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Abstract

Missing data often exists in real-world datasets, requiring significant time and1

effort for data repair to learn accurate machine learning (ML) models. In this paper,2

we show that imputing all missing values is not always necessary to achieve an3

accurate ML model. We introduce concepts of minimal and almost minimal repair,4

which are subsets of missing data items in training data whose imputation delivers5

accurate and reasonably accurate models, respectively. Imputing these sets can6

significantly reduce the time, computational resources, and manual effort required7

for learning models. We show that finding these sets is NP-hard for SVM and8

linear regression and propose efficient approximation algorithms with provable9

error bounds. Our extensive experiments indicate that our proposed algorithms can10

substantially reduce the time and effort required to learn on incomplete datasets.11

1 Introduction12

The performance of an ML model is highly dependent on the quality of its training data. In real-world13

data, a major data quality issue is missing or incomplete data [12, 18, 17, 8, 13]. There are two14

common approaches to address missing values in training data. The first approach involves deleting15

samples with missing values. However, this method can lead to the loss of important information and16

introduce bias [31]. Another popular approach is data repair or imputation, in which end-users or ML17

practitioners impute missing values with the correct ones [3, 10, 21, 22, 28, 24, 33, 34]. Accurate18

repair is often challenging and expensive as it usually requires extensive collaboration with expensive19

domain experts. It usually must be repeated whenever the dataset evolves.20

To reduce the cost of imputation, significant effort has been made to train imputation models on the21

observed subset of the dataset that predict accurate values for missing data items [6, 19, 21, 29, 36, 38].22

State-of-the-art models for data imputation may take a long time to process and predict values for23

missing data items, and those that use deep neural networks need costly computational resources24

[25, 38, 36]. As the dataset evolves, the user often has to repeat these steps. Moreover, in domains25

where important decisions must be made, e.g., healthcare and criminal justice, humans may need26

to manually verify the predictions of the imputation models [35]. Some users also distrust black-27

box model-based imputation techniques in critical applications and prefer to reason about missing28

data themselves using observed features and domain knowledge [2, 30]. In addition, model-based29

imputation may perform poorly when the ratio of missing data to observed data is too large [9, 14, 15].30

In these settings, users may have to manually repair at least parts of the data.31

To address these challenges, we introduce the concept of a minimal repair for a training dataset32

with missing values. Generally speaking, this set represents the smallest group of data items with33

missing values that, once repaired, yields the same model as that trained on a fully and accurately34

repaired dataset. By finding and imputing this set, users can significantly reduce the time and effort35

required to manually repair a dataset without sacrificing model accuracy. It also reduces the time and36

computational resources needed to predict missing values using imputation models and the manual37

labor required to verify their imputations. Moreover, minimal repair of a dataset pinpoints the subset38
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of the dataset whose uncertainty impacts the effectiveness of the model trained on the dataset. Hence,39

it simplifies the inspection and debugging of model training, which is often labor intensive [27].40

Because incomplete data sets are prevalent and often evolve, a small reduction in time, effort, and41

computational resources in the preparation of training datasets can save significant resources in the42

long run. Specifically, our contributions are as follows.43

• We define minimal repair for learning support vector machines (SVM) (Section 3) and linear44

regression (Section 4) over incomplete data. We prove that finding minimal repairs for SVM45

and linear regression is NP-hard and propose efficient algorithms with provable error bounds46

to approximate minimal repairs for them.47

• Minimal repairs may sometimes be too large or take too long to find. We propose the48

concept of almost minimal repair, which is the minimal subset of data items with missing49

values whose repair delivers a model with a loss within a given threshold from the model50

trained over the fully and accurately repaired dataset. We prove that the problem of finding51

almost minimal repairs is NP-hard for SVM and linear regression and propose algorithms52

with provable error bounds to approximate almost minimal repairs for them (Section 5).53

• We evaluated the scalability of our algorithms on multiple real-world datasets (Section 6).54

Our empirical results indicate that our proposed algorithms efficiently approximate minimal55

and almost minimal repairs and deliver models with the same or almost the same accuracy56

as those trained over fully repaired datasets. Our results also indicate that using minimal57

and almost minimal repairs can reduce the time of the model-based imputation methods for58

large data without losing accuracy in the downstream learning task.59

2 Background60

We model the training data as a table where each row represents a training sample. One column in61

the table represents labels and others represent the features of the samples. Given that the training62

data has d features, we denote its features as [z1, . . . , zd]. The values of each feature belong to the63

domain of the feature, e.g., real numbers. To simplify our analysis, we assume that all the features64

share the same domain. Our results extend to other settings. A training set with n samples is a pair65

of a feature matrix X = [x1, ..., xn]
T and a corresponding label vector y = [y1, ..., yn]

T . We denote66

each sample with d features in X as a vector xi = [xi1, ..., xid], where xij represents the jth feature67

in the ith sample. Given the training set (X,y), the target function f , and the loss function L, the68

goal of training is to find an optimal model w∗ = arg min
w∈W

L(f(X,w),y).69

Missing values Any xij is a missing value if it is unknown (marked by null). An incomplete sample70

(incomplete feature) is a sample (feature) with at least one missing value. We use complete feature71

and complete sample to refer to features and samples that are free of missing values. We denote the72

set of all missing values in a feature matrix X as M(X), the set of incomplete samples as MS(X),73

and the set of incomplete features as MF (X). In this paper, we focus on the case where all missing74

values are in the feature matrix and the label vector is complete.75

Repair A repair is a complete version of an incomplete feature matrix X where all missing values76

in X are replaced with values from their domains and the complete values of X remain intact. Given77

the repair Xr of the feature matrix X, we denote the repair, i.e. imputation, of the sample xi in X by78

xri . Since the domains of features often contain numerous or infinite values, an incomplete feature79

matrix usually has many or infinitely many repairs. We denote this set of all repairs of X by XR.80

3 Minimal Repair (MR) for SVM81

We use the concept of certain model [37] to define minimal repair for SVM. A model w∗ is a certain82

model for the target function f on the training set (X,y) if for every repair Xr ∈ XR, we have83

w∗ = argmin
w∈W

L(f(Xr,w), y) where L is the loss function. Intuitively, a certain model minimizes84

training loss for all repairs of the incomplete feature matrix. Thus, if a certain model exists, one can85

learn an accurate model over the training set without any repair to the training data, as training over86
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any repair to the dataset, e.g., using randomly selected values, will deliver the same accurate model.87

This observation holds regardless of the missingness mechanism—Missing Completely at Random88

(MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR). Given the restrictive89

definition of certain models, they do not often exist [37]. Thus, we find the minimal amount of repair90

of an incomplete training set such that the resulting training set has a certain model.91

Definition 1 A set of incomplete samples SMR in the training set (X,y) is a minimal repair for92

learning SVM with the regularization parameter C if we have: 1) a certain model exists when93

imputing all missing values SMR regardless of the imputation result, and 2) there is no other set S′94

satisfying condition (1) such that |S′| < |SMR| where |SMR| denotes the cardinality of SMR.95

We denote the minimal repair for SVM with the regularization parameter C on the training set (X,y)96

as SMR(X,y, C). We have the following property for the minimal repair of SVM.97

Theorem 1 Given training set (X,y) and regularization parameter C, SMR(X,y, C) is unique.98

3.1 Finding Minimal Repair99

Let SV (Xr,y, C) be the set of support vectors for the optimal SVM model with regularization100

parameter C on a repair Xr of the training set (X,y).101

Lemma 2 Given the training set (X,y) and the regularization parameter C, at least one repair xr
i of102

every sample xi ∈ SMR(X,y, C) is a support vector in a repair Xr of X, i.e., xr
i ∈ SV (Xr,y, C).103

Hence, to determine if an incomplete sample belongs to the minimal repair, one could materialize104

every repair of the feature matrix and check if the incomplete sample is a support vector for any of105

them. However, this process can be extremely inefficient due to the often large number of repairs.106

Assume that each missing value xij is bounded by an interval [xmin
ij , xmax

ij ] based on its domain. Xe107

is an edge repair to X if for every missing value xij , xe
ij = xmin

ij or xmax
ij . XE denotes the set of all108

edge repairs for X. Theorem 3 shows that we can use only the edge repair instead of all repairs to109

check if an incomplete sample belongs to the minimal repair.110

Theorem 3 Given the training set (X,y) and the regularization parameter C, an incomplete sample111

xi belongs to minimal repair SMR(X,y, C) if and only if there is at least one edge repair Xe of X112

such that xe
i ∈ SV (Xe,y, C) where xe

i is the repair of xi.113

Based on Theorem 3, we can find the minimal repair following these steps: 1) Initialize an empty114

minimal repair set, SMR. 2) Iterate over each incomplete sample xi. At each iteration, materialize all115

edge repairs Xe ∈ XE , and check if xi is a support vector for any of the edge repairs. If it is, add116

xi to SMR, and 3) Finally, return the minimal repair SMR. Despite this optimization, finding the117

minimal repair remains computationally intractable.118

Theorem 4 Given a training set (X,y) with missing values, deciding whether an incomplete sample119

belongs to the minimal repair for SVM on (X,y) is NP-hard. Consequently, finding the minimal120

repair for SVM on (X,y) is NP-hard.121

3.2 Approximating Minimal Repair122

We propose an efficient approximation algorithm (Algorithm 1) to find minimal repair for SVM. Its123

key idea is to test whether each incomplete sample xi belongs to minimal repair by constructing an124

edge repair Xe that maximizes the likelihood of xi becoming a support vector. This construction125

begins with a random edge repair and iteratively updates each missing value in the dataset to its126

minimum or maximum bound. At each step, this choice minimizes yiw
⊤xi, encouraging xi to127

satisfy the support vector condition yiw
⊤xi ≤ 1. If this condition holds after the full pass of the128

data, xi is selected for repair. Crucially, this algorithm does not return any false positive. Since129

the algorithm initializes with a randomly selected edge repair, it does not introduce bias towards any130

specific imputation in learning models.131

Theorem 5 Every sample returned by Algorithm 1 belongs to SMR(X,y, C).132
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Algorithm 1 Approximating minimal repair for SVM on training set (X,y)

SMR ← [ ]
Xe ← a random edge repair to the feature matrix X
for xi ∈MS(X) do

for xpq ∈M(X) do
Xemin ,Xemax ← two edge repairs by only replacing xpq in Xe with its min or max value
w1,w2 ← SVM(Xemin ,y), SV M(Xemax ,y) {learning SVM models with edge repairs}
Xe ← if yiw⊤

1 x
emin
i ≤ yiw

⊤
2 x

emax
i then Xemin else Xemax

end for
w← SVM(Xe,y)
if yiw

⊤xi ≤ 1 then SMR ← SMR.add(xi)
end for
return SMR

Since each iteration modifies only one missing value, adjacent models w1 and w2 differ by only133

a single feature entry. This allows us to avoid retraining from scratch by applying incremental or134

decremental SVM updates [7, 20]. These techniques update the model efficiently—typically an order135

of magnitude faster—by reusing computations from the previous solution.136

Algorithm 1 may miss some samples of minimal repair. Thus, we iteratively apply Algorithm 1 to the137

remaining incomplete samples in the training set to find more samples in the minimal repair of the138

training set. The process ends when no new samples are selected for repair. The following theorem139

shows that the probability of not finding samples of minimal repair decreases using this approach.140

