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Abstract
Thermal ablation is a promising minimally invasive intervention to treat liver tumors. It
requires a meticulous planning phase where the electrode trajectory from the skin surface
to the tumor inside the liver as well as the ablation protocol are defined to reach a complete
tumor ablation while considering multiple clinical constraints such as avoiding too much
damage to healthy tissue. The planning is usually done manually based on 2D views of
pre-operative CT images and can be extremely challenging for large or irregularly shaped
tumors. Conventional optimization methods have been proposed to automate this complex
task, but they suffer from high computation time. To alleviate this drawback, we propose
to leverage a deep reinforcement learning (DRL) approach to find the optimal electrode
trajectory that satisfies all the clinical constraints and does not require any labels in
training. Here, we define a custom environment as the 3D mask with tumor, surrounding
organs, skin labels along with an electrode line and ablation zone. An agent, represented
by a neural network, interacts with the custom environment by displacing the electrode and
therefore can learn an optimal policy. The reward assignment is done based on the clinical
constraints. We explore discrete and continuous action-based approaches with double
deep Q networks and proximal policy optimization (PPO), respectively. We perform an
evaluation on the publicly available liver tumor segmentation (LITs) challenge dataset and
obtain solutions that satisfy all clinical constraints comparable to the conventional method.
The DRL method does not need any post-processing steps, allowing a mean inference time
of 13.3 seconds per subject compared to the conventional optimization method’s mean time
of 135 seconds. Moreover, the best DRL method (PPO) yields a valid solution irrespective
of the tumor location within the liver that demonstrates its robustness.
Keywords: Deep reinforcement learning (DRL), liver tumor ablation, thermal ablation,
proximal policy optimization (PPO), double deep Q networks (DDQN).

1. Introduction

Liver cancer is the fourth highest occurring cancer type (Naghavi et al., 2017) in the world.
It can be treated invasively with resection or transplantation or minimally invasively with
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thermal ablation. For example, radiofrequency ablation is a widely used technique (Garrean
et al., 2008; Minami and Kudo, 2011), where a thin electrode is inserted from the skin surface
into the tumor. A high-frequency electric field is induced to increase the temperature and
generate an ablation in the targeted tumor and surrounding tissues. Thermal ablation
requires a meticulous planning phase whose goal is to find the optimal electrode trajectory
and ablation protocol that achieves a complete tumor ablation and satisfy certain clinical
constraints such as avoiding too much damage to healthy tissue.

Typically, clinicians plan the intervention manually by visualizing the CT images in 2D.
Such visual planning is time-consuming and challenging. It can lead to incomplete tumor
ablation and the acquisition of many CT images to avoid collision of the electrodes with
surrounding organs at risk (OAR). Therefore, computed assisted planning is valuable with
the initial solutions offering better visualization for interactive planning tools (McCreedy
et al., 2006; Rieder et al., 2009; Khlebnikov et al., 2011; Kerbl et al., 2012).

Conventional optimization-based methods have been proposed using downhill simplex
optimization (Baegert et al., 2007a,b), a gradient descent method (Altrogge et al., 2006),
Pareto optimality (Seitel et al., 2011; Schumann et al., 2015) and others (Baegert et al.,
2007a,b; Schumann et al., 2010; Seitel et al., 2011; Schumann et al., 2015). In a relevant
work (Liang et al., 2019), the authors propose to leverage a cover-set-based method to find
the set of Pareto optimal electrode trajectories satisfying all clinical constraints. Here, (a)
first they identify a set of target tumor points, (b) next, determine all the available entry skin
points and select a subset of valid points that satisfy clinical constraints, (c) compute a score
based on the clinical constraints for trajectory paths from all the tumor points to all valid
skin points, and (d) lastly, these paths and scores information are input to an optimization
framework that finds the optimal trajectory paths. Such approaches are computationally
expensive since they involve many processing steps with a high inference time per subject
ranging from hours to minutes for the fastest method (Liang et al., 2019).

