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Abstract

Manual lesion segmentation for non-contrast computed tomography (NCCT), a common
modality for volumetric follow-up assessment of ischemic strokes, is time-consuming and
subject to high inter-observer variability. Our approach uses a combination of a 3D con-
volutional neural network (CNN) combined with post-processing methods. A total of 291
multi-center clinical NCCT datasets were used: 204 for CNN training, 48 for validation
and developing post-processing methods, and 39 for testing. The testing datasets were
from centers that did not contribute to the training and validation sets, and were seg-
mented by two or three neuroradiologists. We achieved a mean Dice score of 0.42 on the
out-of-distribution test set, which was significantly improved to 0.45 with post-processing.
The automatically segmented lesion volumes were not significantly different from the lesion
volumes determined by manual segmentations from multiple observers. As the model was
trained on datasets from multiple centers, it is broadly applicable and publicly available.
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1. Introduction

NCCT is the most common imaging modality for volumetric assessment of stroke le-
sions (Eswaradass et al., 2016). Manual lesion segmentation in NCCT images is time con-
suming and associated with high inter-observer variability. Semi-automatic lesion segmen-
tation tools have been developed (Kuang et al., 2019), but still require human interaction
while previous work on automatic NCCT lesion segmentation is very limited (Sales Barros
et al., 2019; Fuchigami et al., 2020).

CNNs show superior performance for various segmentation tasks in medical imaging
because of their ability to learn complex patterns and relationships in the data (Zaharchuk
et al., 2018). The use of multi-scale features and three-dimensional kernels (Kamnitsas
et al., 2017) would allow an automated segmentation algorithm to take advantage of the
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spatial contiguity of stroke lesions while maintaining localized focus. However, for stroke
lesion segmentation, these methods have only been applied to magnetic resonance imaging
(MRI) (Chen et al., 2017; Wu et al., 2019; Liu et al., 2019) or computed tomography
perfusion and angiography datasets (Oman et al., 2019; Kasasbeh et al., 2019). Multi-scale
3D CNNs for lesion segmentation have not been evaluated in NCCT datasets, despite its
common application in follow-up stroke imaging.

The aim of this work was to train and evaluate a CNN model for stroke lesion seg-
mentation in NCCT datasets. To improve upon CNN segmentations we investigated post
processing methods. We tested the models generalizability by evaluating it on an out-of-
distribution holdout test set acquired from entirely different studies from those used in
training and validation (Figure 1A).

2. Materials and Methods

A total of 291 clinical follow-up NCCT datasets acquired at 29 centers and corresponding
manual segmentations were available. The in-slice resolution ranged from 0.355 to 0.637
mm, the slice thickness ranged from 1.00 to 10.0 mm, while the number of slices ranged from
10 to 141. 204 datasets were used for training of the 3D CNN-based lesion segmentation
model, 48 datasets for validation, and 39 datasets for testing. The 39 out-of-distribution
holdout datasets used for testing were acquired at seven centers not contributing to the
training or validation sets and were manually segmented by two (19 datasets) or three (20
datasets) neuroradiologists.

All datasets were preprocessed identically to ensure data consistency across the different
scanners and acquisition protocol. A 3D multi-scale CNN was trained with 204 datasets and
corresponding lesion segmentations using the previously described DeepMedic (Kamnitsas
et al., 2017) framework (v0.7.3). The CNN-based lesion segmentations were post-processed
to improve accuracy. In brief, post-processing consisted of a connected component analysis
to exclude small lesion components, most likely caused by noise artifacts, and an automatic
hole-filling approach. The minimum lesion size and hole-filling kernel size were system-
atically optimized using the validation datasets, resulting in final values of 1.5 mL and
3 voxels, respectively. Automatic segmentations were evaluated using the Dice similarity
coefficient (DSC) and lesion volume. Intra-class correlation coefficients (ICC) were used
to assess inter-rater reliability in lesion volume estimates (Shrout and Fleiss, 1979). Fur-
ther details on data pre-processing, model design, training parameters, post-processing and
model evaluation are available in Appendix A.

Results are reported as mean + standard deviation (SD) or median [interquartile range]
as appropriate. The Friedman test with Dunn’s multiple comparison post-hoc correction
was used for comparisons. Statistical significance was set as P < 0.05. All statistical
analysis was performed with Graphpad Prism 8.4.

