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Abstract

Vision-language navigation (VLN) has emerged as a
promising paradigm, enabling mobile robots to perform
zero-shot inference and execute tasks without specific pre-
programming. However, current systems often separate
map exploration and path planning, with exploration re-
lying on inefficient algorithms due to limited (partially
observed) environmental information. In this paper, we
present a novel navigation pipeline named “VL-Explore”
for simultaneous exploration and target discovery in un-
known environments, leveraging the capabilities of a vision-
language model named CLIP. Our approach requires only
monocular vision and operates without any prior map
or knowledge about the target. For comprehensive eval-
uations, we designed a functional prototype of a UGV
(unmanned ground vehicle) system named “Open Rover”,
a customized platform for general-purpose VLN tasks.
We integrated and deployed the VL-Explore pipeline on
Open Rover to evaluate its throughput, obstacle avoid-
ance capability, and trajectory performance across vari-
ous real-world scenarios. Experimental results demonstrate
that VL-Explore consistently outperforms traditional map-
traversal algorithms and achieves performance comparable
to path-planning methods that depend on prior map and
target knowledge. Notably, VL-Explore offers real-time
active navigation without requiring pre-captured candidate
images or pre-built node graphs, addressing key limitations
of existing VLN pipelines.

Keywords. Vision-Language Navigation; Zero-Shot Vi-
sual Servoing; Path Planning; GPS-denied Navigation.

1. Introduction
Autonomous robots face considerable challenges in ex-
ploring and discovering targets within unknown environ-
ments without a prior map, typically requiring a dedicated
mapping phase before initiating path planning strategies
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Figure 1. (a) Existing VLN systems generally use VLMs as a com-
plementary add-on; (b) The proposed VL-Explore pipeline is de-
signed with a general-purpose VLM at its core, eliminating the
need for multimodal sensing and extra processing steps.

[8, 12, 23]. Recent vision-language (VL) approaches have
begun to address this by incorporating long-term memory
architectures, a key factor driving performance gains in
navigation tasks [6]. However, methods that rely on pre-
constructed maps or pre-existing environmental knowledge
often exhibit poor adaptability to dynamic or evolving con-
ditions, necessitating frequent reinitialization or bespoke al-
gorithmic interventions [1, 15]. These limitations are espe-
cially pronounced in critical real-world applications—such
as search-and-rescue, environmental monitoring, and ware-
house exploration—where adaptability and robustness are
essential [20, 26, 40]. Despite the importance of efficient,
zero-shot exploration in such scenarios, current VLN sys-
tems have yet to adequately address this capability.

When initializing inside an unexplored environment,
many traditional methods use a fixed policy that often gets
stuck in local minima, leading to inefficient or incomplete
exploration [21]. To address this, contemporary VLN sys-
tems use high-sensing modalities [6, 12] such as multiple
cameras, depth camera or LiDAR to help with first-time ex-
ploration. For instance, a 2D LiDAR is commonly used
for obstacle avoidance and mapping [35, 38], while a sep-
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Figure 2. Illustration of an ongoing exploration and target discovery task by the proposed VL-Explore system. Left: A synthesized image
representing the robot’s perspective from its onboard camera; the cone illustrates its field-of-view, divided into six numbered tiles for
detailed analysis. Right: The vision-language perception of each tile is processed by a novel correlation middleware; The motion mixer
engine is currently in ‘target lock’ mode, prioritizing the target (a teddy bear) in tile-5 over other navigable regions (e.g., tile-6) due to the
higher precedence assigned to the target.

arate camera is used for scene classification and target de-
tection [22]. Additionally, the initial map traversal is not
feasible for partially observable and dynamic environments,
requiring frequent re-initialization [5, 16]. To this end, the
efficiency and robustness of target discovery by zero-shot
exploration remain largely under-explored.

In this paper, we present “VL-Explore”, a novel naviga-
tion framework for zero-shot exploration and target discov-
ery by unmanned ground vehicles (UGVs) in unknown en-
vironments. VL-Explore extends the spatial context aware-
ness capabilities of general-purpose VLMs [7] to guide 2D
robotic exploration and target discovery without requiring
access to a prior map. It addresses the limitation that ex-
isting VLN systems predominantly use a VLM as a com-
plementary add-on for policy projection, outside the navi-
gation subsystem; see Fig. 1. Instead, VL-Explore uses
a general-purpose VLM as its navigation core, with the
entire system operating within it. It also eliminates the need
for any additional sensing modalities and map building. As
illustrated in Fig. 1b, simplifying the system architecture in
this way significantly reduces the system complexity and
cost, making it more scalable and suitable for resource-
constrained systems.

VL-Explore eliminates the contemporary VLM system’s
reliance on pre-built knowledge graphs and candidate im-
age libraries. Specifically, SOTA systems such as Clip-
Nav [9], Clip on Wheels [10], and GCN [23] require
pre-captured images of candidate scenes, target locations,
and/or pre-built knowledge graphs of the navigable space as
prior [8]. Due to this complexity, they are generally tested
in 2D simulations or overly simplistic environments. Other
contemporary methods, such as SEEK [12], require high-
sensing modalities involving multiple cameras, LiDAR, and
onboard SLAM pipelines for navigation. In VL-Explore,
we formulate the problem from a different perspective. In-
stead of relying on a separate traditional mapping and path-
planning backbone, our proposed architecture uses the vi-
sual embeddings encoded by a foundational VLM as the

only input to the system. High-level functionalities such as
obstacle avoidance, path planning, and target identification
are built upon this foundation for active visual perception.

To validate the proposed framework in real-world envi-
ronments, we develop a UGV platform that meets the com-
putational demands of VLMs while offering superior ma-
neuverability and mechanical stability during the task. We
deployed the CLIP model [18, 36] in our proposed archi-
tecture and performed extensive tests in a real-world envi-
ronment. The results demonstrate that VL-Explore consis-
tently outperforms map-traversal algorithms and achieves
performance comparable to path-finding methods, despite
the latter relying on prior knowledge of the map and tar-
get location. Moreover, VL-Explore achieves significantly
shorter trajectory lengths, making it more efficient than
map-traversal algorithms. In comparison with state-of-the-
art systems, VL-Explore achieves comparable or even su-
perior performance to systems with higher sensor modali-
ties or even with long-term memory. Notably, VL-Explore
offers such performance margins without additional sen-
sor modalities, also requiring no separate dedicated map-
building or localization modules.

Overall, we make the following contributions in this paper:

1. We propose a model-centric navigation pipeline “VL-
Explore” for simultaneous exploration and target dis-
covery by UGVs in unknown environments. It requires
no additional sensor modalities other than RGB feed for
zero-shot active navigation.

2. We design a novel evaluation metric “Entropy Preserv-
ing Score” (EPS) to measure the exploration efficiency,
improving the consistency of score across different ex-
perimental environments hence providing better compa-
rability across different systems.

3. We perform extensive experiments with the proposed
system and compare its performance against other sys-
tems, demonstrating the effectiveness of the proposed
system in real-world environments.
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(a) Back View of the Robot (b) Front View of the Robot (c) Design Flexibility - An Example
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Figure 3. Our Open Rover platform designed for VL-Explore is shown: (a) Back view, showing the single board computer (SBC) and
electronics stack including a brushless motor speed controller, a flight controller with IMU, and a power distribution board; (b) Front view,
showing the camera for zero-shot navigation; (c) An alternative design, demonstrating the flexibility of this platform, configured with
revised wheels, chassis, and additional manipulators for potential field robotics applications.

2. Related Work: Zero-shot Learning and
Vision-Language Navigation

Zero-shot learning enables autonomous robots to identify
unseen objects and make navigation decisions in unfamiliar
environments [14]. Researchers use visual features [41],
knowledge graphs [33], semantic embeddings [43], and
spatial appearance attributes [30] to encode information
of object classes into the search space. More recently,
text-based descriptions or human instructions are combined
with vision to improve servoing, as demonstrated in LM-
Nav [37] and InstructNav [27]. Among CLIP [36]-based
frameworks, CoW [11] presents a trajectory planning strat-
egy using frontier-based exploration. ClipNav [9] de-
signs a costmap to further improve obstacle avoidance dur-
ing exploration. Other approaches such as ESC [45] and
VLMaps [17] use prompts to translate action commands
into a sequence of open-vocabulary navigation tasks for
planning. Besides, CorNav [25] includes environmental
feedback in the zero-shot learning process to dynamically
adjust navigation decisions on the fly.

