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Abstract

Protein language models have recently shown promise for de novo protein and pep-
tide design, but they lack mechanisms for controllable optimization of functional
properties. This limitation is particularly critical in therapeutic peptide discovery,
where candidates must simultaneously satisfy multiple, often conflicting, biochemi-
cal constraints. We present a token-aligned preference optimization framework that
adapts a pretrained protein language model using pairwise sequence preferences
conditioned on property-specific control tokens. By learning from comparative
feedback rather than scalar rewards, our approach enables multi-objective con-
trol and shows generalization to novel property combinations. As a case study,
we apply the method to antimicrobial peptide (AMP) design, a clinically rele-
vant but challenging testbed. Our approach achieves substantial improvements in
jointly satisfying biochemical constraints, demonstrating the potential of preference
alignment for controllable peptide design.

1 Introduction

Designing peptides with precise biochemical properties remains a central challenge in therapeutic
development. Antimicrobial peptides (AMPs) are particularly attractive due to their broad-spectrum
activity, low propensity for resistance, and potential applications in biofilm disruption, immune
modulation, and synergistic treatment with conventional antibiotics [1} 2]]. Despite this promise,
translating AMPs into viable therapeutics is difficult. Functional candidates must simultaneously
satisfy multiple constraints, including strong antimicrobial activity, low host toxicity, high aqueous
solubility, and physicochemical stability. These requirements often interact antagonistically. For
example, increased hydrophobicity may promote membrane disruption but at the cost of higher
toxicity, while enhanced stability can compromise solubility [3]. This inherent trade-off makes AMP
design a fundamentally multi-objective problem.

Computational design offers a route to accelerate discovery and reduce the cost of experimental
screening. Advances in protein language models (PLMs) trained on large sequence corpora have
enabled the generation of syntactically valid and diverse peptides [4} 5. 6]. However, steering these
models toward functional candidates remains challenging. Existing approaches tend to optimize a
single objective [[7, 1819} [10] or, at most, a narrow subset such as activity and toxicity [11} [12]Multi-
objective control is typically attempted through scalar reward signals or filtering after generation, both
of which can be brittle to balancing conflicting constraints. Furthermore, adversarial or reinforcement-
based training strategies tend to introduce instability or reduce diversity [13} [14], making it hard
to satisfy all objectives at once. As a result, current methods cannot reliably achieve simultaneous
satisfaction of the full set of biochemical properties needed for therapeutic AMPs.

In this work, we introduce tDPO-ProtGPT?2, a token-aligned preference optimization [15]] framework
for de novo AMP generation. As shown in Figure[T] our method aligns a pretrained autoregressive
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Figure 1: Multiobjective Token-Aligned DPO Pipeline. The pipeline consists of two stages. (A)
Training: The pretrained ProtGPT2 model’s tokenizer is extended with property-specific control
tokens. It is then fine-tuned via Direct Preference Optimization (DPO) using paired preferences
conditioned on these tokens. (B) Inference & Evaluation: The trained model generates peptides based
on a prefix of one or more control tokens. The resulting peptides are then validated using external
Property Classifiers to verify their properties.

protein language model (ProtGPT2 [4]]) with property-specific sequence preferences through the use
of control tokens. This design enables direct control over multiple biochemical objectives during
generation, including objectives not observed jointly during training. Our main contributions are:

* We introduce a novel framework that combines token-based control with a preference
optimization approach to enable direct, multi-objective peptide design. This approach
facilitates controllable generation via prompts and enables generalization to unseen property
combinations.

* The proposed model outperforms baselines and prior AMP generators in joint constraint
satisfaction.

To the best of our knowledge, this is the first method to combine token-based control with preference
optimization for the simultaneous regulation of multiple biochemical properties in peptide design,
and specifically in the context of de novo AMP generation. Although demonstrated on AMPs, the
framework is potentially applicable to peptide and protein engineering tasks that require the joint
control of multiple functional constraints.

2 Related Work

In this work, we perform multi-objective de novo AMP design by aligning a pretrained protein
language model through token-conditioned preference optimization. This constitutes a prompting-
style alignment method, and as such, we compare primarily against other prompting-based LLM
approaches for AMP design. Most notably, AMP-Designer [8]] adapts a general-purpose large
language model with contrastive prompt tuning, knowledge distillation, and minimum inhibitory
concentration (MIC)-guided reinforcement learning to achieve strong antimicrobial activity. However,
this approach is predominantly single-objective. Considering multi-objective generative frameworks,
we compare against MPOGAN [[L1], which employs property-specific discriminators within an
adversarial training scheme to jointly optimize antimicrobial activity and cytotoxicity. More recently,
HMAMP [12]] introduced a hypervolume-driven reinforcement learning framework to optimize
antimicrobial activity and hemolysis simultaneously, but its limited data availability and absence of
complete code hinder reproducibility.

