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ABSTRACT

In medical imaging, vision-language models face a critical duality: pretrained
networks offer broad robustness but lack subtle, modality-specific characteristics,
while fine-tuned expert models achieve high in-distribution accuracy yet falter
under modality shift. Existing model-merging techniques, designed for natural-
image benchmarks, are simple and efficient but fail to deliver consistent gains
across diverse medical modalities; their static interpolation limits reliability in
varied clinical tasks. To address this, we introduce Test-Time Task adaptive
merging (T3), a backpropagation-free framework that computes per-sample inter-
polation coefficients via the Jensen-Shannon divergence between the two models’
output distributions. T3 dynamically preserves local precision when models agree
and defers to generalist robustness under drift. To overcome the inference costs
of sample-wise merging, we further propose a batch-wise extension, T3

B that
computes merging coefficient across a batch of samples, dramatically reducing
computational bottleneck. Recognizing the lack of a standardized medical-merging
benchmark, we present a rigorous cross-evaluation protocol spanning in-domain,
base-to-novel, and corruptions across four modalities. Empirically, T3 sets new
state-of-the-art in Top-1 accuracy and error reduction, outperforming strong base-
lines while maintaining efficiency, paving the way for adaptive MVLM deployment
in clinical settings.

1 INTRODUCTION

Medical vision-language models (MVLMs) are typically developed in two flavors: (1) expert models
obtained via fine-tuning on domain-specific data, which are highly specialized but may overfit to
in-distribution cases, and (2) pretrained models that provide strong generalization but may lack
the domain-specific nuances. In healthcare settings, we imagine having two “clinicians” on call:
a local specialist, expert MVLM, whose expertise is honed on a single hospital’s scanner, patient
demographics, and imaging protocols, and a global generalist, a large-scale pretrained MVLM,
whose broad training spans many sites, scanners, and pathologies. The specialist delivers higher
confidence in familiar cases but may falter when faced with a case that varies from the norm, e.g., a
medical scan from a new device or an unseen patient population. The generalist is typically robust to
such distribution shifts but may lack the fine-grained, site-specific nuance, e.g., a specific hospital’s
imaging protocols. Clinicians typically take advice from each other, especially on challenging cases,
e.g., a neurologist may consult a radiologist on his/her views of a patient’s brain atrophy appearing
on MRI scans to be able to diagnose neurodegenerative diseases. This form of multiple views decision
making could be mimicked by machine learning models using a simple voting mechanism or more
sophisticated model merging methods Wortsman et al. (2022b;a).

Existing model-merging strategies typically choose a fixed blend of these two models or rely on
simple heuristics that cannot distinguish when the specialist’s local insight truly applies versus when
the generalist’s broad knowledge should take precedence. This leaves a critical gap: how to efficiently
fuse specialist and generalist decisions to reach to an accurate clinical outcome by utilizing the right
aggregation of their knowledge. While prior works in model merging Wortsman et al. (2022b) has
focused on fixed or globally optimized merging weights, there is limited exploration into dynamic,
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Table 1: Comparison of Static and Dynamic merging methods along three critical dimensions: practicality,
domain generalizability, and test-time adaptability. indicates that the method exhibits the desired trait for that
criterion, whereas indicates that it does not. T3 excels in all dimensions. Given a pretrained and a expert
model, inference cost (I) is measured in forward-passes over the entire test set (with N total samples, grouped
into B batches of size BS so that N = B × BS, where N >> B). See Section 5.2 for details. Accuracy and
Robustness indicates Top-1 Acc and Err (See Section 4) averaged over mean OOD of 4 medical datasets.

Method Venue Practical
(No Training)

Universal
(Modality-Generalizable)

TTA
(Adaptive)

Consistency
(Accuracy ↑)

Robustness
(Error ↓)

Cost
(#Forwards)

Pretrained CLIP - - 38.05 100.0 O(1B)
Expert CLIP - - 55.01 86.7 O(1B)

Model Ensemble - 33.70 111.3 O(2B)
Model Souping PMLR’24 41.82 93.5 O(1B)
Task Arithmetic ICLR’23 44.77 99.4 O(1B)
Slerp NIPS’16 41.82 93.5 O(1B)
Mixup Merging arXiv’25 49.82 84.1 O(1B)
DaWin ICLR’25 44.48 89.0 O(3B)

Sample-wise Merge Ours T3 58.05 71.9 O(N )
Batch-wise Merge Ours T3

B 58.17 71.7 O(1B)

sample- or batch-wise adaptation strategies for merging expert1 and pretrained models. For instance,
Wise-FT Wortsman et al. (2022b) merge these models using an average interpolation factor (i.e:,
α=0.5), yet this does not account for the variability in test samples or batches, which may exhibit
different levels of domain shift. An integrated solution is required to balance the trade-off between
generalization and specialization in VLMs while enhancing zero-shot generalization during inference
for a single test sample or a batch.

Therefore, weight-interpolation methods Wortsman et al. (2022b); Lu et al. (2024); Oh et al. (2024);
Yang et al. (2023) remain untested in MVLMs under diagnostic test-time conditions. Medical imaging
presents high inter-patient variability, protocol differences, and scarce annotations, calling for a
flexible, training-free adaptation rule that balances expert specialization with pretrained robustness.
Moreover, without a standardized evaluation protocol, it is difficult to gauge how merging strategies
handle domain shifts across medical modalities. In clinical diagnostics, reliable performance across
diverse datasets is paramount, far outweighing marginal improvements on any single modality. These
gaps motivate our core research questions:

Research Questions

1. In what ways can the synergistic performance of pretrained and domain-expert MVLMs be maximized,
consistently for various medical tasks?

2. How can pretrained and expert MVLMs balance consensus and divergence in the predicted probability
distribution for a given test input?

3. Under conditions of distribution shifts, to what extent do static and dynamic merging methods demon-
strate robustness and maintain consistent generalizability across medical modalities?

Our proposed T3 framework is motivated by the need to bridge the gap between specialized and
general models when dealing with OOD samples in medical imaging. By learning an adaptive
interpolation weight for each sample or batch at test time, T3 dynamically modulates the contributions
of the expert and pretrained models. Additionally, the combination of corruption medical datasets
(which simulate noise and artifacts) with novel class datasets provides an excellent out-of-distribution
benchmark for testing model merging approaches. This comprehensive approach allows us to
rigorously evaluate and improve model merging performance in both degraded and unseen conditions.
Our contributions can be summarized as follows:

– We introduce T3 (pronounced /tee:cube/), a non-iterative and backpropagation-free Test-
Time Task adaptive interpolation framework that learns optimal batch-wise merging weights
without incurring the high computational cost of full backpropagation.

– We establish a benchmark for model merging in medical imaging by proposing a hard yet practical
cross-evaluation protocol ranging various medical OOD scenarios, assessing across corrupted
inputs (MedMNIST-C Di Salvo et al. (2024)) and novel class generalization (MediMeta Woerner
et al. (2024b)).

1We use “domain expert” and “modality expert” interchangeably, where “domain” denotes the data distribu-
tion of a specific medical modality.
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In-Domain Base-to-Novel Corruption

(a) Fundoscopy

In-Domain Base-to-Novel Corruption

(b) Retinal OCT

Figure 1: Histogram of interpolation coefficients induced by X-entropy ratio X(x) (from Eq. 4) between
pretrained and expert models. For each modality and under three test settings: In-Domain (data seen to
expert during fine-tuning), Base-to-Novel (cross-dataset generalization), and Corruption inputs. This shows that
X(x) coefficient estimates vary greatly and is dependent on different data modality and OOD shifts regarding
symmetry and skewness. For instance, in Fundoscopy, X(x) remains tightly clustered for In-Domain testset but
shows strong variation under Base-to-Novel inputs, indicating reduced reliance on the fine-tuned expert.

– We provide an empirical analysis that justifies the test-time dynamic model merging and its
benefits in addressing distribution shifts consistently across multiple medical tasks.

– We demonstrate that T3 robustly outperforms fine-tuned models in an unsupervised manner
consistently across four medical modality tasks, setting state-of-the-art results on the proposed
benchmark for model merging in medical VLMs2.

2 RELATED WORKS

Test-Time Adaptation in VLMs: To address distribution shifts and improve OOD generalization,
recent works have explored Test-Time Adaptation (TTA) techniques Shu et al. (2022); Abdul Samadh
et al. (2023); Feng et al. (2023); Zanella & Ben Ayed (2024); Imam et al. (2024). Given an input image
and a set of class descriptions, TTA typically involves a trainable component, such as a learnable
prompt, optimized using an entropy-based objective function derived from multiple augmentations
of the test sample. The adapted component is then used for final inference. However, existing TTA
methods often require multiple augmentations and optimization. To overcome these limitations, we
aim to propose a backpropagation-free merging method that enhances efficiency and reduces memory
overhead, making it more suitable for resource-constrained clinical environments.

