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ABSTRACT

We introduce Dynamic Nested Depth (DND), a novel method that improves per-
formance for off-the-shelf LLMs by selecting critical tokens to reprocess in a
nested depth manner. Specifically, at the end of the given transformer layer, DND
identifies more critical tokens with a router and feeds them back for an extra round
of processing, effectively “reviewing” difficult tokens while avoiding redundant
computation for easier ones. The dynamic selection mechanism is tailored for
precise control via two novel strategies: a router controlling loss to enhance token
selection distinguishability, and a threshold control scheme to ensure selection sta-
bility. We demonstrate the effectiveness of DND by directly integrating it into pre-
trained dense and MoE models during a post-training phase. On diverse bench-
marks, DND boosts the performances of the dense Qwen3-1.7B, Llama3.2-1B,
and Gemma3-1B by 1.88%, 2.61%, and 2.50% and the MoE Qwen3-30B-A3B by
0.87%, all with a minimal parameter and computing increase.

1 INTRODUCTION

Large Language Models (LLMs) have transformed artificial intelligence with their powerful abil-
ities. The main strategy for improving them has been scaling, as empirical laws show that model
performance predictably increases with more parameters, data, and computation (Achiam et al.,
2023} Team et al.| 2024} |Yang et al., |2025; [Liu et al.| [2024). However, this scaling paradigm has
significant drawbacks. The computational overhead for both training and inference grows expo-
nentially with model size. This trend underscores a critical need for more efficient approaches to
enhance model performance beyond simple brute-force scaling.

A key insight from (Gloeckle et al.l [2024) is that prediction difficulty varies significantly across
tokens; some are trivial to predict, while others demand deep computational processing. This dis-
parity motivates token-level adaptive computation, where models can focus resources on the most
critical inputs. A foundational version of this approach is token pruning, which has been shown
to be effective across language understanding (Bae et al., 2025), model compression (Yang et al.,
2022b), and vision (Hojjat et al.||2025)). By filtering out uninformative tokens, these methods reduce
computational overhead and can even improve robustness by mitigating noise. This establishes a bi-
nary choice: a token is either discarded or processed normally. Furthermore, we propose the natural
next step: instead of merely retaining challenging tokens for standard processing, we should allocate
additional computation to them, ensuring these critical tokens are properly understood.

Our choice of how to allocate additional computation is inspired by latent strategies in test-time
scaling (Hao et al., 2024} Saunshi et al., |2025). Unlike using explicit output expansion like COT,
these methods recur computation in hidden states, scaling inference without extra text generation.
They observed that reasoning tokens place uneven demands on computation: as illustrated in Fig.
most tokens serve fluency, while a few critical ones drive complex planning or logical transitions.

Inspired by these two perspectives, we propose to integrate token-level selection with latent-space
deepening. Instead of uniformly applying extra recurrent depth to all tokens, we dynamically select
the subset of tokens that pose greater difficulty and reprocess them through transformer layers. This
design not only concentrates additional computation on the most critical tokens but also allows the
model to refine their hidden representations through internal “review” iterations.



Under review as a conference paper at ICLR 2026

Shallow -> Deep

Q: "Two quantum states with energies E1 and E2 DENEEEEEEEENEEEEEE

have a lifetime of 10° sec and 108 sec, respectively. SoOooooooooog —Ll
RS e
We want to clearly distinguish these two energy ... >ENINENEENEENEEEEEEEE mm

levels. Which one could be their energy difference?

Transformer Layer le oo :l

FENNNNENENEOOEEEEEE m
| Linear Selection Router I =] FKT_II

€j

=] )

= [m]u]s)
Transforme{r Layer L I 1 D [}
xllllll.l*lllllll Nested Depth

Choices: A. 10° eV B. 102 eV C. 10* eV D. 10 eV"

Shal

A: "For a state with a finite lifetime, the \
enerqy uncertainty AE is : AE = h / (24t).

Figure 1: DND Motivation. The tokens highlighted in red denote critical elements in the QA pair.
We propose a strategy within the transformer layers to identify and allocate additional computation
to these critical tokens. L and L. indicate the starting and end layers that adopted this strategy.

