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Abstract

Autonomous driving technology, a catalyst for revolutionizing transportation and
urban mobility, has the tend to transition from rule-based systems to data-driven
strategies. Traditional module-based systems are constrained by cumulative errors
among cascaded modules and inflexible pre-set rules. In contrast, end-to-end
autonomous driving systems have the potential to avoid error accumulation due
to their fully data-driven training process, although they often lack transparency
due to their "black box" nature, complicating the validation and traceability of
decisions. Recently, large language models (LLMs) have demonstrated abilities
including understanding context, logical reasoning, and generating answers. A
natural thought is to utilize these abilities to empower autonomous driving. By
combining LLM with foundation vision models, it could open the door to open-
world understanding, reasoning, and few-shot learning, which current autonomous
driving systems are lacking. In this paper, we systematically review the research line
about (Vision) Large Language Models for Autonomous Driving ((V)LLM4Drive).
This study evaluates the current state of technological advancements, distinctly
outlining the principal challenges and prospective directions for the field. For the
convenience of researchers in academia and industry, we provide real-time updates
on the latest advances in the field as well as relevant open-source resources via the
designated link: https://github.com/Thinklab-SJTU/Awesome-LLM4AD.

1 Introduction

Autonomous driving is rapidly reshaping our understanding of transportation, heralding a new era of
technological revolution. This transformation means not only the future of transportation but also a
fundamental shift across various industries. In conventional autonomous driving systems, algorithms
typically adopt the modular design [1, 2, 3], with separate components responsible for critical tasks
such as perception [4, 5], prediction [6, 7, 8, 9], and planning [10, 11, 12, 13]. Specifically, the
perception component handles object detection [4, 5], tracking [14], and sophisticated semantic
segmentation tasks [15]. The prediction component analyzes the external environment [16] and
estimates the future states of the surrounding agents [17, 18]. The planning component, often reliant
on rule-based decision algorithms [10], determines the optimal and safest route to a predetermined
destination. While the module-based approach provides reliability and enhanced security in a variety
of scenarios, it also presents challenges. The decoupled design between system components may lead
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Figure 1: The limitation of current autonomous driving paradigm (green arrow) and where LLMs can
potentially enhance autonomous driving ability (blue arrow).

to key information loss during transitions and potentially redundant computation as well. Additionally,
errors may accumulate within the system due to inconsistencies in optimization objectives among the
modules, affecting the vehicle’s overall decision-making performance [19].

Rule-based decision systems, with their inherent limitations and scalability issues, are gradually giving
way to data-driven methods. End-to-end autonomous driving solutions are increasingly becoming a
consensus in the field [20, 21, 22, 23, 24, 25]. By eliminating integration errors between multiple
modules and reducing redundant computations, the end-to-end system enhances the expression of
visual [26] and sensory information while ensuring greater efficiency. However, this approach also
introduces the “black box" problem, meaning a lack of transparency in the decision-making process,
complicating interpretation and validation.

Simultaneously, the explainability of autonomous driving has become an important research focus
[27]. Although smaller language models (like early versions of BERT [28] and GPT [29]) em-
ployed in massive data collection from driving scenarios help address this issue, they often lack
sufficient generalization capabilities to perform optimally. Recently, large language models [30, 31]
have demonstrated remarkable abilities in understanding context, generating answers, and handling
complex tasks. They are also now integrated with multimodal models [32, 33, 34, 35, 36]. This
integration achieves a unified feature space mapping for images, text, videos, point clouds, etc. Such
consolidation significantly enhances the system’s generalization capabilities and equips them with
the capacity to quickly adapt to new scenarios in a zero-shot or few-shot manner.

In this context, developing an interpretable and efficient end-to-end autonomous driving system
has become a research hotspot [19]. Large language models, with their extensive knowledge base
and exceptional generalization, could facilitate easier learning of complex driving behaviors. By
leveraging the visual-language model (VLM)’s robust and comprehensive capabilities of open-world
understanding and in-context learning [37, 38, 33, 34], it becomes possible to address the long-tail
problem for perception networks, assist in decision-making, and provide intuitive explanations for
these decisions.

This paper aims to provide a comprehensive overview of this rapidly emerging research field, analyze
its basic principles, methods, and implementation processes, and introduce in detail regarding the
application of LLMs for autonomous driving. Finally, we discuss related challenges and future
research directions.

2 Motivation of LLM4AD

In today’s technological landscape, large language models such as GPT-4 and GPT-4V [30, 39] are
drawing attention with their superior contextual understanding and in-context learning capabilities.
Their enriched common sense knowledge has facilitated significant advancements in many down-
stream tasks. We ask the question: how do these large models assist in the domain of autonomous
driving, especially in playing a critical role in the decision-making process?

