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Abstract

Protein language models have recently shown promise for de novo protein and pep-1

tide design, but they lack mechanisms for controllable optimization of functional2

properties. This limitation is particularly critical in therapeutic peptide discovery,3

where candidates must simultaneously satisfy multiple, often conflicting, biochemi-4

cal constraints. We present a token-aligned preference optimization framework that5

adapts a pretrained protein language model using pairwise sequence preferences6

conditioned on property-specific control tokens. By learning from comparative7

feedback rather than scalar rewards, our approach enables multi-objective con-8

trol and shows generalization to novel property combinations. As a case study,9

we apply the method to antimicrobial peptide (AMP) design, a clinically rele-10

vant but challenging testbed. Our approach achieves substantial improvements in11

jointly satisfying biochemical constraints, demonstrating the potential of preference12

alignment for controllable peptide design.13

1 Introduction14

Designing peptides with precise biochemical properties remains a central challenge in therapeutic15

development. Antimicrobial peptides (AMPs) are particularly attractive due to their broad-spectrum16

activity, low propensity for resistance, and potential applications in biofilm disruption, immune17

modulation, and synergistic treatment with conventional antibiotics [1, 2]. Despite this promise,18

translating AMPs into viable therapeutics is difficult. Functional candidates must simultaneously19

satisfy multiple constraints, including strong antimicrobial activity, low host toxicity, high aqueous20

solubility, and physicochemical stability. These requirements often interact antagonistically. For21

example, increased hydrophobicity may promote membrane disruption but at the cost of higher22

toxicity, while enhanced stability can compromise solubility [3]. This inherent trade-off makes AMP23

design a fundamentally multi-objective problem.24

Computational design offers a route to accelerate discovery and reduce the cost of experimental25

screening. Advances in protein language models (PLMs) trained on large sequence corpora have26

enabled the generation of syntactically valid and diverse peptides [4, 5, 6]. However, steering these27

models toward functional candidates remains challenging. Existing approaches tend to optimize a28

single objective [7, 8, 9, 10] or, at most, a narrow subset such as activity and toxicity [11, 12]Multi-29

objective control is typically attempted through scalar reward signals or filtering after generation, both30

of which can be brittle to balancing conflicting constraints. Furthermore, adversarial or reinforcement-31

based training strategies tend to introduce instability or reduce diversity [13, 14], making it hard32

to satisfy all objectives at once. As a result, current methods cannot reliably achieve simultaneous33

satisfaction of the full set of biochemical properties needed for therapeutic AMPs.34

In this work, we introduce tDPO-ProtGPT2, a token-aligned preference optimization [15] framework35

for de novo AMP generation. As shown in Figure 1, our method aligns a pretrained autoregressive36
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Figure 1: Multiobjective Token-Aligned DPO Pipeline. The pipeline consists of two stages. (A)
Training: The pretrained ProtGPT2 model’s tokenizer is extended with property-specific control
tokens. It is then fine-tuned via Direct Preference Optimization (DPO) using paired preferences
conditioned on these tokens. (B) Inference & Evaluation: The trained model generates peptides based
on a prefix of one or more control tokens. The resulting peptides are then validated using external
Property Classifiers to verify their properties.

protein language model (ProtGPT2 [4]) with property-specific sequence preferences through the use37

of control tokens. This design enables direct control over multiple biochemical objectives during38

generation, including objectives not observed jointly during training. Our main contributions are:39