Contemporary works on vision-language navigation
(VLN) focus on enabling robots to understand language in-
structions for interactive task planning. VLN algorithms in-
tegrate visual information (e.g., recognizing objects, obsta-
cles) and language instructions to plan a trajectory or action
sequence for task execution. This is achieved by first gener-
ating semantic tags into the SLAM pipeline [10, 14, 17] to
generate a 3D map. Subsequently, the resulting augmented
map is used to support online navigation to perform zero-
shot semantic tasks [42]. These works primarily focus on
adding semantic information to existing mapping and ex-
ploration techniques [17, 24], but do not participate in the
path planning process.

In contrast, node graph based VLNs [4, 8, 23] construct
a graph of the active map where each node represents a

free location and edges stand for directly navigable paths.
Dynamic expansion of a node graph is then achieved with
the help of precise localization, typically achieved by ad-
ditional sensors. Experiments show that these algorithms
suffer from miscorrelating existing nodes when revisiting
an explored area, and also in dynamically changing scenes.
To address this, researchers are exploring zero-shot learning
aided observation of unknown spaces [42]. Techniques like
odometry, stereo depth, and LiDAR sensors are used along-
side a pretrained vision-language model to achieve simulta-
neous mapping and exploration – demonstrating a clear ad-
vantage regarding the efficiency of reaching the prompted
goal.

The existing zero-shot learning and VLN approaches
rely on dedicated sensors to construct a global map on the
first run. Subsequent motion decisions are generated by a
traditional trajectory planner. Online planning and naviga-
tion in dynamic and unknown spaces without a prior map is
still an open problem, which we attempt to address in this
paper.

3. Open Rover: Platform Design
We develop a novel robotic platform “Open Rover”. The
platform is designed to be flexible with drive types, chas-
sis sizes, sensor and actuation add-ons, so it can adapt to
the needs of prospective research. The major sensors and
actuation components are shown in Fig. 3; it includes a
monocular RGB camera and a 2D LiDAR for exterocep-
tive perception. Four independent wheel assemblies are re-
sponsible for actuation; each wheel assembly is modular
and self-contained, i.e., it consists of a gearbox, a brushless
DC motor, and a suspension system; see Fig. 4b. It also in-
cludes a pseudo-odometer that uses telemetry data from an
electronic speed controller (ESC), which drives the motors.
Additionally, the driver stack consists of a flight-controller
module originally designed for quadcopters that reports on-
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board sensory data to the host computer for planning and
navigation.

Unlike existing platforms like the TurtleBots [2],
Open Roveris designed with an open and spacious chassis
to facilitate easy adaptation to any single board computer
(SBC). In our setup, we configured the platform to: (i) de-
liver sufficient computational power to handle a general-
purpose vision-language model and other computationally
intensive tasks; (ii) have enough mechanical stability to
hold the camera in an elevated position without excess
vibrations even on uneven surfaces; and (iii) support 3-
DOF motions (forward/backward, sideways and rotation),
whereas most existing UGV systems have only 2-DOF: for-
ward surge and twist rotation.

3.1. Task Specific Design for VL-Explore
We customize the Open Rover platform with a configura-
tion that supports real-time VLN capability for 2D envi-
ronments. An omnidirectional drive system is chosen to
account for the moderate surface irregularities. The four
wheels are connected to separate brushless DC motors via
a planetary gearbox with a reduction ratio of 16:1. This
allows the robot to travel at higher speeds and easily over-
come moderate obstacles. A throttle limit of 20% is im-
posed to ensure operational safety, capping the robot’s max-
imum speed at approximately 2meters per second.

As shown in Fig. 4b, the gearbox and brushless DC mo-
tor are integrated into the wheel hub, optimizing the spatial
efficiency and smoothness of the drive system. Moreover,
the computing pipeline is powered by an Nvidia Jetson
Orin module. A FLIR global shutter RGB camera, lifted
approximately 30 cm above ground, is used for visual per-
ception. This design ensures that the optical center of the
lens aligns with the geometric center of the robot. Besides,
the heading value from the flight controller’s IMU facili-
tates 360◦ scanning capabilities. A 2D LiDAR is mounted
at the front of the upper deck as is shown in Fig. 3b. The Li-
DAR is only used for safety and visualization purposes and
does not influence VLN’s decision-making. Further details
regarding the LiDAR’s utility are explained in Sec.4 of the
supplementary materials.

3.2. Features and Capabilities
One unique advantage of our Open Rover system design
is the compactness of its wheels and motor assembly. The
four-wheel independent suspension extends its application
to uneven surfaces; when using the Discovery Wheel (TPU)
shown in Fig. 3c and Fig. 4b, it performs well on grasslands,
rocky pavements, and even sand (with reduced maneuver-
ability). The suspension system can also be configured to
filter out surface bumps and provide better stability for on-
board sensors.

The Open Rover platform can be configured to switch
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Figure 4. The wheel hub and suspension design are shown on
the left: (a) suspension system coupled with the omnidirectional
wheel; and (b) cross-section view of the ‘discovery wheel’, in-
wheel drive system, and suspension links, assembled and rendered
by CAD software. The connection diagram is shown on the right:
(c) the dashed line represents physical connection, while solid
lines represent logic functions.

Table 1. Comparison of Rover Master with other standard UGV
platforms is shown; the acronyms: [ DF ] Differential, [ OD ]
Omni-directional, [ CFG ] Configurable.

Platform
Drive

SBC
Onboard

Add-ons
Est. Cost

Type Sensors (USD)

TurtleBot3
[ DF ] RPi4

PiCamera, IMU,
Limited 1500

(Waffle Pi) LDS laser
TurtleBot4

[ DF ] RPi4
Stereo camera,

Limited 2100
(Standard) IMU, RPLiDAR

Rover
Master

[ DF ]
[ CFG ]

RGB camera,
[ CFG ]

650

[ OD ] IMU, LiDAR 850

between different drive types (omnidirectional or differen-
tial), chassis sizes (with parameterized CAD design), and
task-specific actuation and sensory add-ons (cameras, Li-
DARs, manipulators for both indoor and field robotics ap-
plications). The chassis plates are designed to house vari-
ous additional sensors and actuators according to tasks. A
comparison of Open Rover with two widely used TurtleBot
UGV variants is presented in Table 1.

4. VL-Explore: Navigation Pipeline
Recent advancements in VLMs have demonstrated their po-
tential for spatial reasoning and awareness capabilities [7,
9]. Different from traditional approaches, this study ex-
plores the feasibility of incorporating VLMs directly into a
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robot’s autonomy pipeline to facilitate real-time exploration
and target identification. To this end, we introduce a mod-
ular pipeline that integrates stages for perception, planning,
and navigation. The core computational components of the
proposed VL-Explore navigation pipeline are depicted in
Fig. 5.

The proposed pipeline comprises three main stages. The
frontend processes raw input frames, divides them into
tiles, and encodes these tiles into embeddings—numerical
vectors representing semantic meanings; In our implimen-
tation, the CLIP vision encoder is employed as the fron-
tend. Then, middlewares take the visual embeddings gen-
erated by the frontend as input and produce scores that carry
specific semantic interpretations. These scores are typically
derived by correlating the input embeddings with the mid-
dleware’s internal database. The meanings of these scores
can vary depending on the application’s requirements. In
this study, the middleware generates three types of scores:
navigability, familiarity, and target confidence.

Lastly, at the backend, those scores from middlewares
are used to make motion decisions. It is designed to be
adaptable, allowing the integration of different algorithms
tailored to various applications and environments. For this
study, a minimal backend was implemented with three op-
erational modes: basic navigation, look-around, and target
lock. These modes are dynamically activated or deactivated
based on the provided scores.