3 Methods

3.1 Dataset Construction

We assembled our dataset by aggregating experimentally validated AMP sequences from seven public
databases: APD3 [16], DRAMP [17], CAMP [18]], LAMP2 [19], dbAMP [20], YADAMP [21]], and
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XUAMP [22]. After deduplication and standardization, this initial collection contained approximately
28,000 unique AMP sequences. To ensure biological and therapeutic relevance, we filtered sequences
to retain only those between 5 and 50 amino acids in length, excluding both short fragments and
longer peptides that may exhibit protein-like properties. This reduced the dataset to approximately
9,100 sequences which were then annotated using predictive tools for toxicity (ToxinPred3 [23]]), and
solubility (CamSol [24]]). For stability, we applied ProtParam [25], classifying peptides with values
below 40 as stable [26]. From this set, we retained the 1,191 AMP sequences that were predicted to
be simultaneously non-toxic, soluble, and stable. We note that since these labels are derived from
computational predictions rather than experimental measurements, serve only as proxies for true
biological properties and inevitably introduce some degree of noise and potential bias into the training
signal. The reported accuracies of each classifier are provided in Appendix Section A.1.

To train the model, we constructed preference triplets of the form (token, preferred sequence, rejected
sequence) for four objectives: AMP-likeness, toxicity, solubility, and stability. Each of the 1,191
AMPs is labeled with all four properties, allowing us to derive a distinct preference pair for each
property. In effect, this yields four parallel preference datasets of equal size, one per objective,
which together form the basis for multi-objective training. For AMP-likeness, negative sequences
were sampled from UniProt, matched in length but not annotated as antimicrobial peptides. To
reduce redundancy, non-AMPs were clustered using MMseqs2 [27]] at 50% sequence identity, and
one representative per cluster was retained to ensure diversity. For the remaining properties, both
preferred and rejected sequences were AMPs, where the preferred sequence satisfied the target
property, and the rejected one did not. For example, in the toxicity objective, the preferred sequence
was a non-toxic AMP, while the rejected sequence was a toxic AMP.

3.2 Token-Conditioned Preference Optimization

Problem setup. Peptide generation is modeled as conditional sequence generation. Let > denote
the amino acid alphabet and y € =7 a peptide sequence. To control biochemical properties, we
extend the tokenizer with the discrete control tokens

T = {<AMP>, <NONTOXIC>, <SOLUBLE>, <STABLE>},

corresponding to antimicrobial activity, non-toxicity, solubility, and stability. Given a token ¢ € T,
the model defines a conditional policy my(y | t). Each training example is a triplet (¢, 47,4~ ), where
y* is preferred to y~ under the property indicated by ¢. The objective is to adapt 7 so that yT
receives higher likelihood than y~ while remaining close to a pretrained reference distribution 7.

Direct Preference Optimization. We adopt Direct Preference Optimization (DPO) [15]]. For each
triplet (¢, 4",y ™) the loss is

EDPO (t7 y+7 y_) = - 10g U(ﬂt [AQ (t> - Aref (tﬂ) )
with
Ag(t) =logma(y™ | t) —logma(y™ | t), Aer(t) =logmer(y™ | t) —log mer(y™ | ).

Here log 7y (y | t) is the sequence log-likelihood, computed as the sum of token log-probabilities
when the control token ¢ is prepended. Control tokens and padding symbols are masked from the loss
so that gradients are computed only on peptide tokens.

Multi-objective training. The dataset provides triplets (¢, ",y ™) for all ¢ € 7. Mini-batches are
stratified across tokens to ensure balanced training. To balance heterogeneous supervision signals, a
token-specific scaling factor (3, is introduced. For more details, see Appendix Section A.2. The full
training objective is

L= > —loga(Be[Ae(t) — Awet(t)]),

1Bl (tyt,y—)eB

where B is a balanced batch across 7T .
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Table 1: Diversity, novelty, and entropy of generated sequences. Novelty is defined as the percentage
of sequences with less than 80% identity to training data.