To achieve dynamic selection and recalculation of critical tokens, we propose a novel architecture
and training strategy. Specifically, as shown on the right of Fig. [T we incorporate a linear layer as
a router at the end of the transformer block with DND strategies. To achieve more robust routing
and avoid potential information leakage during the inference of auto-regressive LLMs (Raposo et al.,
2024), we adopt a token-choice routing strategy. In this approach, each token is routed independently
based on whether its output exceeds a predefined threshold. The selected tokens are reorganized into
a new sequence and are re-fed to compute the dynamic nested output. Moreover, as DND is a post-
training method, we carefully design a normalized fusion strategy that integrates the dynamic nested
output with the original forward output to preserve global pre-training knowledge.

In terms of training strategies, since our routing method treats each token independently, it lacks
the precision of the top-k ratio routing when selecting tokens for recurrent computation (Raposo
et al.l|2024). To address this, we carefully design training strategies to control both the routers that
determine token selection preferences and the thresholds that ultimately decide whether a token is
selected. To enhance token selection distinguishability, we optimize the router’s output distribution,
encouraging the outputs across tokens to be distinguishable through a router controlling loss. To
stabilize the token selection ratio during training, we adopt a threshold control scheme, where the
threshold is updated based on the error between the expected ratio and the actual ratio computed
over a sample buffer. Furthermore, to ensure more synchronized control, we update the threshold by
blending it with the average top-k routing values using an exponential moving average (EMA).

Our method is a post-training approach that can be directly integrated into existing dense and
Mixture-of-Experts (MoE) architectures. Experiments demonstrate its efficacy: by effectively se-
lecting tokens, it substantially improves model performance across language, mathematics, rea-
soning, and coding tasks. The effectiveness is validated on both three small-scale dense models,
Qwen3-1.7B, Llama3.2-1B, Gemma3-1B and a large-scale sparse MoE model, Qwen3-30B-A3B.
Overall, our core contributions are:

* We introduce Dynamic Nested Depth (DND), an efficient paradigm that adaptively identi-
fies critical tokens and selectively deepens their computation via nested re-processing.

* We design a tailored training strategy with a routing distribution control for token selection
precision and an adaptive threshold control scheme for selection stability.

* Extensive experiments show that DND can be directly integrated into both dense and MoE
architectures through post-training to achieve notable performance gains with minimal pa-
rameter and computation increase.

2 RELATED WORKS

2.1 ADAPTIVE TOKEN SELECTION

Token-level adaptive selection is most commonly applied in model quantization and compres-
sion (Yang et al., 2022bja; Bondarenko et al. [2021)), where Bayesian optimization methods are
used to determine the appropriate compression ratios for tokens with varying levels of importance.
This approach not only reduces computational redundancy but also mitigates the adverse effects of
irrelevant tokens on the model’s attention mechanism. Beyond the realm of model compression, to-
ken selection has also been explored in the field of computer vision (Luo et al.|[2025} Gadhikar et al.}
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2024; |Hojjat et al.} 2025). Motivated by the fact that visual representations often contain significant
redundancy—due to irrelevant background information and high similarity between neighboring
tokens—researchers have developed adaptive token selection strategies to address this issue. This
strategy has been successfully applied to various vision tasks, including classification, detection,
and retrieval. In general-purpose models, token selection is most notably employed in Mixture-of-
Experts (MoE) architectures (Jiang et al., 2024; |Yang et al., [2025; |Liu et al.| 2024), where a linear
router dynamically assigns input tokens to specialized expert modules. Building on these insights,
we propose the Dynamic Nested Depth (DND) approach, which adaptively selects tokens that are
critical to represent and dynamically extends the model’s depth for their processing.

2.2 DYNAMIC REASONING DEPTH

Dynamic adjustment mechanisms for inference paths can generally be classified into two primary
approaches. The first line of work focuses on reducing computational redundancy, with notable
techniques such as early exit (Zhou et al., [2025; Leviathan et al., 2023) and MOD (Raposo et al.,
2024), which dynamically reduce the depth of computation layers to lower overall redundancy. The
second line of research investigates the test-time scaling law, which shows that repeatedly processing
tokens within a single layer can enhance final inference accuracy. A sophisticated variant of this
approach is the Latent Strategy (Hao et al.| [2024; Saunshi et al.| 2025}, where reasoning is carried
out within hidden states—either by completing all steps before producing an answer or by leveraging
recurrent inference to iteratively refine them.