In Fig. 1, we give an intuitive demonstration of the limitation of current autonomous driving paradigm
and where LLMs can potentially enhance autonomous driving ability. We summarize two primary
aspects of driving skills. The orange circle represents the ideal level of driving competence, akin to that
possessed by an experienced human driver. There are two main methods to acquire such proficiency:
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Figure 2: LLMs in Autonomous Driving Pipelines.

one, through learning-based techniques within simulated environments; and two, by learning from
offline data through similar methodologies. It’s important to note that due to discrepancies between
simulations and the real world, these two domains are not fully the same, i.e. sim2real gap [40].
Concurrently, offline data serves as a subset of real-world data since it’s collected directly from actual
surroundings. However, it is difficult to fully cover the distribution as well due to the notorious
long-tailed nature [41] of autonomous driving tasks.

The final goal of autonomous driving is to elevate driving abilities from a basic green stage to a more
advanced blue level through extensive data collection and deep learning. However, the high cost
associated with data gathering and annotation, along with the inherent differences between simulated
and real-world environments, mean there’s still a gap before reaching the expert level of driving
skills. In this scenario, if we can effectively utilize the innate common sense embedded within large
language models, we might gradually narrow this gap. Intuitively, by adopting this approach, we
could progressively enhance the capabilities of autonomous driving systems, bringing them closer
to, or potentially reaching, the ideal expert level of driving proficiency. Through such technological
integration and innovation, we anticipate significant improvements in the overall performance and
safety of autonomous driving.

The application of large language models in the field of autonomous driving indeed covers a wide
range of task types, combining depth and breadth with revolutionary potential. LLMs in autonomous
driving pipelines is shown in the Fig. 2.

3 Application of LLM4AD

In the following sections, we divide existing works based on the perspective of applying LLMs:
planning, perception, question answering, and generation. The corresponding taxonomy tree is shown
in Fig. 3.

3.1 Planning & Control

Large language models (LLMs) have achieved great success with their open-world cognitive and
reasoning capabilities [42, 43, 29, 44, 30]. These capabilities could provide a transparent explanation
of the autonomous driving decision-making process, significantly enhancing system reliability and
user trust in the technology [45, 46, 47, 27, 48, 49, 50, 51]. Within this domain, based on whether
tuning the LLM, related research can be categorized into two main types: fine-tuning pre-trained
models and prompt engineering.
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3.1.1 Fine-tuning pre-trained models