Model Diversity Novelty (80%) Entropy
MPOGAN 83.5% 96.1% 65.1%
AMP-Designer (n-tokens) 82.2% 99.9% 66.4%
AMP-Designer (top-k) 78.1% 100% 59.3%
ProtGPT2 75.1% 100% 56.4%
SFT-ProtGPT2 80.1% 100% 60.5%
DPO-ProtGPT2 70.9% 100% 66.5%
tDPO-ProtGPT2 (This work) 71.8% 100% 69.2%

Inference. At inference, conditioning is specified by prefixing the desired control token or a
concatenation of tokens. For example, <AMP> directs generation toward antimicrobial peptides,
while <AMP> <NONTOXIC> produces peptides that are simultaneously antimicrobial and non-toxic.
Because optimization is performed jointly across tokens, the model generalizes to compositional
prompts without additional finetuning. Sequences are decoded using stochastic sampling with fixed
hyperparameters for comparability (temperature = 1.0, top-p = 0.95, top-k = 50).

3.3 Baselines

Our evaluation focuses on baselines directly relevant to multi-objective generation and prompting-
based language models for de novo AMP design. We include MPOGAN and AMP-Designer as
primary points of comparison. For AMP-Designer, we evaluate two modes described in the original
work: (i) AMP-Prompt-TopK, which integrates prompting with top-k sampling, and (ii) AMP-Prompt
(n-tokens), which applies contrastive prompt tuning with a fixed set of property tokens. As additional
baselines, we consider: (i) ProtGPT?2 in a zero-shot setting to assess whether a general protein
language model exhibits inherent controllability without task-specific alignment, (ii) SFT-ProtGPT2,
obtained by supervised fine-tuning on AMPs that jointly satisfy non-toxicity, solubility, and stability,
and (iii) DPO-ProtGPT2, trained with unconditioned preference optimization. For each model, we
generate and evaluate 1,000 peptide sequences under identical sampling and evaluation protocols.

4 Results

4.1 Sequence Novelty, Diversity, and Entropy

Table 1 summarizes sequence-level diversity, novelty, and entropy across models. Diversity captures
the proportion of unique sequences, novelty is defined as the percentage of sequences with less
than 80% identity to training data, and entropy measures the token-level distributional spread across
generated outputs. For fairness, all baselines (ProtGPT2, SFT-ProtGPT2, and DPO-ProtGPT2) are
assessed using identical decoding parameters, ensuring that diversity and entropy-related metrics are
directly comparable.

MPOGAN achieves the highest diversity score (83.5%), indicating a broad exploration of peptide
space. In contrast, our tDPO-ProtGPT2 model shows a diversity of 71.8%. The plain DPO-ProtGPT2
variant also exhibits a similar diversity of 70.9%, which is a consequence of the stronger conditioning
imposed by property-specific control tokens. While diversity is somewhat reduced due to targeting
specific property combinations, this is an expected outcome of focusing the model on feasible regions
of sequence space. Novelty remains at 100% across all deep learning models, confirming that none
of the approaches rely on rote memorization of the training data. This suggests that preference
optimization and token conditioning preserve generative originality.

Entropy was computed as the normalized Shannon entropy of each peptide sequence, scaled to
[0,1] by the maximum possible entropy of the amino acid alphabet. tDPO-ProtGPT?2 achieved the
highest mean entropy (69.2%), clearly higher than SFT-ProtGPT2 (60.5%) and modestly above plain
DPO-ProtGPT2 (66.5%). This suggests that token conditioning maintains local variability relative
to preference optimization alone, while also avoiding the reduction in variability observed under
supervised fine-tuning. For comparison, MPOGAN achieved higher sequence-level diversity but a
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lower entropy score, indicating that uniqueness across sequences does not necessarily correspond to
greater token-level variability.
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Figure 2: Single-property satisfaction rates (left) and joint satisfaction across all four properties
(right) for the compared models. Error bars indicate 95% binomial confidence intervals (n = 1000).