The most closely related studies to our work are ITT (Chen et al.} 2025) and MOR (Bae et al.,|2025)),
both of which dynamically select a subset of tokens for additional computation and yield certain
performance improvements. While sharing MOR (Bae et al.,[2025)’s goal of improving performance
via dynamically increased computational depth, the two still differ fundamentally. MOR attempts
to improve parameter efficiency during pretraining through a recurrent structure, which requires
training a model from scratch on over 200B tokens. This is extremely costly and makes it difficult
to apply the approach directly to existing open-source SOTA models. In contrast, DND focuses
on unlocking the potential of existing state-of-the-art pretrained models and proposes a plug-and-
play post-training method. Besides, our work differs from MOR in model scale, training phase,
architecture, and routing control (detailed in Appendix. Sec .[C). MOR is limited to 1B-parameter,
whereas our DND successfully scales to a 30B MoE model. We also address a key limitation in
token selection control. Unlike MOR, which relies on z-loss (Zoph et al., 2022) for approximate
load balancing, we achieve precise, stable token selection. Our method jointly enhances routing
discriminability and adjusts thresholds via EMA-synchronized buffer errors.

3 METHODOLOGY

Our method is primarily divided into two main parts: the model architecture design (Sec. 3.1 and
the training strategies (Sec.[3.2), where we detail how we implement dynamic nested depth (DND)
and the carefully designed training strategies used to ensure the effectiveness of the architecture.

3.1 ARCHITECTURE

In the model architecture section, we will introduce how tokens are selected (Sec. [3.1.1)), how the
new nested depth output is computed (Sec. [3.1.2)), and how the vanilla output and dynamic nested
output are fused to obtain the final output (Sec.[3.1.3). The whole architecture is shown in Fig. [2]
Moreover, we apply the DND strategy only to the intermediate layers of the model, keeping the
initial and final layers unchanged to preserve the reasoning patterns learned during pre-training (Ma
et al.,[2023; [Xia et al., 2023). The layers where the DND is applied are denoted as from L to L..

3.1.1 ROUTING DESIGN

When considering the routing paradigm, as shown in Fig.[3|(a), routing the entire sequence with ex-
pert choice creates a mismatch with the next-token prediction paradigm of auto-regressive models.
This is because the full sequence cannot be accessed during early decoding without risking informa-
tion leakage (Raposo et al., 2024). To address this, we adopt token-choice selection, as illustrated in
Fig.[3|(b), which dynamically decides whether each token should undergo further processing.

Concretely, after an initial forward pass through a transformer layer, we obtain the hidden states of
the token sequence, referred to as the vanilla output X,. To determine token preferences for further
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Figure 2: DND Framework. The central idea of DND is a dynamic nested pass of critical tokens
after the vanilla forward process of the transformer layers. Whether a token is selected or not is
determined by a router. The block’s final output is a merged result of vanilla output and nested
output, governed by normalized routing weights.

computation, we employ a router similar to that in MoE architectures, implemented as a simple
linear layer R : Rémee 5 R, where dpoqer denotes the hidden size of the transformer model. For
each token in the sequence, the router takes its hidden state from the vanilla pass, xi € Rmosel | ag
input and distributes a preference score. This score is then normalized using a sigmoid function,
o(+), to yield a probability p* € (0, 1):

p' = o(R(x})) (1)

The selection decision for each token is made independently by comparing its routing probability p
against a pre-defined threshold 7. A token ¢ is selected for reprocessing if and only if p* > 7.

3.1.2 NESTED DEPTH DESIGN

Once the tokens for recurrence are identified, they undergo a nested processing pass through the
same transformer layer. We construct a binary mask M according to the routing result, where each
element m* is defined as:
i 1, ifp'>7
=4 P @
0, ifp'<7
With the binary mask, the chosen states are assembled into a compact sequence for recurrent com-
putation, refining the representations of the selected tokens. This process can be expressed as:

X4 = Unpack(L; (Pack(Xy, M) + E;,os)7 M) 3)

where X4 are the output hidden states from this dynamic nested pass. The Pack(X,, M) operator
selects tokens from the input sequence X, using a mask M to form a compact subsequence. This
subsequence is then given new positional embeddings E;OS and processed by the i-th transformer
layer L;. Finally, the Unpack operator scatters the results back to their original positions within
a zero-padded tensor, guided by the same mask M. This recurrence allows the model to perform
internal “review” iterations, dedicating additional computational depth to refine the representations
of the critical tokens without altering the simpler ones.