3. Results and Discussion

The median lesion volumes for the training and validation sets were 40.4 [14.1-96.3] mL
and 41.5 [20.0-107.1] mL, respectively. As the out-of-distribution holdout test set was
segmented by multiple observers, the manual segmentation lesion volume for each example
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Figure 1: Comparison of CNN-based segmentations on an independent holdout test set
segmented by 2 independent observers. A, Example of segmentations. B, DSC
score. C, Calculated lesion volumes. D, Agreement of lesion volumes estimates
between human observers and CNN-based segmentations after post-processing.

was defined as the average volume calculated across observers. The median lesion volume
for the test set was 20.9 [9.7-63.7] mL, which is considerably lower compered to the training
and validation sets.

The CNN achieved a mean DSC of 0.42 £+ 0.25 compared to manual segmentations
(Figure 1B). Post-processing of CNN-based segmentations significantly improved the DSC
to 0.45 £ 0.26 (P < 0.05). Both were lower than the inter-observer DSC of 0.73 4+ 0.13
(P < 0.01). No significant difference was found between the lesion volume estimates of man-
ual segmentations (20.9 [9.7-63.7] mL) and and the CNN-based lesion segmentation before
(30.1 [10.9-68.9] mL) and after post-processing (30.2 [8.2-72.2] mL) (P > 0.05) (Figure
1C). Bland-Altman analysis showed minimal systematic bias of the lesion volume estimates
by automatic segmentations compared to manual segmentations (Additional Figure 2). Im-
portantly, lesion volume estimates from CNN segmentations showed excellent agreement
with manual segmentations. The ICC for CNN lesion segmentations was 0.86, which was
further improved by post processing to 0.88 (Figure 1D). The agreement between observers
for manual segmentations was lower, with an ICC of 0.80.
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As NCCT is a standard imaging procedure available in most stroke centers for follow-
up assessment, an automatic lesion segmentation pipeline for this modality is of high de-
mand. CNN models for follow-up lesion segmentation have primarily been investigated for
MRI (Kamnitsas et al., 2017; Chen et al., 2017; Wu et al., 2019; Liu et al., 2019), achieving
higher DSCs (0.67-0.79) than seen in our study. Nevertheless, the proposed method is very
promising given that lesion segmentation in NCCT is more challenging compared to typical
MRI follow-up sequences such as diffusion weighted imaging (Fiebach et al., 2002) as the
ischemic changes are subtler.

This study demonstrated the successful use of a CNN-based lesion segmentation in
clinical NCCT datasets. Though the voxel-wise agreement of the CNN-based segmentations
was inferior to the inter-observer agreement, the corresponding lesion volumes were not
different from manual segmentations and was in excellent agreement with them. This
suggests a potential application of the model for volumetric assessment of follow-up lesions.
Within this context, it is reassuring that the agreement between automatically and manually
segmented lesion volumes was higher than the inter-observer agreement between manual
segmentations. Providing consistent results is an advantage of automatic segmentation
algorithms, thereby reducing variability between sites or studies. This lays the foundation
for developing automatic lesion analysis tools for NCCT images and can contribute toward
consistent and high-throughput analysis of large multi-center studies. The full journal article
associated with this work can be found in (Tuladhar et al., 2020a). The trained model is
freely available for NCCT lesion segmentation from http://dx.doi.org/10.21227/jps9-0b57
(Tuladhar et al., 2020Db).
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Appendix A. Supplemental Methods

A.1. Segmentation evaluation

The Dice similarity coefficient (DSC) was used as the primary outcome measurement for
evaluation of the automatic lesion segmentations. The DSC measures the overlap between
two segmentations and is defined between 0 and 1, whereas 1 indicates perfect consensus.
The DSC is calculated as DSC = (2x|ANDB|)/(]A|+|B|), where A and B are segmentations
from manual and automated segmentations, respectively.

For inter-observer DSC, A and B were the segmentations from observer A and observer
B, respectively.

DSC scores for training data were obtained by 10-fold cross-validation. Samples were
randomly assigned to test folds. The training samples were evaluated when they were a
part of a fold’s test data.

DSC scores and lesion volumes from automatic segmentations, for the validation and
holdout test set were obtained using a single CNN model that was trained on the entire
training data.

A.2. NCCT scan pre-processing

As the NCCT images were acquired from multiple centers, with differing scanners and
imaging protocols, the datasets had to be pre-processed to ensure consistency.

