- O © ® N O o A~ W N =

13

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

Minimal Repairs for Learning Over Incomplete Data

Anonymous Author(s)
Affiliation
Address

email

Abstract

Missing data often exists in real-world datasets, requiring significant time and
effort for data repair to learn accurate machine learning (ML) models. In this paper,
we show that imputing all missing values is not always necessary to achieve an
accurate ML model. We introduce concepts of minimal and almost minimal repair,
which are subsets of missing data items in training data whose imputation delivers
accurate and reasonably accurate models, respectively. Imputing these sets can
significantly reduce the time, computational resources, and manual effort required
for learning models. We show that finding these sets is NP-hard for SVM and
linear regression and propose efficient approximation algorithms with provable
error bounds. Our extensive experiments indicate that our proposed algorithms can
substantially reduce the time and effort required to learn on incomplete datasets.

1 Introduction

The performance of an ML model is highly dependent on the quality of its training data. In real-world
data, a major data quality issue is missing or incomplete data [[12} |18} [17, 8, [13]]. There are two
common approaches to address missing values in training data. The first approach involves deleting
samples with missing values. However, this method can lead to the loss of important information and
introduce bias [31]. Another popular approach is data repair or imputation, in which end-users or ML
practitioners impute missing values with the correct ones [3, [10, 21} 22} [28| 24} 33| 34]. Accurate
repair is often challenging and expensive as it usually requires extensive collaboration with expensive
domain experts. It usually must be repeated whenever the dataset evolves.

To reduce the cost of imputation, significant effort has been made to train imputation models on the
observed subset of the dataset that predict accurate values for missing data items [6} 19} 21129, (36, 38]].
State-of-the-art models for data imputation may take a long time to process and predict values for
missing data items, and those that use deep neural networks need costly computational resources
[25, 1381 36]]. As the dataset evolves, the user often has to repeat these steps. Moreover, in domains
where important decisions must be made, e.g., healthcare and criminal justice, humans may need
to manually verify the predictions of the imputation models [35)]. Some users also distrust black-
box model-based imputation techniques in critical applications and prefer to reason about missing
data themselves using observed features and domain knowledge [2} 30]. In addition, model-based
imputation may perform poorly when the ratio of missing data to observed data is too large [9} [14}[15]].
In these settings, users may have to manually repair at least parts of the data.

To address these challenges, we introduce the concept of a minimal repair for a training dataset
with missing values. Generally speaking, this set represents the smallest group of data items with
missing values that, once repaired, yields the same model as that trained on a fully and accurately
repaired dataset. By finding and imputing this set, users can significantly reduce the time and effort
required to manually repair a dataset without sacrificing model accuracy. It also reduces the time and
computational resources needed to predict missing values using imputation models and the manual
labor required to verify their imputations. Moreover, minimal repair of a dataset pinpoints the subset
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of the dataset whose uncertainty impacts the effectiveness of the model trained on the dataset. Hence,
it simplifies the inspection and debugging of model training, which is often labor intensive [27]].
Because incomplete data sets are prevalent and often evolve, a small reduction in time, effort, and
computational resources in the preparation of training datasets can save significant resources in the
long run. Specifically, our contributions are as follows.

* We define minimal repair for learning support vector machines (SVM) (Section 3] and linear
regression (Section ) over incomplete data. We prove that finding minimal repairs for SVM
and linear regression is NP-hard and propose efficient algorithms with provable error bounds
to approximate minimal repairs for them.

* Minimal repairs may sometimes be too large or take too long to find. We propose the
concept of almost minimal repair, which is the minimal subset of data items with missing
values whose repair delivers a model with a loss within a given threshold from the model
trained over the fully and accurately repaired dataset. We prove that the problem of finding
almost minimal repairs is NP-hard for SVM and linear regression and propose algorithms
with provable error bounds to approximate almost minimal repairs for them (Section [3)).

» We evaluated the scalability of our algorithms on multiple real-world datasets (Section [6).
Our empirical results indicate that our proposed algorithms efficiently approximate minimal
and almost minimal repairs and deliver models with the same or almost the same accuracy
as those trained over fully repaired datasets. Our results also indicate that using minimal
and almost minimal repairs can reduce the time of the model-based imputation methods for
large data without losing accuracy in the downstream learning task.

2 Background

We model the training data as a table where each row represents a training sample. One column in
the table represents labels and others represent the features of the samples. Given that the training
data has d features, we denote its features as [z, . . ., z4]. The values of each feature belong to the
domain of the feature, e.g., real numbers. To simplify our analysis, we assume that all the features
share the same domain. Our results extend to other settings. A training set with n samples is a pair
of a feature matrix X = [y, ..., X,,|7 and a corresponding label vectory = [y1, ..., ]’ . We denote
each sample with d features in X as a vector X; = [x;1, ..., 4], Where x;; represents the 4t feature
in the i'” sample. Given the training set (X, y), the target function £, and the loss function L, the
goal of training is to find an optimal model w* = arg IréllI/lv L(f(X,w),y).
w

Missing values Any x;; is a missing value if it is unknown (marked by null). An incomplete sample
(incomplete feature) is a sample (feature) with at least one missing value. We use complete feature
and complete sample to refer to features and samples that are free of missing values. We denote the
set of all missing values in a feature matrix X as M (X)), the set of incomplete samples as M S(X),
and the set of incomplete features as M F'(X). In this paper, we focus on the case where all missing
values are in the feature matrix and the label vector is complete.

Repair A repair is a complete version of an incomplete feature matrix X where all missing values
in X are replaced with values from their domains and the complete values of X remain intact. Given
the repair X" of the feature matrix X, we denote the repair, i.e. imputation, of the sample x; in X by
x; . Since the domains of features often contain numerous or infinite values, an incomplete feature

matrix usually has many or infinitely many repairs. We denote this set of all repairs of X by )

3 Minimal Repair (MR) for SVM

We use the concept of certain model [37] to define minimal repair for SVM. A model w* is a certain

model for the target function f on the training set (X,y) if for every repair X" € X", we have

w* = argmin L(f(X",w),y) where L is the loss function. Intuitively, a certain model minimizes
wew
training loss for all repairs of the incomplete feature matrix. Thus, if a certain model exists, one can

learn an accurate model over the training set without any repair to the training data, as training over
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any repair to the dataset, e.g., using randomly selected values, will deliver the same accurate model.
This observation holds regardless of the missingness mechanism—Missing Completely at Random
(MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR). Given the restrictive
definition of certain models, they do not often exist [37]]. Thus, we find the minimal amount of repair
of an incomplete training set such that the resulting training set has a certain model.

Definition 1 A set of incomplete samples Sy in the training set (X,y) is a minimal repair for
learning SVM with the regularization parameter C' if we have: 1) a certain model exists when
imputing all missing values S ;g regardless of the imputation result, and 2) there is no other set S’
satisfying condition (1) such that |S’| < |Syrr| where |Syrr| denotes the cardinality of S s g

We denote the minimal repair for SVM with the regularization parameter C' on the training set (X, y)
as Sy r(X,y, C). We have the following property for the minimal repair of SVM.

Theorem 1 Given training set (X,y) and regularization parameter C, Spyrr(X,y, C) is unique.

3.1 Finding Minimal Repair

Let SV (X",y, C) be the set of support vectors for the optimal SVM model with regularization
parameter C' on a repair X" of the training set (X, y).

Lemma 2 Given the training set (X,y) and the regularization parameter C, at least one repair X} of
every sample x; € Sy r(X,y, C) is a support vector in a repair X* of X, i.e., x] € SV(X",y, C).

Hence, to determine if an incomplete sample belongs to the minimal repair, one could materialize
every repair of the feature matrix and check if the incomplete sample is a support vector for any of
them. However, this process can be extremely inefficient due to the often large number of repairs.
Assume that each missing value x;; is bounded by an interval [z ”“”7 2] based on its domain. X®

¥}
is an edge repair to X if for every missing value x;;, z7; = = 2" or T, X denotes the set of all
edge repairs for X. Theorem [3|shows that we can use only tfle edge repair instead of all repairs to
check if an incomplete sample belongs to the minimal repair.

Theorem 3 Given the training set (X,y) and the regularization parameter C, an incomplete sample
x; belongs to minimal repair Syrr(X,y, C) if and only if there is at least one edge repair X° of X
such that x§ € SV (X°,y, C) where X¢ is the repair of x;.

Based on Theorem 3] we can find the minimal repair following these steps: 1) Initialize an empty
minimal repair set, Sy r. 2) Iterate over each incomplete sample x;. At each iteration, materialize all
edge repairs X¢ € X¥, and check if x; is a support vector for any of the edge repairs. If it is, add
x; to Syrr, and 3) Finally, return the minimal repair Sy;r. Despite this optimization, finding the
minimal repair remains computationally intractable.

Theorem 4 Given a training set (X,y) with missing values, deciding whether an incomplete sample
belongs to the minimal repair for SVM on (X,y) is NP-hard. Consequently, finding the minimal
repair for SVM on (X,y) is NP-hard.

3.2 Approximating Minimal Repair

We propose an efficient approximation algorithm (Algorithm I to find minimal repair for SVM. Its
key idea is to test whether each incomplete sample x; belongs to minimal repair by constructing an
edge repair X° that maximizes the likelihood of x; becoming a support vector. This construction
begins with a random edge repair and iteratively updates each missing value in the dataset to its
minimum or maximum bound. At each step, this choice minimizes yinxi, encouraging x; to
satisfy the support vector condition y;w ' x; < 1. If this condition holds after the full pass of the
data, x; is selected for repair. Crucially, this algorithm does not return any false positive. Since
the algorithm initializes with a randomly selected edge repair, it does not introduce bias towards any
specific imputation in learning models.

Theorem S Every sample returned by Algorithmbelongs to Syr(X,y,C).
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Algorithm 1 Approximating minimal repair for SVM on training set (X, y)

Sur [ ]
X¢ < arandom edge repair to the feature matrix X
for x; € MS(X) do
for z,, € M(X) do
Xemin X¢maz ¢ two edge repairs by only replacing x4 in X with its min or max value
w1, Wy — SV M (Xemin y), SVM(X¢me= y) {learning SVM models with edge repairs }
X« if y;wi x{mm < y;wg x§mee then Xemin else X ¢mar
end for
w <« SVM(Xe,y)
if inTXZ‘ <1 then S]\,{R — SMR.add(xi)
end for
return Sy p

Since each iteration modifies only one missing value, adjacent models w; and wy differ by only
a single feature entry. This allows us to avoid retraining from scratch by applying incremental or
decremental SVM updates [7} 20]. These techniques update the model efficiently—typically an order
of magnitude faster—by reusing computations from the previous solution.