Alternatively, data-driven approaches, especially deep learning (DL) methods, are good
at mitigating such inference time issues and yield accurate and quick results. Fully supervised
DL approaches have been proposed for automatic planning of medical interventions (Tschannen
et al., 2016; Esfandiari et al., 2018; Kulyk et al., 2018; Vercauteren et al., 2019). But they
require a large set of annotations for training to yield high performance, and acquiring such
electrode trajectories annotations from clinical experts is time-consuming and expensive.
Deep reinforcement learning (DRL) based solutions (Sutton et al., 2000; Mnih et al., 2013)
can be a promising alternative to supervised approaches as they do not require labeled
datasets as explored in (Kober et al., 2013; Ghesu et al., 2017; Krebs et al., 2017; Zhang
et al., 2018; Yu et al., 2019). Recently, a DRL-based approach (Ackermann et al., 2021) was
proposed for surgery planning of orthopedic hip disorders with training done in a custom
simulated environment and later tested on a small dataset of 8 patients. The validation size
may not be adequate to deploy for clinical applications. Moreover, training with simulated
data and testing on real-world data has been shown to not generalize well (Pan et al., 2017)
due to the changes in data distribution. Also, DRL approaches do not involve any processing
steps and can generalize well at test-time due to the nature of training.

In this work, to address the above limitations, we present a DRL-based approach with
low inference time and no manual annotations requirement during training to find an
optimal ablation plan achieving 100% tumor coverage and satisfying all clinical constraints.
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Figure 1: (a) Custom environment defined with organs at risk, tumor, skin masks, and electrode
trajectory with ablation zone. (b) discrete action based displacement of skin electrode endpoint done
using a double DQN approach. (c) continuous action based displacement of skin electrode endpoint
done with a proximal policy optimization method.

Specifically, we explore two approaches: (a) in the first one, we explore a discrete displacement
of electrode endpoint with a double deep Q networks (Van Hasselt et al., 2016) (DDQN) that
estimates discrete action values. We also evaluate hindsight experience replay (Andrychowicz
et al., 2017) (HER) with DDQN. (b) in the second, we explore the continuous displacement of
electrode endpoint with a policy gradient method, proximal policy optimization (Schulman
et al., 2017) (PPO) that outputs the continuous action policy directly. We evaluate both
approaches on a public dataset (LITs) (Bilic et al., 2019) and obtain results comparable to
a simplified conventional optimisation implementation based on (Liang et al., 2019). We
perform additional analysis to evaluate the robustness of the approach with respect to the
tumor location within the 9 liver segments (refer to Fig. 3).

2. Methods

To automate the tedious liver tumor thermal ablation planning, we leverage a deep reinforcement
learning (DRL) approach to predict the optimal electrode trajectory satisfying all the clinical
constraints. Reinforcement learning is a framework where an agent learns how to interact
with an environment based on experiences. The objective is to maximize the cumulative
rewards by learning an optimal policy that gives a set of actions to take from a current state
to reach the terminal state. The environment state is updated based on the agent’s action
and a reward is obtained. This iteration is done till the final state is reached.

2.1. Custom Environment (Env)

In Fig. 1.a., we present the custom environment consisting of the mask m, containing 3D
information of the tumor, organs at risk and skin masks, and the electrode endpoints (Pu, Pv)
with the ablation zone. The state St is defined based on this combined information as
St = (m,Pu, Pv). The electrode tumor endpoint Pu is fixed at the center of the tumor.
Here, the ablation zone is modeled as a sphere centered at Pu whose radius is chosen from
a given set of valid radius values to achieve a 100% tumor coverage. The electrode skin
endpoint Pv = (xv, yv, zv) is randomly assigned outside the skin surface while ensuring an
electrode length less than 150mm (clinical constraint).
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Clinical Constraints Rewards for skin endpoint Pv

1. Electrode trajectory must not collide with OAR +1

2. Electrode skin endpoint Pv must be outside the body +1

3. Length of electrode within the body (le) is less than
the maximum allowed electrode length (150 mm)

rl = (150− le)/150

4. The distance (doar) between OAR and the electrode is
at least 12 mm

rd = doar/100

5. Ablation zone on Pu must have 100% tumor coverage NA
6. Ablation zone must not have any collision with OAR NA

Table 1: Clinical constraints and corresponding rewards for skin electrode endpoint Pv.