In the application of fine-tuning pre-trained models, MTD-GPT [52] translates multi-task decision-
making problems into sequence modeling problems. Through training on a mixed multi-task dataset,
it addresses various decision-making tasks at unsignaled intersections. Although this approach
outperforms the performance of single-task decision-making RL models, the used scenes are limited
to unsignaled intersections, which might be enough to demonstrate the complexity of the real world
application. Driving with LLMs [36] designs an architecture that fuses vectorized inputs into LLMs
with a two-stage pretraining and fine-tuning method. Due to the limitation of vectorized representa-
tions, their method are only tested in the simulation. DriveGPT4 [35] presents a multimodal LLM
based on Valley [53] and develops a visual instruction tuning dataset for interpretable autonomous
driving. Besides predicting a vehicle’s basic control signals, it also responds in real-time, explaining
why the action is taken. It outperforms baseline models in a variety of QA tasks while the experiments
about planning is simple. GPT-Driver [54] transforms the motion planning task into a language
modeling problem. It exceeds the UniAD[25] in the L2 metric. Nevertheless, since it uses past speed
and acceleration information, there is concern about unfair comparison with UniAD. Additionally, L2
only reflects the fitting degree of the driving route and might not reflect the driving performance [11].
Agent-Driver [55] leverages LLMs common sense and robust reasoning capabilities to improve the
capabilities of planning by designing a tool library, a cognitive memory, and a reasoning engine.
This paradigm achieves better results on the nuScenes dataset. Meanwhile, shortening the inference
time is also an urgent problem. DriveLM [56] uses a trajectory tokenizer to process ego-trajectory
signals to texts, making them belong to the same domain space. Such a tokenizer can be applied to
any general vision language models. Moreover, they utilize a graph-structure inference with multiple
QA pairs in logical order, thus improving the final planning performance. [57] adapts LLMs as a
vehicle "Co-Pilot" of driving, which can accomplish specific driving tasks with human intention
satisfied based on the information provided. It lacks verification in complex interaction scenarios.
LMDrive [58] designs a multi-modal framework to predict the control signal and whether the given
instruction is completed. It adopts Resnet [59] as the vision encoder which has not been through an
image-text alignment pretraining. In addition, it introduces a benchmark LangAuto which includes
approximately 64K instruction-following data clips in CARLA. The LangAuto benchmark tests the
system’s ability to handle complex instructions and challenging driving scenario. DriveMLM [60]
adopts a multi-modal LLM(Multi-view image, Point cloud, and prompt) to generate high-level
decision commands and uses Apollo as a planner to get the control signal. Moreover, the training
data generated by experts and uses GPT-3.5 to increase data diversity. It achieves 76.1 driving
score on the CARLA Town05 Long, which reaches the level of classic end-to-end autonomous
driving. KoMA [61] is a knowledge-driven multi-agent framework in which each agent is powered
by large language models. These agents analyze and infer the intentions of surrounding vehicles to
enhance decision-making. AsyncDriver [62] is an asynchronous LLM-enhanced framework where
the inference frequency of LLM is controllable and can be decoupled from the real-time planner. It
has good closed-loop evaluation performance in challenging scenarios of nuPlan. PlanAgent [63]
extracts bird’s-eye view (BEV) representation and generates a text description input based on the lane
map through an environment transformation module. It uses a reasoning engine module to perform a
hierarchical thinking chain to guide driving scene understanding, motion command generation, and
planning code writing. AGENTSCODRIVER [64] is an LLM-powered framework for multi-vehicle
collaborative driving with lifelong learning, enabling communication and collaboration among driving
agents in complex traffic scenarios, featuring a reasoning engine, cognitive memory, reinforcement
reflection, and a communication module. DriveVLM [65] leverages Vision-Language Models to en-
hance scene understanding and planning capabilities for autonomous driving, while DriveVLM-Dual
synergizes these advancements with traditional 3D perception and planning approaches to effectively
address spatial reasoning and computational challenges, demonstrating superior performance in
complex and dynamic driving scenarios. RAG-Driver [66], a Multi-Modal Large Language Model
with Retrieval-augmented In-context Learning, provides explainable and generalizable end-to-end
driving by producing numerical control signals, along with explanations and justifications for driving
actions, and demonstrates impressive zero-shot generalization to unseen environments without addi-
tional training. LLaDA [67] designs a training-free mechanism to assist human drivers and adapt
autonomous driving policies to new environments. VLP [68] is a Vision-Language-Planning model
intended to enhance autonomous driving systems (ADS) by incorporating two novel components:
ALP and SLP. ALP (Agent-wise Learning Paradigm) aligns the generated bird’s-eye-view (BEV)
with the true BEV map, improving self-driving BEV reasoning. SLP (Self-Driving-Car-Centric
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Learning Paradigm) aligns the ego vehicle’s query features with its textual planning features, en-
hancing self-driving decision-making. DME-Driver [69] enhances decision logic explainability and
environmental perception accuracy by using a vision language model for decision-making and a
planning-oriented perception model for generating precise control signals, effectively translating
human-like driving logic into actionable commands, and achieving high-precision planning accuracy
through the comprehensive HBD dataset.

3.1.2 prompt engineering

In the prompt engineering perspective, some methods tried to tap into the deep reasoning potential of
the LLMs through clever prompt design. DiLu [70] designs a framework of LLMs as agents to solve
closed-loop driving tasks. This method introduces a memory module to record experience, to leverage
LLMs to facilitate reasoning and reflection processes. DiLu exhibits strong generalization capabilities
compared with SOTA RL-based methods. However, the reasoning and reflection processes require
multiple rounds of question-answering, and its inference time cannot be ignored. Similarly, Receive
Reason and React [71] and Drive as You Speak [72] integrate the language and reasoning capabilities
of LLMs into autonomous vehicles. In addition to memory and reflection processes, these methods
introduce additional raw sensor information such as camera, GNSS, lidar, and radar. However, the
inference speed is unsolved as well. Furthermore, SurrealDriver [73] divides the memory module
into short-term memory, long-term guidelines, and safety criteria. Meanwhile, it interviews 24 drivers
and uses their detailed descriptions of driving behaviors as chain-of-thought prompts to develop a
‘coach agent’ module. However, there is a lack of comparison with traditional algorithms to prove that
large language models indeed bring performance improvements. LanguageMPC [74] also designs a
chain-of-thought framework for LLMs in driving scenarios and it integrates with low-level controllers
by guided parameter matrix adaptation. Although its performance exceeds MPC and RL-based
methods in the simplified simulator environments, it lacks validation in complex environments.
TrafficGPT [75] is a fusion of ChatGPT and traffic foundation models which can tackle complex
traffic-related problems and provide insightful suggestions. It leverages multimodal data as a data
source, offering comprehensive support for various traffic-related tasks. Talk2BEV [76] introduces
a large vision-language model (LVLM) interface for bird’s-eye view (BEV) maps in autonomous
driving contexts. It does not require any training or fine-tuning, only relying on pre-trained image-
language models. In addition, it presents a benchmark for evaluating subsequent work in LVLMs for
AD applications. Talk2Drive [72] utilizes human verbal commands and makes autonomous driving
decisions based on contextual information to meet humanly personalized preferences for safety,
efficiency, and comfort. AccidentGPT [77] integrates multi-vehicle collaborative perception to
improve environmental understanding and collision avoidance, offering advanced safety features like
proactive remote safety warnings and blind spot alerts. It also supports traffic police and management
agencies by providing real-time intelligent analysis of traffic safety factors.