Notably, the proposed VL-Explore pipeline is agnostic
to CLIP or any other VL backbone. OpenCLIP is used in
our experiments given its open-source status and 3-4 years
of maturity in various research fields, ensuring reproducibil-
ity. While a more recent multi-modal VLM could poten-
tially enhance the performance of the suggested pipeline,
the primary focus of this work is to validate the feasibil-
ity of integrating VLMs into a real-time navigation system.
Thus, we chose to utilize a well-established model for better
reproducibility.

4.1. Visual Perception Frontend
In the frontend, raw camera frames are sliced into six tiles;
the slicing strategies are discussed in Sec.1 of the supple-
mentary materials. Each tile represents a spatial location in
the robot’s FOV, which are scaled and processed by CLIP’s
visual encoder. As shown in Fig. 5 f, each frame is sliced
into N = 6 tiles and then rearranged into a tensor of shape
N × 3 ×H ×W , with H and W being the tile height and
width in pixels. The encoder processes these inputs and
generates an N ×D embedding vector for each tile, where
D is the dimensionality of each prediction vector (D = 512
in the CLIP model).

Additionally, the standard deviation for each tile is com-
puted and combined with the model’s predictions. This
metric serves as an indicator of the amount of information
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Figure 5. An overview of the architecture of VL-Explore; the pri-
mary data flow and supplementary sensory feedback are marked
by black and red arrows, respectively. The camera frame-slicing
strategy is shown in (f); each frame is sliced into two rows (NEAR,
FAR) and three columns (LEFT, CENTER, and RIGHT). Each of
the six tiles is encoded into a separate visual embedding vector for
perception.

present in each tile, proving particularly useful in scenarios
where the robot encounters feature-poor, uniformly colored
objects such as walls, doors, or furniture. In such instances,
an abnormally low standard deviation suggests that the vi-
sion encoder’s output may lack reliability.

4.2. Navigability Middleware: Vision-Language
Correlation

To distinguish navigable spaces from non-navigable
ones, we designed a set of positive prompts describ-
ing clean and navigable environments, such as: “A
photo of a (flat|open|wide|clear) {floor
|ground|hallway}”, and a set of negative prompts
describing spaces that are cluttered by obstacles, such
as: “A [cropped|bad|imcomplete] photo of a
(blocked|messy|cluttered) {scene|space}” and
“A photo of a (large|way blocking) {object
|item}”. As shown in Fig. 6 a, a clear floor is identified
as navigable space, while the cluttered scene in Fig. 6c is
accurately categorized as non-navigable.

For target discovery, a similar set of text prompts is used
to define the target of a task. In our experiments, we use
a toy bear (see Fig. 10 b) as the discovery target due to its
uniqueness in the scene. We design a set of prompts that
describe the target, e.g. “A photo of a (brown|toy)
{bear|teddy bear}”. We also design a set of nega-
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Figure 6. Detailed examples of the proposed correlation middlewares are illustrated; the circled cross symbol denotes the inner product
of broadcasted vectors. (a) A navigable clean floor is encoded and correlated with the navigability database, where green rows (positive
prompts) yield higher scores than red rows (negative prompts); the resulting positive final score indicates the space is navigable. (b) A
toy bear (the target) is encoded and correlated with the target database, where blue rows (positive prompts) produce higher scores than red
rows (negative prompts); the resulting positive final score confirms the target’s presence. (c) A paper box is encoded and correlated with
both databases; it corresponds to neither a navigable space nor the target, both scores are negative, indicating the space is not navigable
and no target is present. [Best viewed digitally at 2× zoom.]

tive prompts that describe generic objects to filter out false
positives, e.g. “A photo of an (unknown) {item|
scene|object}”. As shown in Fig. 6 b, the target prompt
accurately identified the toy bear, while negative prompts
effectively suppressed false positives on unrelated objects,
such as the paper box in Fig. 6 c.

The symbols used in examples above belong to a custom
designed prompt system. The same set of notations are used
throughout this paper. The symbols are explained in detail
in Sec.2 of the supplementary materials.

The resulting scores for both navigability and target con-
fidence were computed on a per-tile basis. As depicted in
Fig. 6 a-c, the CLIP visual encoder generated embeddings
for each tile, which were then compared against a prompt
database using inner products. The prompt database con-
sisted of pre-encoded text prompts generated by the CLIP
text encoder, organized into positive and negative cate-
gories. The resulting scores, ranging from −1.0 to 1.0, were
determined by the highest absolute score among the prompt
matches.

By employing both positive and negative prompts in
each database and selecting the final result based on their
contrast, the correlation process becomes more robust
against fluctuations in absolute correlation values. This ap-
proach is particularly beneficial in environments with vary-
ing lighting conditions or complex scenes, where all scores
may drift upward or downward depending on the quality of
the visual input. Moreover, this method eliminates the need
for manually setting a fixed threshold, further enhancing its
adaptability.

4.3. Familiarity Middleware: Vision-Vision Corre-
lation

In addition to navigability scores, a familiarity database
is accumulated in real-time to track previously explored
spaces. It is constructed with visual embeddings (512 di-
mensional vectors) representing known spaces without stor-
ing or using actual images. An incoming visual embedding
is considered “known” if its correlation score with an exist-
ing vector exceeds a predefined threshold. Each new em-
bedding vector is incrementally merged into the familiar-
ity database; we implement the following two strategies for
this:

1. Averaging among all vectors that belong to a known
point, this involves keeping track of the count of vectors
already merged into a known spot (s):

vnext =
s

s+ 1
· vprev +

1

s+ 1
· vnew

2. Performing a rolling average operation upon merging a
new vector; this method does not need to keep track of
the total count of already merged vectors. Therefore, the
vector tends to lean towards newly inserted vectors and
gradually “forget” older ones. The “rate of forgetting”
can be controlled by a factor λ (a.k.a decay factor):

vnext = (1− λ) · vprev + λ · vnew

When no known vector exists in the database, the incoming
vector is inserted as a new data point. Eventually, a famil-
iarity score is generated for each perception vector, guid-
ing navigation by encouraging the robot to prioritize unex-
plored areas over revisiting familiar ones.
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Figure 7. A state diagram illustrating the decision-making process,
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are other computational blocks in Fig. 5. Dashed arrows represent
data/signal propagation, while solid arrows denote conditions and
transitions between states.

4.4. Navigation Decision Backend
Lastly, the decision module generates motion commands
according to the information provided by the perception and
correlation systems. Specifically, a “motion mixer” is in-
troduced as the baseline correlation-to-motion translator. It
takes all aforementioned scores for each tile (i.e., navigabil-
ity, familiarity, and standard deviation) into consideration
and makes an intelligent decision. The motion mixer gener-
ally prioritizes highly navigable yet less familiar locations
while avoiding areas with minimal texture, indicated by low
standard deviation values. To handle non-trivial scenarios,
the decision module incorporates two additional functional-
ities: (1) trap detection, enabling the robot to identify and
escape from potential dead-ends, and (2) look-around, al-
lowing it to reorient itself in complex environments. The
overall decision-making process and state transitions are il-
lustrated in Fig. 7.

Trap Detection. In certain scenarios, the robot may en-
counter a “dead end”, where no navigable path is visible
within its FOV. In rare instances, the vision-language model
may generate false positive Nav scores for scenes it
does not adequately comprehend. For example, the lack of
salient features can lead to incorrect positive scores when
the camera is positioned too close to a plain white wall.
Such situations are defined as “trapped” states, which can
occur under two conditions: (a) the proximity switch asserts
a halt signal for a specified duration, or (b) the cumulative
travel distance, as measured by odometry, falls below a de-
fined threshold over a given period. Empirically, the system
flags the robot as trapped if it travels less than 0.2 meters
within the past 5 seconds.

Look Around. Due to the limited FOV from a single cam-
era, the robot could only see objects in front of it, limiting

Figure 8. Rendering of a look around operation overlaid on a
birds-eye view of the robot; it was able to identify navigable paths
(blue bars) apart from obstacles (red bars) based on the proposed
visual perception pipeline. The candidate headings are annotated
as Ci. After the look-around operation, the robot selected C0 as
its next heading according to the area of free space. Details on the
color codes and symbols are in Fig. 12.

the amount of information available to the robot for effi-
cient navigation and exploration. To address this, a “look
around” mechanism (see Fig. 8) is introduced to enable the
robot to gain situational awareness by performing a 360◦ ro-
tation while collecting Nav scores associated with dif-
ferent headings. A Gaussian convolution is then applied to
these scores to identify the most navigable direction. When
recovering from a “trapped” state, the look around mecha-
nism prioritizes a direction different from the original head-
ing by a linear factor k, rewarding headings that deviate
from the initial orientation. Additionally, a look around be-
havior is triggered at the start of a new mission to ensure the
robot identifies the most promising path for exploration.