Algorithm [T may miss some samples of minimal repair. Thus, we iteratively apply Algorithm [I]to the
remaining incomplete samples in the training set to find more samples in the minimal repair of the
training set. The process ends when no new samples are selected for repair. The following theorem
shows that the probability of not finding samples of minimal repair decreases using this approach.

Theorem 6 Given the training set (X,y), let pi(x) be the probability that an incomplete sample x
in minimal repair of (X,y) not returned in iteration of k > 0 in iterative application of Algorithm

Pr(X) > prga(x).

Corollary 6.1 If the probability distribution of each missing value is known, and we let g(x;;) denote
the probability density function of the ground truth value for the missing value x;; in the incomplete
training set (X,y). If missing values in X are independent, the probability that an incomplete sample
X; in minimal repair not returned by Algorithm 1 in the main content is:
max "c‘””“'
f f m(iwwed ) ac7j€M(X) 9(wij) dzi;
plxi) =1- (1
J "'fxijeM(x) Ha:ijeM(X) 9(wi5) dy;

“””“1 € {x”“" x;*" } shows the values used for x;j in Algorlthml

4 Minimal Repair for Linear Regression

The minimal repair for linear regression is the smallest set of features that is necessary to repair.

Definition 2 Given the training set (X,y), a set of incomplete features in X, denoted as Syrr(X,y),
is a minimal repair for (X,y) for linear regression if we have: 1) a certain model exists upon imputing
all missing values in the Sy r(X,y) regardless of the imputation result, and 2) there is no set S
satisfying condition (1) and |S| < |S g

In linear regression, the optimal linear regression model w* consists of the set of linear coefficients
for feature vectors. A feature z; is considered relevant if the corresponding linear coefficient in the
optimal model w; is not zero, and it is irrelevant if w; equals zero. Intuitively, an incomplete feature
needs to be repaired if it is relevant (i.e., it plays a role in the optimal model) and does not need to be
repaired if it is irrelevant. However, traditional statistical tools, such as the chi-square test, require
complete distributions for each feature to assess correlations, which is challenging in the presence of
missing values. The minimal repair for linear regression may not be unique.

Theorem 7 There is a training set with multiple minimal repairs for linear regression. In addition,
if all the features in all the repairs of the training set (X,y) are linearly independent, the minimal
repair for linear regression over (X,y) is unique.
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The following theorem establishes that finding minimal repair for linear regression is intractable.

Theorem 8 Given a training set (X,y) with incomplete features, finding the minimal repair for
linear regression over (X,y) is NP-hard.

To find minimal repair efficiently, we first propose an equivalent problem in Theorem [J] based on a
variant of the well-known sparse linear regression problem [J5].

Lemma 9 Finding the minimal repair for linear regression on training set (X,y) is equivalent to:
min T’ w
o L Fx) (W)

. : r 2 T R (2)

subjectto w = argmin || X"w — y||5, VX" € X
where Ty p(x) (W) is the number of non-zero linear coefficient in w whose corresponding feature is
incomplete, i.e., Trrp(x)(W) = |[{z; € MF(X)w;! = 0}]

The key distinction between our problem and sparse linear regression lies in their objectives: sparse
linear regression seeks to minimize the number of non-zero coefficients across all features, whereas we
focus on minimizing the number of non-zero coefficients only among incomplete features. Orthogonal
Matching Pursuit (OMP) provides an efficient approximation to solve the sparse linear regression
problem [32]]. This greedy algorithm begins with an empty solution set and initializes the regression
residual to the label vector. In each iteration, the algorithm selects the feature most relevant to the
current residual (having the largest dot product), adds it to the solution set, retrains a linear regression
model, and updates the residual accordingly. It stops when the regression residue is sufficiently small.

We propose a variant of OMP, as outlined in the appendix, to find minimal repair for linear regression.
Our algorithm has two major differences compared to the conventional OMP. First, we include all
complete features in the regression at the initialization, ensuring that we minimize the number of
non-zero coefficients only among incomplete features. Secondly, we define our stopping condition
by the maximum relevance (cosine similarity) between the feature and the label being smaller than
or equal to a user-defined threshold, instead of relying on a near-zero regression residue. This
approach enables our algorithm to work with general datasets without requiring the assumption of an
underdetermined linear system, which is typically necessary in conventional OMP.

The time complexity of the algorithm is O(T}y.qin - |M F(2)]), making it significantly more efficient
than the baseline algorithm, which trains models on all repairs individually and has a time complexity
of O(Tyrain - |XE|). If we use gradient descent, our algorithm has a time complexity of O(n - d%),
where n is the number of training samples and d is the number of features. In cases where n < d?,
the time complexity is reduced to O(n - d? +n? - d) under certain conditions by applying incremental
learning techniques based on the Sherman-Morrison formula, as outlined in the appendix. The
following theorem characterizes the approximation rate of our algorithm.

Theorem 10 The first k incomplete features added to Sy in our algorithm for training set (X,y)
belong to a minimal repair of (X, y) with a probability of at least 1 — 1/n, provided that: 1) i <
1/(2k — 1), 2) the missing values in the dataset follow independent zero-mean normal distributions
(N(0, afj)), and 3) all linear coefficients (w;, z; € M F (X)) for incomplete features satisfy:

2 inj:w” gijvVn+2y/nlogn

1—(2k—1)p

lwi| > 3

where 1 is the mutual incoherence defined by i = m#ax |zisz |
]

S Almost Minimal Repair

Minimal repair might be too large and take a long time to compute for some datasets and learning
tasks. Thus, we relax the definition of minimal repair to reduce its size and computation cost. Instead
of enforcing exact optimality, we aim for a set whose imputation can deliver a model that is near-
optimal for all possible repairs. We use the concept of approximately certain model (ACM) [37] to
formalize this notion. For a user-defined error threshold e > 0, w™ is an ACM for the target function
f on the training set (X, y) if for every repair X", L(w™, X" y) — minyew L(w, X", y) <e.
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Definition 3 Given a threshold e > 0, a set Sayr of incomplete samples in the training set (X,y) is
an almost minimal repair (AMR) for the target function f with loss L if: (1) repairing Samg yields an
ACM for f in (X,y), and (2) no other set S’ satisfies (1) with |S’| < |Samr|-

If e = 0, ACM reduces to a certain model. Hence, we can show that computing AMR is also NP-hard
for SVM (details are in the appendix).

5.1 Computing AMR

We first propose an iterative algorithm with two main steps. Step 1 (ST1: ACM Optimizer) takes the
input dataset in iteration k > 0 of the algorithm, X(*), and finds the model w; that minimizes the
worst-case suboptimality gap gi = supxc- [L(WF, XH®" y) — mingew L(w, X®)7 y)].

Step 2 (ST2: Local Repair Set Identifier) examines whether g > e, and if so, returns the smallest set
of currently incomplete samples whose imputation may help further reduce the suboptimality gap in
the next iteration.

Theorem 11 Given the training set (X,y), each selection made by ST2 belongs to the AMR set
Samr of (X,y). Thus, the iterative algorithm terminates with an ACM, and the total imputed set
Siter-acm € Samr, where Sier.acy IS the union of all incomplete samples selected across iterations.

This guarantees that our algorithm converges to an ACM by imputing only a subset of Samr. The key
distinction is that Sapmg is defined to guarantee the ACM condition under all possible repairs—it is
sufficient without knowledge of any imputation results. In contrast, the iterative algorithm dynamically
learns imputation results along the way. This new information may render some samples in Sapmr
unnecessary for achieving ACM in the current trajectory. Thus, Sje;acm can be smaller than Sayvr
while still ensuring the ACM condition.

5.2 Efficient Approximation

Both ST1 and ST?2 are intractable because they require solving min-sup optimization over exponen-
tially many repairs and identifying minimal subsets of incomplete samples whose repair is necessary
when an ACM does not yet exist. Specifically, these are the samples whose imputation would further
reduce the minimum value of the worst-case suboptimality gap g(w) = supx. h(w, X") toward the
user-defined threshold e. Finding such subsets involves understanding how each missing value affects
the supremum over all repairs—a problem known to be computationally hard in general due to the
nested structure of min-max optimization [4]. We therefore propose efficient approximations of these
steps that make the entire algorithm tractable.

Approximating ST1 (ACM Optimizer): STl aims to find the model w; =
arg minw supxrexr h(w,X"), where h(w,X") = L(w,X") — ming L(w',X").  When
the loss function L is convex, each h(w, X") is convex in w, and so is the pointwise supremum of
such functions. Thus, we approximate this by sampling a finite subset of edge repairs {X¢, ..., X¢}
and solving the convex problem min,, max; h(w, X¢).

However, directly computing h(w, X¢) requires solving an inner optimization for each sampled
repair to obtain the minimum loss. To make this tractable, we use the subgradient norm ||g(w, X¢)||
as a proxy for the suboptimality gap.

Theorem 12 If L(w) is convex and has an M -Lipschitz continuous gradient, then any model w™
satisfying ||Vw L(w, X")|| < vV/2Me for all X" is an ACM.

This result implies that for linear regression, which satisfies the convexity and smoothness conditions,
we can directly use the gradient norm to check whether a model is an ACM. For non-differentiable
models like linear SVM, the hinge loss is not smooth and the subgradient norm is not convex.
Nonetheless, we still use the subgradient norm as a practical stopping proxy to assess whether ACM
has been achieved.