• We introduce a novel framework that combines token-based control with a preference40

optimization approach to enable direct, multi-objective peptide design. This approach41

facilitates controllable generation via prompts and enables generalization to unseen property42

combinations.43

• The proposed model outperforms baselines and prior AMP generators in joint constraint44

satisfaction.45

To the best of our knowledge, this is the first method to combine token-based control with preference46

optimization for the simultaneous regulation of multiple biochemical properties in peptide design,47

and specifically in the context of de novo AMP generation. Although demonstrated on AMPs, the48

framework is potentially applicable to peptide and protein engineering tasks that require the joint49

control of multiple functional constraints.50

2 Related Work51

In this work, we perform multi-objective de novo AMP design by aligning a pretrained protein52

language model through token-conditioned preference optimization. This constitutes a prompting-53

style alignment method, and as such, we compare primarily against other prompting-based LLM54

approaches for AMP design. Most notably, AMP-Designer [8] adapts a general-purpose large55

language model with contrastive prompt tuning, knowledge distillation, and minimum inhibitory56

concentration (MIC)-guided reinforcement learning to achieve strong antimicrobial activity. However,57

this approach is predominantly single-objective. Considering multi-objective generative frameworks,58

we compare against MPOGAN [11], which employs property-specific discriminators within an59

adversarial training scheme to jointly optimize antimicrobial activity and cytotoxicity. More recently,60

HMAMP [12] introduced a hypervolume-driven reinforcement learning framework to optimize61

antimicrobial activity and hemolysis simultaneously, but its limited data availability and absence of62

complete code hinder reproducibility.63

3 Methods64

3.1 Dataset Construction65

We assembled our dataset by aggregating experimentally validated AMP sequences from seven public66

databases: APD3 [16], DRAMP [17], CAMP [18], LAMP2 [19], dbAMP [20], YADAMP [21], and67
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XUAMP [22]. After deduplication and standardization, this initial collection contained approximately68

28,000 unique AMP sequences. To ensure biological and therapeutic relevance, we filtered sequences69

to retain only those between 5 and 50 amino acids in length, excluding both short fragments and70

longer peptides that may exhibit protein-like properties. This reduced the dataset to approximately71

9,100 sequences which were then annotated using predictive tools for toxicity (ToxinPred3 [23]), and72

solubility (CamSol [24]). For stability, we applied ProtParam [25], classifying peptides with values73

below 40 as stable [26]. From this set, we retained the 1,191 AMP sequences that were predicted to74

be simultaneously non-toxic, soluble, and stable. We note that since these labels are derived from75

computational predictions rather than experimental measurements, serve only as proxies for true76

biological properties and inevitably introduce some degree of noise and potential bias into the training77

signal. The reported accuracies of each classifier are provided in Appendix Section A.1.78

To train the model, we constructed preference triplets of the form (token, preferred sequence, rejected79

sequence) for four objectives: AMP-likeness, toxicity, solubility, and stability. Each of the 1,19180

AMPs is labeled with all four properties, allowing us to derive a distinct preference pair for each81

property. In effect, this yields four parallel preference datasets of equal size, one per objective,82

which together form the basis for multi-objective training. For AMP-likeness, negative sequences83

were sampled from UniProt, matched in length but not annotated as antimicrobial peptides. To84

reduce redundancy, non-AMPs were clustered using MMseqs2 [27] at 50% sequence identity, and85

one representative per cluster was retained to ensure diversity. For the remaining properties, both86

preferred and rejected sequences were AMPs, where the preferred sequence satisfied the target87

property, and the rejected one did not. For example, in the toxicity objective, the preferred sequence88

was a non-toxic AMP, while the rejected sequence was a toxic AMP.89

3.2 Token-Conditioned Preference Optimization90

Problem setup. Peptide generation is modeled as conditional sequence generation. Let Σ denote91

the amino acid alphabet and y ∈ Σ≤T a peptide sequence. To control biochemical properties, we92

extend the tokenizer with the discrete control tokens93

T = {<AMP>, <NONTOXIC>, <SOLUBLE>, <STABLE>},

corresponding to antimicrobial activity, non-toxicity, solubility, and stability. Given a token t ∈ T ,94

the model defines a conditional policy πθ(y | t). Each training example is a triplet (t, y+, y−), where95

y+ is preferred to y− under the property indicated by t. The objective is to adapt πθ so that y+96

receives higher likelihood than y− while remaining close to a pretrained reference distribution πref .97

Direct Preference Optimization. We adopt Direct Preference Optimization (DPO) [15]. For each98

triplet (t, y+, y−) the loss is99

LDPO(t, y
+, y−) = − log σ(βt [∆θ(t)−∆ref(t)]) ,

with100

∆θ(t) = log πθ(y
+ | t)− log πθ(y

− | t), ∆ref(t) = log πref(y
+ | t)− log πref(y

− | t).

