19, we have

∥∇Fk(w
k
t+1,h)∥22 =∥[∇wrepFk(w

k
t+1,h)),∇wrelFk(w

k
t+1,h)]∥22

=(∥[∇wrepFk(w
k
t+1,h)), 0] + [0,∇wrelFk(w

k
t+1,h)])∥2)2

=∥∇wrepFk(w
k
t+1,h)∥22 + 2⟨[∇wrepFk(w

k
t+1,h)), 0], [0,∇wrelFk(w

k
t+1,h]⟩

+ ∥∇wrelFk(w
k
t+1,h]∥22.

=∥∇wrepFk(w
k
t+1,h)∥22 + ∥∇wrelFk(w

k
t+1,h)]∥22,∀k ∈ K,∀h ∈ [0, . . . , τ − 1]

(20)

According to Lines 8–9 in Algorithm 1, equation 16 and equation 19, we have the local update rule
as

wk
t,h+1 = wk

t,h − η∇Fk(w
k
t,h). (21)

To calculate the difference between h = 0 and h = τ − 1 according to equation 21, we have

wk
t,0 −wk

t,τ−1 = η

τ−1∑
h=0

∇Fk(w
k
t,h). (22)

According to equation 17, equation 19, and rearranging equation 22, we obtain

wt −wk
t,τ−1 = η

τ−1∑
h=0

[∇wrepFk(w
k
t,h),∇wrelFk(w

k
t,h)]. (23)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Based on Lines19 in Algorithm 1, equation 13, and equation 15, we have

wt −wt+1 = wt −
K∑

k=1

skt (w
k
t,τ−1) =

K∑
k=1

skt (wt −wk
t,τ−1) (24)

Substituting the equation 23 into equation 24, we have

wt −wt+1 = η

K∑
k=1

skt

τ−1∑
h=0

[∇wrepFk(w
k
t,h),∇wrelFk(w

k
t,h)] (25)

By rearranging equation 25, we derive the global update rule as

wt+1 = wt − η

K∑
k=1

skt

τ−1∑
h=0

[∇wrepFk(w
k
t,h),∇wrelFk(w

k
t,h)]. (26)

We assume Fk(·) satisfies the following standard conditions that are necessary for theoretical anal-
ysis (Wang et al., 2019; Yang et al., 2022; Huo et al., 2020).
Assumption 1. (Bounded diversity). The variance of stochastic gradient on local workers is upper
bounded. So that any k ∈

{
1, . . . ,K

}
, it is satisfied that

Eξ∼Dk
∥∇Fk(w, ξ)−∇Fk(w)∥22 ≤ δ2,∀w, k.

This is equivalent to

Eξ∼Dk
[∥∇wrel

Fk(w, ξ)−∇wrel
Fk(w)∥22 + ∥∇wrepFk(w, ξ)−∇wrepFk(w)∥22] ≤ δ2,∀w, k.

Assumption 2. (L-Lipschitz). The gradients of Fk and F are Lipschitz continuous with a constant
L > 0, so that any k ∈

{
1, . . . ,K

}
, it is satisfied that

∥∇Fk(w1)−∇Fk(w2)∥2 ≤ L∥w1 −w2∥2,∀w1,w2, k,

∥∇F (w1)−∇F (w2)∥2 ≤ L∥w1 −w2∥2,∀w1,w2.

A.2 CONVERGENCE ANALYSIS

In Lemma 1, we first prove the upper bound of pFedPLL between F (wt+1) and F (wt).
Lemma 1. Under Assumptions 1 and 2, the update of wt on the server at each global aggregation
is upper bounded as

Eξ,kF (wt+1) ≤F (wt)−
η

2
τ

k∑
k=1

sktEξ,k∥∇Fk(wt)∥22 + (
Lτη + 1

2
)η2Lτδ2

− (
η

2
− η

2
L2η2τ2 − L

2
η2τ)

k∑
k=1

skt

τ−1∑
h=0

Eξ,k∥∇Fk(w
k
t,h)∥22.