5. Experimental Results and Analyses

5.1. Experimental Setup
Real-world experiments were conducted in two different
environments as depicted in Fig. 10 a. The environments
were selected for their cluttered layout and complex de-
tails, which include numerous obstacles, potential traps, and
loops, providing a challenging setting for comprehensive
analysis. As shown in Fig. 10, the robot was tasked with ex-
ploring the space while searching for a designated target –
a toy bear approximately 20 cm tall and 10 cm wide, chosen
for its distinctive appearance within the test scene. For each
task, the source (robot’s starting position) and destination
(target location) were selected from predefined locations as
labeled in Fig. 10 (b) and (d).

5.2. Performance Evaluation
Evaluation criteria. Our experimental trials are designed
to evaluate efficiency of exploring an area and success rates
of finding a target with no prior map or knowledge about the
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Figure 9. Visualizations of look-around operations during a demonstrative task; candidate directions are depicted as dashed lines (Ci),
where candidates with smaller indices are assigned a higher priority. The plots are generated from correlation scores without utilizing
additional sensory data. (a) Initial look-around at the center of the map: the system does not incorporate familiarity scores since the
familiarity database is uninitialized; thus, the navigability score predominantly influences the robot’s decision. (b) The robot encountered
a dead-end and was temporarily trapped; a look-around operation enabled it to identify a navigable path and resume exploration. (c) The
robot was trapped due to a false positive navigability perception caused by a transparent object; with a look-around, the system successfully
recovered from the false positive and continued its exploration. (d) The target was located nearby in this scenario; through the look-around,
the robot was able to identify the target and assign it as the highest-priority candidate. [Best viewed digitally at 2× zoom for clarity.]

NW NE
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C.

NW NE
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(a) (b)

(c) (d)

Figure 10. The environment used for real world exploration and
discovery experiments: (a) Overview of the machine hall taken
from the east side. (b) 2D map of the experimental space, with task
locations annotated in blue; the area utilized for the experiments is
enclosed within the dashed red line. (c) An office scene taken from
the S. E.corner; (d) 2D map of the office scene, with task locations
annotated in blue.

target. To quantify these, we use the total distance traveled
(trajectory length) before approaching the target as the core
metric. Instead of the total duration of the task, the travel
distance metric is agnostic to the CPU/GPU performance of
the onboard computer and the capability of the mechanical
driving system, which are considered external factors that
can be improved independently.

Algorithms for comparison. We compare the performance
of the proposed VL-Explore system with six widely used

map-traversal and path-finding algorithms. For fair com-
parisons, a novel 2D simulation framework, RoboSim2D,
is developed. It utilizes 2D LiDAR maps from recorded
scans of the same environment used in real-world experi-
ments. Additionally, the size of the simulated robot was
configured to match the dimensions of the physical robot,
ensuring consistency across simulations and the real plat-
form. See the supplementary materials (Sec. 5) for more
details on the algorithmic implementation and simulation
results.
Criteria of failure. Due to practical limitations, a mission
is considered a failure if the distance traveled exceeds a pre-
defined upper limit. For real-world experiments conducted
in the test area (approximately 12 × 16 m), this limit is
set to 100 meters. In simulations, the limit is set to 1, 000
meters for random walk, wall-bouncing, and wave-front al-
gorithms. For Bug algorithms, loop detection is employed
to identify endless loops, which are classified as failures.
Since failed missions yield infinite travel distances, they are
excluded from the metrics presented in Table 2, they are
instead reflected in the overall success rate of an algorithm.
Evaluation metrics. As observed in our simulation results,
for a given amount of information, the success rate R is in-
versely proportional to the normalized path length L. This
relationship is expressed by a commonly adopted perfor-
mance metric for VLN systems, known as Success weighted
by Path Length (SPL) [3], defined as:

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
. (1)
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Note that, for each source-target combination, the first con-
tact distance of WaveFront simulation is used as the baseline
distance Dbaseline. With the choice of l = Dbaseline, we have
pi > l,∀pi ∈ {p}; hence, the above equation is simplified
to:

SPL =
1

N

Si=1∑
i

Dbaseline

pi
=
Ns

N

Si=1∑
i

Li

Ns
= R · L (2)

s.t.



Li =
Dbaseline

pi
− Inverse Relative Distance

Ns=
∑Si=1

i 1 − Number of Success Runs

R =
Ns

N
− Success Rate

L =
∑Si=1

i

Li

Ns
− Mean Inverse Path Length

(3)

As a consequence, the SPL metric equates to an inverse pro-
portional relation between two quantities, namely the suc-
cess rate R and the mean inverse path length L, as:

SPL = L ·R. (4)

However, experimental data reveal that the curvature of the
SPL function does not align well with the observed R–L
curve, shown later in the experimental results (Fig. 11).
That is, for the same exploration algorithm, setting a dif-
ferent failure criterion will result in a different SPL score.
To better model the efficiency of an algorithm from ob-
served data, we propose a new metric “Entropy Preserv-
ing Score” (EPS) to represent the amount of information
available to a given algorithm. It has a range of [0, 1]. When
EPS = 0, the algorithm operates without environmental in-
formation and lacks sensing capabilities beyond collision
detection, as seen in methods like random walk and wall
bounce. As EPS approaches 1, it gains more information or
has higher environment sensing capability, and the perfor-
mance is expected to increase accordingly. Considering the
impact of EPS, the revised equation expands to:

f1(EPS) = f2(L) · f3(R) (5)

s.t. fn(x) = kn · x pn + tn

where Hn = [kn tn pn] are hyper-parameters specific to
an environment. i.e. A specific environment can be charac-
terized using the collection of 9 hyperparameters:

H =

H1

H2

H3

 =

k1 t1 p1
k2 t2 p2
k3 t3 p3

 . (6)

These hyper-parameters are fitted to the L − R curve
derived from random-walk simulation results in the given
map, plus an additional boundary condition f1(1.0) =

f2(1.0) ·f3(1.0), which is the ideal case when the algorithm
has all information available and achieves a perfect success
rate with optimal travel distance.

5.3. Qualitative and Quantitative Analyses
We conduct extensive real-world experiments with over 60
trials based on various combinations of source-target lo-
cations shown in Fig. 10. For the proposed VL-Explore
system, three trials were performed for each origin-target
pair. In comparison, 200 trials were recorded for each ran-
dom walk experiment, while 180 evenly distributed head-
ings were recorded for each combination of the wall bounce
runs.

Samples of the trajectories traversed by VL-Explore and
other algorithms are presented in Fig. 12, overlaid on a 2D
map of the environment. Under normal navigation mode,
VL-Explore exhibits a human-like motion strategy by nav-
igating near the center of open spaces, enhancing explo-
ration efficiency and reducing the likelihood of becoming
trapped by obstacles. In contrast, path-finding algorithms
often follow the contours of obstacles due to their lack of
semantic scene understanding. During look-around oper-
ations (see Fig. 8 and Fig. 9), VL-Explore accurately dis-
criminates between navigable spaces and obstacles. Addi-
tionally, it demonstrates a preference for unexplored (un-
familiar) areas over previously visited (familiar) regions,
contributing to improved efficiency compared to traditional
map-traversal algorithms.

Out of 60 trials in the industrial scene, 3 failure cases
were recorded, yielding a 95% overall success rate for VL-
Explore. For the office scene, only 1 failure case was
recorded out of 12 trials, yielding a 91.7% success rate.
Among the failure cases, two were caused by the trajec-
tory length exceeding the limit, while the other two were
caused by the robot getting jammed by an obstacle, which
was not detected by either the VLN pipeline or the LiDAR
proximity switch.