Approximating ST2 (Local Repair Set Identifier): ST2 must find a small subset of currently
incomplete samples whose repair enables further progress toward satisfying the ACM condition. We
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Table 1: Details of datasets with injected missing data

Data Set Task Features | Training samples
Malware Classification 6823 1596
Tuadromd Classification 242 3571
Credit Default Classification 23 30000
Gas Regression 129 2566
Superconductivity | Regression 82 21262
Concrete Regression 8 1030

Table 2: Details of datasets with original missing data

Data Set Task Features | Training samples | Missing Factor
Breast Cancer | Classification 10 559 1.97%
Water-Potability | Classification 9 2620 39.00%
Online-Ed Classification 36 7026 35.48%
Bankruptcy Classification 64 8402 54.00%
Air Quality Regression 12 7344 90.80%
Communities Regression 1954 1595 93.67%
Cancer Rate Regression 32 3048 81.00%

Table 3: Accuracy and runtime for datasets with injected missing values for SVM

.. Ground Truth Time(s) Accuracy(%) Impute % of Samples
DataSet | % Missing | s ciiracy(%) [AC MR AMR | AC MR AMR | AC— MR — AME
02 9561 136 496%3 26.15 | 93.13 9649%3 9548 | 639 3417 2.19

Malware 04 95.04 056 9803 2631 | 9220 92.42E3 9674 | 335 2978 2.04
06 95.01 0.170 147853 3232 | 8867 9637E3 9473 | 328 2456 2.09

02 98.67 0.68 8.1 280 | 9753 9873 9899 | 3.78 1653 2.10

Tuadromd 04 98.77 054 185 411 | 9742 9881 9890 | 353 1492 2.03
06 98.77 034 306 57 9750 9877 982 | 248 13.17 201

02 81.03 1186 78 553 | 7461 8102 786 | 0.19 100 0.8

Credit Default 04 81.03 410 1860 502 | 71.901 8L00 787 | 023 9951 0.05
06 81.03 42 3000 80 | 6640 8102 7843 [ 0.0 99.82 0.03

approximate this by identifying edge repairs X° from the sampled set where ||g(w}’, X)|| > €/,
indicating that ACM is violated under these repairs.

We then inspect each such “problematic” edge repair. For each incomplete sample x; that currently
violates the margin condition (i.e., y; (w,?)ij < 1), we check if there exists a feasible repair where
the margin would exceed 1. If so, we assign a score to x; estimating its potential to reduce the
subgradient norm. One option is the maximum hinge loss reduction:

ALy =C - [(1 — marginj) —max(0,1 — marginjymax)] , 4
where margin; .. is estimated using interval arithmetic over the missing feature bounds. Alter-
natively, we compute a gradient alignment score based on the inner product between the current
subgradient vector and C'y;x$, estimating the contribution to gradient magnitude.

These scores are aggregated across all high-gradient edge repairs. We then select the top-/ highest-
ranked incomplete samples for imputation in the next iteration. This procedure effectively approxi-
mates the function of ST2, enabling tractable, targeted refinement of the model toward satisfying the
ACM condition.

6 Experimental Evaluation

We evaluated our methods on six real-world datasets with injected missingness and seven with
naturally occurring missing values, spanning diverse domains and varying in missingness ratios,
feature dimensionalities, and sample sizes (Table E]) We evaluate our methods on six real-world
datasets with synthetically injected missingness and seven with naturally occurring missing values.
These datasets span diverse domains and vary in missingness ratios (proportion of incomplete
samples), feature dimensionalities, and sample sizes; Table[2] summarizes them. We first compare our
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Table 4: Accuracy and runtime of model-based imputation methods for SVM

Time(s) Accuracy(%) Impute % of Samples
Data Set Method KNN MICE TCSDI KNN MICE TCSDI | KNN  MICE TCSDI
MR | 0.055£0.002 0.064=£0.001 51£35 9630£0.2 964102 97.00£1.03 | 182 182 182
Breast Cancer | AMR 0.1237 0.1357 85 96.40 96.40 97.11 5454 5454 4545
AC 0.065 0.065 34 95.85 96.30 97.87 8727 8727  87.27
Baseline 0.0039 0.046 102 95.78 96.30 97.00 100 100 100
MR | 0.25940.048 0.135+0.004 4737523 602+1.00  60.3%0.3 62.80+1.38 | 30 30 30
Water-Potability [ AMR 1.531 1.756 2713 35.69 56.13 60.13 0.8 018 0.8
AC 033 0.033 85.32 54.96 56.90 57.00 194 194 194
Baseline 0.0053 0.0115 1459 96.00 96.30 97.00 100 100 100
MR | 1.606£0.322 0.748£0.318 10872541 645508 645103 65.22£0.01 | 2991 29901 2991
Online-Ed AMR 19.58 2131 5615 62.79 62.70 63.87 1479 1479 1479
AC 183 1.88 93.76 63.71 60.77 63.60 081 081 08I
Baseline 0.989 1.270 3624 65.23 65.17 65.23 100 100 100
MR 2798£0.00  0.7620.084 2286.7%54 | 97.22£0.033 97.820.01 97.79+0.04 | 299 299 299
Bankruptcy AMR 2137 25.13 49.89 96.40 96.40 97.11 052 053 053
AC 224 2725 101 54.96 56.90 56.95 06 06 0.6
Baseline 7,843 2215 7620 96.00 96.30 97.00 100 100 100
MR | 18.26:£0.642 B 64959.2£4286.7 | 96.16£1.06 B 9787£0.45 | 1665 - 16.65
Malware 0.6 AMR 3317 B 1442 9512 B 96.01 1887 - 13.87
AC 0.84 B 11085 85.99 B 88.82 328 - 328
Baseline 41200 B 390806 96.16 B 97.87 100 B 100

Table 5: Accuracy and runtime for datasets with injected missing values for Linear Regression

. . Ground Truth Time(s) MSE Impute % of Samples or Features
Data Set % Missing MSE AC MR AMR | AC MR AWK [AC MR AMR
0.2 0.0088 2200 2.305 4.88 0.01  0.00888 0.0092 | 0.24 70.00 0.07
Superconductivity 04 0.0088 2228 2534 622 | 0.0099 0.00885 0.0092 | 0.22 75.00 0.07
0.6 0.0088 1465 2476 722 | 0.0103 0.00885 0.0093 | 0.25 75.00 0.07
0.2 0.1053 0.0734 031 2.98 0279 0.105 0.127 [ 2.01 65.00 0.58
Gas 04 0.1053 0.051 03391  3.16 0296  0.1054  0.167 | 2.01 65.00 0.58
0.6 0.1053 0.0332 0.551 345 0.355 0.112 0.163 | 1.78  25.00 0.58
0.2 0.0149 0.0126 0.0227  0.0203 | 0.0267 0.01495 0.0159 | 6.89 50.00 1.46
Concrete 0.4 0.0149 0.0149 0.0202  0.0328 | 0.0293 0.01495 0.0159 | 5.63 50.00 1.46
0.6 0.0149 0.0065 0.0199 0.0449 | 0.0356 0.01495 0.0162 | 528 50.00 1.46

Table 6: Accuracy and runtime of model-based imputation methods for Linear Regression

o Time(s) MSE Impute % of Samples
DataSet | Method - q—fcE TCSDI [ KNN MICE TCSDI | KNN MICE  TCSDI
MR | 0.153 0574 5852 | 0.0045 0.0045 00045 | 033 033 033
Cancer Rate | AMR | 0213 0234 9123 [ 0.0047 00045 00045 | 146 144 146
AC | 0.166 0.133 110 | 0.0050 0.0051 0.0049 | 0.70 _ 0.70 _ 0.70
Baseline | 0584 0.664 6104 | 0.0045 0.0058 0.0049 | 100 100 100
MR 106 246 14976 | 5671 574 582 | 30 50 50
Air Quality [ AMR | 0.815 0956 901 | 6015 599 598 | 478 435  4.90
AC 0199 00612 95 666 671  7.138 | 160 169  1.69
Baseline | 1.763 246 18372 | 5672 5923 5825 | 100 100 100

MR | 2674 28863 - 0.023  0.026 - 75 75 -
Communities [ AMR | 43.18  679.5 - 0,020 0.024 - T98 198 -
AC - - -

Baseline | 26.72 33475 - 0.019  0.024 - 100 100 -
MR 0.566  35.05 5098 | 0.1983 0.1626 0.1166 | 65.00 65.00  65.00
Gas 0.6 AMR 1.58 19.23 33.74 0.202  0.178 0.180 0.58 0.58 0.58
AC 0.183 16.9 109 0215 0212 0.221 1.78 1.78 1.78
Baseline | 0.447  38.67 5227 0.185  0.192  0.2001 100 100 100

methods to Active Clean (AC) [IL7], which integrates data repair with stochastic gradient descent: in
each iteration it samples a batch, returns it to the user for repair, and then updates model parameters
with the repaired samples. Although AC reduces repair cost by prioritizing influential samples, it
is unclear whether the resulting repaired data yields an accurate model, since not all samples are
ever selected for gradient updates. Accordingly, we compare the accuracy and time overhead of our
methods and AC in settings where users manually repair data items, as explained in Section [I] We
therefore use datasets with injected missingness whose ground truth is available. Details about the
hardware used in our experiments are available in appendix.

Table B reports SVM classification results for minimal repair (MR), almost minimal repair (AMR),
and AC. The results show that MR and AMR consistently outperform AC in accuracy across all
datasets and missingness levels. Notably, AMR achieves higher accuracy than AC while repairing
substantially fewer samples. For example, on the Credit Default dataset at 40% missingness, AMR
repairs only 0.05% of samples versus AC’s 0.23%, yet improves accuracy considerably (78.7% for
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AMR vs. 71.91% for AC). MR attains the highest accuracy overall, though it selects more samples for
repair.

Table[5|compares regression outcomes for MR, AMR, and AC. Unlike AC and AMR, which repair entire
samples, MR imputes individual missing features (see Section[d). Consistent with the classification
findings, MR and AMR again outperform AC in terms of mean squared error (MSE) across all datasets
and missingness ratios. On the Gas dataset at 60% missingness, AMR performs fewer repairs than AC
yet achieves markedly lower MSE (0.163 vs. 0.355). MR achieves the lowest MSE overall, reflecting
its more comprehensive repair strategy aimed at closely approximating the optimal model.

We next evaluate the time and effort saved when using model-based imputations. Because imputation
cost grows with the number of missing items, (almost) minimal repair can cut both inference time
and user effort for inspecting or verifying imputed values. We use three imputation models: KNN
(predicts missing values from observed samples via a KNN classifier) [23]], MICE (multivariate
regression—based imputation) [6], and TCSDI (a diffusion model for imputation) [38]], representing
diverse approaches. We compare full imputation, imputing (almost) minimal repair, and imputing the
samples selected by AC, measuring accuracy, running time, and the number of imputed items (a proxy
for user effort). We exclude imputation-model training time, which depends only on the observed
subset and is identical across methods. Experiments use both datasets with natural missingness and
those with injected missingness; due to space, full injected-missingness results appear in appendix.

Comparing the three imputation models in Tables 4] and [6] TCSDI consistently achieves higher
accuracy, but with longer inference times than KNN and MICE. This underscores the practical value
of MR and AMR, which substantially reduce inference overhead by limiting imputations, especially
when paired with TCSDI. For instance, on the Malware dataset with 60% missingness, our methods
reduce imputation time by nearly three days relative to fully imputing the dataset, while maintaining
comparable accuracy. For the Malware dataset, we omit MICE results because it exceeded available
memory—an expected limitation given that MICE scales poorly with the number of features. On the
Bankruptcy dataset (approximately 5% minority vs. 95% majority), AC required multiple executions
to obtain stable results under severe class imbalance, whereas MR and AMR remained robust.