Theorem 6 Given the training set (X,y), let pk(x) be the probability that an incomplete sample x141

in minimal repair of (X,y) not returned in iteration of k > 0 in iterative application of Algorithm 1,142

pk(x) > pk+1(x).143

Corollary 6.1 If the probability distribution of each missing value is known, and we let g(xij) denote144

the probability density function of the ground truth value for the missing value xij in the incomplete145

training set (X,y). If missing values in X are independent, the probability that an incomplete sample146

xi in minimal repair not returned by Algorithm 1 in the main content is:147

p(xi) = 1−

∫
·· ·

∫max(xvisited
ij )

min(xvisited
ij )

∏
xij∈M(X) g(xij) dxij∫

·· ·
∫
xij∈M(X)

∏
xij∈M(X) g(xij) dxij

(1)

xvisited
ij ∈ {xmin

ij , xmax
ij } shows the values used for xij in Algorithm 1.148

4 Minimal Repair for Linear Regression149

The minimal repair for linear regression is the smallest set of features that is necessary to repair.150

Definition 2 Given the training set (X,y), a set of incomplete features in X, denoted as SMR(X,y),151

is a minimal repair for (X,y) for linear regression if we have: 1) a certain model exists upon imputing152

all missing values in the SMR(X,y) regardless of the imputation result, and 2) there is no set S153

satisfying condition (1) and |S| < |SMR|.154

In linear regression, the optimal linear regression model w∗ consists of the set of linear coefficients155

for feature vectors. A feature zi is considered relevant if the corresponding linear coefficient in the156

optimal model w∗
i is not zero, and it is irrelevant if w∗

i equals zero. Intuitively, an incomplete feature157

needs to be repaired if it is relevant (i.e., it plays a role in the optimal model) and does not need to be158

repaired if it is irrelevant. However, traditional statistical tools, such as the chi-square test, require159

complete distributions for each feature to assess correlations, which is challenging in the presence of160

missing values. The minimal repair for linear regression may not be unique.161

Theorem 7 There is a training set with multiple minimal repairs for linear regression. In addition,162

if all the features in all the repairs of the training set (X,y) are linearly independent, the minimal163

repair for linear regression over (X,y) is unique.164
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The following theorem establishes that finding minimal repair for linear regression is intractable.165

Theorem 8 Given a training set (X,y) with incomplete features, finding the minimal repair for166

linear regression over (X,y) is NP-hard.167

To find minimal repair efficiently, we first propose an equivalent problem in Theorem 9, based on a168

variant of the well-known sparse linear regression problem [5].169

Lemma 9 Finding the minimal repair for linear regression on training set (X,y) is equivalent to:170

min
w∈W

TMF (X)(w)

subject to w = argmin ||Xrw − y||22,∀Xr ∈ XR
(2)

where TMF (X)(w) is the number of non-zero linear coefficient in w whose corresponding feature is171

incomplete, i.e., TMF (X)(w) = |{zi ∈MF (X)|wi! = 0}|172

The key distinction between our problem and sparse linear regression lies in their objectives: sparse173

linear regression seeks to minimize the number of non-zero coefficients across all features, whereas we174

focus on minimizing the number of non-zero coefficients only among incomplete features. Orthogonal175

Matching Pursuit (OMP) provides an efficient approximation to solve the sparse linear regression176

problem [32]. This greedy algorithm begins with an empty solution set and initializes the regression177

residual to the label vector. In each iteration, the algorithm selects the feature most relevant to the178

current residual (having the largest dot product), adds it to the solution set, retrains a linear regression179

model, and updates the residual accordingly. It stops when the regression residue is sufficiently small.180

We propose a variant of OMP, as outlined in the appendix, to find minimal repair for linear regression.181

Our algorithm has two major differences compared to the conventional OMP. First, we include all182

complete features in the regression at the initialization, ensuring that we minimize the number of183

non-zero coefficients only among incomplete features. Secondly, we define our stopping condition184

by the maximum relevance (cosine similarity) between the feature and the label being smaller than185

or equal to a user-defined threshold, instead of relying on a near-zero regression residue. This186

approach enables our algorithm to work with general datasets without requiring the assumption of an187

underdetermined linear system, which is typically necessary in conventional OMP.188

The time complexity of the algorithm is O(Ttrain · |MF (z)|), making it significantly more efficient189

than the baseline algorithm, which trains models on all repairs individually and has a time complexity190

of O(Ttrain · |XR|). If we use gradient descent, our algorithm has a time complexity of O(n · d3),191

where n is the number of training samples and d is the number of features. In cases where n < d2,192

the time complexity is reduced toO(n · d2 +n2 · d) under certain conditions by applying incremental193

learning techniques based on the Sherman-Morrison formula, as outlined in the appendix. The194

following theorem characterizes the approximation rate of our algorithm.195

Theorem 10 The first k incomplete features added to SMR in our algorithm for training set (X,y)196

belong to a minimal repair of (X,y) with a probability of at least 1− 1/n, provided that: 1) µ <197

1/(2k − 1), 2) the missing values in the dataset follow independent zero-mean normal distributions198

(N (0, σ2
ij)), and 3) all linear coefficients (wi, zi ∈MF (X)) for incomplete features satisfy:199

|wi| ≥
2
∑

xij=null σij

√
n+ 2

√
n log n

1− (2k − 1)µ
(3)

where µ is the mutual incoherence defined by µ = max
i̸=j
|ziT zj|.200

5 Almost Minimal Repair201

Minimal repair might be too large and take a long time to compute for some datasets and learning202

tasks. Thus, we relax the definition of minimal repair to reduce its size and computation cost. Instead203

of enforcing exact optimality, we aim for a set whose imputation can deliver a model that is near-204

optimal for all possible repairs. We use the concept of approximately certain model (ACM) [37] to205

formalize this notion. For a user-defined error threshold e ≥ 0, w≈ is an ACM for the target function206

f on the training set (X,y) if for every repair Xr, L(w≈,Xr,y) −minw∈W L(w,Xr,y) ≤ e.207
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Definition 3 Given a threshold e ≥ 0, a set SAMR of incomplete samples in the training set (X,y) is208

an almost minimal repair (AMR) for the target function f with loss L if: (1) repairing SAMR yields an209

ACM for f in (X,y), and (2) no other set S′ satisfies (1) with |S′| < |SAMR|.210

If e = 0, ACM reduces to a certain model. Hence, we can show that computing AMR is also NP-hard211

for SVM (details are in the appendix).212

5.1 Computing AMR213

We first propose an iterative algorithm with two main steps. Step 1 (ST1: ACM Optimizer) takes the214

input dataset in iteration k > 0 of the algorithm, X(k), and finds the model w≈
k that minimizes the215

worst-case suboptimality gap gk = supX(k)r

[
L(w≈

k ,X
(k)r,y)−minw∈W L(w,X(k)r,y)

]
.216

Step 2 (ST2: Local Repair Set Identifier) examines whether gk > e, and if so, returns the smallest set217

of currently incomplete samples whose imputation may help further reduce the suboptimality gap in218

the next iteration.219

Theorem 11 Given the training set (X,y), each selection made by ST2 belongs to the AMR set220

SAMR of (X,y). Thus, the iterative algorithm terminates with an ACM, and the total imputed set221

Siter-ACM ⊆ SAMR, where Siter-ACM is the union of all incomplete samples selected across iterations.222

This guarantees that our algorithm converges to an ACM by imputing only a subset of SAMR. The key223

distinction is that SAMR is defined to guarantee the ACM condition under all possible repairs—it is224

sufficient without knowledge of any imputation results. In contrast, the iterative algorithm dynamically225

learns imputation results along the way. This new information may render some samples in SAMR226

unnecessary for achieving ACM in the current trajectory. Thus, Siter-ACM can be smaller than SAMR227

while still ensuring the ACM condition.228

5.2 Efficient Approximation229

Both ST1 and ST2 are intractable because they require solving min-sup optimization over exponen-230

tially many repairs and identifying minimal subsets of incomplete samples whose repair is necessary231

when an ACM does not yet exist. Specifically, these are the samples whose imputation would further232

reduce the minimum value of the worst-case suboptimality gap g(w) = supXr h(w,Xr) toward the233

user-defined threshold e. Finding such subsets involves understanding how each missing value affects234

the supremum over all repairs—a problem known to be computationally hard in general due to the235

nested structure of min-max optimization [4]. We therefore propose efficient approximations of these236

steps that make the entire algorithm tractable.237

Approximating ST1 (ACM Optimizer): ST1 aims to find the model w≈
k =238

argminw supXr∈XR
rem

h(w,Xr), where h(w,Xr) = L(w,Xr) − minw′ L(w′,Xr). When239

the loss function L is convex, each h(w,Xr) is convex in w, and so is the pointwise supremum of240

such functions. Thus, we approximate this by sampling a finite subset of edge repairs {Xe
1, . . . ,X

e
s}241

and solving the convex problem minw maxi h(w,Xe
i ).242

However, directly computing h(w,Xe) requires solving an inner optimization for each sampled243

repair to obtain the minimum loss. To make this tractable, we use the subgradient norm ∥g(w,Xe)∥244

as a proxy for the suboptimality gap.245

Theorem 12 If L(w) is convex and has an M -Lipschitz continuous gradient, then any model w≈246

satisfying ∥∇wL(w,Xr)∥ ≤
√
2Me for all Xr is an ACM.247

This result implies that for linear regression, which satisfies the convexity and smoothness conditions,248

we can directly use the gradient norm to check whether a model is an ACM. For non-differentiable249

models like linear SVM, the hinge loss is not smooth and the subgradient norm is not convex.250

Nonetheless, we still use the subgradient norm as a practical stopping proxy to assess whether ACM251

has been achieved.252

Approximating ST2 (Local Repair Set Identifier): ST2 must find a small subset of currently253

incomplete samples whose repair enables further progress toward satisfying the ACM condition. We254
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Table 1: Details of datasets with injected missing data

Data Set Task Features Training samples
Malware Classification 6823 1596

Tuadromd Classification 242 3571
Credit Default Classification 23 30000

Gas Regression 129 2566
Superconductivity Regression 82 21262

Concrete Regression 8 1030

Table 2: Details of datasets with original missing data

Data Set Task Features Training samples Missing Factor
Breast Cancer Classification 10 559 1.97%

Water-Potability Classification 9 2620 39.00%
Online-Ed Classification 36 7026 35.48%
Bankruptcy Classification 64 8402 54.00%
Air Quality Regression 12 7344 90.80%

Communities Regression 1954 1595 93.67%
Cancer Rate Regression 32 3048 81.00%

Table 3: Accuracy and runtime for datasets with injected missing values for SVM

Data Set % Missing Ground Truth Time(s) Accuracy(%) Impute % of Samples
Accuracy(%) AC MR AMR AC MR AMR AC MR AMR