The quantitative results categorized by source and tar-
get locations are presented in Table.1 of the supplementary
materials. To ensure comparability across different source-
target pairs, the travel distance for each row is normalized
by the baseline travel distance and then aggregated into Ta-
ble 2. For randomized algorithms, the success rate R is a
configurable hyperparameter. Sample results for R = 50%
and R = 80% are provided to represent their underlying
performance in Table 2, with the corresponding equipoten-
tial curves previously shown in Fig. 11. In contrast, de-
terministic algorithms (such as Bug variants) have a fixed
success rate. Their performances are reported directly in
Table 2 and visualized in Fig. 11 for comparison.

As these results demonstrate, with the same amount of
information, the proposed system outperforms traditional
map traversal algorithms by significant margins in success
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Table 2. Quantitative performance of VL-Explore and other algorithms in comparison. Metrics used are defined in Eq. 3.
The acronyms: S.R. - Success Rate R; P.L. - Mean Inverse Path Length L.

Method
Large Size Industrial Scene Medium Size Office Scene

Additional RequirementsS.R. P.L. SPL S.R. P.L. SPL
VL-Explore 95.0% 0.50 0.48 0.40 91.7% 0.67 0.62 0.51 Monocular RGB Camera

Random Walk
50.0% 0.15 0.08 0.00 50.0% 0.18 0.09 0.00

Basic Collision (obstacle) Detection

80.0% 0.11 0.09 0.00 80.0% 0.13 0.11 0.00

Wall Bounce
50.0% 0.17 0.09 0.01 50.0% 0.23 0.11 0.02
80.0% 0.12 0.10 0.01 80.0% 0.16 0.13 0.02

Wave Front
50.0% 0.36 0.18 0.11 50.0% 0.44 0.22 0.15
80.0% 0.27 0.22 0.11 80.0% 0.34 0.27 0.15

Bug 0 45.0% 0.89 0.49 0.45 37.5% 0.81 0.39 0.37 Target Location
Bug 1 100.0% 0.29 0.29 0.19 100.0% 0.23 0.23 0.08 Target Location, Memory of trajectory
Bug 2 80.0% 0.68 0.55 0.52 100.0% 0.41 0.41 0.25 Target Location, m-line detection

Previous Work (scores reported from original paper)

VLMnav
50.4% 0.42 0.21 N/A Online Reasoning, Depth Camera, Voxel Map
33.2% 0.41 0.14 N/A Online Reasoning (without nav components)

GOAT
83.0% 0.77 0.64 N/A Depth Camera, Long Term Memory, Onboard SLAM
61.0% 0.31 0.19 N/A Depth Camera, Onboard SLAM (first-time exploration)
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Figure 11. Performance of VL-Explore compared to map-traversal methods (i.e. random walk, wall bounce) [34], path-finding (Bug)
algorithms [28, 29] and SOTA VLN methods (i.e. VLMnav and GOAT) [6, 13] for UGV navigation. SOTA VLN methods are represented
by a solid gray dot (all systems enabled) and a gray circle (certain systems disabled to match with information required by VL-Explore).
Detailed explanations are provided in Table.2. (a) Large industrial scene; (b) Mid-size office scene. The equipotential lines labeled as
EPS = x are defined by Eq. 5.

rates, trajectory lengths, SPL and EPS scores. Despite
the inherent disadvantage of operating without prior target
knowledge or precise localization, the system achieves per-
formance comparable to path-finding algorithms. Notably,
in many scenarios, it surpasses path-finding algorithms in
either trajectory efficiency or success rates. These results
highlight the effectiveness of the proposed vision-language
based pipeline for simultaneous exploration and target dis-
covery tasks.

5.4. Comparative Analyses of SOTA VLNs

We also compare VL-Explore with SOTA VLN systems
based on their features and prerequisites. It is important to
note that, due to different experimental setup and reporting

criteria, a perfect quantitative comparison is not always fea-
sible. For example, SEEK [12] reported 0.65±0.35 SPL for
random walk, while our random walk simulation yielded
0.08±0.11 SPL, showing a magnitude of difference. Pre-
liminary analysis suggests that this discrepancy stems from
SEEK’s reliance on a node-graph map structure, which re-
duces the problem space to a finite set of graph nodes and
edges. In contrast, VL-Explore operates continuously in
an unknown environment, resulting in a substantially larger
problem space, facilitating active robot navigation with no
prior information or pre-compiled waypoints. This funda-
mental difference motivated us to introduce the EPS met-
ric, which helps reduce the discrepancies caused by varying
prerequisites and experimental setups.
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Figure 12. Sample results of autonomous exploration and target discovery by VL-Explore compared to Bug algorithms. The trajectories of
each algorithm are overlaid on a 2D map of the test environment (north up). Circled numbers indicate the look around operations of VL-
Explore and the corresponding waypoints sequence it followed. For Bug algorithms, the red, green, and blue trajectories represent paths
traversed by Bug0, Bug1, and Bug2, respectively. Best viewed digitally at 2× zoom for clarity; more results and analyses are included in
Sec.6 of the supplementary materials.
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Among the vast volume of prior attempts in the field of
vision-language based navigation or exploration, we select
two recent representative systems that provide ablation re-
sults with similar prerequisites as our proposed system:
• VLMnav [13] is an end-to-end VLN system, which as-

sumes no prior knowledge or map; it does not rely on on-
line SLAM for navigation. However, it requires a depth
camera to obtain navigability scores (floor mask). It re-
ported 0.210 SPL on the ObjectNav dataset, its score
drops to 0.136 without the depth camera.

• GOAT [6] is a lifelong mapping system; it requires an
RGBD camera to obtain necessary information for navi-
gation and map construction. In addition to the final tar-
get, it also takes “sequential goals” that help it to take
intermediate moves. It reported 0.64 SPL on the “in the
wild” dataset with persistent memory, but the score drops
to 0.19 in the absence of prior knowledge. The authors
did not perform an ablation study when depth sensing is
removed.

In contrast, our proposed work, VL-Explore, achieves
0.357 SPL without requiring depth sensing, persistent
memory, or prior knowledge (e.g. mapping run) of a scene.
To the best of our knowledge, VL-Explore is the first VLN
system to achieve efficient indoor visual exploration with-
out any depth or range information (e.g. RGBD, multi-
camera, LiDAR). VL-Explore holds a significant advantage
in its intended use case – first-time exploration and target
discovery with a single monocular camera.

There also exist many other works based on different
prerequisites, which cannot be directly included in quantita-
tive comparison. We instead summarize the characteristics
of each system in Table 3. Compared to existing systems,
VL-Explore uniquely requires zero prior knowledge of the
task space and operates solely with monocular RGB per-
ception. Additionally, contemporary VLN systems do not
directly produce low-level motion commands but instead
generate high-level instructions that depend on another tra-
ditional localization and navigation pipeline for the eventual
motion execution. In contrast, VL-Explore directly outputs
low-level motion commands, eliminating the need for aux-
iliary control and localization systems. This feature makes
VL-Explore particularly suitable for rapid deployment on
low-cost robots with limited computational and sensing re-
sources.

5.5. Ablation Study

In order to understand the contribution of each middleware
on the overall performance, we conduct an ablation study
by disabling one middleware at a time and re-evaluating the
system’s performance. The experiment is performed in the
medium-sized office scene shown in Fig. 10 (c), with the
robot starting from the South-West (SW) corner and tasked
to find the target in the North-East (NE) corner.
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Figure 13. Ablation study of the proposed VL-Explore system;
(a) Comparative results with all systems enabled; (b) Results with
the look-around subsystem disabled, the robot either completes
the task with no turn-around, or directly fail when being trapped,
yielding a higher PL but a lower SR; (c) Results with the famil-
iarity subsystem disabled, the robot tends to revisit previously
explored areas, resulting in longer trajectories and lower success
rates.

• Disabling the look-around action. In this part, the sys-
tem does not perform any look-around action during a
task, including the initial look-around that helps the robot
finding its optimal initial heading. The initial orientation
of the robot is manually set to a different direction for
each trial. The results are shown in Fig. 13b. With the
lack of look-around action, the task would fail upon en-
countering a dead-end as it could not recover from such
a situation. This resulted in a significantly lower success
rate (50%). However, in the cases when the robot suc-
cessfully navigated to the target, the reported inverse path
lengths turned out better due to survivorship bias. i.e. in-
efficient runs tend to fail instead of being recovered by a
look-around action.