Proof. According to Assumptions 2 and equation 18, it holds that

EF (wt+1) ≤F (wt) + E⟨∇wrelF (wt),w
rel
t+1 −wrel

t ⟩
+ E⟨∇wrelF (wt),w

rel
t+1 −wrel

t ⟩

+
L

2
E∥wrel

t+1 −wrel
t ∥22 +

L

2
E∥wrep

t+1 −wrep
t ∥22. (27)

By taking the expectation over the samples, rearranging the inequality in equation 27, and consider-
ing equation 25 and equation 26, we obtain

EξF (wt+1) ≤F (wt)− ⟨∇wrepF (wt), µ

K∑
k=1

skt

τ−1∑
h=0

∇wrepFk(w
k
t,h, ξ)⟩

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

+
L

2
Eξ∥η

K∑
k=1

skt

τ−1∑
h=0

∇wrepFk(w
k
t,h, ξ)⟩∥22

− ⟨∇wrelF (wt), µ

K∑
k=1

skt

τ−1∑
h=0

∇wrelFk(w
k
t,h, ξ)⟩

+
L

2
Eξ∥η

K∑
k=1

skt

τ−1∑
h=0

∇wrelFk(w
k
t,h, ξ)⟩∥22, (28)

where the inequality follows from Eξ[∇wrepFk(w, ξ)] = ∇wrepFk(w) and Eξ[∇wrelFk(w, ξ)] =
∇wrelFk(w). Taking the expectations over the workers, we have

Eξ,kF (wt+1) ≤F (wt)−
η

2

k∑
k=1

skt

τ−1∑
h=0

Eξ,k[∥∇Fk(wt)∥22]

− η

2

k∑
k=1

skt

τ−1∑
h=0

Eξ,k[∥∇Fk(w
k
t,h)∥22]

+
η

2

k∑
k=1

skt

τ−1∑
h=0

Eξ,k[∥∇wrepFk(wt)−∇wrepFk(w
k
t,h))∥22

+ ∥∇wrelFk(wt)−∇wrelFk(w
k
t,h))∥22]︸ ︷︷ ︸

Q1

+
L

2
η2

k∑
k=1

skt Eξ,k[∥
τ−1∑
h=0

∇Fk(w
k
t,h, ξ)⟩∥22︸ ︷︷ ︸

Q2

, (29)

where the inequality follows from Jensen’s inequality, ⟨a, b⟩ = 1
2 (∥a∥

2
2+ |b∥22−∥a− b∥22). We next

prove the upper bound of Q1 as

Q1 ≤L2η2Eξ,k∥
h−1∑
j=0

(∇wrepFk(w
k
t,j , ξ)−∇wrepFk(w

k
t,j))∥22

+ L2η2Eξ,k∥
h−1∑
j=0

(∇wrelFk(w
k
t,j , ξ)−∇wrelFk(w

k
t,j))∥22

+ L2η2Eξ,k(∥(
h−1∑
j=0

∇wrepFk(w
k
t,j))∥22 + ∥(

h−1∑
j=0

∇wrelFk(w
k
t,j))∥22)

≤L2η2δ2h+ L2η2h

h−1∑
j=0

Eξ,k∥∇Fk(w
k
t,j)∥22, (30)

where the first inequality follows from Assumption 1, wt = wk
t,0, and E∥z1 + . . . + zn∥22 ≤

E[∥z1∥22 + . . . + ∥zn∥22] for any z1, . . . , z2. The last inequality is from the Assumption 2, and
equation 20. It sums the gradient difference from j = 0 to j = h− 1. Since the maximum value of
h is τ , we replace h with τ in equation 30 and sum from h = 0 to h = τ − 1. This still satisfies the
inequality in equation 30. Then, we have

Q1 ≤L2η2δ2τ + L2η2τ

τ−1∑
h=0

Eξ,k∥∇Fk(w
k
t,h)∥22, (31)