Here log πθ(y | t) is the sequence log-likelihood, computed as the sum of token log-probabilities101

when the control token t is prepended. Control tokens and padding symbols are masked from the loss102

so that gradients are computed only on peptide tokens.103

Multi-objective training. The dataset provides triplets (t, y+, y−) for all t ∈ T . Mini-batches are104

stratified across tokens to ensure balanced training. To balance heterogeneous supervision signals, a105

token-specific scaling factor βt is introduced. For more details, see Appendix Section A.2. The full106

training objective is107

L =
1

|B|
∑

(t,y+,y−)∈B

− log σ(βt [∆θ(t)−∆ref(t)]) ,

where B is a balanced batch across T .108
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Table 1: Diversity, novelty, and entropy of generated sequences. Novelty is defined as the percentage
of sequences with less than 80% identity to training data.

Model Diversity Novelty (80%) Entropy
MPOGAN 83.5% 96.1% 65.1%
AMP-Designer (n-tokens) 82.2% 99.9% 66.4%
AMP-Designer (top-k) 78.1% 100% 59.3%
ProtGPT2 75.1% 100% 56.4%
SFT-ProtGPT2 80.1% 100% 60.5%
DPO-ProtGPT2 70.9% 100% 66.5%
tDPO-ProtGPT2 (This work) 71.8% 100% 69.2%

Inference. At inference, conditioning is specified by prefixing the desired control token or a109

concatenation of tokens. For example, <AMP> directs generation toward antimicrobial peptides,110

while <AMP> <NONTOXIC> produces peptides that are simultaneously antimicrobial and non-toxic.111

Because optimization is performed jointly across tokens, the model generalizes to compositional112

prompts without additional finetuning. Sequences are decoded using stochastic sampling with fixed113

hyperparameters for comparability (temperature = 1.0, top-p = 0.95, top-k = 50).114

3.3 Baselines115

Our evaluation focuses on baselines directly relevant to multi-objective generation and prompting-116

based language models for de novo AMP design. We include MPOGAN and AMP-Designer as117

primary points of comparison. For AMP-Designer, we evaluate two modes described in the original118

work: (i) AMP-Prompt-TopK, which integrates prompting with top-k sampling, and (ii) AMP-Prompt119

(n-tokens), which applies contrastive prompt tuning with a fixed set of property tokens. As additional120

baselines, we consider: (i) ProtGPT2 in a zero-shot setting to assess whether a general protein121

language model exhibits inherent controllability without task-specific alignment, (ii) SFT-ProtGPT2,122

obtained by supervised fine-tuning on AMPs that jointly satisfy non-toxicity, solubility, and stability,123

and (iii) DPO-ProtGPT2, trained with unconditioned preference optimization. For each model, we124

generate and evaluate 1,000 peptide sequences under identical sampling and evaluation protocols.125

4 Results126

4.1 Sequence Novelty, Diversity, and Entropy127

Table 1 summarizes sequence-level diversity, novelty, and entropy across models. Diversity captures128

the proportion of unique sequences, novelty is defined as the percentage of sequences with less129

than 80% identity to training data, and entropy measures the token-level distributional spread across130

generated outputs. For fairness, all baselines (ProtGPT2, SFT-ProtGPT2, and DPO-ProtGPT2) are131

assessed using identical decoding parameters, ensuring that diversity and entropy-related metrics are132

directly comparable.133

MPOGAN achieves the highest diversity score (83.5%), indicating a broad exploration of peptide134