We also assess linear regression with model-based imputations. Here, MR and AMR consistently
deliver faster inference than full imputation while maintaining comparable accuracy, despite sub-
stantially fewer imputations. In contrast, AC encountered computational issues on high-missingness
datasets—particularly Communities and Crime—where minimal cleaning occasionally left zero
training samples, causing failures in partial fitting. MR and AMR avoid such failures, demonstrating
robustness at substantial missingness ratios.

Finally, while some theoretical results assume conditions such as zero-mean Gaussian noise or M-
Lipschitz continuity of loss functions, these assumptions are not required in practice. The datasets in
our empirical evaluation do not satisfy these conditions, and SVM models do not satisfy M-Lipschitz
continuity; nonetheless, MR and AMR consistently deliver accurate results.

7 Related Work

Researchers have proposed stochastic optimization to find a model by optimizing the expected loss
function over the probability distributions of missing data items in training samples [[L1]. Similarly,
robust optimization aims to minimize the loss function of a model for the imputation that brings the
highest training loss given certain distributions of missing values [1]]. However, the distributions
of missing data items are not often available. Thus, users may spend significant time and effort
discovering or training these distributions, which may require the user to find the causes of missingness
in the data and dependencies between the features. Additionally, for a given type of model, users
must solve various and possibly challenging optimization problems for many possible (combinations
of) distributions of missing values. More importantly, these methods reflect the uncertainty in the
training data caused by missing values in the trained model instead of repairing the data to reduce its
uncertainty. Hence, they deliver inaccurate models on the dataset with many missing values.

There are methods to detect cases where the imputation of missing data is not necessary to learn
accurate models [26, 116} 137]]. Although these approaches are useful for some datasets and learning
tasks, they ignore a majority of learning tasks in which imputing incomplete samples impacts the
quality of the learned model. More discussion about related work is available in appendix.
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Appendix: Minimal Repairs for Learning Over
Incomplete Data

Limitations

While our work demonstrates both theoretical and practical advantages in learning over incomplete
data, we acknowledge two limitations:

Model Class and Convexity Assumptions. Our proposed minimal repair (MR) algorithms are
developed for support vector machines (SVM) and linear regression, while the almost minimal repair
(AMR) framework is applicable to a broader class of statistical machine learning models. However,
for AMR, we currently provide provable error bounds and efficient approximations only for models
with convex loss functions. This stems from our reliance on Step 1 (ST1) in Section 5.1, where we
solve a convex optimization problem to find an approximately optimal model w},. Extending AMR
to models with non-convex loss functions remains an open challenge due to the difficulty of verifying
approximate optimality in such settings. Importantly, this limitation reflects the well-known hardness
of non-convex optimization itself—since one cannot generally find globally optimal models for
non-convex losses, it is also difficult to guarantee that a repaired model is close to a global optimum.

Trade-off Between Computation and Imputation Time. As seen in our experiments, the time
required to compute MR or AMR can exceed or roughly match the time needed to fully impute
the dataset when simple imputation methods (e.g., mean or KNN) are used. This suggests that MR
and AMR may not be the preferred choice in scenarios where users already opt for inexpensive
imputation strategies. However, for more complex, resource-intensive and often accurate imputation
methods—such as diffusion-based models [23} |14]—we observe substantial time savings by using
MR or AMR to reduce the number of imputations. In practice, users may choose to apply MR or
AMR when planning to use high-cost imputation models, and directly pursue full imputation when
using simpler methods.

Broader Impacts
Our work has potential positive and negative societal impacts, which we outline below.

Positive societal impacts. Our methods can substantially reduce the time and effort needed for data
preparation, a phase that often consumes up to 80% of a data scientist’s time [13]]. By identifying
only the essential missing values to repair, our approach streamlines the ML pipeline, lowers costs,
and makes ML more accessible for everyone—especially in resource-constrained settings or domains
where full imputation is infeasible.

Negative societal impacts. In high-stakes domains (e.g., healthcare, criminal justice), setting a
suboptimal error threshold in AMR (either intentionally or unintentionally) may lead to missed repairs
of critical data, resulting in biased or unsafe models. Additionally, the selective repair approach may
cause developers to overlook the importance of understanding missingness mechanisms or domain
context. These risks can be mitigated by involving domain experts and validating models before
deployment.

Preprint. Under review.



Related Work

Researchers have proposed stochastic optimization to find a model by optimizing the expected loss
function over the probability distributions of missing data items in training samples [9]. Similarly,
robust optimization aims to minimize the loss function of a model for the imputation that brings the
highest training loss given certain distributions of missing values [1]]. However, the distributions
of missing data items are not often available. Thus, users may spend significant time and effort
discovering or training these distributions, which may require the user to find the causes of missingness
in the data and dependencies between the features. Additionally, for a given type of model, users
must solve various and possibly challenging optimization problems for many possible (combinations
of) distributions of missing values. More importantly, these methods reflect the uncertainty in the
training data caused by missing values in the trained model instead of repairing the data to reduce its
uncertainty. Hence, they deliver inaccurate models on the dataset with many missing values.

There are methods to detect cases where the imputation of missing data is not necessary to learn
accurate models [15 (11} 22]]. Although these approaches are useful for some datasets and learning
tasks, they ignore a majority of learning tasks in which imputing incomplete samples impacts the
quality of the learned model.

Researchers have proposed methods to reduce the cost of repair [12,[11]. ActiveClean learns models
using stochastic gradient descent and greedily chooses samples for repair that may reduce gradient
the most [[12]. Unlike our methods, it does not provide any guarantees of minimal repair. Due to
the inherent properties of stochastic gradient descent, it is challenging to provide such a guarantee.
CPClean follows a similar greedy approach but it is limited to learning k nearest neighbor models
over missing data and does not support the types of model our approach addresses [[L1]. It also does
not provide any guarantees of minimality for its imputations.

Hardware

We conducted experiments on two hardware platforms. Most experiments ran on an x86_64 machine
with 30 Intel(R) Xeon(R) E5-2670 v3 CPU cores (2.30GHz), hosted in a VMware virtualized
environment with two NUMA nodes and 30MB L3 cache. However, this system lacked sufficient
power for diffusion-based imputation models. For those experiments (TCSDI), we used an Nvidia
DGX-2 system with one Nvidia Tesla V100 GPU (32GB VRAM) and 20 CPU cores from 2.70GHz
Intel Xeon Platinum 8168 processors with 33MB L3 cache.

Datasets

We evaluate our methods on two types of datasets: those with synthetic missingness and those with
real-world missingness. For each dataset, we simulate three levels of missingness: 0.2, 0.4, and
0.6, corresponding to 20%, 40%, and 60% incomplete samples, respectively. These datasets are
further divided based on the downstream task: linear regression (LR) and support vector machine
classification (SVM).

All datasets are obtained from publicly available repositories. For synthetic missingness, we start
with complete datasets and introduce missing values in a controlled manner. For real missingness,
we use datasets that naturally contain incomplete entries. This separation allows us to analyze the
behavior of our repair methods under both idealized and realistic data corruption scenarios.

Experimental Results

Here we present the complete experimental results, including those omitted from the main content
due to space constraints.

Tables 3 and 5 in the Main Content

Tables 3 and 5 in the main content present the results of minimal repair (MR) and almost minimal
repair (AMR) from the first iteration for SVM and linear regression, respectively, due to space



Table A: Accuracy and runtime for datasets with injected missing values for SVM

. Ground Truth Time(s) Accuracy(%) Impute % of Samples
Data Set %Missing | ) ccuracy(%) [ AC MR AMR | AC MR AMR | AC MR AMR
0.2 95.61 1.36  Figurdl| Figurd4|| 93.13 Figurdl| Figurd4|| 6.39 Figurdl| Figurd4

Malware[16] 0.4 95.04 0.56  Figurd Figurg 92.20 Figurd Figurd 3.35 Figurd Figurg

0.6 95.91 0.170  Figurd Figurd 88.67  Figurd Figurd 3.28 Figurd Figurg

0.2 98.67 0.68  Figurd Figurd 97.53  Figurg Figurd 3.78 Figurd Figurg

Tuadromd[5] 0.4 98.77 0.54  Figurd2| Figurd 97.42  Figurd?| Figurd 3.53 Figurd?| Figurg
0.6 98.77 034  TFigurd?| Figurds|| 97.50 Figurd)| Figurds|| 2.48 Figurdd| Figurdy||

0.2 81.03 11.86 Figurd Figurg 74.61 Figurd Figurd 0.19  Figurd3| Figurg

Credit Default[21] 0.4 81.03 14.19 Figurd3| Figurd 7191 Figurd3| Figurd6|| 0.23 Figurd3| Figurg

0.6 81.03 142 Figurd Figurd 66.40  Figurd Figurd 0.19  Figurd Figurg

Table B: Accuracy and runtime for datasets with injected missing values for Linear Regression

Data Set % Missing Ground Truth Time(s) MSE Impute % of Samples or Features
B MSE AC MR AMR AC MR AMR | AC MR R
0.2 0.0088 2200 2305 Figurd7|| 0.0  0.00888 Figurd7|| 0.24 70.00 Figurd7
Superconductivity[10] 0.4 0.0088 2228 2534 Figurd 0.0099 0.00885 Figurd 022 75.00 Figurd
0.6 0.0088 1.465 2476  Figurd/|| 0.0103 0.00885 Figurd/[| 0.25 75.00 Figurd
0.2 0.1053 0.0734 031  Figurd 0.279 0.105  Figurd8[| 2.01 65.00 Figur
Gasl[8] 0.4 0.1053 0.051  0.3391 Figur 0.296  0.1054  Figur 2.01  65.00 Figur
0.6 0.1053 0.0332  0.551  Figur 0.355 0.112 Figur 1.78  25.00 Figury
0.2 0.0149 0.0126  0.0227 Figurd9|| 0.0267 0.01495 Figurd9[| 6.89 50.00 Figurg
Concrete[20] 0.4 0.0149 0.0149  0.0202  Figurd9[] 0.0293 0.01495 Figurdd[[ 5.63 50.00 Figurg
0.6 0.0149 0.0065 0.0199  FigurdO[] 0.0356 0.01495 Figurdd[[ 5.28 50.00 Figurd

constraints. Tables[A]and [B]provide the full results across multiple iterations for SVM and linear
regression.As the number of iterations increases, both the runtime and the number of imputed data
items increase, reflecting the cumulative nature of the repair process. However, we observe that in the
majority of cases, iteration 1 already achieves accuracy that is close to the ground-truth model trained
on fully repaired data.