Summing the inequality in equation 31 from h = 0 to τ − 1, we have

τ−1∑
h=0

Q1 ≤ L2η2δ2τ2 + L2η2τ2
τ−1∑
h=0

Eξ,k∥∇Fk(w
k
t,h)∥22, (32)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where the inequality comes from h ≤ τ − 1. Then we going to prove the upper bound of Q2 as

Q2 =Eξ,k∥
τ−1∑
h=0

∇Fk(w
k
t,h, ξ)−∇Fk(w

k
t,h) +∇Fk(w

k
t,h)∥22 ≤ δ2τ + τ

τ−1∑
h=0

Eξ,k∥∇Fk(w
k
t,h)∥22,

(33)

where the inequality comes from Assumption 1. Substituting the upper bound of Q1 and Q2 into
inequality equation 29, we have

Eξ,kF (wt+1) ≤F (wt)−
η

2
τ

k∑
k=1

sktEξ,k∥∇Fk(wt)∥22 + (
Lτη + 1

2
)η2Lτδ2

− (
η

2
− η

2
L2η2τ2 − L

2
η2τ)

k∑
k=1

skt

τ−1∑
h=0

Eξ,k∥∇Fk(w
k
t,h)∥22. (34)

We have completed the proof of Lemma 1.

Based on Lemma 1, we can prove the convergence of pFedPLL by telescopically summing from
t = 0 to t = T − 1.
Theorem 2. Suppose (1) η ≤ 1

2Lτ ,∀t ∈ 0, . . . , T − 1, and (2) ∃Finf is the lower bound of F (·),
we have

min
t∈{0,...,T−1}

Eξ,k∥∇F (wt)∥22 ≤4L

T
(F (w0)− Finf )) + 3η2L2δ2.

Proof. According to Lemma 1, by setting η ≤ 1
2Lτ , we ensure that η

2 − η
2L

2η2τ2 − L
2 η

2τ ≥ 0.
This condition allows us to prove that the algorithm is guaranteed to converge to critical points
for smooth non-convex problems. Considering the above condition and taking the expectation of
inequality equation 34, upon rearranging, it holds that

Eξ,k∥∇F (wt)∥22 ≤4L(Eξ,kF (wt)− Eξ,kF (wt+1)) + 3η2L2δ2. (35)

Summing it from t = 0 to T − 1 we have

T−1∑
t=0

Eξ,k∥∇F (wt)∥22 ≤4L(F (w0)− F (wT )) + 3η2L2δ2T. (36)

Let Finf ≤ F (wT ), we have that

min
t∈{0.,...,T−1}

Eξ,k∥∇F (wt)∥22 ≤4L

T
(F (w0)− Finf )) + 3η2L2δ2.

We have completed the proof of the Theorem 2.

Under the condition η ≤ 1
2Lτ , we have proven that pFedPLL is guaranteed to converge to critical

points for smooth non-convex problems at a rate of O
(√

1
T

)
.

B SUPPLEMENTARY MATERIAL: ADDITIONAL EXPERIMENT SETUP AND
RESULT

B.1 EXPERIMENT DATASET

Benchmark datasets. We utilize MNIST (LeCun et al., 1998), Fashion-MNIST (F-MNIST) (Xiao
et al., 2017), Kuzushiji-MNIST (K-MNIST) (Clanuwat et al., 2018), and CIFAR-10 (Krizhevsky
et al., 2009). The MNIST, F-MNIST, and K-MNIST datasets, each consists of 60,000 training im-
ages and 10,000 test images. Each image is a grayscale 28 × 28 pixel grid categorized into 10
classes. MNIST, F-MNIST, and K-MNIST are designed for handwritten digit classification, fash-
ion item classification, and Japanese character classification, respectively. The CIFAR-10 dataset

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

includes 50,000 training images and 10,000 test images, with each 32 × 32 × 3 colored image in
RGB format organized into 10 classes for object classification tasks.