Model Merging: In the context of medical imaging, model merging is particularly valuable for
adapting to diverse and noisy clinical scenarios, where maintaining a balance between specialized
and generalizable representations is crucial Wortsman et al. (2022b). Existing works on model
merging, such as AdaMerging Yang et al. (2023), TiesMerging Yadav et al. (2023), and Model Soups
Wortsman et al. (2022a) have primarily focused on natural image distributions, while Wang et al.
(2025) focused on medical distributions but applied to relatively smaller CNN architectures. These
methods often lack the adaptive mechanisms required to effectively merge weights across varying
corruption scenarios in medical data. Thus, our T3 framework is designed to bridge the gap between
test-time adaptation in large-scale MVLMs and model merging strategies in medical imaging3.

3 METHODOLOGY

3.1 PROBLEM SETUP

We consider a C-way classification task over a test set Dtest = {xi}Ni=1, where each input x ∈ X
must be assigned one of C discrete class labels. Let fpt and fft denote the pretrained and finetuned
MVLMs, respectively, each comprising an image-text encoder architecture similar to CLIP, adapted
for a common medical modality (e.g., cell classification). For each test input x ∈ Dtest, the image-
text encoder processes x alongside class-level textual prompts to compute the similarity scores,
followed by then converting into logits zpt(x), zft(x) ∈ RC , where C is the number of classes. The
corresponding softmax outputs,

ppt(x) = softmax
(
zpt(x)

)
and pft(x) = softmax

(
zft(x)

)
, (1)

2We will release our codebase and benchmarking setup upon paper acceptance.
3Additional Related Works are discussed in Appendix B.
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Figure 2: Pearson correlation ρ between Mutual Information I(x) (Eq. 5) and Entropy-ratio R(x) (Eq.
3). We partition each test set into four groups—TrueTrue, TrueFalse, FalseTrue, and FalseFalse—according
to whether the Pretrained and Expert models make correct or incorrect predictions. For each group, we plot
Pearson correlation ρ scatter of the entropy ratio R(x) on the x-axis against the Mutual Information I(x). Top
row denotes Cell Microscopy PBC (from MediMeta) dataset while Bottom row denotes Breast Imaging Mammo
MediMeta dataset with CLIP ViT-B/16 backbone. This correlation implies that I(x) strongly correlates with the
R(x) overall across all groups, suggesting a strong alternative interpolation coefficient that could also capture
joint predictive confidence better than entropy.

define the confidence distributions over the prompt concatenated class labels. Our goal is to design
a test-time merging procedure that, for each x ∈ Dtest, computes a sample-specific interpolation
coefficient λ(x) ∈ [λmin, λmax] and then fuses the two parameter sets as

θmerged(x) = (1− λ(x)) θpt + λ(x) θft. (2)

The resulting model fmerged( · ; θmerged(x)) is thus a data-dependent convex combination of the
generic (pretrained) and specialized (fine-tuned) hypotheses.

Analogy of Merging Setup in Diagnostics

Think of it like having two radiologists on call: one’s a local specialist tuned to this hospital’s scanner and
patient population (our fine-tuned MVLM), and the other’s a global expert with broad experience across
many scanners and cohorts (our pretrained MVLM). When a tricky new scan arrives, outside the specialist’s
usual cases or exhibiting unfamiliar artifacts, we compute a per-scan mixing weight λ(x) that blends
the specialist’s local insight with the expert’s wide-ranging knowledge. The result is a hybrid diagnosis
that adapts sample by sample, giving us the specialist’s precision when it’s reliable and the generalist’s
robustness when it’s needed (See Figure 7 in Appendix).

3.2 DESIGNING DYNAMIC COEFFICIENT

We hypothesize that measuring mutual information, e.g. via Jensen-Shannon divergence, between a
pretrained model’s output and its fine-tuned counterpart offers a more faithful gauge of their joint
predictive confidence than simply combining their entropies, since it explicitly distinguishes when
the two models agree versus disagree. For comparison, DaWin Oh et al. (2024) introduces an entropy
ratio

R(x) = H(pft(x))/[H(ppt(x)) +H(pft(x))] (3)

where ppt(x) and pft(x) are the predictive distributions on input x (as from Eq. 1), and H(·) denotes
self-entropy. This ratio effectively interpolates between the two uncertainties. While combined
confidence in R(x) simply averages each model’s top-1 prediction into a single scalar, JS divergence
instead measures the relationship between their full predictive distributions and thus more directly
flags high-confidence disagreements that a top-class aggregation alone would miss as empirically
evident in Figure 3. Across, natural image tasks, DaWin shows that R(x) correlates positively with
the cross-entropy ratio or X-entropy ratio

X(x) = ℓ(pft(x), y)/[ℓ(ppt(x), y) + ℓ(pft(x), y)], (4)

4
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Cell Microscopy Breast Imaging Fundoscopy Retinal OCT

Figure 3: Decision-Quadrant Analysis of Consensus vs. Disagreement via Combined Confidence and JS
Divergence. Here M refers to p̄(x) as in Eq. 5. While combined confidence alone treats high-confidence OOD
samples uniformly—failing to separate agreement from disagreement—JS divergence cleanly isolates high-
confidence disagreements, highlighting its superiority as a proxy for joint predictive certainty in model-merging
scenarios across diverse modalities.

where ℓ(p, y) is the cross-entropy loss of distribution p with true label y. A high R(x) generally
indicates that the fine-tuned model is more certain (lower loss) than the pretrained model, which
empirically aligns with better predictive accuracy. However, R(x) can be misleading when both
models are confident but disagree: if ppt and pft are both sharp (low entropy) but confident on
different classes, the ratio R(x) gives no indication of this conflict. To capture such "consensus
versus disagreement", we introduce the mutual information I(x) between the two output distributions
(See Figure 3). Concretely, let p̄(x) = 1

2

(
ppt(x) + pft(x)

)
be the average distribution. We define

I(x) =
1

2

(
KL(ppt(x)∥p̄(x)) + KL(pft(x)∥p̄(x))

)
, (5)

which is exactly the Jensen-Shannon divergence between ppt(x) and pft(x). Equivalently, using the
convexity of entropy,

I(x) = H
(
p̄(x)

)
− 1

2

(
H(ppt(x)) +H(pft(x))

)
. (6)

This formulation has several desirable properties. If the two models fully agree on their predictions,
then ppt(x) = pft(x) and I(x) = 0. Conversely, if they are both confident but assign high probability
to different classes, then KL(ppt∥p̄) and KL(pft∥p̄) are large, so I(x) becomes large. In effect,
I(x) quantifies the “consensus-disagreement” structure: it remains low when models agree (even
if confident) and increases when they disagree (even if each is confident). Empirically, Figure 2
observes a consistently positive correlation between I(x) and R(x),

Corr
(
I(x), R(x)

)
> 0, (7)

i.e., inputs with high R(x) (fft more confident than fpt) tend to also have high I(x), but importantly
I(x) can further distinguish cases of disagreement that R(x) alone would miss. This suggests that
mutual information indeed captures joint predictive confidence more faithfully than entropy ratio
alone, validating our design choice.

3.3 T3 MERGING WORKFLOW

Objective: We consider two fixed classifiers: a pretrained model fpt with parameters θpt, and a
fine-tuned model fft with parameters θft. For an input x, these produce output distributions ppt(x)
and pft(x) (e.g. softmax probabilities). Our goal is to adaptively merge the two models at test time by
forming a weighted average of their parameters. Concretely, we define a sample-wise merged model

θmerged(x) = (1− λ(x)) θpt + λ(x) θft, (8)

where the interpolation coefficient λ(x) depends on x. If λ(x) = 0, the merged model is just the
pretrained network; if λ(x) = 1, it is the fine-tuned network. In general, λ(x) ∈ [λmin, λmax]
balances the two. Crucially, this merging is performed in a test-time, unsupervised manner: no
ground-truth labels are available during merging. In practice, θmerged is computed on-the-fly from
the two models’ outputs, with λ(x) determined by our Jensen-Shannon criterion. This operation is
model-agnostic and requires only simple post-processing of the outputs, making it straightforward to
integrate into existing inference pipelines as shown in Figure 4.