For instance, on the Credit Default dataset with Minimal Repair, the model converges as early as
iteration 1 under 20% missingness. For 40% and 60%, convergence is reached by the second iteration.
This explains why the graph only shows a single data point for the 20% case—accuracy stabilizes
early and remains relatively unchanged in subsequent iterations. In the case of Almost Minimal
Repair, the model converges at the second iteration for 20% and 40% missingness, while under 60%
missingness, convergence has not yet been reached, reflecting a more gradual imputation process
under higher uncertainty.On the Concrete dataset, AMR achieves convergence at the first iteration
under 20% missingness, similar to MR on Credit Default. This early convergence indicates that the
repaired model already closely approximates the fully imputed ground-truth model, and additional
iterations yield negligible improvement.

This finding suggests that while multi-iteration repair can be used to theoretically guarantee con-
vergence to certain or approximately certain models (as discussed in Sections 3 and 5 of the main
content), in practice, a single iteration of MR or AMR is often sufficient to obtain a high-performing
downstream model. Thus, users may opt for early stopping after one iteration to save time and effort
without sacrificing model accuracy in most settings.
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Figure 1: Iterative Minimal Repair results on the Malware dataset. From left to right: classification
accuracy, total time (imputation + search), and number of imputed values over iterations. Each line
represents a different missingness level (0.2, 0.4, 0.6)
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Figure 2: Iterative Minimal Repair results on the Tuadromd dataset. From left to right: classification
accuracy, total runtime (imputation + search), and number of imputed values across iterations. Each
curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 3: Iterative Minimal Repair results on the Credit Default dataset. From left to right: classifica-
tion accuracy, total runtime (imputation + search), and number of imputed values across iterations.
Each line represents a different missingness level (0.2, 0.4, 0.6).
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Figure 4: Iterative Almost Minimal Repair results on the Malware dataset. From left to right:
classification accuracy, total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 5: Iterative Almost Minimal Repair results on the Tuadromd dataset. From left to right:
classification accuracy, total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 6: Iterative Almost Minimal Repair results on the Credit Default dataset. From left to right:
classification accuracy, total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 7: Iterative Almost Minimal Repair results on the Superconductivity dataset. From left to
right: mean squared error (MSE), total runtime (imputation + search), and number of imputed values
across iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 8: Iterative Almost Minimal Repair results on the Gas dataset. From left to right: mean
squared error (MSE), total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).
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Figure 9: Iterative Almost Minimal Repair results on the Concrete dataset. From left to right: mean
squared error (MSE), total runtime (imputation + search), and number of imputed values across
iterations. Each curve corresponds to a different missingness level (0.2, 0.4, 0.6).



Table C: Accuracy and runtime of model-based imputation methods for SVM

Time(s) Accuracy(%) Impute % of Samples
Data Set Method KNN MICE TCSDI KNN MICE TCSDI [ KNN_ MICE _TCSDI
MR | 0.055£0.002  0.06420.001 51535 96.30£0.2 06402  97.00£1.03 | 182 182 182
Breast Cancer | AMR 0.1237 0.1357 S5 96.40 96.40 97.11 5454 5454 4545
AC 0.065 0.065 51 95.85 96.30 97.87 8727 8727 8127
Baseline 0.0039 0.046 T02 95.78 96.30 97.00 100 100 100
MR | 0259£0.048 0.135£0.004  473.7%2.3 60.2£1.00 603£03 62804138 | 30 30 30
Water-Potability | AMR 1531 1756 27.13 55.60 56.13 60.13 018 018 0.8
AC 033 0.033 8532 5296 56.00 57.00 194 194 194
Baseline 0.0053 0.0115 1459 96.00 96.30 97.00 100 100 100
MR | 1.606£0322 0.748£0.318  1087.2%4.1 645508 645503 65222001 | 2901 2991 2991
Online-Ed AMR 19.58 2131 5615 62.79 62.70 63.87 1479 1479 1479
AC 183 188 93.76 63.71 60.77 63.60 08T 081 08I
Baseline 0.089 1270 3624 5523 65.17 6523 100 100 100
MR 277985009 07620084 22867154 | 972240033 9784001  97.79%0.04 | 299 299 299
Bankruptcy AMR 2137 513 9.8 96.40 96.40 97.11 052 053 053
AC 224 225 10T 5296 56.90 56.95 06 06 06
Bascline 7843 015 7620 96.00 96.30 97.00 100 100 100
MR 89840315 - 243908516041 | 956%04 - 9649107 | 18.68 - 18.68
Malware 0.2 AMR 35.18 - 912 9542 - 9578 887 - 18.87
AC .17 - 12668 91.20 - 92.30 909 - 9.0
Bascline 39 - 130269 96.52 - 96.74 100 - 100
MR 1424%1.07 - 54702410385 | 96.162-0.4 - 96231045 | 211 - 201
Malware 0.4 AMR 3945 - 32346 95.80 - 96.23 887 - 1887
AC 0.84 - 11085 88.97 - 89.73 532 - 532
Bascline 27.66 - 260537 93.83 - 96.74 100 - 100
MR | 18260642 - 64959.0£4286.7 | 96.1621.06 - 97871045 | 1665 - 16.65
Malware 0.6 AMR 3307 - 1442 95.12 - 96.01 887 - 1887
AC 0.84 - 11085 85.0 - 88.82 308 - 3.08
Bascline 31209 - 390806 96.16 - 97.87 100 - 100
MR 139 T00.8£2.26 287E1.60 986£0.07  98.73E0.15 9843X016 | 119 119 119
Tuadromd 0.2 | AMR 512 652 B34 96.13 96.27 96.80 202 203 210
AC .04 99.86 145 97.58 97.63 97.63 706 406 406
Baseline 2374 T02.11 1987 98.77 98.77 98.66 100 100 100
MR 25540032 96.2612.26  4664E16.1 985502 984+013  9854F017 | 111 111 111
Tuadromd 0.4 | AMR 597 7358 83.64 9%.15 95.78 96.56 201 201 201
AC 036 998 169 96.98 97.12 97.45 33 33 33
Baseline 7.69 100.14 3882 973 976 98.66 100 100 100
MR | 3620019 70.66£047 692.6E521 | 953+02 0536+02 0835£02 | 118 118 118
Tuadromd 0.6 | AMR 652 9.13 13752 9545 %525 96.13 201 201 201
AC 0.679 77.08 70 96.96 96.58 973 187 187 187
Baseline 621 100.6 6476 976 973 98.66 100 100 100
MR | 8370012 2.93E£0011 2121 £564 S0E£003  781£014 79601 | 03 03 03
Credit Default 0.2 [ AMR 1.0 1548 2137 78.10 T8.14 78.10 0.08 008 008
AC 14,491 1543 91 783 78.16 782 0125 0.125 0.2
Baseline 23.20 514 7071 781 80.1 803 100 100 100
MR | 1177 £0012 264 L0050 42426E74 | S031E£003 S0.1£007 S04EX003 | 03 03 03
Credit Default 0.4 [ AMR 12.37 675 29.57 T8.14 7812 T8.12 0.08 008 008
AC 18.07 18.78 9% 79.76 79.1 80.01 019 019 0.9
Baseline 38.56 505 14263 796 781 78.08 100 100 100
MR | 1356 £0014 3.5 0.031 6357 £67 | 7972002 798IE0.003 705007 | 03 03 03
Credit Default 0.6 | AMR 412 1579 305 T8.14 7812 7812 0.08 008 008
AC 20.87 2131 91 794 793 797 021 021 021
Baseline 7804 3902 20124 0.791 0.796 0.801 100 100 100

Tables 4 and 6 in the Main Content

Tables 4 and 6 in the main content report the results of minimal repair (MR) and almost minimal
repair (AMR) on originally incomplete datasets and one synthetically corrupted dataset for SVM
and linear regression, respectively, due to space limitations. Tables [C] and [D]present the full results
across all originally incomplete datasets and all synthetically corrupted datasets for SVM and linear
regression, respectively. These additional results are consistent with the conclusions drawn in the
main content.

Following our earlier observation that a single iteration of the MR and AMR algorithms is typically
sufficient to achieve downstream model performance comparable to that of full imputation, we report
results from the first iteration in all these experiments. This choice balances empirical effectiveness
with computational efficiency, while still reflecting the overall trends observed across datasets.

Hyperparameter Analysis for Algorithms

Hyperparameters for the Minimal Repair Algorithm

One hyperparameter in the minimal repair algorithm for SVM is the early stopping criterion, which
determines whether to terminate the iteration before convergence. In the previous section, we
discussed how this setting influences both the overall runtime and the downstream model performance.



Table D: Accuracy and runtime of model-based imputation methods for Linear Regression