3.1.3 FUSION DESIGN

To ensure that the model effectively enhances the representations of critical tokens via the DND
strategy while retaining the knowledge of global token interactions acquired during pretraining, we
propose a normalized fusion strategy. Specifically, we merge the outputs from the vanilla pass (Xy)
and the dynamic nested pass (Xq4) using a gating mechanism. The final output X is computed as:

Xiz{(ﬂi~p)~xv+(1—ﬁ-p)~xd7 ifpl > @

x%, ifp' <7

Here, x’ refers to the merged hidden state of the i-th token. 3 is a learnable parameter that acts
as a balancing factor between the original and nested paths. Similar to (Raposo et al., 2024), this
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Figure 3: Routing Design and Training Strategies. Figure (a) illustrates expert-choice routing,
where the top-k proportion is selected over the entire sequence. Figure (b) shows token-choice rout-
ing, which selects tokens independently and suits auto-regressive models. Figure (c) summarizes our
training strategy: routing outputs are optimized to enhance token distinguishability by dispersing the
token-level routing distribution via Ly and preventing it from collapsing into gradient-vanishing re-
gions via Lgp. In addition, buffer proportional control (Eq. (9)) and EMA synchronization (Eq. (10))
effectively regulate the stability of the selection by computing the real-time error ratio.

fusion is modulated by the token’s own routing score p’, ensuring that tokens deemed more difficult
(higher p*) incorporate a larger portion of their recomputed representation. This design provides a
smooth and adaptive integration, effectively stabilizing the learning process and allowing the model
to control the influence of the additional computation dynamically.

3.2 TRAINING STRATEGIES

Our training strategy is primarily designed to ensure that the model successfully learns to distinguish
tokens in order to perform recurrent computation. As our token-choice routing lacks the explicit
ratio control of top-k mechanisms, we carefully designed strategies to control the two key factors in
selection: the router’s output distribution (Sec. and the selection threshold (Sec. [3.2.2).

3.2.1 ROUTER CONTROLLING LOSS

A primary challenge in controlling the router is ensuring its output scores, p, are sufficiently distin-
guishable. If scores cluster within a narrow range, the token selection process becomes unstable, as
minor fluctuations in the threshold 7 can cause drastic changes in the selection ratio.

To address this, as shown in Fig. [3] (c), we introduce a control strategy built upon a dual-objective
loss function. The core idea is to create a dynamic tension between two competing goals:

1. Score Dispersion: We encourage the scores within a sequence to spread out across a wide
range. This makes the selection robust by creating clear distinctions between tokens.

2. Distribution Preservation: We simultaneously constrain the scores to remain near the
center of the sigmoid function’s dynamic range. This ensures the router remains sensitive
and responsive to its inputs, avoiding gradient vanish.

These competing objectives work in concert to produce a distribution of routing scores that is both
discriminative and stable. We formulate the final routing objective as the total router 1oss, Liouter,
which is jointly optimized with the model’s main cross-entropy loss. The loss is defined as:

Lrouter = )\sdﬁsd + Adpl:dp o)

where Ly is the Score Dispersion Loss and Lgj, is the Distribution Preservation Loss. The hyperpa-
rameters A\gq and Ag, balance the influence of each component.

Score Dispersion Loss. To counteract the tendency for router scores to cluster, we apply a Score
Dispersion Loss, Lg. This loss, based on information entropy, is designed to push the score dis-
tribution towards diversity at each targeted layer. For each layer [ in this range, we take its se-
quence of N routing scores p® = {plv(l), pN ’(Z)} and normalize them to form a distribution:
ph ) = p)/ Zjvzl 7). The total loss is the sum of the information entropy from each layer,
turning the goal of maximizing entropy into a minimization problem for the optimizer:

L.

La= (-HE'™) = Z;Zj PO log( ) ©

I=Lg
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This formulation incentivizes the router to produce a diverse set of scores, making the routing output
discriminative enough across tokens, therefore less sensitive to minor threshold adjustments.