space. In contrast, our tDPO-ProtGPT2 model shows a diversity of 71.8%. The plain DPO-ProtGPT2135

variant also exhibits a similar diversity of 70.9%, which is a consequence of the stronger conditioning136

imposed by property-specific control tokens. While diversity is somewhat reduced due to targeting137

specific property combinations, this is an expected outcome of focusing the model on feasible regions138

of sequence space. Novelty remains at 100% across all deep learning models, confirming that none139

of the approaches rely on rote memorization of the training data. This suggests that preference140

optimization and token conditioning preserve generative originality.141

Entropy was computed as the normalized Shannon entropy of each peptide sequence, scaled to142

[0,1] by the maximum possible entropy of the amino acid alphabet. tDPO-ProtGPT2 achieved the143

highest mean entropy (69.2%), clearly higher than SFT-ProtGPT2 (60.5%) and modestly above plain144

DPO-ProtGPT2 (66.5%). This suggests that token conditioning maintains local variability relative145

to preference optimization alone, while also avoiding the reduction in variability observed under146

supervised fine-tuning. For comparison, MPOGAN achieved higher sequence-level diversity but a147
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lower entropy score, indicating that uniqueness across sequences does not necessarily correspond to148

greater token-level variability.149

Figure 2: Single-property satisfaction rates (left) and joint satisfaction across all four properties
(right) for the compared models. Error bars indicate 95% binomial confidence intervals (n = 1000).

4.2 Property Satisfaction Analysis150

We evaluated the quality of the generated peptides on four properties: antimicrobial activity, toxicity,151

solubility, and physicochemical stability. The first three were evaluated using leading predictive152

models such as PepNet [28], ToxiPep [29], and DSResSol [30]. These models differ from the153

classifiers employed during dataset construction to ensure unbiased validation. For stability, we154

applied the ProtParam instability index, keeping the stability threshold consistent between training155

and evaluation so that results are directly comparable. To complement these property-based evalua-156

tions, we also assessed the structural plausibility of representative peptides generated by our model157

using AlphaFold3 [31]. While not a primary benchmark, these visualizations provide qualitative158

confirmation that the designed sequences can adopt realistic conformations. The resulting structures159

are included in Appendix A.3.160

Figure 2 presents a comparative evaluation of single- and multi-objective performance. The radar161

plot on the left visualizes single-property performance across the four biochemical objectives. It is162

important to note that our model is evaluated on all four properties simultaneously. As provided,163

baselines such as MPOGAN and AMP-Designer demonstrate uneven performance, highlighting the164

difficulty of achieving a balanced trade-off in multi-objective design. In contrast, our tDPO-ProtGPT2165

model’s profile expands uniformly across all four axes, demonstrating consistent alignment with each166

objective simultaneously.167

The bar plot on the right of Figure 2 captures the stricter criterion of joint satisfaction, measuring168

the percentage of peptides that simultaneously fulfill all four biochemical constraints. Baselines169

such as MPOGAN, AMP-Designer, and ProtGPT2 remain below 10%, confirming that methods170

optimized for single objectives do not generalize well to complex multi-objective scenarios. SFT-171

ProtGPT2 and plain DPO-ProtGPT2 show significant improvements, reaching approximately 21.8%172

and 45.8% respectively, but still fail to ensure reliable simultaneous satisfaction. In sharp contrast,173

tDPO-ProtGPT2 reaches 72%, markedly higher than all other methods, underlining its superior174

performance in joint optimization.175

The large performance gap between plain DPO and token-conditioned DPO highlights a key advantage176

of our method. In the token-free setting, all preference signals are aggregated into a single model177

distribution, which makes it difficult to preserve information about distinct objectives. This leads to178

a compromise solution that, while better than other baselines, still struggles with joint satisfaction.179

In contrast, explicit control tokens partition the preference space, providing a context that isolates180

supervision for each property. This structure allows the model to align with multiple objectives181
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simultaneously rather than collapsing to partial compromises. Moreover, even when prompted with182

all four objectives, tDPO-ProtGPT2 performs comparably to baselines optimized for single properties,183

in some cases matching or slightly exceeding them.184

Figure 3: Multi-property satisfaction rates across models. Bars show the percentage of generated
peptides satisfying pairwise and triple combinations of biochemical properties, with 95% binomial
confidence intervals (n=1000).