In a given state St (initial state for each subject), the network outputs an action av
which is used to update Pv to Pv+1. The next state St+1 is computed using the updated
electrode endpoints (Pu, Pv+1) and the mask m. This is repeated until either the terminal
state is reached or a maximum number of 50 steps is reached. The net reward Rt+1 is
estimated based on the updated state St+1 with new endpoint. Based on a pre-defined
net reward value, we determine whether to continue to move to a new electrode state or
terminate. The termination happens when it satisfies all the clinical constraints (Table 1)
and is called a terminal or final state, where the reward value is 2.12 or greater.

Clinical constraints and rewards: The clinical constraints and corresponding rewards
are given in Table 1. For constraint 3, rl is positive when the electrode length is less than
150 mm, and negative when it is greater than 150 mm. In terminal state, all clinical
constraints must be satisfied, so, the minimum reward is 2.12 with rd ≥0.12 and rl >0.

We explored two approaches: a double deep Q networks (Sec. 2.2) where the electrode
endpoints displacement are modeled using a discrete action space and a proximal policy
optimization (Sec. 2.3) where a continuous action space is used.

2.2. Double deep Q networks (DDQN)

To model the displacement of electrode endpoint in discrete steps, we use a value learning
approach, the double deep Q network (DDQN) (Van Hasselt et al., 2016). The outline of this
approach is presented in Fig. 1.b. Here, we have a pre-defined number of possible actions.
Given an input state St, the online network estimates the Q-values Qπv(St, av) for all the
pre-defined actions. The action with the highest Q-value is used to estimate action policy
πv(St) and chosen as the best action av that is later applied to get the updated state St+1

and corresponding reward Rt+1. The discrete action values are av = (±1/0,±1/0,±1/0)
meaning that each coordinate of the electrode endpoint can be updated by +1, -1 or 0
(no displacement) in the 3D space. Thereby, the dense layers output 27 (33) Q-values
corresponding to the combinations of possible actions. The skin electrode endpoint is
updated as Pv+1 = Pv(av) = (xv ± 1/0, yv ± 1/0, zv ± 1/0).

We have two sets of networks as proposed in DDQN (Van Hasselt et al., 2016), shown
in Fig. 1.b., referred to as online and target networks with parameters θ and ϕ, respectively.
The online network aims to reach the Q-value estimated by the target network by the end
of training. The online network weights are updated by optimizing the mean squared error
loss as defined in Eqn. 1 and the target network weights are updated periodically with the
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online network weights ϕ = θ after every N number of training episodes.

Ld = E[∥ (Rt + γQπv(St+1, πv(St+1);ϕ))−Q(St, av; θ) ∥2] (1)

Here, the first term is the target network Q-value estimate, and the second term is the
online network Q-value estimate. In the first term, γ denotes the discount factor used in
the cumulative reward estimation.

Hindsight experience replay (HER): Since the electrode trajectory solutions exist
sparsely, we explore HER used with DDQN that has provided performance gains for such
sparse reward problems (Andrychowicz et al., 2017). For HER, we consider final states that
do not reach the terminal state as an additional "terminal" state if they satisfy the clinical
constraints of 1, 2, 3 and do not satisfy the constraint 4 (min. distance to OAR > 12mm).
In those cases, this distance would lie between 0 and 12mm as enforced by constraint 1.