Malware
0.2 95.61 1.36 49.6±3 26.15 93.13 96.49±3 95.48 6.39 34.17 2.19
0.4 95.04 0.56 98.0±3 26.31 92.20 92.42±3 96.74 3.35 29.78 2.04
0.6 95.91 0.170 147.8±3 32.32 88.67 96.37±3 94.73 3.28 24.56 2.09

Tuadromd
0.2 98.67 0.68 8.1 2.89 97.53 98.73 98.99 3.78 16.53 2.10
0.4 98.77 0.54 18.5 4.11 97.42 98.81 98.99 3.53 14.92 2.03
0.6 98.77 0.34 30.6 5.7 97.50 98.77 98.2 2.48 13.17 2.01

Credit Default
0.2 81.03 11.86 78 5.53 74.61 81.02 78.6 0.19 100 0.08
0.4 81.03 14.19 186.0 5.92 71.91 81.00 78.7 0.23 99.51 0.05
0.6 81.03 14.2 309.9 8.0 66.40 81.02 78.43 0.19 99.82 0.03

approximate this by identifying edge repairs Xe from the sampled set where ∥g(w≈
k ,X

e)∥ > ϵ′,255

indicating that ACM is violated under these repairs.256

We then inspect each such “problematic” edge repair. For each incomplete sample xj that currently257

violates the margin condition (i.e., yj(w≈
k )

Txe
j < 1), we check if there exists a feasible repair where258

the margin would exceed 1. If so, we assign a score to xj estimating its potential to reduce the259

subgradient norm. One option is the maximum hinge loss reduction:260

∆Lmax = C ·
[
(1−marginj)−max(0, 1−marginj,max)

]
, (4)

where marginj,max is estimated using interval arithmetic over the missing feature bounds. Alter-261

natively, we compute a gradient alignment score based on the inner product between the current262

subgradient vector and Cyjx
e
j , estimating the contribution to gradient magnitude.263

These scores are aggregated across all high-gradient edge repairs. We then select the top-h highest-264

ranked incomplete samples for imputation in the next iteration. This procedure effectively approxi-265

mates the function of ST2, enabling tractable, targeted refinement of the model toward satisfying the266

ACM condition.267

6 Experimental Evaluation268

We evaluated our methods on six real-world datasets with injected missingness and seven with269

naturally occurring missing values, spanning diverse domains and varying in missingness ratios,270

feature dimensionalities, and sample sizes (Table 2). We evaluate our methods on six real-world271

datasets with synthetically injected missingness and seven with naturally occurring missing values.272

These datasets span diverse domains and vary in missingness ratios (proportion of incomplete273

samples), feature dimensionalities, and sample sizes; Table 2 summarizes them. We first compare our274
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Table 4: Accuracy and runtime of model-based imputation methods for SVM

Data Set Method Time(s) Accuracy(%) Impute % of Samples
KNN MICE TCSDI KNN MICE TCSDI KNN MICE TCSDI

Breast Cancer
MR 0.055±0.002 0.064±0.001 51±3.5 96.30±0.2 96.4±0.2 97.00±1.03 18.2 18.2 18.2

AMR 0.1237 0.1357 85 96.40 96.40 97.11 54.54 54.54 45.45
AC 0.065 0.065 84 95.85 96.30 97.87 87.27 87.27 87.27

Baseline 0.0039 0.046 102 95.78 96.30 97.00 100 100 100

Water-Potability
MR 0.259±0.048 0.135±0.004 473.7±2.3 60.2±1.00 60.3±0.3 62.80±1.38 30 30 30

AMR 1.531 1.756 27.13 55.69 56.13 60.13 0.18 0.18 0.18
AC 0.33 0.033 85.32 54.96 56.90 57.00 1.94 1.94 1.94

Baseline 0.0053 0.0115 1459 96.00 96.30 97.00 100 100 100

Online-Ed
MR 1.606±0.322 0.748±0.318 1087.2±4.1 64.5±0.8 64.5±0.3 65.22±0.01 29.91 29.91 29.91

AMR 19.58 21.31 561.5 62.79 62.70 63.87 14.79 14.79 14.79
AC 1.83 1.88 93.76 63.71 60.77 63.60 0.81 0.81 0.81

Baseline 0.989 1.270 3624 65.23 65.17 65.23 100 100 100

Bankruptcy
MR 2.798±0.09 0.76±0.084 2286.7±5.4 97.22±0.033 97.8±0.01 97.79±0.04 29.9 29.9 29.9

AMR 21.37 25.13 49.89 96.40 96.40 97.11 0.52 0.53 0.53
AC 2.24 2.25 101 54.96 56.90 56.95 0.6 0.6 0.6

Baseline 4.843 22.15 7620 96.00 96.30 97.00 100 100 100

Malware 0.6
MR 18.26±0.642 - 64959.2±4286.7 96.16±1.06 - 97.87±0.45 16.65 - 16.65

AMR 33.17 - 1442 95.12 - 96.01 18.87 - 18.87
AC 0.84 - 11085 85.99 - 88.82 3.28 - 3.28

Baseline 41.209 - 390806 96.16 - 97.87 100 - 100

Table 5: Accuracy and runtime for datasets with injected missing values for Linear Regression

Data Set % Missing Ground Truth Time(s) MSE Impute % of Samples or Features
MSE AC MR AMR AC MR AMR AC MR AMR

Superconductivity
0.2 0.0088 2.200 2.305 4.88 0.01 0.00888 0.0092 0.24 70.00 0.07
0.4 0.0088 2.228 2.534 6.22 0.0099 0.00885 0.0092 0.22 75.00 0.07
0.6 0.0088 1.465 2.476 7.22 0.0103 0.00885 0.0093 0.25 75.00 0.07

Gas
0.2 0.1053 0.0734 0.31 2.98 0.279 0.105 0.127 2.01 65.00 0.58
0.4 0.1053 0.051 0.3391 3.16 0.296 0.1054 0.167 2.01 65.00 0.58
0.6 0.1053 0.0332 0.551 3.45 0.355 0.112 0.163 1.78 25.00 0.58

Concrete
0.2 0.0149 0.0126 0.0227 0.0203 0.0267 0.01495 0.0159 6.89 50.00 1.46
0.4 0.0149 0.0149 0.0202 0.0328 0.0293 0.01495 0.0159 5.63 50.00 1.46
0.6 0.0149 0.0065 0.0199 0.0449 0.0356 0.01495 0.0162 5.28 50.00 1.46

Table 6: Accuracy and runtime of model-based imputation methods for Linear Regression

Data Set Method Time(s) MSE Impute % of Samples
KNN MICE TCSDI KNN MICE TCSDI KNN MICE TCSDI

Cancer Rate
MR 0.153 0.574 5852 0.0045 0.0045 0.0045 0.33 0.33 0.33

AMR 0.213 0.234 91.23 0.0047 0.0045 0.0045 1.46 1.44 1.46
AC 0.166 0.133 110 0.0050 0.0051 0.0049 0.70 0.70 0.70

Baseline 0.584 0.664 6104 0.0045 0.0058 0.0049 100 100 100

Air Quality
MR 1.06 2.46 14976 5.671 5.74 5.82 50 50 50

AMR 0.815 0.956 901 6.015 5.99 5.98 4.78 4.35 4.90
AC 0.199 0.0612 95 6.66 6.71 7.138 1.69 1.69 1.69

Baseline 1.763 2.46 18372 5.672 5.923 5.825 100 100 100

Communities
MR 26.74 28863 - 0.023 0.026 - 75 75 -

AMR 43.18 679.5 - 0.020 0.024 - 1.98 1.98 -
AC - - - - - - - - -

Baseline 26.72 33475 - 0.019 0.024 - 100 100 -

Gas 0.6
MR 0.566 35.05 5098 0.1983 0.1626 0.1166 65.00 65.00 65.00

AMR 1.58 19.23 33.74 0.202 0.178 0.180 0.58 0.58 0.58
AC 0.183 16.9 109 0.215 0.212 0.221 1.78 1.78 1.78

Baseline 0.447 38.67 5227 0.185 0.192 0.2001 100 100 100

methods to Active Clean (AC) [17], which integrates data repair with stochastic gradient descent: in275

each iteration it samples a batch, returns it to the user for repair, and then updates model parameters276

with the repaired samples. Although AC reduces repair cost by prioritizing influential samples, it277

is unclear whether the resulting repaired data yields an accurate model, since not all samples are278

ever selected for gradient updates. Accordingly, we compare the accuracy and time overhead of our279

methods and AC in settings where users manually repair data items, as explained in Section 1. We280

therefore use datasets with injected missingness whose ground truth is available. Details about the281

hardware used in our experiments are available in appendix.282

Table 3 reports SVM classification results for minimal repair (MR), almost minimal repair (AMR),283

and AC. The results show that MR and AMR consistently outperform AC in accuracy across all284

datasets and missingness levels. Notably, AMR achieves higher accuracy than AC while repairing285

substantially fewer samples. For example, on the Credit Default dataset at 40% missingness, AMR286

repairs only 0.05% of samples versus AC’s 0.23%, yet improves accuracy considerably (78.7% for287
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AMR vs. 71.91% for AC). MR attains the highest accuracy overall, though it selects more samples for288

repair.289

Table 5 compares regression outcomes for MR, AMR, and AC. Unlike AC and AMR, which repair entire290

samples, MR imputes individual missing features (see Section 4). Consistent with the classification291

findings, MR and AMR again outperform AC in terms of mean squared error (MSE) across all datasets292

and missingness ratios. On the Gas dataset at 60% missingness, AMR performs fewer repairs than AC293

yet achieves markedly lower MSE (0.163 vs. 0.355). MR achieves the lowest MSE overall, reflecting294

its more comprehensive repair strategy aimed at closely approximating the optimal model.295

We next evaluate the time and effort saved when using model-based imputations. Because imputation296

cost grows with the number of missing items, (almost) minimal repair can cut both inference time297

and user effort for inspecting or verifying imputed values. We use three imputation models: KNN298

(predicts missing values from observed samples via a KNN classifier) [23], MICE (multivariate299

regression–based imputation) [6], and TCSDI (a diffusion model for imputation) [38], representing300

diverse approaches. We compare full imputation, imputing (almost) minimal repair, and imputing the301

samples selected by AC, measuring accuracy, running time, and the number of imputed items (a proxy302

for user effort). We exclude imputation-model training time, which depends only on the observed303

subset and is identical across methods. Experiments use both datasets with natural missingness and304

those with injected missingness; due to space, full injected-missingness results appear in appendix.305

Comparing the three imputation models in Tables 4 and 6, TCSDI consistently achieves higher306

accuracy, but with longer inference times than KNN and MICE. This underscores the practical value307

of MR and AMR, which substantially reduce inference overhead by limiting imputations, especially308

when paired with TCSDI. For instance, on the Malware dataset with 60% missingness, our methods309

reduce imputation time by nearly three days relative to fully imputing the dataset, while maintaining310

comparable accuracy. For the Malware dataset, we omit MICE results because it exceeded available311

memory—an expected limitation given that MICE scales poorly with the number of features. On the312