L Time(s) MSE Impute % of Samples or Features
Data Set Method | NN—MICE TCSDI | AC | KNN  MICE _ TCSDI AC | KNN MICE TCSDI
MR 0.153 0574 5852 0.0045 0.0045 _ 0.0045 3333 3333 3333
Cancer Rate[2] AMR | 0213 0234 9123 | 0.0212 [ 00047 0.0045 _ 00045 | 0.0067 [ 146 144 146 | 1.69
Baseline | 0.584  0.664 6104 0.0045 0.0058 _ 0.0049 100 100 100
MR 106 246 14976 5671 574 5317 50 50 50
Air Quality[18 AMR | 0815 0956 901 | 0.031 [ 6015 5991 5078 | 2893 [ 478 435 490 | 07
Baseline | 1.763 246 18372 5672 5923 5.825 100 100 100
MR 26,74 28863 B 0023 0026 B 75 75 B
Communities[17] AMR | 43.18 6795 B - 0020  0.024 B - 198 198 B -
Baseline | 26.72 33475 B 0019 0024 B 100 100 B
MR 2360 33.16 29165 0.0089 0.00897 _ 0.00004 70 70 70
Superconductivity 0.2 [ AMR | 497 603 2956 | 22 [00088 00091 00085 | 001 [ 007 007 007 | 0.24
Baseline | 0.0692 34.17 30515 0.0088 0.008939 0.009013 100 100 100
MR | 2599 3373 29735 0.0089 0.00924 _ 0.00914 7500 7500  75.00
Superconductivity 0.4 [ AMR | 653 812  32.013 | 2228 [0.0087 00089 _ 00091 | 0.0099 [ 007 007 007 | 0.25
Baseline | 0.067 3434 30783 0.0089 0.00924  0.00914 100 100 100
MR 2541 3324 30659 0.0089 0.01027 _ 0.00924 7500 7500  75.00
Superconductivity 0.6 [ AMR | 8.12 1254 3546 | 1465 [00102 00089 _ 00093 | 0.0103 [ 007 007 007 | 0.25
Bascline | 0.0681 3441 30637 0.0080  0.0104  0.00924 100 100 100
MR | 0566 3505 4160 0.1079 0.1069 _ 0.1098 65 65 65
Gas 0.2 AMR | 192 1424 27.13 | 00734 | 0.167 _ 0.163 0.127 | 0279 [ 058 058 058 | 201
Baseline | 04472 38.67 4267 0.1056 0.1073 _ 0.1096 100 100 100
MR | 0781 4096 358 01121 0.1161 __ 0.1101 6500 6500  65.00
Gas 0.4 AMR 142 1645 3114 | 0051 [ 0.197  0.167 0.163 | 0.296 [ 058 058 058 | 20l
Baseline | 0.7151 40.64 4290 01133 0.1055 _ 0.1109 100 100 100
MR 0.566 3505 5098 0.1983  0.1626 _ 0.1166 6500 6500 65.00
Gas 0.6 AMR 189 2199 3846 | 0033 [ 0.163  0.173 0.127 | 0355 [ 058 058 058 | 178
Baseline | 0.447  38.67 5227 0.185  0.192 0.2001 100 100 100
MR 0.03 00501 269 0015 00152 00155 5000 5000 50.00
Concrete 0.2 AMR | 0081 0097 403 | 00126 [ 00159 00159 00158 | 0.0267 [ 146 146 146 | 6.89
Baseline | 0.0175 0.0627 273 0015  0.0152 0.156 100 100 100
MR | 0.0383 00501 532 0015 00163 00161 5000 5000 50.00
Concrete 0.4 AMR | 0.124 0.131 801 | 0.0149 [ 00159 00159 00159 | 0.0293 [ 1.46 146 146 | 5.63
Baseline | 0.0238 0.0582 536 0015 00162 00161 100 100 100
MR | 0.0409 00504 715 0.0151 00197 _ 0.0164 5000 5000 50.00
Concrete 0.6 AMR | 0.119 0.157 1068 | 0.0065 | 00150 0.0162 _ 00162 | 0.0356 [ 146 146 146 | 5.8
Baseline | 0.0319 0.0561 724 0.0151 00191 00163 100 100 100

Table E: Result for Tuadromd dataset with 20% injected missing values (SVM) across AMR iterations
with various error thresholds

. Time(s) Accuracy(%) Impute % of Samples
AMR Treration | Ground Truth Accuracy (%) o — g1 =02 e=05]¢=01 ¢=02 ¢=05]e¢=01 ¢=02 ¢=035
1 3.50 2.89 3.88 99.21 98.99 99.22 2.10 2.10 2.10
3 98.67 9.68 9.73 10.52 98.88 98.88 98.89 6.00 6.02 6.02
6 19.32 19.33 20.59 99.10 99.10 99.10 11.76 11.76 11.76

Hyperparameters for the Almost Minimal Repair Algorithm

The almost minimal repair algorithm involves three major tunable hyperparameters: the error thresh-
old e for identifying an approximately certain model, the number of edge repairs s sampled in
ST1, and the maximum number of incomplete samples selected for repair in each iteration of ST2,
expressed as a ratio r of the current number of incomplete samples. We analyze the impact of these
hyperparameters on experimental outcomes using the TUADROMD dataset with a 20% missing rate.
The effect of varying e is shown in Table [E] that of varying s is presented in Table [F] and that of
varying 7 is reported in Table[G] For all experiments, we vary one hyperparameter at a time while
fixing the others: we fix s = 20 and » = 0.02 when varying e; fix e = 0.2 and » = 0.02 when
varying s; and fix e = 0.2 and s = 20 when varying 7.

For the error threshold e, we observe that all tested values in the range [0.1, 0.5] produce comparable
downstream accuracy and imputation cost by iteration 6, without hitting any convergence limits.
This suggests that extremely small error thresholds are not necessary in practice. In fact, decent
downstream performance is already observed by iteration 1 across all e values. These results indicate
that users need not reach a very small suboptimality gap to gain meaningful repair benefits. We select
e = 0.2 in the main experiments as a balanced and efficient default. For the number of sampled edge
repairs s, increasing s raises the time cost due to more extensive candidate evaluation, while both
the downstream accuracy and the percentage of imputed samples remain largely unchanged. This
suggests that the range s € [10, 50] is sufficient to obtain a reliable approximation of w™, and we
use s = 20 as an efficient default in our experiments. Finally, for the selection ratio r, increasing r
leads to more samples being imputed in each iteration, as expected, but has little effect on runtime or
downstream model performance. We select » = 0.02 as a practical trade-off between repair effort
and computational efficiency.



Table F: Results for Tuadromd dataset with 20% injected missing values (SVM) across AMR iterations
with varying number of sampled edge repairs in ST1

. o Time(s) Accuracy(%) Impute % of Samples

AMR TIteration | Ground Truth Accuracy (%) S=10 5=20 5=50 5=10 5=90 5=50 1 5=10 5=20 s=50
1 1.14 2.89 1474 | 9876  98.99  98.54 2.10 2.10 2.10
3 98.67 3.29 9.73 43.19 | 98.77 98.88  98.77 6.02 6.02 6.02
6 6.33 19.33 82.31 98.77  99.10  98.10 11.76 11.76 11.76

Table G: Results for Tuadromd dataset with 20% injected missing values (SVM) across AMR
iterations with varying selection ratio r for ST2

. . Time(s) Accuracy(%) Impute % of Samples
AMR lteration | Ground Truth Aceuracy (%) |55 = (.09 7 =005 | T=00T 7 = 007 7 =005 | 7=001 r=007 =005
T 379 289 326 9866 9899 9877 112 710 504
3 98.67 1104 973 920 | 9866 9888  98.77 322 6.02 14.42
6 2456 1933 1738 | 9843 9910 9888 6.16 1176 2675

Minimal Repair for Linear Regression

Algorithm for finding minimal repair

Orthogonal Matching Pursuit (OMP) provides an efficient approximation for solving the sparse linear
regression problem [19]]. Essentially, this greedy algorithm begins with an empty solution set and
initializes the regression residual to the label vector. In each iteration, the algorithm selects the feature
most relevant to the current residual (i.e., having the largest dot product), adds it to the solution set,
retains a linear regression model, and updates the residual accordingly. The program stops when the
regression residue is sufficiently small. Therefore, OMP will return a subset of features (the solution
set) that are sufficient to achieve an optimal linear regression model.

In this paper, we propose a variant of OMP, as outlined in Algorithm[A] to find minimal repair for
linear regression. Our algorithm has two major differences compared to the conventional OMP. Firstly,
we include all complete features in the regression at the initialization, ensuring that we minimize the
number of non-zero coefficients only among incomplete features. Secondly, we define our stopping
condition by the maximum relevance (cosine similarity) between the feature and the label being
smaller than or equal to a user-defined threshold, instead of relying on a near-zero regression residue.
This approach enables our algorithm to work with general datasets without requiring the assumption
of an underdetermined linear system, which is typically necessary in conventional OMP.

Algorithm A Approximating minimal repair for linear regression efficiently

MYV F(z) + set of incomplete features
Complete(z) < set of complete features
r < LR(Complete(z),y) {The residue vector from performing linear regression between com-
plete features and label }
€ < a user-defined threshold for stopping condition
MaxCosSim < max,carv p(y) |cos(z,r)|
while MaxCosSim < e do
Smin < Smin-add(arg max,e vy p(q) |0s(2, 1))
r < LR(Complete(z) U Spin, y)
MaxCosSim  max,c v p(z) |cos(z, 1)
end while
res < Smin

As mentioned in the main content, the time complexity of the algorithm is O(T%yqin - | MV F(2)]),
making it significantly more efficient than the baseline algorithm, which trains models over all repairs
individually and has a time complexity of O(T},qir - |X%|). If a gradient descent algorithm is
used, Algorithmhas a time complexity of O(n - d*), where n is the number of training samples
and d is the number of features. In cases where n < d2, the time complexity can be reduced to
O(n - d? +n? - d) under certain conditions by applying incremental learning techniques based on the
Sherman-Morrison formula, as outlined below.



Optimization for Algorithm[A]

The primary time cost in Algorithm [A]arises from the need to completely retrain the linear regression
model each time a new imputed feature is added to the feature set. This retraining leads to a time
complexity of O(n - d3) for the algorithm. To address this inefficiency, we propose an optimization
using the Sherman-Morrison formula to update the inverse of the feature matrix incrementally [3]].
This method reduces the time complexity of including one new feature to O(n?). Consequently,
when n < d2, this optimization results in significant time savings.

Given a feature matrix X, a label vector y, and the coefficients w of the current linear regression
model, our objective is to efficiently update w to incorporate a newly imputed feature vector Xpew
into X, forming an updated feature matrix X’, without the necessity of full retraining. When this
new feature vector Xy is added to X, it modifies the original matrix product XTX to XTX +
XnewX.o- Applying the Sherman-Morrison formula, the updated inverse of X’7' X’ (assuming X'7 X’

L ovnew” I
is invertible) is given by:

XTX) ™ pewx Ly, (XTX) 7L

new
1+ xT

IT~xn—1 _ (T —1_(
(XX = (XTX) T IRTR) T

ey

This formulation enables the efficient update of the regression coefficients w, requiring only O(n?)
operations. Implementing at most d such updates results in a complexity of O(d - n?). Including the
initial model training O(d?-n), the total computational complexity is thus reduced to O(n-d?+n?-d).

Minimal Repair: Feature-wise or Sample-wise

For linear SVM, minimal repair (MR) is defined at the sample level—the algorithm returns a set of
samples to repair. This is because the method identifies potential support vectors, which are inherently
defined based on individual samples.

In contrast, for linear regression, MR is defined at the feature level—the algorithm selects a subset of
features to repair. This stems from the interpretation of linear regression as projecting the residual
vector onto the feature space. The approach identifies features that do not contribute to minimizing
the training loss, given the current regression residual.