5
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Figure 4: T3 Test-Time Task Adaptive Merging Workflow. For each input x, both pretrained CLIP and
domain expert models generate output distributions that are compared using Jensen-Shannon divergence to
quantify their agreement. This divergence is transformed into an interpolation coefficient λ(x) through sigmoid
function, which determines the specific parameter blending for each test sample. Higher disagreement (larger
JS divergence) increases the expert model’s influence, while agreement favors the pretrained model, enabling
adaptive merging that optimizes both accuracy and robustness across distribution shifts.

Mutual Information-Guided Interpolation: To choose λ(x) for each input, we quantify the
agreement between the two model predictions via the Jensen-Shannon (JS) divergence. Specifically,
we define a per-input Mutual Information (MI) score

I(x) = JS
(
ppt(x), pft(x)

)
= 1

2

[
KL(ppt(x) ∥ p̄(x)) + KL(pft(x) ∥ p̄(x))

]
, (9)

where p̄(x) = 1
2 (ppt(x) + pft(x)) is the mixture distribution. By construction I(x) = 0 if the

two distributions are identical, and grows larger when they disagree. We then transform I(x) into
an interpolation coefficient λ(x) via a sigmoid, ensuring a smooth, monotonic dependence on the
disagreement:

λ(x) = λmin + (λmax − λmin)σ
(
I(x)

)
, (10)

where σ(z) = 1/(1 + e−z) is the logistic sigmoid. Intuitively, this means that when the two models
agree strongly (small I(x)), λ(x) stays near λmin, and when they disagree strongly (large I(x)),
λ(x) approaches λmax. In practice we often set λmin = 0 and λmax = 1 so that λ(x) ∈ [0, 1], but
these bounds can be tuned. In summary, higher JS divergence drives the merged model to favor
the fine-tuned parameters, whereas low divergence keeps it close to the pretrained model. This
strategy provides a principled, information-theoretic way to interpolate the two networks based on
how differently they “view” each input.

Extrapolation for Extreme Confidence: In practice, extreme confidence from one model can lead
to overly aggressive interpolation weights. To address this, we introduce a small extrapolation factor
δ > 0 and entropy thresholds τpt, τft for the pretrained and fine-tuned models, respectively. When fft
is exceptionally confident (Hft(x) < τft), we gently boost its influence, and when fpt is exceptionally
confident (Hpt(x) < τpt), we correspondingly reduce the fine-tuned weight:

λ′(x) =


min

(
λ(x) + δ, 1

)
, Hft(x) < τft,

max
(
λ(x)− δ, 0

)
, Hpt(x) < τpt,

λ(x), otherwise.
(11)

This conditional adjustment, clamped back into [0, 1], ensures that when one model’s predictive
entropy is abnormally low, the merged weight is nudged toward that model, mirroring how a clinician
might rely more heavily on an imaging modality that exhibits unusually clear contrast in a given case.

Batch-wise Efficient Interpolation: Naïvely, computing a unique merged model for each of the N
test samples would require N separate parameter interpolations and forward passes, an impractical
cost in large-scale deployment. To alleviate this burden, we instead partition the N inputs into B
disjoint batches {Bb}Bb=1. For each batch Bb, we compute the mean of the extrapolated interpolation
weights:

λ̄b =
1

|Bb|
∑

xi ∈Bb

λ′(xi), (12)

where λ′(x) is defined in Eq. (11). We then perform a single merge per batch as:

θ
(b)
merged = (1− λ̄b) θpt + λ̄b θft. (13)

By reducing the number of distinct parameter interpolations from N to B, we retain the sample-
adaptive spirit of our MI-guided merging while cutting inference overhead by a factor of N

B . This
simple batched averaging of λ coefficients proves both efficient and effective in practice, delivering
near-sample-wise performance at a fraction of the computational cost.
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Figure 5: Cross-Dataset Evaluation Benchmark, depicting In-domain and cross-domain setup for model
merging in medical imaging. This illustrates four test conditions: (i) in-domain MedMNIST Chen et al. (2021),
(ii) novel-class samples from MediMeta Woerner et al. (2024b), (iii) noise corruptions (MedMNIST-C Di Salvo
et al. (2024)), and (iv) pixelation corruptions (MedMNIST-C Di Salvo et al. (2024)), for each of the four imaging
modalities. See Appendix 4 for details.

4 DATASETS AND EXPERIMENTS

Cross-Dataset Settings: For in-domain evaluation, we fine-tune CLIP Chen et al. (2021) on the
MedMNIST Chen et al. (2021) split corresponding to its modality (e.g. RetinaMNIST for fundoscopy,
BreastMNIST for breast imaging, etc.), representing the “single-hospital” data distribution that the
expert model has seen, as also shown in Figure 5. Our choice of MedMNIST as the in-domain dataset
stems from the practical observation that hospitals often have their own specific distribution and
quality of in-domain data, which may differ significantly from data encountered at test time from
other hospitals. A practical anology is also illustrated in Figure 7.

To probe out-of-distribution (OOD) performance, we then challenge the model with two kinds of
distribution shifts: (1) a base-to-novel (B2N) classification task drawn from MediMeta Woerner et al.
(2024a), which uses the same imaging modality but from different institutions or patient populations,
and (2) medically realistic corruptions of the MedMNIST test images (from MedMNIST-C Di Salvo
et al. (2024)) (noise and digital pixelation). Together, these two conditions capture both semantic
shifts (new classes, new sources) and low-level perturbations (acquisition artifacts), allowing us
to simulate how a model trained on one hospital’s input would fare when deployed on data from
other clinics or under degraded imaging conditions. Extended details that led us to formulate
the aforementioned cross-dataset settings, along with Metrics, Baseline choices, and Additional
Implementation details, are discussed in Appendix D.

Practicality of Medical Cross-Evaluation Protocol

In a real-world analogy, this evaluation scenario is akin to deploying a diagnostic AI that was trained on
images from Hospital A, and now must interpret both unfamiliar patient cohorts at Hospital B and scans
taken under suboptimal imaging settings. Detailed use-case is illustrated in Figure 7.

Implementation Details: All of our experiments are implemented in PyTorch and run on an NVIDIA
A6000 48GB GPU. For the pretrained model, we use CLIP checkpoints across ViT-B/16 and ViT-
L/14 backbones. For expert models (with homogeneous architecture as pretrained CLIP) across four
medical modalities, we fine-tune each on the respective MedMNIST in-domain training split, attaining
4 experts respective to 4 modalities. At test time, for each image x, we compute the Jensen-Shannon
divergence I(x) Menéndez et al. (1997) between the pretrained and fine-tuned output distributions,
and map it via a scaled sigmoid (clamped to [λmin = 0.0, λmax = 1.0]) to obtain a per-sample
merging weight λ(x) (the T3 variant Eq. 10). We also evaluate a batch-wise variant, T3

B, in which the
N test samples are split into B batches wit batch size BS = 32 for efficiency. The per-sample weights
{λ(x)} are averaged within each batch to yield λ̄B, which is used to perform a single parameter merge
per batch (Eq. 12). To guard against overly aggressive weighting, we apply a small extrapolation step
(δ = 0.5) when model entropies fall below the threshold τ = 0.05. We report results averaged over
three runs using different random seeds to ensure robustness and reproducibility.

5 RESULTS AND DISCUSSION

5.1 MAIN RESULTS

Accuracy vs Robustness: While T3
B differs from T3 in terms of inference overhead, both of the

proposed dynamic merging methods, consistently outperform static merging and dynamic merging

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Top-1 Accuracy for In-Domain and Distribution shifts ϵ {Base-to-Novel (B2N),
Corruption settings} on CLIP ViT-B/16 across four modalities. “In-Domain" refers to in-distribution data (seen
to Expert fine-tuned CLIP) from MedMNIST, Base-to-Novel (B2N) from MediMeta, and Corruptions from
MedMNIST-C. mean indicates the average accuracy across Distribution shifts. Bold highlights best performance,
while underlined denotes second-best performance. Details on Baseline selection is discussed in Appendix D.