Distribution Preservation Loss. While the router loss, Loyer, promotes a dispersed distribution
of routing scores, its reliance on a sigmoid activation function leads to vanishing gradients as outputs
approach O or 1. This issue is particularly pronounced when the target selection ratio is low (e.g.,
20%) or high (e.g., 80%), as the model may push many scores into the sigmoid’s saturation regions.
Consequently, the model may lose the ability to discriminate between tokens with scores near the
decision threshold. To mitigate this, we introduce a Distribution Preservation Loss, Lq,, Which
counteracts this effect by applying a Mean Squared Error penalty to scores that deviate from 0.5,
thereby preserving gradient flow and enhancing discriminability:

Le N

_ 1 0] 2

fo= 3 (30 -0 o
I=Lg i=1

where p*() is the score of the i-th token at layer [. This objective effectively pulls the score distri-

butions towards the center of the sigmoid’s dynamic range, ensuring the routers remain responsive

to changes in token hidden states.

Together, these two losses create a balanced “push-pull” dynamic. The entropy-based dispersion
loss pushes scores apart to cover a wider spectrum, while the MSE-based preservation loss pulls
them collectively towards the responsive center. The result is a router that produces scores that are
discriminative enough, facilitating more accurate and reliable token selection.

3.2.2 THRESHOLD CONTROL SCHEME

The preceding section introduced our method for enhancing the discriminability of router outputs.
To further refine token selection, we propose a dynamic threshold control scheme, which adap-
tively regulates the threshold to achieve the desired proportion of selected tokens flexibly. Previous
approaches using z-loss could only balance between selecting and not selecting tokens (Bae et al.|
2025)). Inspired by the balance loss proposed in DeepSeek-V3 (Liu et al.,|2024), we design a method
that computes the average selection ratio error in a buffer to adjust the threshold accordingly. Addi-
tionally, we leverage an EMA synchronization to assist in optimizing the threshold.

Buffer Proportional Control. Our primary mechanism for threshold control is a loss-free method
that makes real-time adjustments to the threshold 7. For each mini-batch B of training steps, this
controller computes an error signal, e, representing the deviation between the actual selection ratio
during training and a pre-defined target ratio, yger. € is formulated as:
o — 2 beB va:b1 mj, — fat ®)
Zbeg N, arget

where NV;, is the number of tokens in sample b, and mfj is the binary selection mask. Based on this
error, the threshold is immediately updated via a simple but effective control law:

T—T+a- e ()]
where « is a small step size (proportional gain). This mechanism provides immediate feedback to
stabilize the selection ratio against short-term fluctuations. If too many tokens are selected (e > 0),
T increases to induce a decreasing selection trend; if too few are selected (e < 0), 7 decreases.

EMA Synchronization. While the buffer proportional controller excels at rapid, local adjust-
ments, its effectiveness can degrade when the optimization directions of routing and the threshold
are misaligned. To prevent this drawback, we introduce an auxiliary mechanism that acts as a low-
frequency synchronization loop. Periodically (e.g., every 50 steps), we compute a smoothed ideal
threshold. Specifically, we maintain a buffer of the most recent IV, samples. For each step in this
buffer, we calculate its corresponding Tiopx—the threshold value that would have precisely selected
the target ratio. The average of these values, denoted as Tiopk, serves as a more stable and robust
estimate of the ideal threshold around these optimization steps. The operational threshold 7 is then
gently nudged towards this averaged estimate using an exponential moving average (EMA):
T:(l_’y)'T"'_'Y'%topk (10)
where v is a smoothing factor. This process ensures the router and threshold remain synchronized,
preventing sustained periods of over- or under-selection and promoting long-term training stability.
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Table 1: SFT Performance Comparison of Different Small-Scale Dense LLMs. Performing full-
scale SFT with the DND strategy on the three widely used base models yields additional average
improvements of 1.88, 2.61, and 2.50 points over full-scale SFT alone.

| | General Knowledge & Alignment | Math & STEM | Coding & Agent
‘Average‘ BBH PIQA C-Eval MMLU IFEval‘GPQA GSMSK‘MBPP Human BFCL MultiPLE

Qwen3-1.7B | 59.53 40.82 7538 60.00 64.11 6547 | 28,54 79.38 68.38 6159 58.73 52.45
+ITT 59.58 14123 7599 5951 6492 65.08 | 27.85 8029 | 68.67 60.78 58.62 52.45
+ DND 61.41 |45.84 76.25 60.38 6445 66.87 | 34.34 80.15 | 71.90 62.71 59.80  52.80
A(+-) +1.88 |+5.02 +0.87 +0.38 +0.34 +1.40 | +5.80 +0.77 | +3.52 +1.12 +1.07 +0.35