3.2 Perception

Large language models have demonstrated their unique value and strong capabilities in “perception"
tasks [78, 79, 80, 81, 82]. Especially in environments where data is relatively scarce, these models can
rely on their few-shot learning characteristics to achieve fast and accurate learning and reasoning [83,
84]. This learning ability is of significance in the perception stage of the autonomous driving system,
which greatly improves the system’s adaptability and generalization capabilities in changing and
complex driving environments. PromptTrack [85] fuses cross-modal features in a prompt reasoning
branch to predict 3D objects. It uses language prompts as semantic cues and combines LLMs
with 3D detection tasks and tracking tasks. Although it achieves better performance compared
to other methods, the advantages of LLMs do not directly affect the tracking task. Rather, the
tracking task serves as a query to assist LLMs in performing 3D detection tasks. HiLM-D [86]
incorporates high-resolution information into multimodal large language models for the Risk Object
Localization and Intention and Suggestion Prediction (ROLISP) task. It combines LLMs with 2D
detection tasks and obtains better performance in detection tasks and QA tasks compared to other
multi-modal large models such as Video-LLaMa [87], eP-ALM [88]. It is worth noting to point
out one potential limitation of the dataset: each video contains only one risk object, which might
not capture the complexity of real-world scenarios. [89] integrates pre-trained language models as
text-based input encoders for the autonomous driving trajectory prediction task. Joint encoders(image
and text) over both modalities perform better than using a single encoder in isolation. While the
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joint model significantly improves the baseline, its performance has not reached the state-of-the-art
level yet [90, 91]. LC-LLM [92] is designed for lane change prediction, leveraging LLM capabilities
to understand complex scenarios, enhancing prediction performance, and providing explainable
predictions by generating explanations for lane change intentions and trajectories. AIDE [93]
introduces a paradigm for an automatic data engine, incorporating automatic data querying and
labeling using VLM, and continual learning with pseudo labels. It introduces a new benchmark to
evaluate such automated data engines for AV perception that allows combined insights across multiple
paradigms of open vocabulary detection, semi-supervised, and continual learning. Context-aware
Motion Prediction [94] designs and conducts prompt engineering to enable GPT4-V to comprehend
complex traffic scenarios. It combines the context information outputted by GPT4-V with MTR [95]
to enhance motion prediction.

Dataset Task Size Annotator Description
BDD-X
[96]

Planning
VQA

77 hours, 6970 videos,
8.4M frames, 26228 captions Human Ego-vehicle actions description and

explanation.

HAD
[97]

Planning
Perception

30 hours, 5744 videos
22366 captions Human

Joint action description for goal-
oriented advice and attention description
for stimulus-driven advice.

Talk2Car
[45]

Planning
Perception

15 hours, 850 videos of 20s each
30k frames, 11959 captions Human

Object referral dataset that contains
commands written in natural language
for self-driving cars.

DriveLM
[56]

Perception
Prediction
Planning
VQA

In Carla, 18k frames and 3.7M
QA pairs;In nuScenes, 4.8k
frames and 450k QA pairs

Human
Rule-Based

P3 with reasoning logic; Connect the
QA pairs in a graph-style structure;
Use “What if"-style questions.

DRAMA
[48] VQA

91 hours, 17785 videos, 77639
question, 102830 answering,
17066 captions

Human
Joint risk localization with visual
reasoning of driving risks in a free-
form language description.

Rank2Tell
[98]

Perception
VQA

several hours, 118 videos of 20s
each Human

Joint important object identification,
important object localization ranking,
and reasoning.

NuPrompt
[85] Perception 15 hours, 35367 prompts for 3D

objects
Huamn
GPT3.5

Object-centric language prompt set
for perception tasks.

NuScenes-QA
[99] VQA

15 hours, Train(24149 scences,
459941 QA pairs), Test(6019
scences, 83337 QA pairs)

Rule-Based

Leverage 3D annotations(object
category, position, orientation,
relationships information) and designed
question templates to construct QA pairs.

Reason2Drive
[100]

Perception
Prediction
VQA

600K video-text pairs Human
GPT-4

Composed of nuScenes, Waymo and
ONCE, with driving instructions.

LingoQA
[100] VQA 419.9k QA pairs, 28k scenarios

Rule-Based
GPT-3.5/4
Software
Human

Contains reasoning pairs in addition to
object presence, description, and
localisation.