Real-world partial label datasets. We use five real-world partial label datasets, including Lost
(Cour et al., 2011), BirdSong (Briggs et al., 2012), MSRCv2 (Liu & Dietterich, 2012), Soccer
Player (Zeng et al., 2013), and Yahoo!News (Guillaumin et al., 2010). The Lost dataset, based on
the TV series “Lost”, includes 1,122 face images with 108 features, categorized into 16 names with
an average candidate label set size of 2.23. The Birdsong dataset focuses on bird song classification,
featuring 4,998 data points and 38 features, grouped into 13 categories with an average candidate
label set size of 2.18. The MSRCv2 dataset, aimed at object classification, contains 1,758 data
points with 48 features, categorized into 23 objects and an average candidate label set size of 3.16.
The Soccer Player dataset includes 17,472 data points with 279 features for naming soccer players,
categorized into 171 names, and an average candidate label set size of 2.09. Lastly, the Yahoo!News
dataset for automatic face naming in news articles includes 22,991 data points with 163 features,
grouped into 219 names, with an average candidate label set size of 1.91.

B.2 THE PARTIAL LABEL DATASET GENERATION

Since the benchmark datasets are primarily for supervised learning, we follow the instance-
dependent generation process (Xu et al., 2021) to manually corrupt them into partial label datasets.
Specifically, we determine the flipping probability for each incorrect label corresponding to an in-
stance xi using the confidence predictions from a clean neural network, θ̂, trained on the original
supervised dataset. The flip probability for each incorrect label for instance xi is calculated as:

ζj =
fj(xi; θ̂)

maxz∈Ỹi
fz(xi; θ̂)

ρ,∀j ∈ Ỹi, (37)

where Ỹi is the set of all incorrect labels except for the true label of xi, and fj(xi; θ̂) is the con-
fidence prediction of the clean neural network θ̂. ρ ∈ [0, 1] is the temperature hyperparameter to
control the candidate label set size.

B.3 EXPERIMENT HYPERPARAMETER SETTINGS

Table 4: Experiment hyperparameter settings.

Experiments Hyperparameters
T τ η β ρ K Batch size

Performance comparison (Table 1) 100 40 0.01 0.5 0.4 4 256 (Benchmark dataset)
32 (Real-world partial label dataset)

Ablation study of pFedPLL
components (Fig. 2(a)) 100 40 0.01 0.5 0.4 4 256

Ablation study of triplet loss (Fig. 2(b)) 100 40 0.01 0.5 0.4 4 256

Effect of Candidate Label Set Size
(Fig. 3(a)–(c)) 100 40 0.01 0.5 0.2,0.3,0.4 4 256

Effects of number of workers (Fig. 4) 100 40 0.01 0.5 0.4 20,40,80 256

B.4 EFFECT OF NUMBER OF WORKERS

0 10 20 30 40 50

Global iterations (T)

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Effect of no. of workers

20 worker
40 worker
80 worker

Figure 4: Effect of numbers
of workers in pFedPLL.

To demonstrate the impact of varying the number of workers on
the performance of pFedPLL methods, we set the number of work-
ers, K, to 20, 40, and 80. This experiment employs LeNet on the
MNIST dataset. In Figure 4, the results show that as the number of
workers increases, the convergence performance of pFedPLL de-
grades, aligning with our expectations, i.e., as the number of work-
ers grows, the data variance among workers increases, leading to
decreased convergence performance. Notably, even with up to 80
workers, pFedPLL maintains reasonable convergence performance.
In summary, the results demonstrate that pFedPLL effectively han-
dles PLL tasks in an FL setting, maintaining performance even with
an increased number of workers.

18


	Introduction
	Related Work
	Method: pFedPLL
	Problem Formulation
	LCI: Label Correlation Isolation
	LCP: Label Correlation Personalization
	Implementation

	Convergence Analysis
	Experiments
	Experiment Setup
	Main Experiment Result
	Ablation Study
	Effect of Candidate Label Set Size

	Conclusion
	Supplementary Material: Detailed Convergence Analysis
	Preliminaries
	Convergence Analysis

	Supplementary Material: Additional Experiment Setup and Result
	Experiment Dataset
	The Partial Label Dataset Generation
	Experiment hyperparameter Settings
	Effect of Number of Workers