Bankruptcy dataset (approximately 5% minority vs. 95% majority), AC required multiple executions313

to obtain stable results under severe class imbalance, whereas MR and AMR remained robust.314

We also assess linear regression with model-based imputations. Here, MR and AMR consistently315

deliver faster inference than full imputation while maintaining comparable accuracy, despite sub-316

stantially fewer imputations. In contrast, AC encountered computational issues on high-missingness317

datasets—particularly Communities and Crime—where minimal cleaning occasionally left zero318

training samples, causing failures in partial fitting. MR and AMR avoid such failures, demonstrating319

robustness at substantial missingness ratios.320

Finally, while some theoretical results assume conditions such as zero-mean Gaussian noise or M-321

Lipschitz continuity of loss functions, these assumptions are not required in practice. The datasets in322

our empirical evaluation do not satisfy these conditions, and SVM models do not satisfy M-Lipschitz323

continuity; nonetheless, MR and AMR consistently deliver accurate results.324

7 Related Work325

Researchers have proposed stochastic optimization to find a model by optimizing the expected loss326

function over the probability distributions of missing data items in training samples [11]. Similarly,327

robust optimization aims to minimize the loss function of a model for the imputation that brings the328

highest training loss given certain distributions of missing values [1]. However, the distributions329

of missing data items are not often available. Thus, users may spend significant time and effort330

discovering or training these distributions, which may require the user to find the causes of missingness331

in the data and dependencies between the features. Additionally, for a given type of model, users332

must solve various and possibly challenging optimization problems for many possible (combinations333

of) distributions of missing values. More importantly, these methods reflect the uncertainty in the334

training data caused by missing values in the trained model instead of repairing the data to reduce its335

uncertainty. Hence, they deliver inaccurate models on the dataset with many missing values.336

There are methods to detect cases where the imputation of missing data is not necessary to learn337

accurate models [26, 16, 37]. Although these approaches are useful for some datasets and learning338

tasks, they ignore a majority of learning tasks in which imputing incomplete samples impacts the339

quality of the learned model. More discussion about related work is available in appendix.340
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Appendix: Minimal Repairs for Learning Over
Incomplete Data

Limitations

While our work demonstrates both theoretical and practical advantages in learning over incomplete
data, we acknowledge two limitations:

Model Class and Convexity Assumptions. Our proposed minimal repair (MR) algorithms are
developed for support vector machines (SVM) and linear regression, while the almost minimal repair
(AMR) framework is applicable to a broader class of statistical machine learning models. However,
for AMR, we currently provide provable error bounds and efficient approximations only for models
with convex loss functions. This stems from our reliance on Step 1 (ST1) in Section 5.1, where we
solve a convex optimization problem to find an approximately optimal model w≈

k . Extending AMR
to models with non-convex loss functions remains an open challenge due to the difficulty of verifying
approximate optimality in such settings. Importantly, this limitation reflects the well-known hardness
of non-convex optimization itself—since one cannot generally find globally optimal models for
non-convex losses, it is also difficult to guarantee that a repaired model is close to a global optimum.

Trade-off Between Computation and Imputation Time. As seen in our experiments, the time
required to compute MR or AMR can exceed or roughly match the time needed to fully impute
the dataset when simple imputation methods (e.g., mean or KNN) are used. This suggests that MR
and AMR may not be the preferred choice in scenarios where users already opt for inexpensive
imputation strategies. However, for more complex, resource-intensive and often accurate imputation
methods—such as diffusion-based models [23, 14]—we observe substantial time savings by using
MR or AMR to reduce the number of imputations. In practice, users may choose to apply MR or
AMR when planning to use high-cost imputation models, and directly pursue full imputation when
using simpler methods.

Broader Impacts

Our work has potential positive and negative societal impacts, which we outline below.

Positive societal impacts. Our methods can substantially reduce the time and effort needed for data
preparation, a phase that often consumes up to 80% of a data scientist’s time [13]. By identifying
only the essential missing values to repair, our approach streamlines the ML pipeline, lowers costs,
and makes ML more accessible for everyone—especially in resource-constrained settings or domains
where full imputation is infeasible.

Negative societal impacts. In high-stakes domains (e.g., healthcare, criminal justice), setting a
suboptimal error threshold in AMR (either intentionally or unintentionally) may lead to missed repairs
of critical data, resulting in biased or unsafe models. Additionally, the selective repair approach may
cause developers to overlook the importance of understanding missingness mechanisms or domain
context. These risks can be mitigated by involving domain experts and validating models before
deployment.

Preprint. Under review.



Related Work

Researchers have proposed stochastic optimization to find a model by optimizing the expected loss
function over the probability distributions of missing data items in training samples [9]. Similarly,
robust optimization aims to minimize the loss function of a model for the imputation that brings the
highest training loss given certain distributions of missing values [1]. However, the distributions
of missing data items are not often available. Thus, users may spend significant time and effort
discovering or training these distributions, which may require the user to find the causes of missingness
in the data and dependencies between the features. Additionally, for a given type of model, users
must solve various and possibly challenging optimization problems for many possible (combinations
of) distributions of missing values. More importantly, these methods reflect the uncertainty in the
training data caused by missing values in the trained model instead of repairing the data to reduce its
uncertainty. Hence, they deliver inaccurate models on the dataset with many missing values.

There are methods to detect cases where the imputation of missing data is not necessary to learn
accurate models [15, 11, 22]. Although these approaches are useful for some datasets and learning
tasks, they ignore a majority of learning tasks in which imputing incomplete samples impacts the
quality of the learned model.

Researchers have proposed methods to reduce the cost of repair [12, 11]. ActiveClean learns models
using stochastic gradient descent and greedily chooses samples for repair that may reduce gradient
the most [12]. Unlike our methods, it does not provide any guarantees of minimal repair. Due to
the inherent properties of stochastic gradient descent, it is challenging to provide such a guarantee.
CPClean follows a similar greedy approach but it is limited to learning k nearest neighbor models
over missing data and does not support the types of model our approach addresses [11]. It also does
not provide any guarantees of minimality for its imputations.

Hardware

We conducted experiments on two hardware platforms. Most experiments ran on an x86_64 machine
with 30 Intel(R) Xeon(R) E5-2670 v3 CPU cores (2.30GHz), hosted in a VMware virtualized
environment with two NUMA nodes and 30MB L3 cache. However, this system lacked sufficient
power for diffusion-based imputation models. For those experiments (TCSDI), we used an Nvidia
DGX-2 system with one Nvidia Tesla V100 GPU (32GB VRAM) and 20 CPU cores from 2.70GHz
Intel Xeon Platinum 8168 processors with 33MB L3 cache.

Datasets

We evaluate our methods on two types of datasets: those with synthetic missingness and those with
real-world missingness. For each dataset, we simulate three levels of missingness: 0.2, 0.4, and
0.6, corresponding to 20%, 40%, and 60% incomplete samples, respectively. These datasets are
further divided based on the downstream task: linear regression (LR) and support vector machine
classification (SVM).

All datasets are obtained from publicly available repositories. For synthetic missingness, we start
with complete datasets and introduce missing values in a controlled manner. For real missingness,
we use datasets that naturally contain incomplete entries. This separation allows us to analyze the
behavior of our repair methods under both idealized and realistic data corruption scenarios.

Experimental Results

Here we present the complete experimental results, including those omitted from the main content
due to space constraints.

Tables 3 and 5 in the Main Content

Tables 3 and 5 in the main content present the results of minimal repair (MR) and almost minimal
repair (AMR) from the first iteration for SVM and linear regression, respectively, due to space
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Table A: Accuracy and runtime for datasets with injected missing values for SVM

Data Set % Missing Ground Truth Time(s) Accuracy(%) Impute % of Samples
Accuracy(%) AC MR AMR AC MR AMR AC MR AMR

Malware[16]
0.2 95.61 1.36 Figure1 Figure4 93.13 Figure1 Figure4 6.39 Figure1 Figure4
0.4 95.04 0.56 Figure1 Figure4 92.20 Figure1 Figure4 3.35 Figure1 Figure4
0.6 95.91 0.170 Figure1 Figure4 88.67 Figure1 Figure4 3.28 Figure1 Figure4

Tuadromd[5]
0.2 98.67 0.68 Figure2 Figure5 97.53 Figure2 Figure5 3.78 Figure2 Figure5
0.4 98.77 0.54 Figure2 Figure5 97.42 Figure2 Figure5 3.53 Figure2 Figure5
0.6 98.77 0.34 Figure2 Figure5 97.50 Figure2 Figure5 2.48 Figure2 Figure5

Credit Default[21]
0.2 81.03 11.86 Figure3 Figure6 74.61 Figure3 Figure6 0.19 Figure3 Figure6
0.4 81.03 14.19 Figure3 Figure6 71.91 Figure3 Figure6 0.23 Figure3 Figure6
0.6 81.03 14.2 Figure3 Figure6 66.40 Figure3 Figure6 0.19 Figure3 Figure6

Table B: Accuracy and runtime for datasets with injected missing values for Linear Regression

Data Set % Missing Ground Truth Time(s) MSE Impute % of Samples or Features
MSE AC MR AMR AC MR AMR AC MR AMR

Superconductivity[10]
0.2 0.0088 2.200 2.305 Figure7 0.01 0.00888 Figure7 0.24 70.00 Figure7
0.4 0.0088 2.228 2.534 Figure7 0.0099 0.00885 Figure7 0.22 75.00 Figure7
0.6 0.0088 1.465 2.476 Figure7 0.0103 0.00885 Figure7 0.25 75.00 Figure7

Gas[8]
0.2 0.1053 0.0734 0.31 Figure8 0.279 0.105 Figure8 2.01 65.00 Figure8
0.4 0.1053 0.051 0.3391 Figure8 0.296 0.1054 Figure8 2.01 65.00 Figure8
0.6 0.1053 0.0332 0.551 Figure8 0.355 0.112 Figure8 1.78 25.00 Figure8

Concrete[20]
0.2 0.0149 0.0126 0.0227 Figure9 0.0267 0.01495 Figure9 6.89 50.00 Figure9
0.4 0.0149 0.0149 0.0202 Figure9 0.0293 0.01495 Figure9 5.63 50.00 Figure9
0.6 0.0149 0.0065 0.0199 Figure9 0.0356 0.01495 Figure9 5.28 50.00 Figure9

constraints. Tables A and B provide the full results across multiple iterations for SVM and linear
regression.As the number of iterations increases, both the runtime and the number of imputed data
items increase, reflecting the cumulative nature of the repair process. However, we observe that in the
majority of cases, iteration 1 already achieves accuracy that is close to the ground-truth model trained
on fully repaired data.

For instance, on the Credit Default dataset with Minimal Repair, the model converges as early as
iteration 1 under 20% missingness. For 40% and 60%, convergence is reached by the second iteration.
This explains why the graph only shows a single data point for the 20% case—accuracy stabilizes
early and remains relatively unchanged in subsequent iterations. In the case of Almost Minimal
Repair, the model converges at the second iteration for 20% and 40% missingness, while under 60%
missingness, convergence has not yet been reached, reflecting a more gradual imputation process
under higher uncertainty.On the Concrete dataset, AMR achieves convergence at the first iteration
under 20% missingness, similar to MR on Credit Default. This early convergence indicates that the
repaired model already closely approximates the fully imputed ground-truth model, and additional
iterations yield negligible improvement.