Cell Microscopy → In-Domain B2N Corruptions mean

To
p-

1
A

cc
ur

ac
y
↑

Methods ↓ BloodMNIST PBC Noise Digital mean
Pretrained 16.16 13.73 16.05 10.14 13.31
Expert 98.68 31.21 88.07 64.40 61.23

Static Merging
Model Ensemble 14.70 12.49 15.35 12.80 13.55
Model Souping 24.23 7.25 19.47 19.47 15.40
Task Arithmetic 56.68 14.47 51.97 21.46 29.30
Slerp 24.26 7.22 19.47 19.47 15.39
Ties Merging 68.69 4.05 27.65 31.80 21.17
Mixup Merging 98.71 31.23 31.37 66.41 43.00

Dynamic Merging
DaWin 16.87 13.77 17.10 11.58 14.15
T3 (Ours) 98.54 30.68 86.79 65.24 60.90
T3

B (Ours) 98.66 31.19 86.29 66.59 61.36

Breast Imaging → In-Domain B2N Corruptions mean

To
p-

1
A

cc
ur

ac
y
↑

Methods ↓ BreastMNIST Mammo Noise Digital mean
Pretrained 58.97 46.23 71.79 46.15 54.72
Expert 83.33 54.60 80.77 70.51 68.63

Static Merging
Model Ensemble 66.67 53.07 67.95 50.00 57.01
Model Souping 78.85 46.23 73.08 71.79 63.70
Task Arithmetic 69.87 56.19 66.03 69.87 64.03
Slerp 78.85 46.23 73.08 71.79 63.70
Ties Merging 78.21 54.54 76.28 74.36 68.39
Mixup Merging 82.69 54.30 71.79 72.44 66.18

Dynamic Merging
DaWin 71.15 45.99 77.56 67.95 63.83
T3 (Ours) 83.33 54.72 80.77 69.87 68.45
T3

B (Ours) 83.33 54.89 80.77 71.15 68.94

Fundoscopy → In-Domain B2N Corruptions mean

To
p-

1
A

cc
ur

ac
y
↑

Methods ↓ RetinaMNIST Fundus Noise Digital mean
Pretrained 43.50 78.28 43.50 43.50 55.09
Expert 58.75 39.06 45.75 46.00 43.60

Static Merging
Model Ensemble 28.00 63.16 31.25 26.50 40.30
Model Souping 44.00 79.09 43.50 43.50 55.36
Task Arithmetic 48.75 47.97 41.50 44.75 44.74
Slerp 44.00 79.09 43.50 43.50 55.36
Ties Merging 51.25 75.22 43.50 48.75 55.82
Mixup Merging 43.50 78.41 44.50 48.25 57.05

Dynamic Merging
DaWin 55.25 78.88 45.25 44.75 56.29
T3 (Ours) 52.50 78.69 46.50 44.75 56.65
T3

B (Ours) 59.25 79.09 40.50 47.75 55.78

Retinal OCT → In-Domain B2N Corruptions mean

To
p-

1
A

cc
ur

ac
y
↑

Methods ↓ OCTMNIST OCT Noise Digital mean
Pretrained 23.90 30.79 26.70 29.80 29.10
Expert 83.90 29.80 67.20 42.80 46.60

Static Merging
Model Ensemble 25.00 19.42 27.20 25.20 23.94
Model Souping 64.40 23.37 44.90 30.20 32.82
Task Arithmetic 73.60 25.34 61.50 36.20 41.01
Slerp 64.40 23.38 44.90 30.20 32.83
Ties Merging 92.30 21.44 68.90 41.30 43.88
Mixup Merging 22.10 11.05 63.20 25.00 33.08

Dynamic Merging
DaWin 26.00 30.78 60.30 39.90 43.66
T3 (Ours) 83.50 29.40 66.80 42.40 46.20
T3

B (Ours) 83.70 29.82 67.30 42.70 46.61

baselines across both accuracy and robustness metrics (Figure 6). Table 2 shows that T3
B achieves

superior or competitive mean performance across modalities: 61.36 (Cell Microscopy) vs. Static
Merging’s 13.55 and DaWiN’s 14.15; 68.94 (Breast Imaging) vs. 66.18 (best baseline); and 46.61
(Retinal OCT) vs. Pretrained Expert’s 46.60. Notably, T3

B attains near-expert accuracy (98.66 vs.
98.68 on BloodMNIST) while generalizing better to novel distributions. In robustness (Table 7),
T3

B achieves significantly lower error rates (mCE), indicating stronger OOD reliability. For Cell
Microscopy, T3

B yields 44.42 mCE vs. DaWiN’s 99.03 and Static Merging’s 99.77. Similarly, in
Breast Imaging, T3

B attains 68.55 mCE, outperforming DaWiN (79.84) and Static Merging (97.91).
This stems from our mutual information-based dynamic coefficient I(x), which quantifies model
consensus more effectively than DaWiN’s entropy ratio R(x). While R(x) conflates confidence with
agreement, I(x) explicitly captures disagreements (high JS divergence) even when both models are
confident, avoiding erroneous aggregation. Empirical correlations show I(x) better distinguishes
conflicting predictions (Figure 3), leading to principled weighting and improved robustness without
sacrificing in-domain accuracy.

Modality Consistency: Furthermore, entropy ratio-based approaches like DaWiN (Eq. 3) fail to
discern whether to prioritize the pretrained or fine-tuned model’s predictions. This ambiguity in
dependency leads to critical generalization failures, as evidenced by DaWiN’s low accuracy (14.15) in
Cell Microscopy compared to T3

B’s significantly higher 61.36. T3 and T3
B demonstrate remarkable

consistency across diverse medical imaging modalities, maintaining superior performance in both
in-domain and OOD scenarios. This cross-modality robustness stems from the dynamic merging’s
ability to adaptively balance pretrained and fine-tuned model predictions based on their consensus
patterns. While absolute performance varies due to inherent modality-specific challenges, the relative
improvement over baselines shows minimal variance, approximately 2-3× performance gain over
DaWin across all domains. This consistency extends to robustness metrics where error reduction
follows similar patterns regardless of domain shift type. The method’s reliance on mutual information
rather than raw prediction confidence enables it to transcend modality-specific characteristics, as
it focuses on the structural relationship between model outputs rather than the outputs themselves,
yielding an approach that generalizes effectively across varied medical imaging contexts.
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Figure 6: Mean Top-1 Accuracy averaged across four medical modalities and different backbones.
Consistent generalization across diverse clinical imaging tasks is crucial in medical settings. Our test-time
merging, T3

(B), outperforms all static and dynamic baselines, including the Expert CLIP, on ViT-B/16 (left),
ViT-L/14 (middle), and ResNet-50 (right) backbones. This demonstrates that mutual-information-guided fusion
yields more reliable performance across medical modalities than single-model or fixed-weight approaches.

Table 3: Computation Costs reporting mean results averaged across four modalities for CLIP ViT-B/16
backbone. Given a pretrained and a expert model, inference cost (I) is measured in forward-passes over the
entire test set (with N total samples, grouped into B batches of size BS so that N = B × BS, where N >> B).
All reported results are averaged over three runs using different random seeds. λ is computed using Eq. 10.

Methods → Pretrained Expert Model
Ensemble

Model
Souping

Task
Arithmetic Slerp Mixup

Merging DaWin
No Precompute λ Precompute λ

T3 T3
B T3 T3

B

OOD mean 38.05 55.01 33.70 41.82 44.77 41.82 49.82 44.48 58.05 58.17 58.05 58.17
Inference Cost (I) O(1B) O(1B) O(2B) O(1B) O(1B) O(1B) O(1B) O(3B) O(3N) O(3B) O(N) O(1B)

Time (seconds) 41.2 41.2 81.6 41.3 41.7 41.9 41.3 124.7 ≥3800 123.5 ≥1260 41.9

5.2 ANALYSIS

Backbone Generalization: T3 demonstrates remarkable backbone-agnostic performance, consis-
tently outperforming all baselines across both ViT-B/16, ViT-L/14, RN50 architectures. As Figure 6
shows averaged results across domains, T3 achieves 58.05%, 56.62%, and 57.80% mean accuracy
respectively, exceeding experts and competing methods. By leveraging mutual information between
model distributions rather than architecture-specific features, T3 delivers consistent improvements
regardless of the underlying network structure, offering a truly generalizable solution for medical
imaging applications. Further Ablation studies and Analysis are discussed in Appendix E.

Computational Costs: In practical implementation, inference efficiency is paramount for test-
time merging solutions. To address this challenge, we implemented our method with the option
to precompute interpolation coefficients before deployment, following DaWin Oh et al. (2024).
As shown in Table 3, our approach (T3) achieves superior OOD generalization (58.05%) while
maintaining competitive computational efficiency. Without precomputation, the sample-wise merging
variant (T3) requires O(3N) inference cost due to the additional forward passes needed to compute
the Jensen-Shannon divergence between model distributions. However, the batch-wise variant (T3

B)
significantly reduces this to O(3B), making the cost dependent on batch count rather than sample
count. Additional precomputation details are highlighted in Appendix D.