• Disabling the familiarity middleware. In this part, the
familiarity middleware is disabled by truncating the fa-
miliarity scores to a fixed value. The results are shown
in Fig. 13c. Without the familiarity middleware, the
robot exhibited a strong tendency to revisit previously ex-
plored areas. In this particular case, the robot tends to
run back and forth between S.W. and N.W. corner of the
scene. This lead to significantly longer trajectory lengths
(i.e. smaller mean inverse path length), and also induced
negative impact on the overall success rate.

To summarize, the additional system components added
to the VL-Explore pipeline are proven to be essential for its
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Table 3. A qualitative comparison of features and prerequisites among SOTA VLN systems, highlighting the unique advantage of the
proposed VL-Explore system that requires no extra sensor modalities or any separate path-finding or localization steps.

VLN System Focus Prerequisites Sensing Modality Output Type Deployment Evaluation

CLIP-Nav [9] Scene
Pre-captured Images of
candidate locations N/A

Choice of an Image
for Next Step Simulation Success rate

(relative)

CLIP on Wheels [10] Object Unspecified RGB-D Camera
Relevance map of
the current View Simulation

Accuracy &
Path length

SEEK [12] Object
Pre-built dynamic scene graph
and relational semantic network

LiDAR, 3 RGB Cameras
Real-time SLAM

Sequence of
Waypoints Real World Success rate &

Path length

GCN for Navigation [23] Object
Pre-constructed knowledge
graph of object relations Monocular RGB Camera Choice of a Pre-

encoded Action Simulation
Path length &
Success rate

Chen et al. [8] Scene
Pre-constructed node graph
of navigable space N/A Choice of Next Node Simulation Success rate &

Completion Rate

VL-Explore ★ Hybrid None Monocular RGB Camera Direct Motion
Commands (3DOF) Real World

Path length &
Success rate

overall performance. In addition to the basic obstacle avoid-
ance and target identification capabilities provided by the
vision-language correlation middlewares, the look-around
action helps the robot to optimize its decision and recover
from trap conditions, and the familiarity middleware en-
sures efficient exploration by constantly steering the robot
into unexplored area.

6. Limitations, Failure Cases, and Potential
Improvements of VL-Explore

6.1. Texture-less or Transparent Surfaces
As a vision-driven system, the proposed VL-Explore
pipeline encounters challenges in environments with
texture-less or transparent surfaces. When presented with
a blank or non-informative image, the inherent VLM strug-
gles to generate meaningful responses, disrupting the entire
pipeline. For instance, as demonstrated in Fig. 9 d (C1),
the robot mistakenly classified a water tank with transpar-
ent walls as navigable space. This error occurred because
the VLM perceived the interior of the tank, visible through
its transparent walls, as accessible terrain. To mitigate this
issue, a standard deviation threshold was introduced to fil-
ter out ambiguous tiles. While this approach improved per-
formance, the system still exhibits a general tendency to
misclassify transparent or uniformly colored surfaces, such
as blank walls or white floors, as navigable space. These
challenges persist, particularly when the robot is positioned
close to such surfaces, where the lack of texture further con-
fuses the VLM. Note that this issue with transparent and
texture-less walls has been an open problem for 2D indoor
navigation by mobile robots [44].

6.2. Open Space and Artificially Constructed Mazes
The system’s reliance on the semantic understanding capa-
bilities of the VLM limits its effectiveness in large, open
spaces. Without sufficient visual cues or meaningful ob-

jects in the environment, the robot cannot optimize its ex-
ploration based on semantic information. In such cases,
the robot defaults to moving straight ahead until it encoun-
ters visually significant objects, such as obstacles, at which
point its correlation middleware resumes providing mean-
ingful guidance. This limitation reduces the system’s effi-
ciency in environments devoid of distinguishing visual fea-
tures.

Moreover, our experiments in artificially constructed
mazes, such as those built from paper boxes, revealed lim-
itations in the VLM’s ability to differentiate between the
maze walls, such as monochrome cardboards and floors. As
a result, the robot either failed to navigate or attempted to
collide with the maze walls. This behavior can be attributed
to the lack of similar examples in the VLM’s training data,
which likely did not include artificially constructed envi-
ronments of this nature. Consequently, the system is bet-
ter suited to real-world scenarios where the VLM has been
trained on relevant, diverse visual data. This observation
suggests that our proposed system will work effectively in
real-world environments where VLMs generally work well.

6.3. Familiarity Saturation

The familiarity middleware is designed to help the robot
avoid revisiting already explored areas by accumulating
memory of the environment. However, during extended
missions, the familiarity database tends to saturate due to
the repetitive nature of objects in the environment. Once all
unique objects are recorded, the system struggles to prior-
itize unexplored areas effectively. Future iterations of the
system could implement a memory decay mechanism, al-
lowing older entries in the familiarity database to fade over
time, thereby prioritizing new observations and maintaining
exploration efficiency.
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6.4. Adaptive Slicing Strategies
In our current implementation of VL-Explore, a fixed slic-
ing strategy is used based on the camera frame’s aspect ra-
tio, which generally performs well in general. However, in
specific scenarios involving narrow navigable spaces (e.g.,
a 50 cm gap between two obstacles), the robot often fails to
recognize these spaces as traversable. This is because the
narrow passage does not occupy an entire tile, leaving ob-
stacles visible in all tiles and leading the system to avoid the
space rather than navigate through it. Future improvements
could include the development of advanced slicing strate-
gies that dynamically adapt the region of interest based on
the surroundings. This could be achieved using sparse ob-
ject detection or pixel-wise segmentation models, enabling
better handling of narrow spaces.

6.5. High Level Reasoning & Task Narration
One of the most promising extensions of this work lies in
incorporating high-level reasoning and task narration us-
ing an integrated LLM. With this addition, the robot could
leverage common-sense reasoning to make more intelligent
navigation decisions. For example, when prompted to lo-
cate an item in a different room, the robot could infer that
heading toward a door is the most logical action. Moreover,
in bandwidth-limited applications, the LLM could provide
real-time task narration by interpreting visual embeddings
to describe mission progress. This approach would signifi-
cantly reduce the communication bandwidth required com-
pared to streaming raw video. By addressing these limita-
tions and pursuing the outlined improvements, the proposed
system can evolve into a more robust, efficient, and versatile
platform for VLN in complex real-world environments.

7. Conclusion

In this paper, we introduced VL-Explore, a novel navigation
pipeline designed for simultaneous exploration and target
discovery by autonomous ground robots in unknown en-
vironments, leveraging the power of VLMs. Unlike tradi-
tional approaches that decouple exploration from path plan-
ning and rely on inefficient algorithms, VL-Explore en-
ables zero-shot inference and efficient navigation using
only monocular vision, without prior maps or target-specific
information. To validate our approach, we developed a
functional prototype UGV platform named Open Rover, op-
timized for general-purpose VLN tasks in real-world en-
vironments. Extensive evaluations demonstrated that VL-
Explore outperforms state-of-the-art map traversal algo-
rithms in efficiency and achieves comparable performance
to path-planning methods that rely on prior knowledge. The
integration of a CLIP-based VLM into a real-time navi-
gation system underscores the potential of VL-Explore to
advance intelligent robotic exploration. As a modular and

flexible framework, VL-Explore lays the groundwork for
future research in applying VLMs to more complex and dy-
namic robotic applications such as autonomous warehous-
ing, security patrolling, and smart home assistance.
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Appendix
A. Frame Slicing Strategies
To enhance the embedding of positional information within
the pipeline, we preprocess the raw camera frames by slic-
ing them into smaller tiles before inputting them into the
vision-language model. This slicing strategy is specifically
designed to optimize the robot’s ability to make informed
navigation decisions based on its visual perceptions. As il-
lustrated in Fig. 1 in the main paper, the slicer divides each
frame into six (2 rows × 3 columns) tiles, with the num-
ber of horizontal divisions aligned with the robot’s control
capabilities. Using smaller tiles instead of the full camera
frame reduces visual distractions, thereby improving the ac-
curacy of the correlation results.