This finding suggests that while multi-iteration repair can be used to theoretically guarantee con-
vergence to certain or approximately certain models (as discussed in Sections 3 and 5 of the main
content), in practice, a single iteration of MR or AMR is often sufficient to obtain a high-performing
downstream model. Thus, users may opt for early stopping after one iteration to save time and effort
without sacrificing model accuracy in most settings.

Figure 1: Iterative Minimal Repair results on the Malware dataset. From left to right: classification
accuracy, total time (imputation + search), and number of imputed values over iterations. Each line
represents a different missingness level (0.2, 0.4, 0.6)
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Figure 2: Iterative Minimal Repair results on the Tuadromd dataset. From left to right: classification
accuracy, total runtime (imputation + search), and number of imputed values across iterations. Each
curve corresponds to a different missingness level (0.2, 0.4, 0.6).

Figure 3: Iterative Minimal Repair results on the Credit Default dataset. From left to right: classifica-
tion accuracy, total runtime (imputation + search), and number of imputed values across iterations.
Each line represents a different missingness level (0.2, 0.4, 0.6).

Figure 4: Iterative Almost Minimal Repair results on the Malware dataset. From left to right:
classification accuracy, total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).

Figure 5: Iterative Almost Minimal Repair results on the Tuadromd dataset. From left to right:
classification accuracy, total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 6: Iterative Almost Minimal Repair results on the Credit Default dataset. From left to right:
classification accuracy, total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).

Figure 7: Iterative Almost Minimal Repair results on the Superconductivity dataset. From left to
right: mean squared error (MSE), total runtime (imputation + search), and number of imputed values
across iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).

Figure 8: Iterative Almost Minimal Repair results on the Gas dataset. From left to right: mean
squared error (MSE), total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).

Figure 9: Iterative Almost Minimal Repair results on the Concrete dataset. From left to right: mean
squared error (MSE), total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Table C: Accuracy and runtime of model-based imputation methods for SVM

Data Set Method Time(s) Accuracy(%) Impute % of Samples
KNN MICE TCSDI KNN MICE TCSDI KNN MICE TCSDI

Breast Cancer
MR 0.055±0.002 0.064±0.001 51±3.5 96.30±0.2 96.4±0.2 97.00±1.03 18.2 18.2 18.2

AMR 0.1237 0.1357 85 96.40 96.40 97.11 54.54 54.54 45.45
AC 0.065 0.065 84 95.85 96.30 97.87 87.27 87.27 87.27

Baseline 0.0039 0.046 102 95.78 96.30 97.00 100 100 100

Water-Potability
MR 0.259±0.048 0.135±0.004 473.7±2.3 60.2±1.00 60.3±0.3 62.80±1.38 30 30 30

AMR 1.531 1.756 27.13 55.69 56.13 60.13 0.18 0.18 0.18
AC 0.33 0.033 85.32 54.96 56.90 57.00 1.94 1.94 1.94

Baseline 0.0053 0.0115 1459 96.00 96.30 97.00 100 100 100

Online-Ed
MR 1.606±0.322 0.748±0.318 1087.2±4.1 64.5±0.8 64.5±0.3 65.22±0.01 29.91 29.91 29.91

AMR 19.58 21.31 561.5 62.79 62.70 63.87 14.79 14.79 14.79
AC 1.83 1.88 93.76 63.71 60.77 63.60 0.81 0.81 0.81

Baseline 0.989 1.270 3624 65.23 65.17 65.23 100 100 100

Bankruptcy
MR 2.798±0.09 0.76±0.084 2286.7±5.4 97.22±0.033 97.8±0.01 97.79±0.04 29.9 29.9 29.9

AMR 21.37 25.13 49.89 96.40 96.40 97.11 0.52 0.53 0.53
AC 2.24 2.25 101 54.96 56.90 56.95 0.6 0.6 0.6

Baseline 4.843 22.15 7620 96.00 96.30 97.00 100 100 100

Malware 0.2
MR 8.98±0.315 - 24390.8±1604.1 95.6±0.4 - 96.49±0.7 18.68 - 18.68

AMR 35.18 - 7942 95.42 - 95.78 18.87 - 18.87
AC 1.17 - 12668 91.20 - 92.30 9.09 - 9.09

Baseline 13.9 - 130269 96.52 - 96.74 100 - 100

Malware 0.4
MR 14.24±1.07 - 54702.4±10385 96.16±0.4 - 96.23±0.45 21.1 - 21.1

AMR 39.45 - 32346 95.89 - 96.23 18.87 - 18.87
AC 0.84 - 11085 88.97 - 89.73 5.32 - 5.32

Baseline 27.66 - 260537 93.83 - 96.74 100 - 100

Malware 0.6
MR 18.26±0.642 - 64959.2±4286.7 96.16±1.06 - 97.87±0.45 16.65 - 16.65

AMR 33.17 - 1442 95.12 - 96.01 18.87 - 18.87
AC 0.84 - 11085 85.99 - 88.82 3.28 - 3.28

Baseline 41.209 - 390806 96.16 - 97.87 100 - 100

Tuadromd 0.2
MR 1.39 100.8±2.26 287±4.69 98.6±0.07 98.73±0.15 98.43±0.16 11.9 11.9 11.9

AMR 5.12 6.52 43.74 96.13 96.27 96.89 2.02 2.03 2.10
AC 1.04 99.86 145 97.58 97.63 97.63 4.06 4.06 4.06

Baseline 2.374 102.11 1987 98.77 98.77 98.66 100 100 100

Tuadromd 0.4
MR 2.55±0.032 96.26±2.26 466.4±16.4 98.5±0.2 98.4±0.13 98.54±0.17 11.1 11.1 11.1

AMR 5.97 7.58 83.64 96.15 95.78 96.56 2.01 2.01 2.01
AC 0.86 99.8 169 96.98 97.12 97.45 3.3 3.3 3.3

Baseline 4.69 100.14 3882 97.3 97.6 98.66 100 100 100

Tuadromd 0.6
MR 3.62± 0.019 79.66± 0.47 692.6± 52.1 98.3± 0.2 98.36± 0.2 98.38± 0.2 11.8 11.8 11.8

AMR 6.52 9.13 137.52 95.45 95.25 96.13 2.01 2.01 2.01
AC 0.679 77.08 170 96.96 96.88 97.3 1.87 1.87 1.87

Baseline 6.21 100.6 6476 97.6 97.3 98.66 100 100 100

Credit Default 0.2
MR 8.37± 0.012 2.93± 0.011 2121± 56.4 80± 0.03 78.1± 0.14 79.6± 0.1 0.3 0.3 0.3

AMR 11.05 15.48 21.37 78.10 78.14 78.10 0.08 0.08 0.08
AC 14.491 15.43 94 78.3 78.16 78.2 0.125 0.125 0.125

Baseline 23.20 5.14 7071 78.1 80.1 80.3 100 100 100

Credit Default 0.4
MR 11.77± 0.012 2.64± 0.059 4242.6± 74 80.31± 0.03 80.1± 0.07 80.4± 0.03 0.3 0.3 0.3

AMR 12.37 16.75 29.57 78.14 78.12 78.12 0.08 0.08 0.08
AC 18.07 18.78 96 79.76 79.1 80.01 0.19 0.19 0.19

Baseline 38.56 5.05 14263 79.6 78.1 78.08 100 100 100

Credit Default 0.6
MR 13.56± 0.014 3.5± 0.031 6357± 67 79.72± 0.02 79.81± 0.093 79.75± 0.07 0.3 0.3 0.3

AMR 14.12 15.79 32.15 78.14 78.12 78.12 0.08 0.08 0.08
AC 20.87 21.31 94 79.4 79.3 79.7 0.21 0.21 0.21

Baseline 48.04 3.902 21124 0.791 0.796 0.801 100 100 100

Tables 4 and 6 in the Main Content

Tables 4 and 6 in the main content report the results of minimal repair (MR) and almost minimal
repair (AMR) on originally incomplete datasets and one synthetically corrupted dataset for SVM
and linear regression, respectively, due to space limitations. Tables C and D present the full results
across all originally incomplete datasets and all synthetically corrupted datasets for SVM and linear
regression, respectively. These additional results are consistent with the conclusions drawn in the
main content.

Following our earlier observation that a single iteration of the MR and AMR algorithms is typically
sufficient to achieve downstream model performance comparable to that of full imputation, we report
results from the first iteration in all these experiments. This choice balances empirical effectiveness
with computational efficiency, while still reflecting the overall trends observed across datasets.

Hyperparameter Analysis for Algorithms

Hyperparameters for the Minimal Repair Algorithm

One hyperparameter in the minimal repair algorithm for SVM is the early stopping criterion, which
determines whether to terminate the iteration before convergence. In the previous section, we
discussed how this setting influences both the overall runtime and the downstream model performance.
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Table D: Accuracy and runtime of model-based imputation methods for Linear Regression

Data Set Method Time(s) MSE Impute % of Samples or Features
KNN MICE TCSDI AC KNN MICE TCSDI AC KNN MICE TCSDI AC

Cancer Rate[2]
MR 0.153 0.574 5852

0.0212
0.0045 0.0045 0.0045

0.0067
33.33 33.33 33.33

1.69AMR 0.213 0.234 91.23 0.0047 0.0045 0.0045 1.46 1.44 1.46
Baseline 0.584 0.664 6104 0.0045 0.0058 0.0049 100 100 100

Air Quality[18]
MR 1.06 2.46 14976

0.031
5.671 5.74 5.817

28.93
50 50 50

0.7AMR 0.815 0.956 901 6.015 5.991 5.978 4.78 4.35 4.90
Baseline 1.763 2.46 18372 5.672 5.923 5.825 100 100 100

Communities[17]
MR 26.74 28863 -

-
0.023 0.026 -

-
75 75 -

-AMR 43.18 679.5 - 0.020 0.024 - 1.98 1.98 -
Baseline 26.72 33475 - 0.019 0.024 - 100 100 -

Superconductivity 0.2
MR 2.369 33.16 29165

2.2
0.0089 0.00897 0.00904

0.01
70 70 70

0.24AMR 4.97 6.03 29.56 0.0088 0.0091 0.0085 0.07 0.07 0.07
Baseline 0.0692 34.17 30515 0.0088 0.008939 0.009013 100 100 100

Superconductivity 0.4
MR 2.599 33.73 29735

2.228
0.0089 0.00924 0.00914

0.0099
75.00 75.00 75.00

0.25AMR 6.53 8.12 32.13 0.0087 0.0089 0.0091 0.07 0.07 0.07
Baseline 0.067 34.34 30783 0.0089 0.00924 0.00914 100 100 100