Most impressively, with precomputation, T3 maintains its performance while reducing inference cost
to O(3N) and O(1B) for T3 and T3

B repsectively, achieving the same speed as vanilla pretrained and
expert models at O(1B). This efficiency is reflected in the inference times, where precomputed T3

B
completes processing in just 41.3 seconds, identical to the expert/pretrained models and substantially
faster than competing methods like DaWin (124.7 seconds). This computational parity with single
models, combined with our superior OOD mean accuracy demonstrates that our approach successfully
eliminates the traditional accuracy-efficiency tradeoff in model merging.

6 CONCLUSION

In this work, we have proposed T3, a backpropagation-free, mutual-information-guided framework
for dynamic test-time merging of a pretrained generalist and a fine-tuned expert model across diverse
medical modalities. By leveraging Jensen-Shannon divergence to measure consensus between their
full predictive distributions, our sample-wise (T3) and batch-wise (T3

B) variants allocate adaptive
interpolation weights that both preserve specialist insights and maintain broad robustness under
domain shifts. Empirical results on four challenging medical imaging modalities demonstrate
consistently high OOD accuracy and corruption resilience, while matching the inference cost and
latency of a single CLIP backbone via batch-wise merging and precomputing the interpolation
coefficient. A promising direction would be to extend T3 to large language models, enabling adaptive
model merging across different tasks achieving better test-time scaling.
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APPENDIX

This Appendix provides supplementary material for the main paper, "� T3: Test-Time Model
Merging in Vision-Language Models for Zero-Shot Medical Imaging Analysis". Due to space
constraints, extended implementation details and baseline descriptions were omitted from the main
text and additional contents. In this Appendix, we include:

– A. Terminology Notations
– B. Additional Related Works
– C. Algorithm and Extended Details of T3

– D. Detailed Implementation and Experimentation
– E. Extended Results and Ablations
– F. Limitations and Future Direction

A TERMINOLOGY NOTATIONS

Table 4: Terminology used throughout this paper, with concise descriptions for clarity and ease of reference.

Term (A-Z) ↓ Description ↓
Dynamic Adaptive merging that adjusts weights per sample or batch.

Domain A specific data distribution within a modality (e.g., a particular dataset).

Expert Model The fine-tuned specialist model trained on the target dataset.

Coefficient (λ) Weight in [0, 1] that blends pretrained and expert parameters.

JS Divergence Jensen–Shannon divergence measuring full-distribution disagreement.

KL Divergence Kullback–Leibler divergence: KL(p∥q) =
∑

p log(p/q).

MediMeta Standarized database consisting various medical imaging datasets.

Modality Type of data source (e.g., cell microscopy, breast imaging, OCT).

MVLM Medical Vision-Language Model (e.g., CLIP, MedCLIP).

OOD Out-of-Distribution: samples not drawn from the seen distribution.

Pretrained Model The generalist model trained on large, broad-scale data (e.g., CLIP).

Softmax Activation turning logits into a probability distribution.

Severity Intensity level of synthetic corruptions in MedMNIST-C.

Static Merging Weight fusion performed once offline, before any inference.

Test-Time Performing operation during inference, i.e., while being online.

Zero-Shot Inference on a new task without any task-specific training examples.

B ADDITIONAL RELATED WORKS

Test-Time Adaptations: Existing Test-Time Adaptation (TTA) methods (e.g., TPT, TTL, TDA,
SwapPrompt Shu et al. (2022); Imam et al. (2024)) have demonstrated that tailoring adaptation at test
time can substantially improve robustness. However, these methods rely on entropy optimization on a
per-sample basis, tending to overfit, yielding only superficial improvements that fail to translate into
true generalization, and can vary from model to model. Such limitations are particularly hazardous in
real-world medical applications, where reliable and consistent performance is critical. Since our work
combines two models for a downstream task, we omitted these methods as comparative baselines
because they involve adapting only a single model during inference.

VLMs for Medical Imaging: MVLMs such as MedCLIP Wang et al. (2022b) and BioMedCLIP
Zhang et al. (2025) leverage large-scale pretraining on diverse medical image-text pairs, followed
by domain-specific fine-tuning to enhance diagnostic accuracy. Due to inherent domain shifts and
modality-specific challenges, these models often exhibit degraded performance under distribution
shifts, underscoring the need for robust adaptation techniques Radford et al. (2021); Wang et al.
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Table 5: Overview of dataset statistics for MediMeta Woerner et al. (2024a) and MedMNIST Chen et al. (2021),
covering the common imaging modalities analyzed in this study. #Val/Test represents the number of validation
and test samples. Please note that we only evaluated the merging methods on testset of each dataset, where
Expert model is fine-tuned on MedMNIST trainset.

MediMeta MedMNIST / MedMNIST-C
Modality ↓ Data Name #Val/Test Description Data Name #Val/Test Description
Cell Microscopy PBC 1,709/3,149 Blood cells BloodMNIST 1,712/3,421 Blood cells
Breast Imaging Mammo 214/326 Calcifications BreastMNIST 78/156 Breast tumors
Fundoscopy Fundus 640/640 Eye diseases RetinaMNIST 120/400 Eye diseases
Retinal OCT OCT 16,694/1,000 Retinal layers OCTMNIST 10,832/1,000 Retinal layers

Table 6: Data Sources of Medical Modalities in MedMNIST and MediMeta used in our benchmark
Evauation setup, detailing the sources, demographics, and image characteristics of all eight datasets
validating their provenance.

MedMNIST Source | Demographics | Characteristics

BloodMNIST Source: Acevedo et al. (2020)
Demographics: ∼17K peripheral blood cell images from healthy donors across 8
cell types.
Characteristics: RGB microscopy photos, cropped and resized to 28× 28.

BreastMNIST Source: Al-Dhabyani et al. (2020)
Demographics: 780 breast ultrasound images from ∼600 women aged 25–75;
labels: normal (133), benign (487), malignant (210).
Characteristics: Grayscale B-mode ultrasound, resized to 28× 28.

RetinaMNIST Source: Liu et al. (2022)
Demographics: 1,600 fundus images labeled by grade (0–4) from screened diabetic
patients.
Characteristics: RGB fundus photos, center-cropped and resized to 28× 28.

OCTMNIST Source: Kermany et al. (2018)
Demographics: ∼109K OCT retinal scans across 4 classes (CNV, DME, drusen,
normal).
Characteristics: Grayscale OCT B-scans, cropped and resized to 28× 28.

MediMeta Source | Demographics | Characteristics

PBC Source: Acevedo et al. (2020)
Demographics: ∼17K RBC images from healthy donors across 8 classes.
Characteristics: RGB microscopy photos via CellaVision DM96, resized to 224×
224.

Mammo Source: Lee et al. (2017)
Demographics: 3,568 mammography ROIs (calcifications and masses) from
screened patients.
Characteristics: Grayscale ROI patches, squared and resized to 224× 224.

Fundus Source: Pachade et al. (2021)
Demographics: 3,200 adult fundus images annotated for 46 ocular conditions by
expert clinicians.
Characteristics: RGB fundus photos from three camera types, resized to 224×224.

OCT Source: Kermany et al. (2018)
Demographics: ∼84K retinal OCT scans across 4 diagnostic classes.
Characteristics: Grayscale OCT B-scans, center-cropped and resized to 224× 224.

(2022c). Notably, no existing solution addresses model merging in an unsupervised manner for such
fine-tuned VLMs, leaving a critical gap in achieving robust generalization in medical imaging.