4.3 Satisfaction under Combined Property Constraints185

Unlike existing baselines, which cannot be prompted for arbitrary combinations of objectives, our186

token-conditioned model can be explicitly directed toward subsets of constraints. Evaluating these187

intermediate cases shows how performance scales as more biochemical requirements are added, and188

highlights that tDPO-ProtGPT2 generalizes beyond single-objective or full four-objective settings.189

As shown in Figure 3, most baselines remain limited even when only two or three objectives are190

imposed simultaneously. MPOGAN and AMP-Designer achieve moderate success on pairs (30–50%)191

but drop below 10–15% on any triple combination. ProtGPT2 performs uniformly poorly across192

all settings, confirming the lack of controllability without fine-tuning. SFT-ProtGPT2 performs193

substantially better, especially for two-property combinations, but satisfaction declines rapidly when194

a third property is introduced, revealing limited compositional generalization. Plain DPO-ProtGPT2195

shows stronger consistency, with scores in the 50–80% range across pairs and three-way combinations,196

but it still exhibits degradation as constraints accumulate. By contrast, tDPO-ProtGPT2 maintains197

high performance even as requirements compound. Across two-property combinations, satisfaction198

exceeds 80–90%, and critically, the model sustains 68–70% satisfaction even on three-property199

subsets.200

5 Conclusion201

This work introduces tDPO-ProtGPT2, a token-aligned preference optimization framework that202

achieves multi-objective peptide generation. By conditioning a pretrained protein language model on203

property-specific tokens and aligning it through comparative preferences, we demonstrate simulta-204

neous optimization across antimicrobial activity, toxicity, solubility, and stability. Empirical results205

show that our approach outperforms prior methods, achieving much higher rates of joint constraint206

satisfaction while maintaining sequence diversity and comparable entropy. The ability to generalize to207

unseen property combinations demonstrates the flexibility of token-conditioned preference alignment,208

indicating its promise for real-world peptide discovery where multiple requirements must be met. A209

limitation of this study is that preference pairs were constructed using predictive classifiers, which210

inevitably introduce error and may not perfectly reflect biological ground truth. While our results211

highlight the potential of token-conditioned preference optimization, experimental validation will be212

required to fully establish reliability.213
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6 Code and Data Availability214

The code and data will be released upon publication.215
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A Appendix315

A.1 Performance of Classifiers316

Table 2: Reported performance of classifiers used for dataset construction and validation.

Model ACC MCC Recall Precision Specificity AUC

PepNet 0.819 0.666 0.940 0.705 – –
ToxiPep (CD-HIT 0.9) 0.850 0.701 0.827 – 0.873 –
DSResSol 0.796 0.589 0.769 0.817 0.782 –
ToxinPred3.0 0.930 0.860 0.920 0.930 0.930 0.980

Table 2 summarizes the reported performance of the predictive models used to construct and validate317

our training data. While all methods achieve reasonably high accuracies (0.80–0.93), they differ318

in sensitivity to false positives and false negatives. For instance, PepNet attains high recall (0.94)319

but relatively modest precision (0.705), suggesting that some sequences labeled as antimicrobial320

may be false positives. ToxiPep achieves balanced accuracy and specificity, but precision values321

were not reported, limiting interpretability of its error profile. DSResSol exhibits solid sensitivity322

and selectivity for solubility classification (ACC = 0.796), but its lower MCC (0.589) indicates that323

misclassifications remain substantial. ToxinPred3.0 provides the strongest overall metrics (ACC324