Superconductivity 0.6
MR 2.541 33.24 30659

1.465
0.0089 0.01027 0.00924

0.0103
75.00 75.00 75.00

0.25AMR 8.12 12.54 35.46 0.0102 0.0089 0.0093 0.07 0.07 0.07
Baseline 0.0681 34.41 30637 0.0089 0.0104 0.00924 100 100 100

Gas 0.2
MR 0.566 35.05 4160

0.0734
0.1079 0.1069 0.1098

0.279
65 65 65

2.01AMR 1.92 14.24 27.13 0.167 0.163 0.127 0.58 0.58 0.58
Baseline 0.4472 38.67 4267 0.1056 0.1073 0.1096 100 100 100

Gas 0.4
MR 0.781 4096 35.8

0.051
0.1121 0.1161 0.1101

0.296
65.00 65.00 65.00

2.01AMR 1.42 16.45 31.14 0.197 0.167 0.163 0.58 0.58 0.58
Baseline 0.7151 40.64 4290 0.1133 0.1055 0.1109 100 100 100

Gas 0.6
MR 0.566 35.05 5098

0.033
0.1983 0.1626 0.1166

0.355
65.00 65.00 65.00

1.78AMR 1.89 21.99 38.46 0.163 0.173 0.127 0.58 0.58 0.58
Baseline 0.447 38.67 5227 0.185 0.192 0.2001 100 100 100

Concrete 0.2
MR 0.03 0.0501 269

0.0126
0.015 0.0152 0.0155

0.0267
50.00 50.00 50.00

6.89AMR 0.081 0.097 4.03 0.0159 0.0159 0.0158 1.46 1.46 1.46
Baseline 0.0175 0.0627 273 0.015 0.0152 0.156 100 100 100

Concrete 0.4
MR 0.0383 0.0501 532

0.0149
0.015 0.0163 0.0161

0.0293
50.00 50.00 50.00

5.63AMR 0.124 0.131 8.01 0.0159 0.0159 0.0159 1.46 1.46 1.46
Baseline 0.0238 0.0582 536 0.015 0.0162 0.0161 100 100 100

Concrete 0.6
MR 0.0409 0.0504 715

0.0065
0.0151 0.0197 0.0164

0.0356
50.00 50.00 50.00

5.28AMR 0.119 0.157 10.68 0.0159 0.0162 0.0162 1.46 1.46 1.46
Baseline 0.0319 0.0561 724 0.0151 0.0191 0.0168 100 100 100

Table E: Result for Tuadromd dataset with 20% injected missing values (SVM) across AMR iterations
with various error thresholds

AMR Iteration Ground Truth Accuracy (%) Time(s) Accuracy(%) Impute % of Samples
e = 0.1 e = 0.2 e = 0.5 e = 0.1 e = 0.2 e = 0.5 e = 0.1 e = 0.2 e = 0.5

1
98.67

3.50 2.89 3.88 99.21 98.99 99.22 2.10 2.10 2.10
3 9.68 9.73 10.52 98.88 98.88 98.89 6.00 6.02 6.02
6 19.32 19.33 20.59 99.10 99.10 99.10 11.76 11.76 11.76

Hyperparameters for the Almost Minimal Repair Algorithm

The almost minimal repair algorithm involves three major tunable hyperparameters: the error thresh-
old e for identifying an approximately certain model, the number of edge repairs s sampled in
ST1, and the maximum number of incomplete samples selected for repair in each iteration of ST2,
expressed as a ratio r of the current number of incomplete samples. We analyze the impact of these
hyperparameters on experimental outcomes using the TUADROMD dataset with a 20% missing rate.
The effect of varying e is shown in Table E, that of varying s is presented in Table F, and that of
varying r is reported in Table G. For all experiments, we vary one hyperparameter at a time while
fixing the others: we fix s = 20 and r = 0.02 when varying e; fix e = 0.2 and r = 0.02 when
varying s; and fix e = 0.2 and s = 20 when varying r.

For the error threshold e, we observe that all tested values in the range [0.1, 0.5] produce comparable
downstream accuracy and imputation cost by iteration 6, without hitting any convergence limits.
This suggests that extremely small error thresholds are not necessary in practice. In fact, decent
downstream performance is already observed by iteration 1 across all e values. These results indicate
that users need not reach a very small suboptimality gap to gain meaningful repair benefits. We select
e = 0.2 in the main experiments as a balanced and efficient default. For the number of sampled edge
repairs s, increasing s raises the time cost due to more extensive candidate evaluation, while both
the downstream accuracy and the percentage of imputed samples remain largely unchanged. This
suggests that the range s ∈ [10, 50] is sufficient to obtain a reliable approximation of w≈, and we
use s = 20 as an efficient default in our experiments. Finally, for the selection ratio r, increasing r
leads to more samples being imputed in each iteration, as expected, but has little effect on runtime or
downstream model performance. We select r = 0.02 as a practical trade-off between repair effort
and computational efficiency.
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Table F: Results for Tuadromd dataset with 20% injected missing values (SVM) across AMR iterations
with varying number of sampled edge repairs in ST1

AMR Iteration Ground Truth Accuracy (%) Time(s) Accuracy(%) Impute % of Samples
s = 10 s = 20 s = 50 s = 10 s = 20 s = 50 s = 10 s = 20 s = 50

1
98.67

1.14 2.89 14.74 98.76 98.99 98.54 2.10 2.10 2.10
3 3.29 9.73 43.19 98.77 98.88 98.77 6.02 6.02 6.02
6 6.33 19.33 82.31 98.77 99.10 98.10 11.76 11.76 11.76

Table G: Results for Tuadromd dataset with 20% injected missing values (SVM) across AMR
iterations with varying selection ratio r for ST2

AMR Iteration Ground Truth Accuracy (%) Time(s) Accuracy(%) Impute % of Samples
r = 0.01 r = 0.02 r = 0.05 r = 0.01 r = 0.02 r = 0.05 r = 0.01 r = 0.02 r = 0.05

1
98.67

3.79 2.89 3.26 98.66 98.99 98.77 1.12 2.10 5.04
3 11.04 9.73 9.20 98.66 98.88 98.77 3.22 6.02 14.42
6 24.56 19.33 17.38 98.43 99.10 98.88 6.16 11.76 26.75

Minimal Repair for Linear Regression

Algorithm for finding minimal repair

Orthogonal Matching Pursuit (OMP) provides an efficient approximation for solving the sparse linear
regression problem [19]. Essentially, this greedy algorithm begins with an empty solution set and
initializes the regression residual to the label vector. In each iteration, the algorithm selects the feature
most relevant to the current residual (i.e., having the largest dot product), adds it to the solution set,
retains a linear regression model, and updates the residual accordingly. The program stops when the
regression residue is sufficiently small. Therefore, OMP will return a subset of features (the solution
set) that are sufficient to achieve an optimal linear regression model.

In this paper, we propose a variant of OMP, as outlined in Algorithm A, to find minimal repair for
linear regression. Our algorithm has two major differences compared to the conventional OMP. Firstly,
we include all complete features in the regression at the initialization, ensuring that we minimize the
number of non-zero coefficients only among incomplete features. Secondly, we define our stopping
condition by the maximum relevance (cosine similarity) between the feature and the label being
smaller than or equal to a user-defined threshold, instead of relying on a near-zero regression residue.
This approach enables our algorithm to work with general datasets without requiring the assumption
of an underdetermined linear system, which is typically necessary in conventional OMP.

Algorithm A Approximating minimal repair for linear regression efficiently

Smin ← [ ]
MV F (z)← set of incomplete features
Complete(z)← set of complete features
r← LR(Complete(z),y) {The residue vector from performing linear regression between com-
plete features and label}
ϵ← a user-defined threshold for stopping condition
MaxCosSim← maxz∈MV F (z) |cos(z, r)|
while MaxCosSim ≤ ϵ do
Smin ← Smin.add(argmaxz∈MV F (z) |cos(z, r)|)
r← LR(Complete(z) ∪ Smin,y)
MaxCosSim← maxz∈MV F (z) |cos(z, r)|

end while
res← Smin

As mentioned in the main content, the time complexity of the algorithm is O(Ttrain · |MV F (z)|),
making it significantly more efficient than the baseline algorithm, which trains models over all repairs
individually and has a time complexity of O(Ttrain · |XR|). If a gradient descent algorithm is
used, Algorithm A has a time complexity of O(n · d3), where n is the number of training samples
and d is the number of features. In cases where n < d2, the time complexity can be reduced to
O(n · d2 + n2 · d) under certain conditions by applying incremental learning techniques based on the
Sherman-Morrison formula, as outlined below.
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Optimization for Algorithm A

The primary time cost in Algorithm A arises from the need to completely retrain the linear regression
model each time a new imputed feature is added to the feature set. This retraining leads to a time
complexity of O(n · d3) for the algorithm. To address this inefficiency, we propose an optimization
using the Sherman-Morrison formula to update the inverse of the feature matrix incrementally [3].
This method reduces the time complexity of including one new feature to O(n2). Consequently,
when n < d2, this optimization results in significant time savings.

Given a feature matrix X, a label vector y, and the coefficients w of the current linear regression
model, our objective is to efficiently update w to incorporate a newly imputed feature vector xnew
into X, forming an updated feature matrix X′, without the necessity of full retraining. When this
new feature vector xnew is added to X, it modifies the original matrix product XTX to XTX +
xnewx

T
new. Applying the Sherman-Morrison formula, the updated inverse of X′TX′ (assuming X′TX′

is invertible) is given by:

(X′TX′)−1 = (XTX)−1 − (XTX)−1xnewx
T
new(X

TX)−1

1 + xT
new(X

TX)−1xnew
(1)

This formulation enables the efficient update of the regression coefficients w, requiring only O(n2)
operations. Implementing at most d such updates results in a complexity of O(d · n2). Including the
initial model trainingO(d2 ·n), the total computational complexity is thus reduced toO(n·d2+n2 ·d).

Minimal Repair: Feature-wise or Sample-wise

For linear SVM, minimal repair (MR) is defined at the sample level—the algorithm returns a set of
samples to repair. This is because the method identifies potential support vectors, which are inherently
defined based on individual samples.

In contrast, for linear regression, MR is defined at the feature level—the algorithm selects a subset of
features to repair. This stems from the interpretation of linear regression as projecting the residual
vector onto the feature space. The approach identifies features that do not contribute to minimizing
the training loss, given the current regression residual.

Proof

Proof for Theorem 1

Prove the theorem by contradiction. Assume that given a training set (X,y) and a regularization
parameter C, two minimal repair sets exist ( Smin1(X,y, C) and Smin2(X,y, C)). From the defini-
tion of minimal repair set, a certain model exists by either imputing all samples in Smin1(X,y, C) or
Smin2(X,y, C), regardless of imputation results. Further, based on the discussion in previous litera-
ture [22], a certain model exists when none of the incomplete samples is a support vector in any repair.
Therefore, if an incomplete sample is not in the minimal repair set, it is not a support vector in any
repair. From the assumption, we can always find an incomplete sample xi that xi /∈ Smin1(X,y, C)
and xi ∈ Smin2(X,y, C). In this scenario, xi is not a support vector for any repair of X because
xi /∈ Smin1(X,y, C). Thus, Smin2(X,y, C) is not a minimal repair set because removing xi from
Smin1(X,y, C) should construct a smaller set also ensuring the existence of certain models, violating
the definition of minimal repair set. Contradicting to the original assumption, Theorem ?? holds.