NuInstruct
[101]

Perception
Prediction
VQA

91k QA pairs, 17 subtasks GPT-4
Human

Integrates multi-view information,
requiring responses from multiple
perspectives, with balanced view
distribution for perception tasks.

OpenDV-2K
[102]

Perception
Prediction
VQA

2059 hours of videos paired
with texts(1747 hours from
YouTube and 312 hours from
public datasets).

BLIP-2

A large-scale multimodal dataset
for autonomous driving, to support
the training of a generalized video
prediction model.

Table 1: Description of different datasets regarding LLM4AD.

3.3 Question Answering

Question-Answering is an important task that has a wide range of applications in intelligent trans-
portation, assisted driving, and autonomous vehicles [103, 104]. It mainly reflects through different

6



question and answer paradigms, including traditional QA mechanism [105] and more detailed visual
QA methods [35]. [105] constructs the domain knowledge ontology by “chatting” with ChatGPT. It
develops a web-based assistant to enable manual supervision and early intervention at runtime and
it guarantees the quality of fully automated distillation results. This question-and-answer system
enhances the interactivity of the vehicle, transforms the traditional one-way human-machine interface
into an interactive communication experience, and might be able to cultivate the user’s sense of
participation and control. These sophisticated models [105, 35], equipped with the ability to parse,
understand, and generate human-like responses, are pivotal in real-time information processing and
provision. They design comprehensive questions related to the scene, including but not limited
to vehicle states, navigation assistance, and understanding of traffic situations. [106] provides a
human-centered perspective and gives several key insights through different prompt designs to enable
LLMs to achieve AD system requirements within the cabin. Dolphins [107] enhances reasoning
capabilities through the innovative Grounded Chain of Thought (GCoT) process and specifically
adapts to the driving domain by building driving-specific command data and command adjustments.
LingoQA [108] develops a QA benchmark and datasets, details are in 3.5 and 4. EM-VLM4AD [109]
is an efficient, lightweight, multi-frame vision language model for Visual Question Answering in
autonomous driving, and it only requires much less memory and floating point operations than
DriveLM [56]. [110] proposes a prototype of a pipeline of prompts and LLMs that receives an
item definition and outputs solutions in the form of safety requirements. Hybrid Reasoning [111]
uses Large Language Models (LLMs) with inputs from image-detected objects and sensor data,
including parameters like object distance, car speed, direction, and location, to generate precise brake
and speed control values based on weather conditions. TransGPT [112] is a novel large language
model for the transportation domain that comes in two variants—TransGPT-SM for single-modal
data and TransGPT-MM for multi-modal data—designed to enhance traffic analysis and modeling
by generating synthetic traffic scenarios, explaining traffic phenomena, answering traffic-related
questions, offering recommendations, and creating comprehensive traffic reports.

3.4 Generation

In the realm of “generation" task, large language models leverage their advanced knowledge-base and
generative capabilities to create realistic driving videos or intricate driving scenarios under specific
environmental factors [113, 114]. This approach offers revolutionary solutions to the challenges of
data collection and labeling for autonomous driving, also constructing a safe and easily controllable
setting for testing and validating the decision boundaries of autonomous driving systems. Moreover,
by simulating a variety of driving situations and emergency conditions, the generated content becomes
a crucial resource for refining and enriching the emergency response strategies of autonomous driving
systems.