Optimization-based Model Merging: Recently, approaches to model merging include methods
performing optimization or some form of unsupervised coefficient learning to blend pretrained and
expert weights without access to original training data. AdaMerging Yang et al. (2023) leverages
entropy minimization on unlabeled test samples to iteratively refine task- or layer-specific interpolation
coefficients, yielding substantial gains in multi-task settings. Ties-Merging Yadav et al. (2023) tackles
parameter interference by trimming negligible fine-tuned weights, resolving sign conflicts, and
merging only sign-aligned parameters, which enhances robustness across modalities and architectures.
Huang et al. (2024) is training-free, but its complex merging approach may create compatibility
issues across diverse architectures or limit interpretability. Other similar works Gupta et al. (2020);
Wang et al. (2022a) also utilize optimization for merging, underscoring the power of surrogate
objectives for adaptive, efficient multi-model integration, but their reliance on labeled data restricts
their applicability in test-time or zero-shot settings where supervision is unavailable.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C ALGORITHM AND EXTENDED DETAILS OF T3

Algorithm C. PyTorch Style Pseudocode for Mutual Information-Guided Interpolation

# x : single test sample
# model_pt : pretrained model
# model_ft : finetuned model
# lam_min, lam_max : lower and upper interpolation bounds
# eps : small constant for numerical stability

def T^3(model_pt, model_ft, x, lam_min, lam_max, eps):
# 1. Compute probability distributions for sample x from both models
p_pt = torch.softmax(model_pt(x), dim=-1)
p_ft = torch.softmax(model_ft(x), dim=-1)

# 2. Compute average predictive distribution
p_bar = (p_pt + p_ft) / 2.0

# 3. Compute KL divergence for each model with respect to the average
distribution

kl_pt = torch.sum(p_pt * torch.log(p_pt / (p_bar + eps)), dim=-1)
kl_ft = torch.sum(p_ft * torch.log(p_ft / (p_bar + eps)), dim=-1)

# 4. Calculate mutual information (MI) as the average KL divergence
MI = 0.5 * (kl_pt + kl_ft)

# 5. Map MI to an interpolation coefficient lambda using a sigmoid function
lam = lam_min + (lam_max - lam_min) * torch.sigmoid(MI)

# 5.1. Extrapolation for extreme confidence
H_pt = -torch.sum(p_pt * torch.log(p_pt + eps), dim=-1)
H_ft = -torch.sum(p_ft * torch.log(p_ft + eps), dim=-1)
# tau_pt, tau_ft = 0.05, 0.05 : entropy thresholds for pt and ft
lam = torch.where(

H_ft < tau_ft,
torch.clamp(lam + delta, max=1.0),
torch.where(

H_pt < tau_pt,
torch.clamp(lam - delta, min=0.0),
lam))

# 6. Merge model parameters using lambda
merged_state = { key: (1 - lam)*v + lam*model_ft.state_dict()[key]

for key, v in model_pt.state_dict().items() }

# 7. Return Merged model
return model_pt[merged_state]

D DETAILS ON DATASET AND EXPERIMENTATION

D.1 DATASET

Cross-Dataset Benchmark: To deepen the intuition for our cross-dataset benchmark and its role
in model-merging, we emphasize three guiding principles. First, real-world clinical deployment
rarely mirrors a single “clean” train-and-test split: each hospital (or imaging center) embodies
its own idiosyncratic data distribution, differences in scanner hardware, patient demographics, or
acquisition settings, that profoundly affect model performance. By fine-tuning CLIP on MedMNIST’s
modality-specific split (e.g. BloodMNIST, BreastMNIST) as our “in-domain” expert, we capture this
institution-specific baseline.

Second, true robustness demands both semantic generalization (new disease classes, novel image
sources) and resilience to low-level artifacts (sensor noise, pixelation from compressions). Our two
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Figure 7: Use-case Illustrating the Advantage of Model Merging in Real-World Healthcare Settings.
This example demonstrates our cross-data evaluation benchmark applied to fundoscopy classification, though
it generalizes consistently across medical modalities. By combining a generalist doctor/model with an expert
doctor/model through dynamic merging, they jointly achieve higher precision than either could alone.

↪→ Specifically, specialist doctor (Expert) who excels at interpreting scans from Hospital A but struggles
with the slightly different protocols at Hospital B. By contrast, a veteran clinician (Generalist) delivers
reliable, if unspectacular, readings at both sites. When these two doctors collaborate, letting the specialist
guide cases it knows best and deferring to the generalist on unfamiliar scans, or mutually reaching
consensus in cases of disagreements, they collectively achieve strong performance across both hospitals’
data distributions.

OOD axes, base-to-novel classification from MediMeta Woerner et al. (2024a) and MedMNIST-C
corruptions Di Salvo et al. (2024), systematically stress models along these orthogonal dimensions.
Third, by unifying these four modalities (cell microscopy, breast imaging, fundoscopy, retinal OCT)
under one protocol, we create a reusable framework that supports fair, head-to-head evaluation of any
merging strategy. This design enables practitioners to measure not only overall accuracy but also
the interplay between domain shift and artifact severity, producing actionable insights for dynamic
model merging in safety-critical applications. Table 5 depicts data statistics for MediMeta and
MedMNIST(-C).

Table 6 depicts provenance of datasets used in our cross-evaluation illustrating distribution shifts in
our setup. Even when datasets share provenance, modality-specific preprocessing induces a genuine
distribution shift: BloodMNIST and MediMeta PBC both stem from same source, yet BloodMNIST
uses 28×28 center-cropped, normalized RGB patches while PBC uses 224×224 bicubic-resized,
artifact-free scans; aligning with the performance gap observed in Table 2. Likewise, OCTMNIST
and MediMeta OCT (both citing same source) differ by center-cropped, normalized patches versus
bicubic-resized scans; the Expert attains 83.90% on OCTMNIST but 29.80% on OCT, underscoring
preprocessing alone as a major driver of shift.

D.2 METRICS AND BASELINES

Evaluation Metrics: We evaluate every merging methods on both in-domain and OOD data using
two complementary metrics. Top-1 accuracy (Acc) measures the fraction of correctly predicted
labels and thus quantifies overall predictive performance and generalization to novel or corrupted
inputs. Corruption Error (Err), motivated by ImageNet-C Hendrycks & Dietterich (2019) is
defined for any dataset as the ratio of the model’s error rate to that of the pretrained CLIP baseline:
Errmethod = (1−Accmethod) / (1−Accbase) , where we set base as baseline CLIP model
consistently across our evaluations. Err therefore captures robustness to distribution shifts: values
below 100 indicate a model that degrades less than the CLIP prior when faced with the same
perturbations or novel classes, while values above 100 indicate greater sensitivity to distribution shift.
By reporting both Acc and Err across all test conditions, we obtain a holistic view of each method’s
trade-off between accuracy (generalization) and stability (robustness).

Comparative Baselines: Our comparison focuses on how to fuse the two given models, a generic
CLIP Radford et al. (2021) pretrained checkpoint and its expert fine-tuned counterpart, using a variety
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In-Domain Base-to-Novel Corruption

(a) Cell Microscopy

In-Domain Base-to-Novel Corruption

(b) Breast Imaging

In-Domain Base-to-Novel Corruption

(c) Fundoscopy

In-Domain Base-to-Novel Corruption

(d) Retinal OCT

Figure 8: Histogram of interpolation coefficients induced by our Mutual Information-based coefficient λ(x)
(from Eq. 10) between pretrained and expert models. For each modality and under three test settings: In-Domain
(data seen to expert during fine-tuning), Base-to-Novel (cross-dataset generalization), and Corruption inputs.

of static merging strategies. First, we compare traditional Model Ensemble, which averages the
two models’ logits at inference, and Model Souping Wortsman et al. (2022a), which weight-space
averages their parameters à la WiSE-FT Wortsman et al. (2022b). Next, we test Task Arithmetic
Ilharco et al. (2022), where the “task vector” (difference between expert and pretrained weights) is
added back to the pretrained model, as well as Slerp White (2016), a spherical linear interpolation in
weight space. We include Ties Merging Yadav et al. (2023) which address the problem of interference
in merging by trimming, electing, and merging the weights, and finally we include Mixup Model
Merging Zhou et al. (2025), which inspired by the Mixup data augmentation, performs randomized
linear interpolation ratios during model merging. These methods probe whether label-free and
backpropagation-free fusions of two base models can match the gains of a more nuanced, per-sample
approach.

Beyond static fusions, we benchmark against the recent dynamic merging, DaWin Oh et al. (2024),
which uses each sample’s entropy ratio R(x) to choose between the pretrained and expert models
on the fly. By contrasting our mutual-information-guided interpolation with DaWin’s entropy-based
criterion, we isolate the benefit of capturing true inter-model agreement rather than single-model
confidence.

D.3 ADDITIONAL IMPLEMENTATION DETAILS

Setup: In our model-merging framework, we maintain two complementary networks with homoge-
nous architecture: a pretrained “generalist” CLIP backbone and a family of “expert” models obtained
through supervised fine-tuning on each modality’s in-domain training set. Concretely, we start from
the off-the-shelf CLIP ViT-B/16 weights and fine-tune separate experts on Cell Microscopy, Breast
Imaging, Fundoscopy, and Retinal OCT data for 50 epochs (batch size = 32, learning rate = 1e-5
with AdamW), optimizing cross-entropy loss over ground-truth labels. To avoid overfitting, we apply
standard augmentations (random crop, horizontal flip) and early stopping based on validation accu-
racy. At test time, the generalist provides broad visual-text alignment, while each expert contributes
specialized discriminative power, enabling adaptive merging that leverages the strengths of both. This
dual-model design underpins our cross-dataset evaluation protocol, where we systematically merge
pretrained and expert models across all four modalities to assess OOD generalization and corruption
resilience.