Llama3.2-1B| 45.37 2573 6548 47.82 5328 5245 | 10.73 6323 49.54 5042 44.89 35.47
+ DND 47.98 [29.43 66.51 49.21 55.63 55.68 | 1459 66.57 | 5291 52.16 47.52 37.56
A (+-) +2.61 |+3.70 +1.03 +1.39 +2.35 +3.23 | +3.86 +3.34 | +3.37 +1.74 +2.63 +2.09

Gemma3-1B | 47.08 2593 7027 50.14 5598 5452 | 1649 6553 4929 52.62 40.69 36.43
+ DND 49.58 |30.62 71.33 51.00 58.04 5691 | 21.79 68.68 | 52.96 53.76 42.88 37.41
A (+-) +2.50 |+4.69 +1.06 +0.86 +2.06 +2.39 | +530 +3.15 |+3.67 +1.14 +2.19 +0.98

4 EXPERIMENTS

4.1 EVALUATION BENCHMARK

We provide an extensive empirical evaluation of DND over a wide variety of benchmarks, demon-
strating its effectiveness and robustness. The evaluation suite covers three primary domains: 1.
General Knowledge & Alignment: MMLU (Hendrycks et al.l 2020), CEval (Huang et al., 2023),
CMMLU (Li et al.l 2023), BBH (Srivastava et al., [2022), DROP (Dua et al.l 2019), IFEval (Zhou
et al, 2023), PIQA (Bisk et all 2020). 2. Mathematics & STEM: Math (Hendrycks et al.,
2021), GSM8k (Cobbe et al. [2021), MATH-500, AIME24, GPQA-Diamond (Rein et al.l [2023),.
3. Coding & Agent: MBPP, MBPP+ (Austin et al. [2021), HumanEval+ (Chen et al., [2021)),
LCB-v5(LiveCodeBench-v5) (Jain et al., [2024), LCB-v6(LiveCodeBench-v6) (Jain et al., 2024),
MultiPL-E (Cassano et al., [2022), BFCL v3 (Live).

4.2 TRAINING DETAILS

Our DND model undergoes standard full-scale supervised fine-tuning (SFT) using a comprehensive
and diverse dataset, with all parameters set as trainable and the same learning rate applied. Our
training data incorporates a significant volume of synthetic material built upon a high-quality seed
set of 1-2 million instances curated from human annotations and open-source materials. The model’s
weights are initialized from the Qwen3-1.7B Base, Llama-3.2-1B, Gemma3-1B-pt, and Qwen3-
30B-A3B Base. Detailed hyperparameters and training settings are provided in Appendix Sec/B]

4.3 MAIN RESULTS

Base Evaluation. As shown in Tab. [I} our method achieves obvious improvements across the three
widely used base models. Especially on datasets that require complex reasoning, such as BBH and
GPQA, the performance boost is particularly notable, with all three models showing an additional
performance improvement of around 5%. Additionally, we found that when the SFT is conducted
with ITT (Chen et al.,|2025) under the same computation cost, the performance improvement is not
as pronounced. The limited performance gains stem from the use of Top-P—based token selection for
auto-regressive LLM, which introduces a mismatch between training and inference, and may also
lead to potential information leakage according to (Raposo et al., [2024)).

Scaling Evaluation. As shown in Tab. 2] our DND strategy consistently improves the performance
of the Qwen3-30B-A3B model, achieving an average gain of +0.87 across 17 benchmarks without
any performance degradation. The impact of DND is most pronounced in Coding and Agent tasks,
yielding notable gains of +2.05 on BFCL v3, +1.42 on LCB-v6, and +1.24 on LCB-v5. These results
strongly support our hypothesis that DND effectively filters extraneous noise, allowing the model
to focus its capacity on sparse, high-value tokens essential for complex reasoning, planning, and
code generation. Importantly, the benefits are not limited to specialized domains: substantial im-
provements are also observed in General and Alignment tasks (+1.83 on C-Eval), alongside robust
generalization on challenging Math and STEM benchmarks. Crucially, these substantial perfor-
mance gains are realized with a negligible increase of only 0.03M parameters, highlighting DND as
a highly parameter-efficient approach for unlocking significant capabilities in LLMs. FLOPs and
Throughput Evaluation. As demonstrated in Appendix Sec. [A] reviewing 20% of the tokens adds
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Table 2: Performance Comparison of Qwen3-30B-A3B with and wothout DND. The final col-
umn shows the difference (A) between the SFT results of vanilla Qwen3-A3B-30B and Qwen3-
A3B-30B+DND. And we list Qwen3-32B and Qwen3-30B-A3B Chat model for reference.