The common generative models include the Variational Auto-Encoder(VAE) [115], Generative
Adversarial Network(GAN) [116], Normalizing Flow(Flow)[117], and Denoising Diffusion Prob-
abilistic Model(Diffusion)[118]. With diffusion models have recently achieved great success in
text-to-image [119, 120, 121], some research has begun to study using diffusion models to generate
autonomous driving images or videos. DriveDreamer [122] is a world model derived from real-world
driving scenarios. It uses text, initial image, HDmap, and 3Dbox as input, then generates high-quality
driving videos and reasonable driving policies. Similarly, Driving Diffusion [123] adopts a 3D
layout as a control signal to generate realistic multi-view videos. GAIA-1 [124] leverages video,
text, and action inputs to generate traffic scenarios, environmental elements, and potential risks. In
these methods, text encoder both adopt CLIP [78] which has a better alignment between image
and text. In addition to generating autonomous driving videos, traffic scenes can also be generated.
CTG++ [125] is a scene-level diffusion model that can generate realistic and controllable traffic. It
leverages LLMs for translating a user query into a differentiable loss function and use a diffusion
model to transform the loss function into realistic, query compliant trajectories. MagicDrive [126]
generates highly realistic images, exploiting geometric information from 3D annotations by inde-
pendently encoding road maps, object boxes, and camera parameters for precise, geometry-guided
synthesis. This approach effectively solves the challenge of multi-camera view consistency. Al-
though it achieves better performance in terms of generation fidelity compared to BEVGen [127] and
BEVControl [128], it also faces huge challenges in some complex scenes, such as night views and
unseen weather conditions. ADriver-I [129] combines Multimodal Large Language Models(MLLM)
and Video Diffusion Model(VDM) to predict the control signal of current frame and the future
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frames. It shows impressive performance on nuScenes and their private datasets. However, MLLM
and VDM are trained separately, which fails to optimize jointly. Driving into the Future [130]
develops a multiview world model, named Drive-WM, which is capable of generating high-quality,
controllable, and consistent multi-view videos in autonomous driving scenes. It explores the potential
application of the world model in end-to-end planning for autonomous driving. ChatScene [131]
designs an LLM-based agent that generates and simulates challenging safety-critical scenarios in
CARLA, improving the collision avoidance capabilities and robustness of autonomous vehicles.
REvolve [132] is an evolutionary framework utilizing GPT-4 to generate and refine reward functions
for autonomous driving through human feedback. The reward function is used for RL, and the score
is achieved closely by human driving standards. GenAD [102] is a large-scale video prediction model
for autonomous driving that uses extensive web-sourced data and novel temporal reasoning blocks to
handle diverse driving scenarios, generalize to unseen datasets in a zero-shot manner, and adapt for
action-conditioned prediction or motion planning. DriveDreamer-2 [133] builds on DriveDreamer
with a Large Language Model (LLM), generates customized and high-quality multi-view driving
videos by converting user queries into agent trajectories and HDMaps, enhancing training for driving
perception methods. ChatSim [134] enable editable photo-realistic 3D driving scene simulations
via natural language commands with external digital assets, leverages a large language model agent
collaboration framework and novel multi-camera neural radiance field and lighting estimation meth-
ods to produce scene-consistent, high-quality outputs. LLM-Assisted Light [135] integrates the
human-mimetic reasoning capabilities of LLMs, enabling the signal control algorithm to interpret
and respond to complex traffic scenarios with the nuanced judgment typical of human cognition.
It developed a closed-loop traffic signal control system, integrating LLMs with a comprehensive
suite of interoperable tools. LangProp [136] is a framework that iteratively optimizes code generated
by large language models (LLMs) using both supervised and reinforcement learning, automatically
evaluating code performance, catching exceptions, and feeding results back to the LLM to improve
code generation for autonomous driving in CARLA. These methods explore the customized authentic
generations of autonomous driving data. Although these diffusion-based models achieved good
results on video and image-generated metrics, it is still unclear whether they could really be used in
closed-loop to really boost the performance of the autonomous driving system.

3.5 Evaluation & Benchmark

In terms of evaluation, On the Road with GPT-4V [137] conducts a comprehensive and multi-faceted
evaluation of GPT-4V in various autonomous driving scenarios, including Scenario Understanding,
Reasoning, and Acting as a Driver. GPT-4V performs well in scene understanding, intent recognition
and driving decision-making. It is good at handling out-of-distribution situations, can accurately
assess the intentions of traffic participants, use multi-view images to comprehensively perceive the
environment, and accurately identify dynamic interactions between traffic participants. However,
GPT-4V still has certain limitations in direction recognition, interpretation of traffic lights, and
non-English traffic signs. GPT-4V Takes the Wheel [138] evaluates the potential of GPT-4V for
autonomous pedestrian behavior prediction using publicly available datasets. Although GPT-4V
has made significant advances in AI capabilities for pedestrian behavior prediction, it still has
shortcomings compared with leading traditional domain-specific models.