2.3. Proximal Policy Optimization

For the continuous displacement of electrode endpoint, we consider a popular policy gradient
method called Proximal Policy Optimization (PPO), whose outline is presented in Fig. 1.c.
With this approach, a shared 3D network followed by two smaller dense layer networks
called actor and critic networks are defined. The actor-network estimates the mean µv

of the action policy while the critic network estimates the value-function V θ(St) of the
state (θ denotes the network parameters). µv is multi-dimensional (3 values for the 3D
coordinates of Pv). The action policy πθ(av|St) is defined as a multivariate Gaussian
distribution N(µv,Σv) with the mean value µv output from the network and a fixed variance
value Σv. Next, a random continuous action value av = (axv , ayv , azv) is sampled from
the Gaussian distribution N(µv,Σv) and applied to get updated electrode skin endpoint:
Pv+1 = Pv(av) = (xv + axv , yv + ayv , zv + azv).

The net loss for the PPO approach training is defined as below:

Lc = Et

[
Lclip(θ)− c1L

V F
t (θ) + c2S[πv](St)

]
(2)

The first term is the clipped loss: Lclip(θ) = Et

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
Here, ε controls the change in policy, rt is the ratio of likelihood of actions under current
vs old policy defined as rt(θ) =

πθ(at|st)
πθold

(at|st) . Ât is the advantage function that measures the
relative positive or negative reward value for current set of actions w.r.t an average set of
actions. It is defined as: Ât = R̂t − V θ(St), where R̂t is the cumulative rewards given by
R̂t = rt + γ ∗ rt+1 + ..+ γT−tV θ(St), T is maximum number of steps allowed in an episode.

The second term is the mean squared error of value function: LV F
t (θ) = ∥R̂t−V θ(St)∥2.

The hyper-parameter c1 controls the contribution of this loss term from the critic network.
The third term is the entropy term that dictates policy exploration with the hyper-

parameter c2 where a lower c2 value means lower exploration, and vice-versa.

3. Datasets and training details

Dataset: The LITs dataset (Bilic et al., 2019) is a publicly available dataset that contains
130 CT scans with expert annotations for tumors and livers. Each CT volume contains
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multiple tumors. We select a maximum of 10 tumors per subject that can be ablated
without collision with any OAR leading to a total of 496 cases, which we split into training,
validation, and test sets containing 225, 131, and 140 cases, respectively.

Pre-processing: First, the segmentation of the organs at risk (OAR), and 9 segments
of the liver are generated automatically using a deep learning image-to-image network (Yang
et al., 2017). The OAR mask contains spleen, heart, right and left kidney, right and left
lung, bladder, spinal cord, aorta, aorta hepa, ribs, skeleton, hepatic vessels and portal veins.
Then, we define a combined 3D mask (m) with tumor, liver, OAR, and skin labels by
applying the below steps sequentially: (1) dilation of 1 mm to ribs, skeleton, blood vessels
in the liver, and 5mm to other OAR. (2) compute the ablation sphere radius for the tumor
at 1mm3 resolution. (3) re-sample mask (m) at 3mm3. (4) crop the mask based on the liver
segmentation to reduce its dimensions and remove the unrealistic entry skin points located
on the patient back. (5) compute the distance map to OAR, excluding blood vessels in the
liver. Finally, crop the mask and distance map to fixed dimensions of (96,90,128).

Network Architecture: The 3D network has the same architecture for both DDQN
and PPO approaches. It has three 3D convolution layers with filter, kernel size, and strides
of (32,8,4), (64,4,2), (64,3,1), respectively. The resultant output is flattened and passed
through a dense layer with 512 units output. All the above layers have ReLU activations.
For DDQN, we have a dense layers network that takes these 512-units as input and returns
27 values corresponding to Q-values. For PPO, we have two outputs from actor and critic
networks following the shared network. The actor-network has two dense layers with first a
dense layer of 64 outputs, followed by ReLU, and lastly with a dense layer of 3 output values
(mean values). Similarly, the critic-network has two layers with a dense layer of 64 outputs,
followed by ReLU, finally with a final dense layer of 1 output value (value estimate).