Task Qwen3-32B Qwen3-30B-A3B Qwen3-A3B-30B Qwen3-A3B-30B+DND A
as (Non-Thinking) (Non-Thinking) (SFT) (SFT) (w vs w/o DND)
General & Alignment Tasks
MMLU 82.93 80.12 85.41 85.91 +0.50
CMMLU 84.63 83.13 84.82 85.19 +0.37
BBH 85.45 82.55 86.90 87.03 +0.13
DROP 84.02 86.38 86.21 86.48 +0.27
C-Eval 87.53 85.95 83.09 84.92 +1.83
IFEval 85.27 84.55 83.09 84.31 +1.22
Mathematic & STEM Tasks
MATH 85.26 84.68 88.63 88.78 +0.15
MATH-500 87.40 88.70 92.60 92.80 +0.20
GSM8K 94.54 95.30 94.30 95.10 +0.80
AIME24 27.71 28.33 51.46 52.37 +0.91
GPQA-Diamond 53.60 51.71 56.76 57.67 +0.91
Coding & Agent Tasks
HumanEval+ 82.93 84.15 85.59 86.58 +0.99
MBPP+ 72.75 75.16 78.84 79.54 +0.70
MultiPLE 68.62 66.04 72.60 73.72 +1.12
LiveCodeBench v5 31.44 28.89 29.94 31.18 +1.24
LiveCodeBench v6 28.57 29.43 31.14 32.56 +1.42
BFCL v3 (Live) 75.09 73.69 75.43 77.48 +2.05
Average 72.81 73.44 | 75.70 76.57 | +0.87

Table 3: Comparison of Speed across Different Input and Decode Lengths. The speeds are
measured using BF16 Quantization of LLM and accelerated with vLLM kernels.

Speed (tokens/s)

Input Length Decode Length Relative Speed
Qwen3-30B-A3B + DND (%)
1024 2048 148.68 136.19 91.6
6144 2048 208.60 193.51 92.8
1024 6144 76.16 70.52 92.6
6144 6144 100.89 93.93 93.1

only about 6% extra FLOPs when applying the DND strategy to the Qwen3-30B-A3B model. To
further assess the inference speed of our model in practical settings relative to the baseline, follow-
ing SGLang, as shown in the Tab. 3] we measured the throughput of both Qwen3-30B-A3B and
Qwen3-30B-A3B+DND models under four standard sequence lengths using a single HI00 GPU
with a single batch. The measurement results in the table show that, while achieving performance
improvements, our model consistently reaches 91.6-93.1% of the speed of the vanilla model under
different circumstances.

4.4  ABLATION STUDY

As shown in Tab. i] we conducted ablation experiments of the DND strategy on Qwen3-1.7B.
Training Strategies. We conducted ablation experiments on the proposed training strategy. We
found that when using only the DND framework with a simple z-loss-like method to control token
selection, performance dropped noticeably, yielding an average improvement of only 1.01 points
over Qwen3-1.7B’s SFT performance. This highlights the importance of our carefully designed
training strategy. Moreover, router and threshold control function as complementary components
for token selection control. While each method individually provides marginal gains, their combi-
nation leads to a clear improvement of approximately one percentage point in average accuracy.
Hyper-parameters of Architecture. Besides, we conducted ablation experiments on several im-
portant hyperparameters of the model architecture. For the expected token selection ratio, we tested
10%, 20%, and 30%. We found that when only 10% of tokens were selected, the number of tokens
participating in attention computation was likely too small, resulting in a modest improvement of
just 0.8% over the baseline. In contrast, selecting approximately 20-30% of tokens achieved better
performance. To balance computational efficiency, we chose an expected selection ratio of 20% for
our DND method in the Qwen3-30B-A3B scaling experiments. We also performed ablations on the
number of shallowest and deepest layers retained in the original architecture, finding that keeping
about four layers at both the beginning and the end yielded the best performance. This configuration
was retained in the DND experiments on Qwen3-30B-A3B.
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Table 4: Ablation study of Qwen3-1.7B with DND under different settings. TC indicates thresh-
old control (including buffer proportional control and EMA synchronization), RC indicates router
control (including proposed L and Lgp), layer (L, : L) indicates the layers with DND.