First, the bone structures were removed from each dataset, retaining only the brain tissue
in the images. To remove the bone structures, which have high Hounsfield values, a six-
step procedure following the approach described by Muschelli et al (Muschelli et al., 2015)
was performed in a slice-wise manner. The approach was implemented using the Insight
Segmentation and Registration Toolkit (ITK) (Yoo et al., 2002). A Gaussian filter with a
variance of 4 pixels was used to smooth each slice. Next, the intensities were thresholded
between 0 and 100 Hounsfield units and a circular structural element with a radius of
1 pixel was used to erode the resulting segmentation. Afterwards, the largest connected
component in each slice is extracted and a circular structural element with a radius of 1
pixel was used to dilate this component in order to create a brain mask for the slice. Finally,
after performing the first three steps in each slice, the masks from each slice are combined
into a final mask for the entire image and any holes in this final mask are filled using the
VotingBinaryHoleFillinglmageFilter in ITK.

Second, the images were thresholded between 0 and 100 Hounsfield units to remove noise
and hypo- or hyper density artifacts. Finally, the images were normalized to unit variance
to account for potential differences in scanner tube potential and different reconstruction
algorithms. All images in the training, validation, and test datasets underwent the same
pre-processing procedure.
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A.3. 3D Convolutional Neural Network Architecture

The CNN used in this work is based on the DeepMedic model proposed by Kamnitsas et
al. (Kamnitsas et al., 2017) and modified for NCCT stroke lesion segmentation. The network
parameters were optimized with cross validation. We used a total of 11 layers. The first eight
layers consist of three parallel convolutional pathways for processing the images at multiple
scales. The multi scale pathways were created by using down sampled versions of the NCCT
images (by factors of 3x and 5x) as inputs to the parallel convolutional pathways, in addition
to the original image. FEach parallel pathway has eight convolutional layers consisting of
30, 30, 40, 40, 40, 40, 50, and 50 feature maps and uses convolutional kernels of size 3x3x3.
Additionally, residual skip connections between layers two and four, between layers four
and six, and between layers six and eight are used in each parallel pathway. The ninth layer
combines the three multi scale pathways together by using the concatenated outputs from
layer eight of each parallel pathway. Layer nine uses 3x3x3 convolutional kernels and has 250
feature maps. Layer ten is a fully connected convolutional layer with 1x1x1 convolutional
kernels and 250 feature maps. Additionally, a residual skip connection between layers eight
and ten was used. The final softmax classification layer, layer eleven, produces the lesion
probability maps. A threshold of > 0.5 is used to binarize the probability map to a final
lesion segmentation.

A.4. 3D Convolutional Neural Network Training

All CNN model training was performed in Python 2.7 on Compute Canada and Calcul
Quebec computing clusters. The DeepMedic framework (v.0.7.3), was used for model train-
ing. The DeepMedic framework performs model training on image segments extracted from
the original image, rather than the entire image. In this work, segments of 37x37x37 were
used. The network was trained for 35 epochs with a batch size of 10. Each epoch was
divided into 20 sub epochs, within which 1000 image segments were extracted and used for
model training. An initial learning rate of 0.001, which decreases through training using a
polynomial decay function, was employed. Root mean square propagation was used as the
optimizer. L1 and L2 regularizations of 0.000001 and 0.0001 were used, respectively. Data
augmentation consisted of mirroring along the sagittal axis.

A.5. Post-processing

Post-processing was done exclusively using the ITK toolkit via the SimpleITK implemen-
tation. Post-processing was conducted on the binary lesion segmentations produced by
the trained DeepMedic model. These segmentations were passed through the Castlmage-
Filter with OutputPixelType set at 4 (32-bit signed integer) in order for the images to be
compatible with the necessary filters.

Using a connected components analysis, components below 1.5 mL in volume were
removed. The exception was in segmentations where the largest connected component was
smaller than the cutoff, in which case no cutoff was used. Finally, hole-filling with a radius
of 3 voxels was used to fill gaps within the segmentation.

The validation dataset was used to optimize the minimum object size threshold and
the hole-filling kernel radius. The minimum object size threshold was optimized first, by
varying the threshold range from 0.3 mL to 2.5 mL. The value that maximized the DSC
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was 1.5 mL. Using this threshold, the hole-filling radius was optimized next using values
of 2, 3, 5, 7, and 10 voxels. As hole-filling causes the segmented lesion volumes to grow,
and subsequently increased the error in lesion volume estimates, both the DSC and lesion
volume error were considered when choosing the optimal value. More precisely, the DSC
was maximized while the lesion volume error was minimized. The optimal radius was found
to be 3 voxels.
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Appendix B. Additional Figures
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Figure 2: Bland-Altman agreement analysis of test set lesion volumes from manual segmen-
tations and CNN segmentations with post processing, showing minimal bias. SD:
standard deviation.
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