Proof

Proof for Theorem 1

Prove the theorem by contradiction. Assume that given a training set (X, y) and a regularization
parameter C, two minimal repair sets exist ( S;,:,1(X,y, C) and S;,in2(X, y, C)). From the defini-
tion of minimal repair set, a certain model exists by either imputing all samples in S,,;»1(X,y, C) or
Smin2(X,y,C), regardless of imputation results. Further, based on the discussion in previous litera-
ture [22]], a certain model exists when none of the incomplete samples is a support vector in any repair.
Therefore, if an incomplete sample is not in the minimal repair set, it is not a support vector in any
repair. From the assumption, we can always find an incomplete sample x; that x; ¢ S,,in1(X,y, C)
and X; € S;uin2(X,y, C). In this scenario, x; is not a support vector for any repair of X because
X; & Siin1(X,y, C). Thus, S,,in2(X,y, C) is not a minimal repair set because removing x; from
Simin1(X,y,C) should construct a smaller set also ensuring the existence of certain models, violating
the definition of minimal repair set. Contradicting to the original assumption, Theorem ?? holds.

Proof for Lemma 1

Borrowing the discussion from proving Theorem 1, if an incomplete sample x; is not a support
vector in any repair of X, it should not be part of the minimal repair set .S,,,;, (Which is unique from
Theorem 1). Further, if an incomplete sample x; is a support vector in at least one repair of X, it has
to be included in the minimal repair set, otherwise certain model does not exist [22].



Proof for Theorem 3

Necessity is trivial based on Lemma 2: if an incomplete sample is a support vector in an edge repair,
the incomplete sample is part of the minimal repair set. Then we prove sufficiency by contradiction.
Assume that there is an incomplete sample x; part of the minimal repair set X,,;, while it is not
a support vector in any edge repair x¢ € X Training an SVM can be interpreted as finding the
minimal distance between two reduced convex hulls [4], and if an sample is within the reduced
convex hull (not at the boundary), the sample is not a support vector. Because x; is not a support
vector for any edge repair from the assumption, it is not a support vector for any repair to X. This is
because, in the process of changing a value for a missing value () from one edge repair (z]’;;i") to
another (z,;"*) monotonically increase or decrease the coverage of the reduced convex hull. With
that being said, if an incomplete sample x; is not a support vector for any edge repair (i.e., within the
reduced convex hull), the incomplete sample is within the reduced convex hull (i.e., not a support
vector) with respect to any repair. This contradicts to the original assumption that x; is part of the
minimal repair set.

Proof for Theorem 4

We reduce from the NP-complete problem 3-SAT. Let

e = A(C)
j=1
be a 3-SAT formula with k£ Boolean variables z1, 22, . . ., 2 and m clauses C1, .. ., C},, each clause

being a disjunction of three literals.

For each variable z¢, we introduce one or more incomplete samples whose feature vectors each contain
a missing coordinate uy. The imputation set for u, is {—1,+1}, corresponding to {False, True}.
Thus, any assignment of the zy corresponds to choosing £1 for these missing coordinates.

To enforce that each clause C; must be satisfied, we add appropriately labeled points (some possibly
incomplete) and arrange them in a geometry so that assigning a literal to false yields a large penalty
term in the soft-margin objective (either by misclassification or forcing the margin to collapse).
Intuitively, if a clause were unsatisfied (all literals set to false), the SVM would incur a prohibitively
large hinge-loss cost, making that repair suboptimal.

We designate one particular incomplete sample x; with additional coordinates or constraints so that:

» If ® is satisfiable, then there is an imputation (choosing +1 consistently with a satisfying
assignment) that maximizes the margin while placing x; exactly on the decision boundary,
making it a support vector.

* If ® is unsatisfiable, then every imputation leads to x; being off the margin (either strictly
inside or otherwise not a support vector). In other words, no selection of {+1} for the
missing attributes can force x; onto the margin.

By suitably tuning the soft-margin parameter C' and the placement of the clause-encoding points, we
ensure that the SVM will “prefer” to assign £1 values in a way that satisfies ®, whenever possible, in
order to avoid a large penalty.

Hence,

d is satisfiable <= there exists a repair making x; a support vector.
Since deciding satisfiability for ® (3-SAT) is NP-complete, it follows that deciding whether x; can
be a support vector under some imputation is NP-hard.

Determining membership of a single incomplete sample x; among the possible support vectors is
NP-hard. Therefore, listing all such samples that can ever appear on the margin is also NP-hard: if
we had such a list in polynomial time, we could decide membership in that list in polynomial time,
contradicting NP-hardness. Given the proof that finding MR for SVM is NP-hard, deciding whether
an incomplete sample belongs to the MR for SVM is also NP hard. To prove, assume that we have a
polynomial-time solver for deciding whether an incomplete sample belongs to the MR, then one can
linearly scan each incomplete sample and decide its membership in MR (either belongs to or not) by
calling the polynomial time subroutine. Therefore, one can find the MR in polynomial time, which
contradicts to the NP-hard proof earlier.
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Proof for Theorem 5

For any incomplete sample x; returned from Algorithm 1 in main content for SVM, the incomplete
sample is a support vector in at least one repair to X. Based on Theorem 3, it is part of the minimal
repair.

Proof for Theorem 6

Given the iterative algorithm of finding the minimal repair for SVM (Algorithm 1 in the main content),
we first characterize the probability that the imputation set returned at iteration k£ misses one or more
incomplete samples that belong to the minimal repair.

Let k be the current iteration index (k = 0 represents the initial state before the first run). We
define the following: M S(z)* is the set of incomplete samples remaining at the start of iteration .
MP* = |MS(z)¥| is the number of remaining incomplete samples at the start of iteration k. S¥ .
is the (unknown) true minimal set of samples within M S(x)* that must be imputed at the start of
iteration k to guarantee a certain model. s* =[Sk | is the (unknown) size of this true minimal
set; note that we treat s* as a random variable, and s* < M*. S’F is the set of samples returned by
Algorithm 1 in the main content when run at iteration & on the current data; we know S’ C S¥ . .
FN* is the event that makes at least one false negative error at iteration k, occurring if S’* is a proper
subset of Sk . . P(FNF) is the probability of event FN*. We seek a computable upper bound
UB'® such that P(FN*) < UB’*. define py,, as an upper bound on the per-sample false negative
probability, p(x;). We assume that there exists a probability ps, (where 0 < p,, < 1) such that for
any sample x; € S¥ . the probability that Algorithm 1 in the main content fails to include z; in S’*

is bounded above by pyy,:
P(x; ¢ S"[x; € Spin) < Dpn

Then we propose, U B’*, an upper bound of P(FN*) as follows:
UB%=1-(1-p;)M > P(FN¥)

To interpret, when the iteration goes (k becomes larger), M* and pfn decrease (which we will

prove later), U B'* decreases. This indicates that the upper-bound of probability of under-imputing
decreases over iterations.

To prove this bound, we begin by expressing the target probability P(F N*) using its complement.
The event FN* (at least one false negative) is the complement of the event NoF' N k (no false
negatives, i.e., S’ k— gk ). Therefore, conditioned on the true size s* of the minimal set at iteration

min

k, we have P(FN*|s¥) = 1 — P(No FN*|s¥).

Next, we bound the probability of having no false negatives, P(No FN*|s*). The event NoF N*
occurs if Algorithm 1 in the main content successfully returns all samples in S¥ . . Let E; be the
event that Algorithm 1 in the main content fails to return sample x;. Assuming the failure/success
events F; for different samples x; € S k  within the same iteration k are statistically independent,

. min
we can write:

P(No FNF[s*) = P(N,,cor {not E;}|s*) = [ P(not Ei|s")

{L’iesk

min

Let P(E;|s*) be the probability of failure for ;. Then P(not E;|s*) = 1 — P(E;|s*). Using the
definition P(E;|s*) < ps,, we have 1 — P(E;|s¥) > 1 — py,,. Substituting this lower bound into
the product gives:

Sk

P(NoEN*|s*) > TT(1 —ppu) = (1 = pya)®

i=1

k

Now we can bound P(FN¥|s*):

k

P(FN*|s") =1~ P(NoEN*|sF) <1 — (1 —py,)*

11



The overall probability P(FN*) is the expectation over the unknown size s*:

P(FN*) = E[P(FN*|s")] < E[1 - (1 pyn)*']
To proceed, we utilize Jensen’s inequality. Let f(s) = 1 — (1 — py,,)®. We first prove that f(s)
is concave for s > 0. Letb = 1 — ps,. Since 0 < py, < 1, we have 0 < b < 1. The
function is f(s) = 1 — b°. The first derivative is f'(s) = —b°In(b). The second derivative is
f"(s) = —(b°In(b)) In(b) = —b*(In(b))?. Since b* > 0 and (In(b))? > 0, the second derivative
f"(s) < 0. Therefore, f(s) is a concave function.

Jensen’s inequality for a concave function f states E[f(X)] < f(E[X]). Applying this to our
expectation:
k k
B[L— (1= pp)*] < 1= (1= pya)®)
Combining this with the previous inequality gives a theoretical upper bound:

P(FN*) <1—(1— pp,)P")

The term E[s*] (expected number of truly needed samples) is still unknown. However, we know that
the number of needed samples s* cannot exceed the total number of remaining incomplete samples
M* = |MS(z)*|. Thus, s* < MP*. Taking expectations yields E[s*] < E[M*]. Since M* is a
known quantity (computable by counting) at the start of iteration k, E[M*] = M. Therefore, we
have a computable upper bound for the expectation: E[s*] < M*.

x

Finally, we substitute this bound on E[s"] into the Jensen result. Let g(z) = (1 — py,)®. Since
0 < (1 —psn) < 1, g(x) is a non-increasing function. Applying g to the inequality E[s*] < M*
reverses the inequality direction:

(1= ppn)®T > (1= pya)™”
Multiplying by -1 and adding 1 (reversing the inequality twice):

k k
1- (1 _pf'n)]E[s ] <1l- (1 _pfn)M

Combining the inequalities P(FN*) < 1—(1—pp,)B and 1— (1—p s, )BT < 1— (1—pj )M,
we arrive at the final upper bound U B’*:

P(FN¥) < 1= (1=ps)™"
and

UB*=1-(1 ,pfn)IMS(:r)k\

Now the only problem is to compute p ¢,, and understand how it changes over iterations. The Multiple
Random Starts method provides an empirical approach. First, select a set of incomplete samples
M Sprobe (€.8., MS(x)O) and choose the number of repetitions 7" (e.g., 7' = 10 or 20). For each
23 € M Sprope, initialize a success count t; = 0. Repeat T' times: generate a new random edge
repair X¢, ., , for the current dataset state; run the greedy construction part of Algorithm 1 in the

main content starting from X to get X ¢, 004 rain Wyinar it = SVM (X, v); check

start,t

if y; (W pinari) T (z; part of X;inal,i,t) < 1. If yes, increment ;.