In terms of benchmark, LMDrive [58] introduces LangAuto(Language-guided Autonomous Driving)
CARLA benchmark. It covers various driving scenarios in 8 towns and takes into account 16 different
environmental conditions. It contains three tracks: LangAuto track (updates navigation instructions
based on location and is divided into sub-tracks of different route lengths), LangAuto-Notice track
(adds notification instructions based on navigation instructions), and LangAuto-Sequential track
(Combining consecutive instructions into a single long instruction). In addition, LangAuto also
uses three main evaluation indicators: route completion, violation score, and driving score to com-
prehensively evaluate the autonomous driving system’s ability to follow instructions and driving
safety. LingoQA [108] developed LingoQA which is used for evaluating video question-answering
models for autonomous driving. The evaluation system consists of three main parts: a GPT-4-based
evaluation, which determines whether the model’s answers are consistent with human answers; and
the Lingo-Judge metric, which evaluates the model using a trained text classifier called Lingo-Judge
Accuracy of answers; and correlation analysis with human ratings. This analysis involves multiple
human annotators rating responses to 17 different models on a scale of 0 to 1, which are interpreted
as the likelihood that the response accurately solves the problem. Reason2Drive [100] introduces the
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protocol to measure the correctness of the reasoning chains to resolve semantic ambiguities. The eval-
uation process includes four key metrics: Reasoning Alignment, which measures the extent of overlap
in logical reasoning; Redundancy, aimed at identifying any repetitive steps; Missing Step, which
focuses on pinpointing any crucial steps that are absent but necessary for problem-solving; and Strict
Reason, which evaluates scenarios involving visual elements. LaMPilot [139] is an benchmark test
used to evaluate the instruction execution capabilities of autonomous vehicles, including three parts: a
simulator, a data set, and an evaluator. It employs Python Language Model Programs (LMPs) to inter-
pret human-annotated driving instructions and execute and evaluate them within its framework. [140]
evaluated the two core capabilities of large language models (LLMs) in the field of autonomous
driving: first, the spatial awareness decision-making ability, that is, LLMs can accurately identify the
spatial layout based on coordinate information; second, the ability to follow traffic rules to ensure
that LLMs Ability to strictly abide by traffic laws while driving. [141] tests three OpenAI LLMs and
several other LLMs on UK Driving Theory Test Practice Questions and Answers, and only GPT-4o
passed the test, indicating that the performance of LLMs still needs to be further improved. [142]
has developed an LLM-based safe autonomous driving framework, which evaluates and enhances the
performance of existing LLM-AD methods in driving safety, sensitive data usage, token consumption
and alignment scenarios by integrating security assessment agents. DriveSim [143] is a specialized
simulator that creates diverse driving scenarios to test and benchmark MLLMs’ understanding and
reasoning of real-world driving scenes from a fixed in-car camera perspective. OmniDrive [144]
introduces a comprehensive benchmark for visual question-answering tasks related to 3D driving,
ensuring strong alignment between agent models and driving tasks through scene description, traffic
regulation, 3D grounding, counterfactual reasoning, decision-making, and planning. AIDE [93]
proposes an automatic data engine design paradigm, which features automatic data query and label-
ing using VLM and continuous learning with pseudo-labels. It also introduces a new benchmark
to evaluate such automatic data engines for self-driving car perception, providing comprehensive
insights across multiple paradigms including open vocabulary detection, semi-supervised learning,
and continuous learning. ELM [145] is proposed to understand driving scenes over long-scope space
and time, showing promising generalization performance in handling complex driving scenarios.
LimSim++ [146] introduces an open-source evaluation platform for (M)LLM in autonomous driving,
supporting scenario understanding, decision-making, and evaluation systems.

4 Datasets in LLM4AD

Traditional datasets such as nuScenes dataset [147, 148] lack action description [149], detailed
caption, and question-answering pairs which are used to interact with LLMs. The BDD-x [96],
Rank2Tell [98], DriveLM [56], DRAMA [48], NuPrompt [85] and NuScenes-QA [99] datasets repre-
sent key developments in LLM4AD research, each bringing unique contributions to understanding
agent behaviors and urban traffic dynamics through extensive, diverse, and situation-rich annotations.
We give a summary of each dataset in Table 1. We give detailed descriptions below.

BDD-X Dataset [96]: With over 77 hours of diverse driving conditions captured in 6,970 videos, this
dataset is a collection of real-world driving behaviors, each annotated with descriptions and explana-
tions. It includes 26K activities across 8.4M frames and thus provides a resource for understanding
and predicting driver behaviors across different conditions.

Honda Research Institute-Advice Dataset (HAD) [97]: HAD offers 30 hours of driving video
data paired with natural language advice and videos integrated with can-bus signal data. The advice
includes Goal-oriented advice(top-down signal) which is designed to guide the vehicle in a navigation
task and Stimulus-driven advice(bottom-up signal) which highlights specific visual cues that the user
expects the vehicle controller to actively focus on.

Talk2Car [45]: The Talk2Car dataset contains 11959 commands for the 850 videos of the
nuScenes [147, 148] training set as 3D bounding box annotations. Of the commands, 55.94%
were from videos recorded in Boston, while 44.06% were from Singapore. On average, each com-
mand contains 11.01 words, which includes 2.32 nouns, 2.29 verbs, and 0.62 adjectives. Typically,
there are about 14.07 commands in every video. It is a object referral dataset that contains commands
written in natural language for self-driving cars.

DriveLM Dataset [56]: This dataset integrates human-like reasoning into autonomous driving
systems, enhancing Perception, Prediction, and Planning (P3). It employs a “Graph-of-Thought"
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structure, encouraging a futuristic approach through “What if" scenarios, thereby promoting advanced,
logic-based reasoning and decision-making mechanisms in driving systems.

DRAMA Dataset [48]: Collected from Tokyo’s streets, it includes 17,785 scenario clips captured
using the video camera, each clipped to 2 seconds in duration. It contains different annotations:
Video-level Q/A, Object-level Q/A, Risk object bounding box, Free-form caption, separate labels for
ego-car intention, scene classifier, and suggestions to the driver.