Precomputation of λ(x): Sample-wise merging normally needs three forward passes per input
(generalist, expert to get λ(x), then merged). We cut this to one pass by pre-computing λ offline
using Eq. (10) with the JS divergence: (1) Offline scan: run generalist and expert over the eval set in
batches, compute DJS(x) for each sample, and map it to λ(x). (2) Cache: store all λ(x) values (or
per-batch means for T3

B) to disk. (3) Inference: for each batch, load the pre-computed λ (per-sample
for T3, batch mean for T3

B), form Wλ = (1− λ)Wgen + λWexp once, and run a single forward pass.
This keeps predictions identical to the online version while reducing test-time cost to one forward
pass per batch and removing extra merging overhead.
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Table 7: Comparison of Error rates Err, i.e., Robustness (↓), for In-Domain, Base-to-Novel, and Corruption
settings using CLIP ViT-B/16 on various modalities. mCE indicates the mean corruption error across all shifts.
Bold = best, underlined = second-best (among merging baselines).

Cell Microscopy → In-Domain B2N Corruptions mCE

R
ob

us
tn

es
s
↓

Methods ↓ BloodMNIST PBC Noise Digital mean

Pretrained 100.00 100.00 100.00 100.00 100.00
Expert 1.57 79.74 14.21 39.62 44.52

Static Merging
Model Ensemble 101.74 101.44 100.83 97.04 99.77
Model Souping 90.37 107.51 95.93 89.62 97.68
Task Arithmetic 51.67 99.14 57.21 87.40 81.25
Slerp 90.34 107.55 95.93 89.62 97.70
Mixup Merging 1.54 79.71 81.75 37.38 66.28

Dynamic Merging
DaWin 99.15 99.95 98.75 98.40 99.03

T3 (Ours) 1.74 80.35 15.74 38.68 44.92
T3

B (Ours) 1.60 79.76 16.33 37.18 44.42

Breast Imaging → In-Domain B2N Corruptions mCE

R
ob

us
tn

es
s
↓

Methods ↓ BreastMNIST Mammo Noise Digital mean

Pretrained 100.00 100.00 100.00 100.00 100.00
Expert 40.63 84.43 68.17 54.76 69.12

Static Merging
Model Ensemble 81.23 87.28 113.61 92.85 97.91
Model Souping 51.55 100.00 95.43 52.39 82.60
Task Arithmetic 73.43 81.48 120.42 55.95 85.95
Slerp 51.55 100.00 95.43 52.39 82.60
Mixup Merging 42.19 84.99 100.00 51.18 78.72

Dynamic Merging
DaWin 70.31 100.45 79.55 59.52 79.84

T3 (Ours) 40.63 84.21 68.17 55.95 69.44
T3

B (Ours) 40.63 83.89 68.17 53.57 68.55

Fundoscopy → In-Domain B2N Corruptions mCE

R
ob

us
tn

es
s
↓

Methods ↓ RetinaMNIST Fundus Noise Digital mean

Pretrained 100.00 100.00 100.00 100.00 100.00
Expert 73.01 280.57 96.02 95.58 157.39

Static Merging
Model Ensemble 127.43 169.61 121.68 130.09 140.46
Model Souping 99.12 96.27 100.00 100.00 98.76
Task Arithmetic 90.71 239.55 103.54 97.79 146.96
Slerp 99.12 96.27 100.00 100.00 98.76
Mixup Merging 100.00 99.40 98.23 91.59 96.41

Dynamic Merging
DaWin 79.20 97.24 96.90 97.79 97.31

T3 (Ours) 84.07 98.11 94.69 97.79 96.86
T3

B (Ours) 72.12 96.27 105.31 92.48 98.02

Retinal OCT → In-Domain B2N Corruptions mCE

R
ob

us
tn

es
s
↓

Methods ↓ OCTMNIST OCT Noise Digital mean

Pretrained 100.00 100.00 100.00 100.00 100.00
Expert 21.16 101.43 44.75 81.48 75.89

Static Merging
Model Ensemble 98.55 116.43 99.32 106.55 107.43
Model Souping 46.78 110.72 75.17 99.43 95.11
Task Arithmetic 34.69 107.87 52.52 90.88 83.76
Slerp 46.78 110.71 75.17 99.43 95.10
Mixup Merging 102.37 128.52 50.20 106.84 95.19

Dynamic Merging
DaWin 97.24 100.01 54.16 85.61 79.93

T3 (Ours) 21.68 102.01 45.29 82.05 76.45
T3

B (Ours) 21.42 101.40 44.61 81.62 75.88

(a) Top-1 Accuracy (b) Error (Err)

Figure 9: Effect of extrapolation factor δ on generalization. mean denotes averaged results across four
modalities Incorporating δ = 0.5 consistently improves both accuracy (a) and robustness (b), with mean accuracy
increasing by up to 0.40% while reducing mCE by up to 1.09%. Extended ablation on δ in Appendix E.

E EXTENDED RESULTS AND ABLATIONS

E.1 RESULTS

Robustness Results: Across all four modalities, Cell Microscopy, Breast Imaging, Fundoscopy,
and Retinal OCT, our adaptive merging methods (T3 and T3

B) achieve the lowest mean corruption
error (mCE) in Table 7, outperforming static baselines (Mixup, Task Arithmetic) and prior dynamic
schemes (DaWin). For instance, T3

B reduces Cell Microscopy’s average OOD error to 44.92%,
versus 99.03% for DaWin and 100% for the pretrained model. Here, mCE, computed as the average
normalized error across multiple corruption types, directly measures model robustness to common
image degradations. Crucially, true generalization in our medical setting requires both high in-
domain accuracy and low mCE under corruption and cross-datasets, and T3 excels on both fronts.
As Figure 8 reveals, T3 adaptively sets its interpolation coefficient λ(x) towards 1.0 for benign
in-domain samples, leveraging expert knowledge, and shifts toward 0.0 when novel classes or severe
corruptions appear, falling back on the pretrained model’s broader resilience. This tight correlation
between the per-sample coefficient distribution and the observed drop in mCE demonstrates that
our dynamic, JS-guided merging is the key driver of enhanced robustness and overall generalization
across diverse distribution shifts.
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Figure 10: Delta δ ablation over four test conditions (In-Domain, Novel-Classes, Noise, Pixelation)
shows Top-1 accuracy for each modality as the extrapolation factor δ varies from 0.2 to 0.6. All of
the reported results are with δ = 0.5 throughout.

Table 8: Ablation across Standard Pretrained CLIP vs medical pretrained BioMedCLIP bases with ViT-
B/16 architectures for Breast Imaging Modality. Bold highlights best performance, while underlined
denotes second-best performance.

Methods ↓ Base ↓ In-Domain B2N Noise Digital mean ↓
Pretrained CLIP 58.97 46.23 71.79 46.15 54.72

BioMedCLIP 65.10 50.50 75.20 53.45 61.58
Expert CLIP 83.33 54.60 80.77 70.51 68.63

BioMedCLIP 89.15 61.37 86.42 75.18 72.23

Static Merging
Ensemble CLIP 66.67 53.07 67.95 50.00 57.01

BioMedCLIP 72.20 57.46 72.50 54.68 61.46
ModelSouping CLIP 78.85 46.23 73.08 71.79 63.70

BioMedCLIP 82.33 49.55 77.22 74.11 66.70
TaskArithmetic CLIP 69.97 56.19 66.03 69.87 64.03

BioMedCLIP 75.12 63.41 71.33 72.29 68.58
Slerp CLIP 78.85 46.23 73.08 71.79 63.70

BioMedCLIP 81.28 48.47 75.19 74.40 65.62
MixupMerging CLIP 82.69 54.30 71.79 72.44 66.18

BioMedCLIP 88.15 59.05 77.92 74.60 73.19
TiesMerging CLIP 78.21 54.54 76.28 74.36 68.39

BioMedCLIP 84.50 59.35 82.18 78.66 73.40
Dynamic Merging

DaWin CLIP 71.15 45.99 77.56 67.95 63.83
BioMedCLIP 74.15 50.47 80.39 71.28 67.38

T3 (Ours) CLIP 83.33 54.72 80.77 69.87 68.45
BioMedCLIP 90.24 60.13 86.92 74.50 73.85

T3
B (Ours) CLIP 83.33 54.89 80.77 71.15 68.94

BioMedCLIP 91.02 61.47 87.35 75.81 74.88

E.2 ABLATIONS

Effect of Extrapolation Factor δ: The extrapolation factor δ provides incremental refinement to
T3, functioning primarily as a complement that addresses edge cases of extreme model confidence.
As Figure 9 demonstrates, while the incorporation of δ yields slight improvements (0.40% mean
accuracy increase and 1.09% mCE reduction), the fundamental performance gains of T3 derive
predominantly from its Jensen-Shannon divergence approach. The extrapolation mechanism serves
as a confidence-calibrating supplement that selectively adjusts merging weights only when entropy
falls below a critical threshold τ as in Eq. 11, effectively mimicking clinical decision-making where
unusually definitive signals receive heightened consideration.