Training Details:
DDQN: In each episode, we sample a random subject and try to reach the terminal

state within a maximum of 50 steps by either exploration (randomly sampled action out
of all possible actions) or exploitation (optimal action predicted by online network). All
these experiences are populated in an experience replay buffer (Zhang and Sutton, 2017)
that stores all the (state, action, next state, reward) pairs in the memory referred to as
experiences. At the start, we explore more and accumulate experiences. After reaching
a pre-defined number of experiences, in each episode, the online network is trained on a
batch of randomly sampled experiences from the replay buffer with the loss given in Eqn. 1.
Here, batch size was set to 32 and learning rate to 5e−4. We evaluated five values of γ:
0.1, 0.2, 0.3, 0.4, 0.5. The exploration and exploitation are controlled by a variable ϵ initially
set as 1, which decays with a decay rate of 0.9995. At the start of training, more exploration
is done while towards the end, more exploitation is used. The target network weights ϕ are
updated with the network weights of the online network θ periodically every 10 episodes.
We found that training the networks for 2000 episodes led to a stable convergence.

PPO: In each episode, we sample a random subject. Next, the skin endpoint Pv is
displaced to reach the terminal state within 50 steps. The network is updated at the end
of the episode with the loss based on this episode’s steps. In each episode training, we
perform a joint optimization with both the first and second loss terms in Eqn. 2 as we did
not observe any performance gains using the third term of entropy loss and set c2 to 0. We
train the network for 2000 episodes with a learning rate of 5e−4. The hyper-parameters
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c1, Σv, ε (ppo clip value) are empirically set to 1, 0.5, and 0.2, respectively. As suggested
in (Schulman et al., 2015, 2017), in an episode, we stop the network updates when the mean
KL divergence estimate (ratio of previous log probabilities to new log probabilities) for a
given training example exceeds a threshold value, set to 0.02.

The training time for DRL methods DDQN, DDQN+HER, and PPO were 9.4, 7.2,
and 10 hours, respectively. All models were trained on Quadro RTX 8000 GPU.

Evaluation: For each test subject, we consider 10 random initialization of the electrode
skin endpoint Pv. The corresponding state St is passed through the trained network which
either reaches a valid solution (terminal state, satisfying all constraints) within 50 steps or
not. If a valid solution is found, the accuracy is set to 1. Else, it is set to 0 and declared as
"failure case" (FC). When multiple valid solutions are found, the final solution is chosen to
be the one with the lowest electrode length. The model used for evaluation is the one that
yields the highest accuracy on the validation set during all the training episodes.

4. Experiments and Results

First, we summarise the experiments done below and discuss the corresponding results later.
(I) We evaluate the DDQN, DDQN with HER and PPO approaches.
(II) We compare the inference time, electrode length, and minimum distance of electrode

to each OAR given by the DRL method (PPO) and a conventional method (Liang et al.,
2019). Since we only consider single needle ablation, the implementation is simplified and
does not consider multi-needle or pullback technique as in the original work.

(III) We evaluate the robustness of DRL method (PPO) with respect to tumor location
since the liver can be divided into 9 segments as illustrated in Figure 3. To do so, we select
a number of test subjects having tumors exclusively present in 6 or more liver segments.
With this selection criteria, we get 7 test subjects and present their results in Table 3.

Results: (I) We evaluated all the DRL approaches for five γ values of 0.1, 0.2, 0.3, 0.4, 0.5
and present them in Table 2. With DDQN, modeling the discrete displacement of electrode
endpoint led to good results as presented in the first row in Table 2. We get a few failure cases
with the lowest values observed for gamma values of 0.1, 0.4. With the addition of HER to
DDQN, we do not observe significant improvements despite considering additional terminal
states that satisfy a subset of constraints. Surprisingly, the continuous displacement of
electrode endpoint done with proximal policy optimization (PPO) also provided comparable
results as DDQN. Similarly, we get low number of failures cases, with the lowest value
observed for gamma values of 0.1, 0.3. The conventional method gives an accuracy of 100%
with zero failure cases.