4.2 Property Satisfaction Analysis

We evaluated the quality of the generated peptides on four properties: antimicrobial activity, toxicity,
solubility, and physicochemical stability. The first three were evaluated using leading predictive
models such as PepNet [28]], ToxiPep [29], and DSResSol [30]. These models differ from the
classifiers employed during dataset construction to ensure unbiased validation. For stability, we
applied the ProtParam instability index, keeping the stability threshold consistent between training
and evaluation so that results are directly comparable. To complement these property-based evalua-
tions, we also assessed the structural plausibility of representative peptides generated by our model
using AlphaFold3 [31]]. While not a primary benchmark, these visualizations provide qualitative
confirmation that the designed sequences can adopt realistic conformations. The resulting structures
are included in Appendix [A.3]

Figure 2] presents a comparative evaluation of single- and multi-objective performance. The radar
plot on the left visualizes single-property performance across the four biochemical objectives. It is
important to note that our model is evaluated on all four properties simultaneously. As provided,
baselines such as MPOGAN and AMP-Designer demonstrate uneven performance, highlighting the
difficulty of achieving a balanced trade-off in multi-objective design. In contrast, our tDPO-ProtGPT2
model’s profile expands uniformly across all four axes, demonstrating consistent alignment with each
objective simultaneously.

The bar plot on the right of Figure 2] captures the stricter criterion of joint satisfaction, measuring
the percentage of peptides that simultaneously fulfill all four biochemical constraints. Baselines
such as MPOGAN, AMP-Designer, and ProtGPT2 remain below 10%, confirming that methods
optimized for single objectives do not generalize well to complex multi-objective scenarios. SFT-
ProtGPT2 and plain DPO-ProtGPT2 show significant improvements, reaching approximately 21.8%
and 45.8% respectively, but still fail to ensure reliable simultaneous satisfaction. In sharp contrast,
tDPO-ProtGPT2 reaches 72%, markedly higher than all other methods, underlining its superior
performance in joint optimization.

The large performance gap between plain DPO and token-conditioned DPO highlights a key advantage
of our method. In the token-free setting, all preference signals are aggregated into a single model
distribution, which makes it difficult to preserve information about distinct objectives. This leads to
a compromise solution that, while better than other baselines, still struggles with joint satisfaction.
In contrast, explicit control tokens partition the preference space, providing a context that isolates
supervision for each property. This structure allows the model to align with multiple objectives
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Figure 3: Multi-property satisfaction rates across models. Bars show the percentage of generated
peptides satisfying pairwise and triple combinations of biochemical properties, with 95% binomial
confidence intervals (n=1000).

4.3 Satisfaction under Combined Property Constraints

Unlike existing baselines, which cannot be prompted for arbitrary combinations of objectives, our
token-conditioned model can be explicitly directed toward subsets of constraints. Evaluating these
intermediate cases shows how performance scales as more biochemical requirements are added, and
highlights that tDPO-ProtGPT2 generalizes beyond single-objective or full four-objective settings.

As shown in Figure 3] most baselines remain limited even when only two or three objectives are
imposed simultaneously. MPOGAN and AMP-Designer achieve moderate success on pairs (30-50%)
but drop below 10-15% on any triple combination. ProtGPT2 performs uniformly poorly across
all settings, confirming the lack of controllability without fine-tuning. SFT-ProtGPT2 performs
substantially better, especially for two-property combinations, but satisfaction declines rapidly when
a third property is introduced, revealing limited compositional generalization. Plain DPO-ProtGPT2
shows stronger consistency, with scores in the 50-80% range across pairs and three-way combinations,
but it still exhibits degradation as constraints accumulate. By contrast, tDPO-ProtGPT2 maintains
high performance even as requirements compound. Across two-property combinations, satisfaction
exceeds 80-90%, and critically, the model sustains 68-70% satisfaction even on three-property
subsets.

5 Conclusion

This work introduces tDPO-ProtGPT?2, a token-aligned preference optimization framework that
achieves multi-objective peptide generation. By conditioning a pretrained protein language model on
property-specific tokens and aligning it through comparative preferences, we demonstrate simulta-
neous optimization across antimicrobial activity, toxicity, solubility, and stability. Empirical results
show that our approach outperforms prior methods, achieving much higher rates of joint constraint
satisfaction while maintaining sequence diversity and comparable entropy. The ability to generalize to
unseen property combinations demonstrates the flexibility of token-conditioned preference alignment,
indicating its promise for real-world peptide discovery where multiple requirements must be met. A
limitation of this study is that preference pairs were constructed using predictive classifiers, which
inevitably introduce error and may not perfectly reflect biological ground truth. While our results
highlight the potential of token-conditioned preference optimization, experimental validation will be
required to fully establish reliability.
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6 Code and Data Availability

The code and data will be released upon publication.
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A Appendix
A.1 Performance of Classifiers

Table 2: Reported performance of classifiers used for dataset construction and validation.