The slicing dimensions are consistently maintained
across all stages of the pipeline. For instance, under the
2×3 slicing strategy, a frame divided into six tiles produces
a corresponding 2 × 3 × 512 matrix of visual embeddings.
These embeddings are subsequently aggregated and passed
to the correlation middleware, which generates a 2× 3 ma-
trix of correlation scores, with each element corresponding
to a specific tile. The influence of individual tiles on one an-
other is determined by the logic of the respective correlation
middleware. For example, while the familiarity middleware
disallows correlations between tiles within the same frame,
it may permit correlations between the lower-left tile of a
previous frame and the upper-right tile of the current frame.

To preserve spatial context in each tile, sliced regions are
slightly expanded beyond their original boundaries. This
overlap introduces approximately 20% shared area between
adjacent tiles, mitigating the loss of contextual information.
This adjustment is beneficial when the camera encounters
texture-less surfaces, such as walls, paper boxes, or door
panels – where the absence of distinctive features could oth-
erwise impair the robot’s perception and navigation perfor-
mance.

B. Text Prompt Generation
We also design a prompt system to compose text prompts in
a hierarchical template. The proposed design is inspired by
WinCLIP [19, 46], an anomaly detection framework. Our
prompt system consists of the following templates and no-
tations, which we follow throughout the paper.
• Top-level prompts such as:

– “A [desc.] photo of a (state)
{object}”

– “A [desc.] image of a (state)
{object}”

– “A (state) {object}”
• [descriptions] such as clear, blurry, cropped,
empty, corrupted, etc.

• (states) such as clean, clear, wide, narrow,
cluttered, messy, way blocking, etc.

• {objects} such as floor, wall, door, object, etc.
We utilize a YAML-based syntax to define the struc-

ture of the prompt databases. YAML, a widely adopted
and human-readable markup language, has been extended
in our implementation to incorporate additional syntacti-
cal features for enhanced flexibility and fine-grained control
over the generation of text prompt combinations. Two key
features introduced are selective integration and in-place
expansion.
1. Selective integration enables a prompt to bypass cer-

tain levels of the template hierarchy, thereby allowing
precise customization. For instance, a prompt such as
“A (meaningless) photo” should not be followed
by any {object}. This is achieved by terminating the
prompt early, omitting the insertion marker (i.e. {}) in
its definition.

2. In-place expansion facilitates the collective definition
of similar short prompts by using a vertical bar syntax
(i.e. |) to separate terms. This feature is particularly
effective when used in conjunction with selective
integration. For example, the prompt “A photo
with no {context|texture|information}” is
expanded into three distinct prompts. Although not
fitting into the hierarchical template structure, these
can be defined as top-level negative prompts, aiding in
distinguishing meaningful content from irrelevant or
meaningless information.

These enhancements to the YAML-based syntax provide
an effective framework for defining and managing prompt
databases with high precision and adaptability.

C. Performance Optimization

Navigation decisions are a critical component of real-
time autonomous robotic systems, requiring rapid execu-
tion to ensure safety and operational efficiency. However,
most vision-language models are designed as extensions of
LLMs, where processing delays and data throughput are
less critical. To evaluate the suitability of VLMs for robotic
navigation, we identify two key performance metrics:
1. Decision delay measures the time elapsed between cap-

turing a frame from the robot’s camera and issuing a cor-
responding motion command to the motors. This metric
reflects the system’s ability to promptly react to environ-
mental changes, such as avoiding obstacles and main-
taining safe navigation.

2. Throughput quantifies the number of frames processed
per second, directly influencing the smoothness of the
robot’s motion. Limited computational resources neces-
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Table 4. Performance margins of the navigation pipeline of VL-
Explore at different optimization levels. The acronyms: [ P ] Pre-
process, [ I ] Inference, [ C ] Correlation, and [ D ] Decision.

Config.
Mean Data Processing Delay (ms) Throughput

(mean FPS)[ P ] [ I ] [ C ] [ D ] Total

CPU Seq. 80.57 2221.67 3.13 0.37 2534.55 0.41 ± 0.07

CPU Para. 73.16 2201.84 3.29 0.40 2463.26 0.44 ± 0.02

GPU Seq. 65.93 178.77 2.94 0.45 327.57 3.22 ± 0.25

GPU Para. 25.32 171.08 3.43 0.48 252.10 5.01± 0.36

sitate dropping unprocessed frames, retaining only the
latest frame for decision-making. Higher throughput
minimizes inter-frame discrepancies, reducing abrupt
changes in motion and ensuring smoother transitions.
Mathematically, throughput is the inverse of the decision
delay: i.e. f = 1

Tdelay
.

On the other hand, most robotic systems rely on embed-
ded computers featuring RISC architecture processors and
power-limited batteries, prioritizing power efficiency over
computational capability. Addressing these constraints, we
developed an optimized architecture to maximize resource
utilization while improving decision delay and throughput.

Focusing on reducing decision delay and increasing data
throughput, our proposed framework divides the naviga-
tion pipeline into four major nodes: pre-processing, infer-
ence, correlation, and decision-making. Computationally
intensive tasks are offloaded to the GPU to exploit paral-
lel processing capabilities. These optimizations were im-
plemented on a power-limited embedded system, balancing
efficiency and performance. With the proposed optimiza-
tions, we achieve: (i) decision delay: 252.10ms, a 900%
improvement; and (ii) throughput: 5.01 FPS (frames per
second), representing a 400% improvement compared to
the sequential CPU-based implementation. These results,
detailed in Table 4, demonstrate the viability of our VLM-
based navigation pipeline for real-time robotic applications
under computational constraints.

D. Usage of 2D LiDAR
The proposed VL-Explore pipeline uses only monocular
RGB data for VLN navigation decisions. Nevertheless, we
installed a 2D 360° scanning LiDAR on the robot for exper-
imental safety, map generation, and comparative analyses.
The specific LiDAR functions are listed below.
1. Emulation of a proximity kill-switch. The LiDAR

serves as a virtual kill switch during operation, detecting
obstacles in the robot’s intended path. It monitors the
motion commands sent to the wheels to infer the robot’s
planned trajectory and checks for potential obstructions
along that direction. A halt signal is asserted upon detec-
tion of a potential collision, thus strictly used for safety
purposes without influencing the navigation algorithm.

2. Visualization of map and robot trajectory. Mapping

is performed offline using recorded LiDAR and odome-
try data, with subsequent trajectory analysis to evaluate
navigation efficiency and overall performance. We uti-
lize the SLAM Toolbox [31] to generate maps and tra-
jectories, implementing a two-pass process to enhance
the quality of the results. In the first pass, the SLAM
Toolbox operates in offline mapping mode, creating a
high-resolution 2D map of the environment. In the sec-
ond pass, the pre-constructed map is loaded and run in
localization-only mode to generate accurate trajectories
using LiDAR localization. Despite this two-pass pro-
cess, the trajectories generated often exhibit zig-zag pat-
terns caused by a mismatch between SLAM drift cor-
rection frequency and the robot’s odometry update rate.
These patterns are not observed in the actual motion of
the robot; still, they affect our performance evaluation
due to increased lengths of the projected paths. To miti-
gate this, we introduce a stride parameter to smooth the
trajectory. This smoothing parameter reduces the pro-
jected trajectory length and better matches the robot’s
actual travel distance.

3. Comparison with simulated algorithms. A 2D map
generated using LiDAR data is employed to simulate and
evaluate traditional range sensor-based map traversal
and path-planning algorithms for performance compar-
ison. The LiDAR data collected during VL-Explore ex-
periments was used to reconstruct the exploration map,
which is reused for simulations. This approach ensured
that all comparisons were conducted on the same map,
providing a fair and consistent evaluation of the differ-
ent algorithms.

E. Simulation Algorithms

For map traversal algorithms [34], we consider:
1. Random Walk: Starts with a given heading, then ran-

domly selects a new heading when an obstacle is encoun-
tered.

2. Wall Bounce: Starts at a given heading, then bounces
off obstacles based on the normal vector of the impact
point.

3. Wave Front: Starts as a Gaussian probability distribu-
tion, then spreads outwards and bounces off obstacles. A
detailed explanation is provided below.