= 0.93, MCC = 0.86, AUC = 0.98), yet, like all predictors, it remains an imperfect proxy for325

experimental validation.326

These limitations highlight an inherent source of noise in our training data. Consequently, some327

preference pairs may be mislabeled, potentially biasing the optimization process. Nevertheless, the328

high aggregate performance of these tools, especially when combined, provides sufficient signal to329

guide preference learning.330

A.2 Training Details331

We trained two variants of our preference-optimized models: an unconditioned DPO model and a332

token-conditioned DPO model. Both were initialized from the same pretrained ProtGPT2 backbone333

and trained under comparable conditions to ensure a fair comparison. Training was conducted for334

three epochs with a learning rate of 5× 10−5 using AdamW optimization, gradient clipping at 1.0,335

and early stopping with a patience of 10 validation intervals. For each objective (AMP-likeness, non-336

toxicity, solubility, and stability), we constructed balanced preference pairs and sampled fixed-size337

batches to prevent bias toward any single property.338

In the unconditioned setting, preference signals from all objectives were aggregated into a single339

model distribution. In the conditioned setting, we extended the tokenizer with property-specific340

control tokens, which were prepended during training to isolate supervision for each property while341

retaining the same optimization strategy. Both models were validated at regular intervals and evaluated342

on the same held-out data splits to enable direct and unbiased comparison.343

Choice of Beta Values: An important design factor in preference optimization is the per-property344

scaling coefficient β, which balances the relative contribution of each objective to the DPO loss. We345

explored multiple β configurations to mitigate the dominance of any single property. Without scaling,346

the model showed a marked tendency to favor non-toxic and soluble peptides, often suppressing an-347

timicrobial activity and stability. This likely reflects that solubility and non-toxicity are comparatively348

easier constraints for the model to satisfy.349
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The most effective trade-off was achieved with βAMP = 1.5, βStable = 1.0, and βNon-Toxin = βSoluble =350

0.8. This configuration increased the emphasis on antimicrobial activity, maintained sufficient351

pressure on stability, and reduced the over-representation of non-toxic and soluble peptides. It352

consistently produced the highest joint satisfaction rates across objectives and was therefore adopted353

for all reported experiments.354

A.3 Structural Analysis of Generated Peptides355

Figure 4: Representative AlphaFold3 structural predictions of generated peptides of tDPO-ProtGPT2.
Structures are colored by per-residue confidence (pLDDT), with blue indicating very high confidence
(>90) and orange indicating very low confidence (<50). The predicted TM-score (pTM) for each
peptide is shown below its structure, reflecting overall global fold reliability.

To complement the property-based evaluations, we assessed the structural plausibility of representative356

peptides generated by our tDPO-ProtGPT2 framework using AlphaFold3 [31]. As shown in Figure 4,357

the predicted structures consistently form α-helical motifs, which are a common feature of many358

naturally occurring antimicrobial peptides. The high confidence scores (pLDDT > 90 across most359

residues) indicate reliable local structural assignments, suggesting that the designed sequences are360

not only biochemically optimized but also conformationally stable.361

The predicted pTM-scores indicate that the generated peptides are not strongly aligned to existing362

structural templates (pTM<0.5). This outcome is expected in the context of de novo design, where363

the objective is to generate novel sequences and conformations rather than reproduce known folds.364

However, we treat these results as complementary evidence rather than definitive proof. Experimental365

validation will ultimately be required to confirm both structural and functional properties.366

10


	Introduction
	Related Work
	Methods
	Dataset Construction
	Token-Conditioned Preference Optimization
	Baselines

	Results
	Sequence Novelty, Diversity, and Entropy
	Property Satisfaction Analysis
	Satisfaction under Combined Property Constraints

	Conclusion
	Code and Data Availability
	Appendix
	Performance of Classifiers
	Training Details
	Structural Analysis of Generated Peptides