Rank2Tell Dataset [98]: It is captured from a moving vehicle on highly interactive traffic scenes
in the San Francisco Bay Area. It includes 116 clips ( 20s each) of 10FPS captured using an
instrumented vehicle equipped with three Point Grey Grasshopper video cameras with a resolution of
1920 × 1200 pixels, a Velodyne HDL-64E S2 LiDAR sensor, and high precision GPS. The dataset
includes Video-level Q/A, Object-level Q/A, LiDAR and 3D bounding boxes (with tracking), Field
of view from 3 cameras (stitched), important object bounding boxes (multiple important objects
per frame with multiple levels of importance- High, Medium, Low), free-form captions (multiple
captions per object for multiple objects), ego-car intention.

NuPrompt Dataset [85]: It represents an expansion of the nuScenes dataset, enriched with annotated
language prompts specifically designed for driving scenes. This dataset includes 35,367 language
prompts for 3D objects, averaging 5.3 instances per object. This annotation enhances the dataset’s
practicality in autonomous driving testing and training, particularly in complex scenarios requiring
linguistic processing and comprehension.

NuScenes-QA dataset [99]: It is a dataset in autonomous driving, containing 459,941 question-
answer pairs from 34,149 distinct visual scenes. They are partitioned into 376,604 questions from
28,130 scenes for training, and 83,337 from 6,019 scenes for testing. NuScenes-QA showcases a
wide array of question lengths, reflecting different complexity levels, making it challenging for AI
models. Beyond sheer numbers, the dataset ensures a balanced range of question types and categories,
from identifying objects to assessing their behavior, such as whether they are moving or parked. This
design inhibits the model’s tendency to be biased or rely on linguistic shortcuts.

Reason2Drive [100]: It consists of nuScenes, Waymo, and ONCE datasets with 600,000 video-text
pairs labeled by humans and GPT-4. It provides a detailed representation of the driving scene through
a unique automatic annotation mode, capturing various elements such as object types, visual and
kinematic attributes, and their relationship to the ego vehicle. It has been enhanced with GPT-4 to
include complex question-answer pairs and detailed reasoning narratives.

LingoQA [108]: This dataset is a large-scale, a diverse collection for autonomous driving, containing
approximately 419,000 question-answer pairs, covering both action and scenery subsets. It provides
rich information about driving behavior, environmental perception, and road conditions through
high-quality videos and detailed annotations. It features complex questions and free-form answers,
leveraging GPT-3.5/4 to enhance the diversity and depth of content. The driving capabilities covered
include actions, reasons, attention, recognition, positioning, etc., which are particularly suitable for
improving the understanding and decision-making capabilities of autonomous driving systems.

NuInstruct [101]: It is a dataset featuring 91K multi-view video-QA pairs spanning 17 subtasks,
each requiring comprehensive information such as temporal, multi-view, and spatial data, thereby
significantly raising the complexity of the challenges. It developed a SQL-based method that
automatically generates instruction-response pairs, inspired by the logical progression of human
decision-making.

OpenDV-2K [102]: This dataset is a large-scale multimodal dataset for autonomous driving, com-
prising 2059 hours of curated driving videos, including 1747 hours from YouTube and 312 hours
from public datasets, with automatically generated language annotations to support generalized video
prediction model training.

5 Conclusion

In this paper, we have provided a comprehensive survey on LLM4AD. We classify and introduce
different applications employing LLMs for autonomous driving and summarize the representative
approaches in each category. At the same time, we summarize the latest datasets related to LLM4AD.
We will continue to monitor developments in the field and highlight future research directions.
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A Large Language Models for Autonomous Driving Research Tree

In Figure 3, we gives the VLLM4AD Research Tree.

B Ethical Statement

When applying LLMs to the field of autonomous driving, we must deeply consider their potential
ethical implications. First, the illusion of the model may cause the vehicle to misunderstand the
external environment or traffic conditions, thus causing safety hazards. Second, model discrimination
and bias may lead to vehicles making unfair or biased decisions in different environments or when
facing different groups. Additionally, false information and errors in reasoning can cause a vehicle
to adopt inappropriate or dangerous driving behaviors. Inductive advice may leave the vehicle
vulnerable to external interference or malicious behavior. Finally, privacy leakage is also a serious
issue, as vehicles may inadvertently reveal sensitive information about the user or the surrounding
environment. To sum up, we strongly recommend that before deploying a large language model
to an autonomous driving system, an in-depth and detailed ethical review should be conducted to
ensure that its decision-making logic is not only technically accurate but also ethically appropriate.
At the same time, we call for following the principles of transparency, responsibility, and fairness to
ensure the ethics and safety of technology applications. We call on the entire community to work
together to ensure reliable and responsible deployment of autonomous driving technology based on
large language models.
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Figure 3: Vision Large Language Models for Autonomous Driving Research Tree
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