We swept the extrapolation coefficient δ to ablate its impact in our T3 merging framework as in Figure
10. Although δ plays only a minor role, nudging the interpolation weight when one model’s entropy
is exceptionally low, it prevents both over- and under-reliance on a single expert under extreme
confidence. Across in-domain, novel-class, noise, and pixelation shifts, Top-1 accuracy fluctuates by
at most a few percentage points, confirming that δ stabilizes performance rather than destabilizing it.
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Notably, δ = 0.5 consistently delivers the best or tied-best accuracy, outperforming smaller values
(δ = 0.2, 0.3) that under-adjust and larger values (δ = 0.6) that over-correct. A mid-range δ of
0.5 thus strikes the ideal balance, sufficiently amplifying confidence when warranted, yet avoiding
excessive weight swings, yielding robust gains across all modalities and distributional conditions.

Effect of Different Base Models: “Generalist” refers to any broad pretrained VLM (e.g., CLIP,
BioMedCLIP); “Expert” is that model fine-tuned on in-domain data. We used standard CLIP in
all our aforementioned experiments to illustrate a conservative scenario. In Table 8, we show that
substituting CLIP with BioMedCLIP as the base model further boosts accuracy all merging setups,
confirming generalizability as well as that more medical-centric VLMs only strengthen T3. Replacing
CLIP with BioMedCLIP increases the mean accuracy, with gains ranging from +1.92 (Slerp) to
+7.01 (MixupMerging), and improvements of +5.40 for T3 and +5.94 for T3

B. Benefits extend
beyond in-domain accuracy: for the non-fine-tuned Pretrained baseline, B2N improves by +4.27
and Digital by +7.30, while T3

B advances from 54.89 → 61.47 on B2N and 71.15 → 75.81 on
Digital, indicating stronger base-to-novel transfer and corruption robustness from the medical-centric
backbone.

Static mergers all improve: Ensemble (+4.45), ModelSouping (+3.00), TaskArithmetic (+4.55),
Slerp (+1.92), TiesMerging (+5.01), MixupMerging (+7.01), and the dynamic DaWin also gains
(+3.55 mean), showing that backbone choice is complementary to the merging algorithm. The
Expert baseline rises from 68.63% → 72.23%, lifting the attainable ceiling for all downstream
mergers. Overall, medical-domain pretraining consistently amplifies performance across in-domain,
base-to-novel, and corruption settings, and further strengthens T3 under identical training budgets.
This finding would encourage future works to build on our work with even more specialized model
combinations.

Table 9: Comparison of basis for computing interpolation coefficients for test-time merging:
Entropy-Ratio (DaWiN Eq. 3), Confidence-Ratio (CR), and JS-Divergence (Ours T3 Eq. 5);
based on uncertainty, prediction confidence, and distributional divergence, respectively. Here
Confidence ratio(x) = maxi

(
pift(x)

)
/
[
maxi

(
pipt(x)

)
+maxi

(
pift(x)

)]
.

Modality ↓ Methods ↓ In-Domain B2N Noise Digital mean ↓
Entropy ratio 16.87 13.77 17.10 11.58 14.15

Cell Microscopy Confidence ratio 17.37 13.27 17.90 10.78 13.98

JS-Divergence 98.54 30.68 86.79 65.24 60.90
Entropy ratio 71.15 45.99 77.56 67.95 63.83

Breast Imaging Confidence ratio 70.20 46.50 78.00 67.00 63.17

JS-Divergence 83.33 54.72 80.77 69.87 68.45
Entropy ratio 55.25 78.88 45.25 44.75 56.29

Fundoscopy Confidence ratio 55.75 79.50 44.00 45.50 56.33

JS-Divergence 52.50 78.69 46.50 44.75 56.65
Entropy ratio 26.00 30.78 60.30 39.90 43.66

Retinal OCT Confidence ratio 26.50 30.00 59.50 40.50 43.33

JS-Divergence 83.50 29.40 66.80 42.40 46.20

Ablating Different Interpolating Coefficients: We find that the Jensen-Shannon (JS) divergence
I(x) is agreement-aware: it distinguishes cases where both models are confident but disagree from
cases where they are confidently aligned, unlike entropy- or confidence-ratio heuristics that conflate
these regimes. In Table 9, using I(x) as the interpolation coefficient attains the best mean across
all four modalities and both in-domain and OOD axes: Cell Microscopy 60.90 vs. 14.15/13.98
(entropy/confidence), Breast Imaging 68.45 vs. 63.83/63.17, Fundoscopy 56.65 vs. 56.29/56.33,
and Retinal OCT 46.20 vs. 43.66/43.33, with consistent improvements across B2N and corruption
columns. Because I(x) is symmetric and compares full predictive distributions, it increases weight
when experts truly agree and down-weights confident disagreements, yielding more reliable test-time
interpolation under distribution shift. To our knowledge, this is the first use of JS divergence for
merging to explicitly separate consensus from disagreement, and the gains indicate it is a principled
replacement for entropy ratio.

Effect of Batch Size: Across six batch sizes, T3 remains stable with modest variation per modality,
indicating low sensitivity to mini-batch choice and consistent robustness under distribution shift. We
set BS = 1 for T3 to preserve strict per-sample test-time interpolation (no cross-sample coupling)
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Table 10: Ablation of batch size (BS) for T3 across four modalities on CLIP ViT-B/16. Columns
report mean accuracy across Distribution shifts where Distribution shifts ϵ {Base-to-Novel (B2N),
Corruption settings}. BS = 1 corresponds to T3 and BS = 32 to T3

B.

Modality ↓ BS = 1 (T3) BS = 16 BS = 32 (T3
B) BS = 64 BS = 128 BS = 256

Cell Microscopy 60.90 61.30 61.36 60.85 61.40 60.20
Breast Imaging 68.45 69.10 68.94 67.90 69.00 67.50
Fundoscopy 56.65 57.00 55.78 56.10 57.50 55.80
Retinal OCT 46.20 46.80 46.61 45.50 46.90 45.30

and to minimize latency/memory for on-device use, while BS = 32 for T3
B amortizes coefficient

estimation over a small mini-batch for added stability and GPU throughput, staying near the best
accuracy across modalities without incurring large memory costs.

F LIMITATIONS AND FUTURE DIRECTION

Limitations. While effective for medical image classification, T3 has several technical constraints. It
relies on Jensen-Shannon divergence to calibrate interpolation weights between the specialist and
generalist outputs, which can be sensitive when one model’s prediction distribution is sharply peaked.
In practice T3 adds a confidence threshold (τ ) and extrapolation factor (δ) to handle such cases,
but these heuristics require careful tuning and may still fail under extreme model overconfidence,
potentially leading to unstable blending in other settings. Moreover, T3 assumes the availability of
both a fine-tuned domain expert and a broad pretrained model, a luxury not always present in every
healthcare deployment. Finally, all experiments are on zero-shot classification across four medical
modalities; the framework’s efficacy on other vision-language tasks (e.g. segmentation, detection,
captioning) or non-imaging domains remains untested.

Future Directions: Addressing these limitations opens several precise research avenues. One
direction is to develop alternative or learned agreement metrics (beyond JS divergence) that are robust
to confident outputs, perhaps by calibrating uncertainty or using auxiliary models. Extending T3 to
other task types is also imperative: for example, merging models for image segmentation, radiology
report generation, or visual question answering on natural and downstream tasks would also confirm
T3’s generality. Integrating with large language models and handling tasks like captioning or speech
recognition could be promising next steps. These efforts would rigorously expand T3’s applicability
and robustness beyond its current medical classification setting.

G LLM USAGE

We confirm that LLM was used to assist with writing refinement (grammar, wording, and clarity)
only. All ideas, analyses, and conclusions are the authors’ own.
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