Additionally, we compare the following Bug Algo-
rithms [28, 29]:
1. Bug0: Moves straight toward the target until encounter-

ing an obstacle, then follows the obstacle boundary until
it can resume a direct path to the target.

2. Bug1: Heads towards the target when possible, other-
wise, circumnavigates the obstacle. After looping an ob-
stacle, travels to the point with the minimum distance on
the loop.
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3. Bug2: Circumnavigates obstacles upon encountering
until it crosses the direct line from the start to the tar-
get (the m-line), then resumes a straight path toward
the target.

E.1. Wave Front Simulation
The “Wave Front” simulation is a custom-developed pack-
age to serve as a general baseline metric for comparison
between different methods. It utilizes the concept of classic
wave function [32] and interprets it as a probability distribu-
tion, allowing simultaneous exploration of infinitely many
directions driven by the following equation:

∂2

∂t2
ψ(x, y, t) = c2∇2ψ(x, y, t) (7)

The simulation implements a 2D Laplacian equation at dis-
cretized time steps. Given wave speed c, time step ∆t, and
spatial step ∆x, the wave equation is discretized as:

ψ(x, y, tn+1) = 2 · ψ(x, y, tn)− ψ(x, y, tn−1)

+
c2∆t2

∆x2
∇2ψ(x, y, t)

s.t. tn+1 − tn = ∆t

Here, the discretized Laplacian operator ∇2 [39] is defined
as:

∇2ψ(x, y) = ψ(xi+1, yj) + ψ(xi−1, yj)

+ ψ(xi, yj+1) + ψ(xi, yj−1)

− 4 · ψ(x, y)
s.t. xi+1 − xi = yj+1 − yj = ∆x

Besides, map boundaries and obstacles are simulated by re-
flective conditions. That is, at boundary point (x, y), we
have: ∇ψ(x, y) · n̂x,y = 0, where n̂x,y is the normal vector.
In a discretized 2D grid, the directions of this normal vector
are simplified to four possibilities, i.e., n̂ ∈ {±x̂,±ŷ}.

To implement the aforementioned boundary condition,
the discretized Laplacian operator can be rewritten as:

∇2ψ(x, y) = ki+1, j · ψi+1, j + ki−1, j · ψi−1, j

+ ki, j+1 · ψi, j+1 + ki, j−1 · ψi, j−1

− (ki+1, j + ki−1, j + ki, j+1 + ki, j−1) · ψ(x, y)

s.t. ki,j =

{
1 if (xi, yj) is free space

0 if (xi, yj) is obstacle

At time T = 0, a probability distribution is initialized as
a Gaussian distribution centered at the robot’s starting lo-
cation, with a standard deviation set to half of the robot’s
size; the total probability is normalized to 1. At each itera-
tion, the wave function is multiplied by an inverse Gaussian
function centered around the target location, effectively re-
ducing the total probability on the map and simulating a

draining effect. The simulation terminates when the total
remaining probability falls below a defined threshold (1e−4

in our experiments). The outcome is a 2D probability dis-
tribution p(t) indicating the likelihood of the robot reaching
the target at a given time point. The mean and standard
deviation of this distribution are used for comparison with
other trajectory-based algorithms.

At a high level, this algorithm simulates the behavior of
infinitely many wall-bouncing robots moving in all possi-
ble directions. Notably, the drain operation creates a uni-
form gradient toward the target, subtly guiding the robot.
As a result, the algorithm performs slightly better than a
purely randomized wall-bouncing simulation, which lacks
any target information. The travel distance when the first
non-zero probability is detected is used as the baseline dis-
tance for each origin-target combination. For relative per-
formance comparisons, the travel distances are normalized
by this baseline distance before aggregating the results.

F. Additional Experimental Results
The full set of trajectories recorded in the experiment is
shown in Fig. 14 and Fig. 15. Metrics measured for each
source-target combination are shown in Table 5.
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Figure 14. Trajectories of all results reported in the experiment section (part.1)
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Figure 15. Trajectories of all results reported in the experiment section (part.2)
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Table 5. Quantitative performance comparison of the exploration (random walk, wall bounce, and wavefront) and path-finding (Bug 0/1/2)
algorithms in terms of trajectory length. All units are in meters; see Fig. 10 for the source-target layouts. The acronyms: [ L ] and [ R ]
represent left and right turn rules, respectively; the failure cases are shown as ‘×’ markers.

Task Setup VL-Explore ★ Random Walk Wall Bounce Wave Front Bug0 Bug1 Bug2
Source Target Avg.± Std. Avg.± Std. Avg.± Std. Avg.± Std. [ L ] [ R ] [ L ] [ R ] [ L ] [ R ]

Warehouse Scene (16m× 18m)

C.

N.W. 8.3± 2.1 149.6±18.6 169.3±14.9 162.7±55.8 5.9 × 75.8 42.2 6.0 ×
N. E. 27.2± 2.7 326.5±27.0 313.1±19.4 247.4±74.3 × × 63.0 49.5 13.4 ×
S.W. 29.0± 7.1 256.7±19.4 233.4±15.6 236.9±66.8 × 7.9 43.7 72.5 × 8.6

S. E. 27.0± 3.7 370.6±23.4 338.4±18.8 285.2±82.5 × × 54.9 59.2 23.2 19.4

N.W.

C. 21.6±10.9 233.3±26.0 193.6±16.2 192.2±55.8 × 5.9 47.0 67.7 40.1 6.0

N. E. 8.7± 2.2 253.7±25.4 220.1±18.3 233.5±61.0 7.4 7.4 7.4 7.4 7.4 7.4

S.W. 9.9± 0.0 290.2±21.7 241.5±14.6 239.4±69.0 9.6 × 132.1 84.4 10.0 ×
S. E. 29.6±17.9 338.8±24.9 332.7±19.9 281.5±78.7 14.8 × 63.8 52.0 15.7 24.8

N. E.

C. 23.6±12.1 275.6±24.5 251.2±20.0 223.4±62.6 × 9.2 50.5 60.9 28.0 12.0

N.W. 9.1± 2.4 157.5±21.5 187.0±17.0 181.9±45.6 6.9 × 6.9 75.7 6.9 ×
S.W. 42.0± 9.5 236.2±19.3 250.9±14.2 237.9±70.5 14.3 13.9 58.9 55.2 17.1 24.0

S. E. 48.7±19.4 235.8±22.5 277.9±18.2 240.1±67.9 7.6 × 68.3 44.7 7.7 41.0

S.W.

C. 19.3± 6.0 340.9±26.8 331.7±19.1 266.0±66.2 × × 66.1 50.0 12.0 33.7

N.W. 15.9± 4.5 329.3±22.6 330.6±17.2 259.9±63.8 × 10.5 65.1 19.7 × 10.9

N. E. 31.1± 3.1 396.7±29.0 288.3±16.7 276.8±78.6 × × 51.8 65.1 27.5 15.8

S. E. 31.8±11.2 217.2±22.0 208.3±16.5 220.7±62.3 7.8 × 10.1 71.4 8.0 ×

S. E.

C. 29.7± 8.0 386.0±25.9 311.1±17.7 283.3±72.9 × 16.1 57.2 54.5 18.2 21.2

N.W. 22.5± 4.4 369.9±26.5 298.7±17.7 262.8±63.5 × × 50.6 64.9 25.5 15.1

N. E. 5.7± 0.2 302.3±28.8 279.7±20.1 249.3±60.8 6.1 × 6.1 73.4 6.1 ×
S.W. 11.1± 1.8 156.3±20.4 147.2±13.2 171.3±58.7 7.5 7.5 7.5 7.5 7.5 7.5

Office Scene (13m× 12.5m)
N.W. S. E. 22.8± 3.6 173.6±15.7 148.0±10.6 48.0±22.2 × × 88.4 64.1 25.4 34.9

N. E. S.W. 36.3± 5.7 243.3±19.8 207.7±13.5 56.9±28.2 × 17.0 66.6 88.0 23.9 35.0

S.W. N. E. 16.9± 4.3 263.9±24.4 268.3±16.9 65.7±34.3 × 14.5 39.2 47.0 36.0 31.4

S. E. N.W. 14.5± 0.7 266.3±19.2 290.4±18.5 72.5±38.6 15.9 × 47.4 40.1 37.7 25.9
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