Also, if the probability distribution of each incomplete sample is known, and we let g(z;;) denote
the probability density function of the ground truth value for the missing value x;; in the incomplete
training set (X, y). If missing values in X are independent, the probability that an incomplete sample
X; in minimal repair not returned by Algorithm 1 in the main content is:

visited

max(z}; )
f o frnin(m‘fi?i][“d) Ha"w eM(X) g(l'”) dm”

ij

[ f;pijeM(x) H;c,ije]W(X) 9(@ij) dui;
zysied ¢ {gmin, gmary shows the values used for x5 in Algorithm 1 in the main content. It shows
that the more edge repairs Algorithm 1 explores, the lower the false negative probability for each
sample. One can find py,, by computing p(x;) for each incomplete sample and take the maximum
as prn. Prn decreases over iterations because each iteration explores additional edge repairs. This
expands the domain of the numerator in the expression increasing the integral value and thereby
lowering p(x;) for every sample5. Since py,, is an upper bound over all such p(x;), it decreases as
well.

p(xi) =1

12



Proof for Theorem 7

Prove the possibility of having multiple minimal repair sets first. Because linear regression can
have multiple non-trivial optimal models in general, multiple minimal repair sets can exist, and each
multiple imputation set corresponds to an optimal linear regression model. For example, when we

have the dataset:
1 null null null 1
X = lO 1 2 3 ] , Y= [11 .

0 4 3 2 1

We denote features from left to right as z; ... z4. In this example, there are at least two MRs,
MRy = {22,23} and M Ry = {23, 24}. To prove, we first show that imputing either M Ry or M Rs,
and training a linear regression model with imputed features and the originally complete feature
(z1) leads to a zero (minimal) regression loss in all repairs of X. Let us first consider M R;. The
two incomplete features (z5 and z3) with the complete one (z;) cover the full 3-dimensional space
in all repairs because the three features are linearly independent in all repairs. We show the linear
independence by computing the determinant of the matrix A consisting of z1, zo, and z3.

1 null null
A=10 1 2
0 4 3

The determinant of the matrix A is non-zero regardless of how the null values in z5 and z3 are
imputed.

. ™ 1 4 null 4 null 1
det(A) = det(A") =1-det (2 3> —0-det (null 3) +0-det <null 2)

=1-((HB) - @)M)
—1.(3-8)
=-5

Because z1, z2, and zg are linearly independent, for every repair of A, there is a linear regression
model that achieves zero (minimal) loss with the feature matrix A and the label vector y. Let v(z2)
and v(z3) denote a repair of columns (features) z» and zs in A, respectively. Every repair of the
matrix X with v(z3) and v(zs3) for its second and third columns, no matter what the imputation of
missing value in z4 is, will have zero regression loss for the label vector y.

Similarly, for M Rs, we show that the two incomplete features (z3 and z,4) along with the complete z;
cover the full 3-dimensional space in all repairs because the three features are linearly independent in
all repairs. We show this by computing the determinant of the matrix B consisting of z1, z3, and z4.

0o 2 3
0o 3 2

1 null null
B =

The determinant of B is non-zero in all repairs.

B _— 2 3 null 3 null 2
det(B) = det(B") =1 det (3 2)_0'det <null 2>+O‘det (null 3)

Therefore, similar to our argument for M R, the regression loss for every repair of the features of
M R in the linear regression with feature matrix X and label vector y is zero (minimal) no matter
what the imputation of the missing value in zs is.

13



To close the proof for M Ry and M R5 being minimal repairs, we also show that there is no smaller
subset (with only one incomplete feature) such that by imputing the subset and training a linear
regression model with the imputed feature and the originally complete feature z; leads to the minimal
regression loss in all repairs. By scanning every single incomplete feature, no one can achieve the
minimal regression loss along with the complete feature (z;) in all repairs. Therefore, the size of
MR should be 2, which concludes the proof that M R; and M Ry are both minimal repairs in this
example dataset. However, when all features in X are linearly independent in all repairs, the optimal
linear regression model is unique for every repair. Therefore, a certain model is unique when it exists
in this scenario, and the minimal repair set is also unique to reach a certain model.

Proof for Theorem 8

To prove that finding the linear regression solution that is most sparse over a subset of features is
NP-hard, we reduce the known NP-hard problem of finding the most sparse linear regression solution
to it [6]. Consider the original problem where given a feature matrix X and a label vector y, the goal
is to find the optimal model w* that minimizes the number of non-zero entries. In the new problem,
given a subset of features, i.e., the incomplete features, denoted as MV F(X), we seek the optimal
model w* that minimizes the number of non-zero entries in the coefficients within MV F(X). To
reduce the original problem to this new one, set MV F'(X) as the entire feature set. Solving the new
problem in this special case is equivalent to solving the original sparse linear regression problem,
which is NP-hard. Therefore, the new problem must also be NP-hard, as it generalizes the original
problem.

Proof for Lemma 9

Based on the previous literature about certain model [22], when a certain model w* exists for linear
regression, w; = 0 for every z; € MV F(X). Therefore, finding a minimal repair set in linear
regression is equivalent to finding a regression model that has the maximal number of zero model
parameters (linear coefficients) and is optimal for all repairs. Further, the problem is equivalent
to minimizing the number of non-zero linear coefficients in w whose corresponding feature is
incomplete.

Proof for Theorem 10

When each missing value in the dataset follows an independent zero-mean normal distribution,
training a linear regression model based on the incomplete dataset is equivalent to training linear
regression with a zero-mean Gaussian noise € as below:

y=Xw+e

Based on previous literature [7]], in the presence of a Gaussian noise € ~ N (0, 02), the first k features
returned from OMP method is correct with a probability of at least 1 — 1/n when the following two
conditions are satisfied: 1. © < 1/(2k — 1), and 2.

S 2055/ n + 2y/nlogn

il 2 = e

As aresult, the features returned by the OMP algorithm in our paper is correct with a probability of
at least 1 — 1/n given the conditions in Theorem 10.

Proof for Theorem 11

The proof has two parts: (1) showing that any set of samples .S}, selected by ST2 at iteration k is
a subset of Samr, implying Sier.acm = Uy, S;, € Samr; and (2) showing the algorithm terminates
with an ACM (gx < e).

Part 1: Each selection Sj, by ST2 belongs to Samr

Samr 18 the smallest set of incomplete samples in X whose robust imputation guarantees g < e,

irrespective of specific repair values. Consider iteration k: ST1 operates on X () (where Si(tfr;lgM =
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U< S are imputed) yielding gx. If g, > e, ST2 returns S, the minimal set of currently incomplete
samples in X(¥) necessary to enable g < gy, in the next iteration.

Let z; € S;.. Assume, for contradiction, z; ¢ Samr. If 2; ¢ Samr, then Samr (not containing ;)
robustly guarantees g < e for the original problem (X,y). So, x; is not required for this global
robust guarantee. At iteration k, ST2 identifies x; as part of the minimal set .S}, in X (%) needed to
reduce gi.. This implies x; is locally indispensable for progress from X k),

Let Sxyg = Samr NU (%) be the Samr samples still incomplete in X (k) By induction (Si(tgr)_ ACM =
0 C Samr), all Si(t{:r__;gM C Samr. If Samr (excluding z;) robustly guarantees ACM for X, and

Si(t{ccr:%lC)M C Samr. then any local impasse g > e must be resolvable by further imputing only
samples from S3,z. So, some P C Si,r must exist to allow g to decrease. Since ST2 returns the
minimal set for progress, if such P exists, ST2 would select S,; C P C Siyr € Samr. This means
xj € Samr, contradicting z; ¢ Samr.

Thus, if ST2 selects x; (assumed z; ¢ Samr) as part of S}, it means no P C S%,z alone allows
progress, and x; is also needed. This implies z; is locally indispensable even if all of Sk were
imputed. This contradicts the global sufficiency of Samr (which excludes x;). The perfection of
ST2 ensures it doesn’t select a globally redundant x; if progress is possible via samples in Sxyg- So,
x; ¢ Samr is false. Thus, any x; € S}, is in Samr, meaning S}, C Samr for all k. Consequently,
Siter-acm = U 51, € Samr.

Part 2: Algorithm Termination with an ACM

If g5, > e, ST2 identifies a non-empty S}, for imputation. (If .S;, was empty while gz > e, it would
contradict the existence of Sayr as a solution or the ideal functioning of ST1/ST2). Imputing
S|, creates X (*+1) " The number of incomplete samples is finite. ST2 selects un-imputed samples
necessary for reducing gj. Assuming perfect ST1/ST2, the algorithm progresses towards g; < e. It
cannot impute distinct samples indefinitely nor cycle with g5 > e as each ST2 selection resolves a
current bottleneck. Thus, it must reach g5, < e and terminate, achieving ACM.

The assertion Sjeracm C Samr 1S consistent: Sapvr ensures robustness for all repairs. The algorithm
uses specific repairs and may achieve ACM before all of Samr (needed for worst-case robustness)
are imputed.

Proof for Theorem 12

We assume that the loss function L(w) is convex and has an M -Lipschitz continuous gradient.
Formally, this means for all w, w’ € W:

IVL(w) = VL(W')| < M|lw — w'l|.

Since L(w) is convex with an M -Lipschitz continuous gradient, the following standard inequality
from convex optimization theory holds:

L(w) < L(w') + VL(w) T (w — w') + %HW w2 Vw,w €W.

Let w* be an optimal solution (thus VL(w*) = 0), and set w/ = w*, then we have:

Next, due to convexity of L(w), we have:

L(w*) > L(w™) + VL(w™) T (w* — w™).

Combining the two inequalities, we get:
~ M, 1 ~
L(w™) = L(w") < o [[W™ = w|[* < 2 [VL(w)%,
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where the last step follows from the Lipschitz continuity of the gradient, which implies that:

IVL(wZ)|| = M[[w™ —w"||.
Hence, the optimality gap is explicitly bounded by the norm of the gradient:
L(w™) ~ L(w") < 51 [VE(w)
W — A\'% — A\'% .
- 2M

Therefore, to guarantee for all X" € X that:

L(f(XT,Wz),y) - vggyv[‘(f(xrvw)ay) <e,

it is sufficient to require:

IVwL(f (X", w™),y)| < V2Me, VX" e X",

This completes the derivation.

Code Repository

Link: https://anonymous.4open.science/r/Submission_2025-A1CO/README.md
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