Method γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5
MA FC MA FC MA FC MA FC MA FC

discrete action (DDQN) 0.986 2 0.972 4 0.972 4 0.986 2 0.972 4
discrete action with HER 0.979 3 0.993 1 0.972 4 0.979 3 0.979 3
continuous action (PPO) 0.993 1 0.972 4 0.993 1 0.979 3 0.958 6

Table 2: We obtain high mean accuracy (MA), and a low count of failure cases (FC) on the test
set (140 test cases) for the evaluated DRL approaches on five gamma values γ.
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Figure 2: We compare results in terms of electrode length and minimum distance between
the electrode and each organ at risk (OAR) for both DRL (PPO) method and re-implemented
conventional method. We obtain comparable results to conventional method.

(II) Next, we compare the best DRL approach (PPO model with a gamma value of 0.1)
with a simplified implementation of the conventional approach on the test set. First, we
observe a mean inference time per subject of 13.3 seconds (Quadro RTX8K GPU) for the
DRL approach which is 10 times faster than the conventional model that takes 135 seconds.
From Figure 2, we observe that the mean distance of the electrode to each organ at risk
is higher for the DRL approach except for the bladder. But, the mean electrode length is
slightly higher for the DRL approach.

(III) Lastly, we evaluate if the best DRL approach (PPO) can provide an ablation plan
irrespective of the tumor location within the liver (Fig. 3). With the defined selection
criteria, we get 7 patients with tumors in 6 or more segments, with a total of 50 tumor
cases. For this evaluation, we used the same PPO model trained for experiment (I) with γ
value being 0.1. We obtain solutions without any failure for all the tumor cases as shown in
Table 3.

Figure 3: Axial, Coronal slice
showing the 9 liver segments

Segment No: I II III IVA IVB V VI VII VIII
Tumor count 2 6 2 5 7 7 7 7 7

MA 1 1 1 1 1 1 1 1 1
FC 0 0 0 0 0 0 0 0 0

Table 3: We present mean accuracy (MA) and failure count (FC)
on 7 subjects that have tumors in 6 or more segments. We get 100%
accuracy with 0 failures.

5. Conclusion

Manual planning of liver tumor thermal ablation is a challenging and time-consuming task.
The drawbacks of previous automation works are their high inference time while supervised
deep learning methods require large labeled datasets for training. We mitigate the above
limitations by leveraging a deep reinforcement learning method that provides ablation plans
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with low inference time and does not require labels during training. For this, we compare two
popular approaches to model the electrode displacement with either discrete actions using
double deep Q networks, or continuous actions using proximal policy optimization. We
obtain solutions that satisfy all clinical constraints comparable to the conventional method
but with 10 times faster inference time. Additionally, we demonstrate the model’s robustness
to provide solutions irrespective of the tumor location in the liver. We discuss the future
scope of work in the appendix.
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Figure 4: We select a tumor from a randomly chosen test subject and present the electrode
trajectory results for the conventional method in blue color and DRL approach in red. The OAR
and vessels are shown in white, liver in yellow, and tumor in green color.
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6. Appendix

Future scope of work: (1) We aim to include an evaluation by clinical experts of the
proposed solutions from DRL and conventional methods to establish if they are acceptable
or not as ground-truth trajectories are not provided in the dataset. (2) We plan to address
the complex scenarios of multi-needle and big tumors ablation with pullback technique with
a single electrode.

In practice, clinicians base their planning on one CT scan even though multiple scans
are acquire during the procedure. The proposed method could lead to better planning by
re-evaluating plans quickly for each new CT scan.
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