Proof for Lemma 1

Borrowing the discussion from proving Theorem 1, if an incomplete sample xi is not a support
vector in any repair of X, it should not be part of the minimal repair set Smin (which is unique from
Theorem 1). Further, if an incomplete sample xi is a support vector in at least one repair of X, it has
to be included in the minimal repair set, otherwise certain model does not exist [22].
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Proof for Theorem 3

Necessity is trivial based on Lemma 2: if an incomplete sample is a support vector in an edge repair,
the incomplete sample is part of the minimal repair set. Then we prove sufficiency by contradiction.
Assume that there is an incomplete sample xi part of the minimal repair set Xmin while it is not
a support vector in any edge repair xe ∈ XE . Training an SVM can be interpreted as finding the
minimal distance between two reduced convex hulls [4], and if an sample is within the reduced
convex hull (not at the boundary), the sample is not a support vector. Because xi is not a support
vector for any edge repair from the assumption, it is not a support vector for any repair to X. This is
because, in the process of changing a value for a missing value (xpq) from one edge repair (xmin

pq ) to
another (xmax

pq ) monotonically increase or decrease the coverage of the reduced convex hull. With
that being said, if an incomplete sample xi is not a support vector for any edge repair (i.e., within the
reduced convex hull), the incomplete sample is within the reduced convex hull (i.e., not a support
vector) with respect to any repair. This contradicts to the original assumption that xi is part of the
minimal repair set.

Proof for Theorem 4

We reduce from the NP-complete problem 3-SAT. Let

Φ =

m∧
j=1

(
Cj

)
be a 3-SAT formula with k Boolean variables z1, z2, . . . , zk and m clauses C1, . . . , Cm, each clause
being a disjunction of three literals.

For each variable zℓ, we introduce one or more incomplete samples whose feature vectors each contain
a missing coordinate uℓ. The imputation set for uℓ is {−1,+1}, corresponding to {False,True}.
Thus, any assignment of the zℓ corresponds to choosing ±1 for these missing coordinates.

To enforce that each clause Cj must be satisfied, we add appropriately labeled points (some possibly
incomplete) and arrange them in a geometry so that assigning a literal to false yields a large penalty
term in the soft-margin objective (either by misclassification or forcing the margin to collapse).
Intuitively, if a clause were unsatisfied (all literals set to false), the SVM would incur a prohibitively
large hinge-loss cost, making that repair suboptimal.

We designate one particular incomplete sample xi with additional coordinates or constraints so that:

• If Φ is satisfiable, then there is an imputation (choosing ±1 consistently with a satisfying
assignment) that maximizes the margin while placing xi exactly on the decision boundary,
making it a support vector.

• If Φ is unsatisfiable, then every imputation leads to xi being off the margin (either strictly
inside or otherwise not a support vector). In other words, no selection of {±1} for the
missing attributes can force xi onto the margin.

By suitably tuning the soft-margin parameter C and the placement of the clause-encoding points, we
ensure that the SVM will “prefer” to assign ±1 values in a way that satisfies Φ, whenever possible, in
order to avoid a large penalty.

Hence,
Φ is satisfiable ⇐⇒ there exists a repair making xi a support vector.

Since deciding satisfiability for Φ (3-SAT) is NP-complete, it follows that deciding whether xi can
be a support vector under some imputation is NP-hard.

Determining membership of a single incomplete sample xi among the possible support vectors is
NP-hard. Therefore, listing all such samples that can ever appear on the margin is also NP-hard: if
we had such a list in polynomial time, we could decide membership in that list in polynomial time,
contradicting NP-hardness. Given the proof that finding MR for SVM is NP-hard, deciding whether
an incomplete sample belongs to the MR for SVM is also NP hard. To prove, assume that we have a
polynomial-time solver for deciding whether an incomplete sample belongs to the MR, then one can
linearly scan each incomplete sample and decide its membership in MR (either belongs to or not) by
calling the polynomial time subroutine. Therefore, one can find the MR in polynomial time, which
contradicts to the NP-hard proof earlier.
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Proof for Theorem 5

For any incomplete sample xi returned from Algorithm 1 in main content for SVM, the incomplete
sample is a support vector in at least one repair to X. Based on Theorem 3, it is part of the minimal
repair.

Proof for Theorem 6

Given the iterative algorithm of finding the minimal repair for SVM (Algorithm 1 in the main content),
we first characterize the probability that the imputation set returned at iteration k misses one or more
incomplete samples that belong to the minimal repair.

Let k be the current iteration index (k = 0 represents the initial state before the first run). We
define the following: MS(x)k is the set of incomplete samples remaining at the start of iteration k.
Mk = |MS(x)k| is the number of remaining incomplete samples at the start of iteration k. Sk

min

is the (unknown) true minimal set of samples within MS(x)k that must be imputed at the start of
iteration k to guarantee a certain model. sk = |Sk

min| is the (unknown) size of this true minimal
set; note that we treat sk as a random variable, and sk ≤Mk. S′k is the set of samples returned by
Algorithm 1 in the main content when run at iteration k on the current data; we know S′k ⊆ Sk

min.
FNk is the event that makes at least one false negative error at iteration k, occurring if S′k is a proper
subset of Sk

min. P (FNk) is the probability of event FNk. We seek a computable upper bound
UB′k such that P (FNk) ≤ UB′k. define pfn as an upper bound on the per-sample false negative
probability, p(xi). We assume that there exists a probability pfn (where 0 ≤ pfn ≤ 1) such that for
any sample xi ∈ Sk

min, the probability that Algorithm 1 in the main content fails to include xi in S′k

is bounded above by pfn:
P (xi /∈ S′k|xi ∈ Sk

min) ≤ pfn

Then we propose, UB′k, an upper bound of P (FNk) as follows:

UB′k = 1− (1− pfn)
Mk

≥ P (FNk)

To interpret, when the iteration goes (k becomes larger), Mk and pfn decrease (which we will
prove later), UB′k decreases. This indicates that the upper-bound of probability of under-imputing
decreases over iterations.

To prove this bound, we begin by expressing the target probability P (FNk) using its complement.
The event FNk (at least one false negative) is the complement of the event NoFNk (no false
negatives, i.e., S′k = Sk

min). Therefore, conditioned on the true size sk of the minimal set at iteration
k, we have P (FNk|sk) = 1− P (No FNk|sk).

Next, we bound the probability of having no false negatives, P (No FNk|sk). The event NoFNk

occurs if Algorithm 1 in the main content successfully returns all samples in Sk
min. Let Ei be the

event that Algorithm 1 in the main content fails to return sample xi. Assuming the failure/success
events Ei for different samples xi ∈ Sk

min within the same iteration k are statistically independent,
we can write:

P (No FNk|sk) = P (∩xi∈Sk
min
{not Ei}|sk) =

∏
xi∈Sk

min

P (not Ei|sk)

Let P (Ei|sk) be the probability of failure for xi. Then P (not Ei|sk) = 1 − P (Ei|sk). Using the
definition P (Ei|sk) ≤ pfn, we have 1− P (Ei|sk) ≥ 1− pfn. Substituting this lower bound into
the product gives:

P (No FNk|sk) ≥
sk∏
i=1

(1− pfn) = (1− pfn)
sk

Now we can bound P (FNk|sk):

P (FNk|sk) = 1− P (No FNk|sk) ≤ 1− (1− pfn)
sk

11



The overall probability P (FNk) is the expectation over the unknown size sk:

P (FNk) = E
sk
[P (FNk|sk)] ≤ E

sk
[1− (1− pfn)

sk ]

To proceed, we utilize Jensen’s inequality. Let f(s) = 1 − (1 − pfn)
s. We first prove that f(s)

is concave for s ≥ 0. Let b = 1 − pfn. Since 0 ≤ pfn < 1, we have 0 < b ≤ 1. The
function is f(s) = 1 − bs. The first derivative is f ′(s) = −bs ln(b). The second derivative is
f ′′(s) = −(bs ln(b)) ln(b) = −bs(ln(b))2. Since bs > 0 and (ln(b))2 ≥ 0, the second derivative
f ′′(s) ≤ 0. Therefore, f(s) is a concave function.

Jensen’s inequality for a concave function f states E[f(X)] ≤ f(E[X]). Applying this to our
expectation:

E
sk
[1− (1− pfn)

sk ] ≤ 1− (1− pfn)
E[sk]

Combining this with the previous inequality gives a theoretical upper bound:

P (FNk) ≤ 1− (1− pfn)
E[sk]

The term E[sk] (expected number of truly needed samples) is still unknown. However, we know that
the number of needed samples sk cannot exceed the total number of remaining incomplete samples
Mk = |MS(x)k|. Thus, sk ≤ Mk. Taking expectations yields E[sk] ≤ E[Mk]. Since Mk is a
known quantity (computable by counting) at the start of iteration k, E[Mk] = Mk. Therefore, we
have a computable upper bound for the expectation: E[sk] ≤Mk.

Finally, we substitute this bound on E[sk] into the Jensen result. Let g(x) = (1 − pfn)
x. Since

0 < (1 − pfn) ≤ 1, g(x) is a non-increasing function. Applying g to the inequality E[sk] ≤ Mk

reverses the inequality direction:

(1− pfn)
E[sk] ≥ (1− pfn)

Mk

Multiplying by -1 and adding 1 (reversing the inequality twice):

1− (1− pfn)
E[sk] ≤ 1− (1− pfn)

Mk

Combining the inequalities P (FNk) ≤ 1−(1−pfn)E[s
k] and 1−(1−pfn)E[s

k] ≤ 1−(1−pfn)M
k

,
we arrive at the final upper bound UB′k:

P (FNk) ≤ 1− (1− pfn)
Mk

and
UB′k = 1− (1− pfn)

|MS(x)k|

Now the only problem is to compute pfn and understand how it changes over iterations. The Multiple
Random Starts method provides an empirical approach. First, select a set of incomplete samples
MSprobe (e.g., MS(x)0) and choose the number of repetitions T (e.g., T = 10 or 20). For each
xi ∈ MSprobe, initialize a success count ti = 0. Repeat T times: generate a new random edge
repair Xe

start,t for the current dataset state; run the greedy construction part of Algorithm 1 in the
main content starting from Xe

start,t to get Xe
final,i,t; train wfinal,i,t = SVM(Xe

final,i,t, y); check
if yi(wfinal,i,t)

T (xi part of Xe
final,i,t) ≤ 1. If yes, increment ti.