Model ACC MCC Recall Precision Specificity AUC
PepNet 0.819 0.666 0.940 0.705 - -
ToxiPep (CD-HIT 0.9) 0.850 0.701  0.827 - 0.873 -
DSResSol 0.796  0.589  0.769 0.817 0.782 -
ToxinPred3.0 0.930 0.860 0.920 0.930 0.930 0.980

Table 2 summarizes the reported performance of the predictive models used to construct and validate
our training data. While all methods achieve reasonably high accuracies (0.80-0.93), they differ
in sensitivity to false positives and false negatives. For instance, PepNet attains high recall (0.94)
but relatively modest precision (0.705), suggesting that some sequences labeled as antimicrobial
may be false positives. ToxiPep achieves balanced accuracy and specificity, but precision values
were not reported, limiting interpretability of its error profile. DSResSol exhibits solid sensitivity
and selectivity for solubility classification (ACC = 0.796), but its lower MCC (0.589) indicates that
misclassifications remain substantial. ToxinPred3.0 provides the strongest overall metrics (ACC
= 0.93, MCC = 0.86, AUC = 0.98), yet, like all predictors, it remains an imperfect proxy for
experimental validation.

These limitations highlight an inherent source of noise in our training data. Consequently, some
preference pairs may be mislabeled, potentially biasing the optimization process. Nevertheless, the
high aggregate performance of these tools, especially when combined, provides sufficient signal to
guide preference learning.

A.2 Training Details

We trained two variants of our preference-optimized models: an unconditioned DPO model and a
token-conditioned DPO model. Both were initialized from the same pretrained ProtGPT2 backbone
and trained under comparable conditions to ensure a fair comparison. Training was conducted for
three epochs with a learning rate of 5 x 10~° using AdamW optimization, gradient clipping at 1.0,
and early stopping with a patience of 10 validation intervals. For each objective (AMP-likeness, non-
toxicity, solubility, and stability), we constructed balanced preference pairs and sampled fixed-size
batches to prevent bias toward any single property.

In the unconditioned setting, preference signals from all objectives were aggregated into a single
model distribution. In the conditioned setting, we extended the tokenizer with property-specific
control tokens, which were prepended during training to isolate supervision for each property while
retaining the same optimization strategy. Both models were validated at regular intervals and evaluated
on the same held-out data splits to enable direct and unbiased comparison.

Choice of Beta Values: An important design factor in preference optimization is the per-property
scaling coefficient 3, which balances the relative contribution of each objective to the DPO loss. We
explored multiple 5 configurations to mitigate the dominance of any single property. Without scaling,
the model showed a marked tendency to favor non-toxic and soluble peptides, often suppressing an-
timicrobial activity and stability. This likely reflects that solubility and non-toxicity are comparatively
easier constraints for the model to satisfy.
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The most effective trade-off was achieved with Samp = 1.5, Bstable = 1.0, and Bron-Toxin = Bsoluble =
0.8. This configuration increased the emphasis on antimicrobial activity, maintained sufficient
pressure on stability, and reduced the over-representation of non-toxic and soluble peptides. It
consistently produced the highest joint satisfaction rates across objectives and was therefore adopted
for all reported experiments.

A.3 Structural Analysis of Generated Peptides
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Figure 4: Representative AlphaFold3 structural predictions of generated peptides of tDPO-ProtGPT?2.
Structures are colored by per-residue confidence (pLDDT), with blue indicating very high confidence
(>90) and orange indicating very low confidence (<50). The predicted TM-score (pTM) for each
peptide is shown below its structure, reflecting overall global fold reliability.

To complement the property-based evaluations, we assessed the structural plausibility of representative
peptides generated by our tDPO-ProtGPT2 framework using AlphaFold3 [31]]. As shown in Figure ]
the predicted structures consistently form a-helical motifs, which are a common feature of many
naturally occurring antimicrobial peptides. The high confidence scores (pLDDT > 90 across most
residues) indicate reliable local structural assignments, suggesting that the designed sequences are
not only biochemically optimized but also conformationally stable.

The predicted pTM-scores indicate that the generated peptides are not strongly aligned to existing
structural templates (pTM<O0.5). This outcome is expected in the context of de novo design, where
the objective is to generate novel sequences and conformations rather than reproduce known folds.
However, we treat these results as complementary evidence rather than definitive proof. Experimental
validation will ultimately be required to confirm both structural and functional properties.
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