Also, if the probability distribution of each incomplete sample is known, and we let g(xij) denote
the probability density function of the ground truth value for the missing value xij in the incomplete
training set (X,y). If missing values in X are independent, the probability that an incomplete sample
xi in minimal repair not returned by Algorithm 1 in the main content is:

p(xi) = 1−

∫
·· ·

∫max(xvisited
ij )

min(xvisited
ij )

∏
xij∈M(X) g(xij) dxij∫

·· ·
∫
xij∈M(X)

∏
xij∈M(X) g(xij) dxij

xvisited
ij ∈ {xmin

ij , xmax
ij } shows the values used for xij in Algorithm 1 in the main content. It shows

that the more edge repairs Algorithm 1 explores, the lower the false negative probability for each
sample. One can find pfn by computing p(xi) for each incomplete sample and take the maximum
as pfn. pfn decreases over iterations because each iteration explores additional edge repairs. This
expands the domain of the numerator in the expression increasing the integral value and thereby
lowering p(xi) for every sample5. Since pfn is an upper bound over all such p(xi), it decreases as
well.
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Proof for Theorem 7

Prove the possibility of having multiple minimal repair sets first. Because linear regression can
have multiple non-trivial optimal models in general, multiple minimal repair sets can exist, and each
multiple imputation set corresponds to an optimal linear regression model. For example, when we
have the dataset:

X =

[
1 null null null
0 1 2 3
0 4 3 2

]
, y =

[
1
1
1

]
.

We denote features from left to right as z1 . . . z4. In this example, there are at least two MRs,
MR1 = {z2, z3} and MR2 = {z3, z4}. To prove, we first show that imputing either MR1 or MR2,
and training a linear regression model with imputed features and the originally complete feature
(z1) leads to a zero (minimal) regression loss in all repairs of X . Let us first consider MR1. The
two incomplete features (z2 and z3) with the complete one (z1) cover the full 3-dimensional space
in all repairs because the three features are linearly independent in all repairs. We show the linear
independence by computing the determinant of the matrix A consisting of z1, z2, and z3.

A =

[
1 null null
0 1 2
0 4 3

]

The determinant of the matrix A is non-zero regardless of how the null values in z2 and z3 are
imputed.

det(A) = det(AT ) = 1 · det
(
1 4
2 3

)
− 0 · det

(
null 4
null 3

)
+ 0 · det

(
null 1
null 2

)
= 1 · ((1)(3)− (2)(4))

= 1 · (3− 8)

= −5

Because z1, z2, and z3 are linearly independent, for every repair of A, there is a linear regression
model that achieves zero (minimal) loss with the feature matrix A and the label vector y. Let v(z2)
and v(z3) denote a repair of columns (features) z2 and z3 in A, respectively. Every repair of the
matrix X with v(z2) and v(z3) for its second and third columns, no matter what the imputation of
missing value in z4 is, will have zero regression loss for the label vector y.

Similarly, for MR2, we show that the two incomplete features (z3 and z4) along with the complete z1
cover the full 3-dimensional space in all repairs because the three features are linearly independent in
all repairs. We show this by computing the determinant of the matrix B consisting of z1, z3, and z4.

B =

[
1 null null
0 2 3
0 3 2

]

The determinant of B is non-zero in all repairs.

det(B) = det(BT ) = 1 · det
(
2 3
3 2

)
− 0 · det

(
null 3
null 2

)
+ 0 · det

(
null 2
null 3

)
= 1 · ((2)(2)− (3)(3))

= 1 · (4− 9)

= −5

Therefore, similar to our argument for MR1, the regression loss for every repair of the features of
MR2 in the linear regression with feature matrix X and label vector y is zero (minimal) no matter
what the imputation of the missing value in z2 is.

13



To close the proof for MR1 and MR2 being minimal repairs, we also show that there is no smaller
subset (with only one incomplete feature) such that by imputing the subset and training a linear
regression model with the imputed feature and the originally complete feature z1 leads to the minimal
regression loss in all repairs. By scanning every single incomplete feature, no one can achieve the
minimal regression loss along with the complete feature (z1) in all repairs. Therefore, the size of
MR should be 2, which concludes the proof that MR1 and MR2 are both minimal repairs in this
example dataset. However, when all features in X are linearly independent in all repairs, the optimal
linear regression model is unique for every repair. Therefore, a certain model is unique when it exists
in this scenario, and the minimal repair set is also unique to reach a certain model.

Proof for Theorem 8

To prove that finding the linear regression solution that is most sparse over a subset of features is
NP-hard, we reduce the known NP-hard problem of finding the most sparse linear regression solution
to it [6]. Consider the original problem where given a feature matrix X and a label vector y, the goal
is to find the optimal model w∗ that minimizes the number of non-zero entries. In the new problem,
given a subset of features, i.e., the incomplete features, denoted as MV F (X), we seek the optimal
model w∗ that minimizes the number of non-zero entries in the coefficients within MV F (X). To
reduce the original problem to this new one, set MV F (X) as the entire feature set. Solving the new
problem in this special case is equivalent to solving the original sparse linear regression problem,
which is NP-hard. Therefore, the new problem must also be NP-hard, as it generalizes the original
problem.

Proof for Lemma 9

Based on the previous literature about certain model [22], when a certain model w∗ exists for linear
regression, wi = 0 for every zi ∈ MV F (X). Therefore, finding a minimal repair set in linear
regression is equivalent to finding a regression model that has the maximal number of zero model
parameters (linear coefficients) and is optimal for all repairs. Further, the problem is equivalent
to minimizing the number of non-zero linear coefficients in w whose corresponding feature is
incomplete.

Proof for Theorem 10

When each missing value in the dataset follows an independent zero-mean normal distribution,
training a linear regression model based on the incomplete dataset is equivalent to training linear
regression with a zero-mean Gaussian noise ϵ as below:

y = Xw + ϵ

Based on previous literature [7], in the presence of a Gaussian noise ϵ ∼ N (0, σ2), the first k features
returned from OMP method is correct with a probability of at least 1− 1/n when the following two
conditions are satisfied: 1. µ < 1/(2k − 1), and 2.

|wi| ≥
2σij

√
n+ 2

√
nlogn

1− (2k − 1)µ

As a result, the features returned by the OMP algorithm in our paper is correct with a probability of
at least 1− 1/n given the conditions in Theorem 10.

Proof for Theorem 11

The proof has two parts: (1) showing that any set of samples S′
k selected by ST2 at iteration k is

a subset of SAMR, implying Siter-ACM =
⋃

k S
′
k ⊆ SAMR; and (2) showing the algorithm terminates

with an ACM (gk ≤ e).

Part 1: Each selection S′
k by ST2 belongs to SAMR

SAMR is the smallest set of incomplete samples in X whose robust imputation guarantees g ≤ e,
irrespective of specific repair values. Consider iteration k: ST1 operates on X(k) (where S

(k−1)
iter-ACM =
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⋃
i<k S

′
i are imputed) yielding gk. If gk > e, ST2 returns S′

k, the minimal set of currently incomplete
samples in X(k) necessary to enable g < gk in the next iteration.

Let xj ∈ S′
k. Assume, for contradiction, xj /∈ SAMR. If xj /∈ SAMR, then SAMR (not containing xj)

robustly guarantees g ≤ e for the original problem (X,y). So, xj is not required for this global
robust guarantee. At iteration k, ST2 identifies xj as part of the minimal set S′

k in X(k) needed to
reduce gk. This implies xj is locally indispensable for progress from X(k).

Let S∗
AMR = SAMR ∩ U (k) be the SAMR samples still incomplete in X(k). By induction (S(0)

iter-ACM =

∅ ⊆ SAMR), all S(k−1)
iter-ACM ⊆ SAMR. If SAMR (excluding xj) robustly guarantees ACM for X, and

S
(k−1)
iter-ACM ⊆ SAMR, then any local impasse gk > e must be resolvable by further imputing only

samples from S∗
AMR. So, some P ⊆ S∗

AMR must exist to allow g to decrease. Since ST2 returns the
minimal set for progress, if such P exists, ST2 would select S′

k ⊆ P ⊆ S∗
AMR ⊆ SAMR. This means

xj ∈ SAMR, contradicting xj /∈ SAMR.

Thus, if ST2 selects xj (assumed xj /∈ SAMR) as part of S′
k, it means no P ⊆ S∗

AMR alone allows
progress, and xj is also needed. This implies xj is locally indispensable even if all of S∗

AMR were
imputed. This contradicts the global sufficiency of SAMR (which excludes xj). The perfection of
ST2 ensures it doesn’t select a globally redundant xj if progress is possible via samples in S∗

AMR. So,
xj /∈ SAMR is false. Thus, any xj ∈ S′

k is in SAMR, meaning S′
k ⊆ SAMR for all k. Consequently,

Siter-ACM =
⋃

k S
′
k ⊆ SAMR.

Part 2: Algorithm Termination with an ACM

If gk > e, ST2 identifies a non-empty S′
k for imputation. (If S′

k was empty while gk > e, it would
contradict the existence of SAMR as a solution or the ideal functioning of ST1/ST2). Imputing
S′
k creates X(k+1). The number of incomplete samples is finite. ST2 selects un-imputed samples

necessary for reducing gk. Assuming perfect ST1/ST2, the algorithm progresses towards gk ≤ e. It
cannot impute distinct samples indefinitely nor cycle with gk > e as each ST2 selection resolves a
current bottleneck. Thus, it must reach gk ≤ e and terminate, achieving ACM.

The assertion Siter-ACM ⊂ SAMR is consistent: SAMR ensures robustness for all repairs. The algorithm
uses specific repairs and may achieve ACM before all of SAMR (needed for worst-case robustness)
are imputed.

Proof for Theorem 12

We assume that the loss function L(w) is convex and has an M -Lipschitz continuous gradient.
Formally, this means for all w,w′ ∈ W:

∥∇L(w)−∇L(w′)∥ ≤M∥w −w′∥.

Since L(w) is convex with an M -Lipschitz continuous gradient, the following standard inequality
from convex optimization theory holds:

L(w) ≤ L(w′) +∇L(w′)⊤(w −w′) +
M

2
∥w −w′∥2, ∀w,w′ ∈ W.

Let w∗ be an optimal solution (thus∇L(w∗) = 0), and set w′ = w∗, then we have:

L(w≈) ≤ L(w∗) +
M

2
∥w≈ −w∗∥2.

Next, due to convexity of L(w), we have:

L(w∗) ≥ L(w≈) +∇L(w≈)⊤(w∗ −w≈).

Combining the two inequalities, we get:

L(w≈)− L(w∗) ≤ M

2
∥w≈ −w∗∥2 ≤ 1

2M
∥∇L(w≈)∥2,

15



where the last step follows from the Lipschitz continuity of the gradient, which implies that:

∥∇L(w≈)∥ ≥M∥w≈ −w∗∥.

Hence, the optimality gap is explicitly bounded by the norm of the gradient:

L(w≈)− L(w∗) ≤ 1

2M
∥∇L(w≈)∥2.

Therefore, to guarantee for all Xr ∈ XR that:

L(f(Xr,w≈),y)− min
w∈W

L(f(Xr,w),y) ≤ e,

it is sufficient to require:

∥∇wL(f(Xr,w≈),y)∥ ≤
√
2Me, ∀Xr ∈ XR.

This completes the derivation.

Code Repository

Link: https://anonymous.4open.science/r/Submission_2025-A1C0/README.md
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