Metric / Setting Qwen3-1.7B +DND | +DND +DND +DND | +DND +DND | +DND +DND
RC (Lyq and Lgp) - v X X v v v v v
TC (BPC & EMA) - v x v x v v v v
Frarger (%) - 20 20 20 20 10 30 20 20
layer (L; : L) - 4:23 4:23 4:23 4:23 4:23 4:23 5:22 3:24
Average 59.53 61.41 60.54 60.58 60.68 60.33 61.03 61.05 60.36
A (+) 0.00 1.88 1.01 1.05 115 0.80 1.50 1.52 0.83
BBH 40.82 45.84 44.69 4347 44.37 44.95 45.17 44.85 44.95
C-Eval 60.00 60.38 60.21 60.38 60.17 59.61 60.32 60.44 59.61
MMLU 64.11 64.45 64.33 64.45 64.26 64.38 64.66 64.25 64.56
GPQA-D 28.54 3434 29.92 31.94 32.79 29.17 33.82 33.82 29.26
PIQA 75.38 76.25 75.87 76.38 76.05 75.95 76.33 76.15 75.95
BFCL 58.73 59.80 59.21 59.32 59.50 59.40 59.92 59.60 59.40
IFEval 65.47 66.87 66.55 66.35 66.19 65.99 67.27 67.31 65.99
GSMSK 79.38 80.15 79.92 79.80 79.77 79.77 79.15 79.53 79.85
Humaneval+ 61.59 62.71 61.59 61.59 61.82 62.15 62.80 62.96 62.15
MBPP 68.38 71.90 70.73 69.84 69.79 69.32 69.09 69.56 69.32
MultiPLE 52.45 52.80 5295 52.88 52.80 52.88 52.82 53.05 52.88
Relationship between Token Selection Count and Token Logit Entropy Relationship between Token Selection Count and Logit Entropy Difference
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Figure 4a: Entropy of Selected Tokens. The selec- Figure 4b: Logits Variation after DND. For rarely
tion frequency of a token correlates positively with selected tokens, logit entropy fluctuates evenly, but
its original logit entropy in the vanilla pass. it decreases as selection frequency increases.

4.5 TOKEN SELECTION ANALYSIS

Why critical tokens are selected? As shown in Fig. [fa] to examine whether the tokens selected
by our DND model are indeed critical, we analyze the relation between the selection frequency of
tokens routed by Qwen3-30B-A3B+DND and the vanilla model’s logit entropy without any repro-
cessing. According to the findings in (Ma et al.| [2025)), high entropy in the logit indicates that the
model is uncertain about which vocabulary to select or is hesitating between multiple possible an-
swers. We find that tokens with higher logit entropy are frequently selected by the router across
multiple layers. This shows that DND preferentially selects tokens with greater uncertainty, validat-
ing the motivation behind critical token selection and confirming the effectiveness of the router.
Why better representations are learned? Furthermore, as shown in Fig. [dD] to validate that our
DND strategy reduces the model’s hesitation or uncertainty about critical tokens, we evaluated the
variation in logit entropy for the same token after applying the DND strategy, compared to the en-
tropy in the vanilla model. We found that after nested reviews, the logit entropy of the selected
tokens significantly decreased, proving the effectiveness of our method.

Impact of EMA Synchronization Threshold Visualization during Training. As illustrated

1B, A o + oAl B in Fig. 5] we analyze the threshold dynamics of the 24th
wo EMA Synchronization ¢ large factor. 1, layer in our DND (Qwen3-30B-A3B) model by presenting

018 AN the effect of two different approaches for threshold control.

Adopting buffer proportional control alone exhibits a criti-
cal tuning challenge: a small adjustment factor (purple line)
causes the threshold to adapt too slowly, consistently fail-
ing to reach the target selection ratio and thereby impairing
160 260 360 160 si0 early training performance. Conversely, an excessively large
Training Step factor (pink line) leads to volatile oscillations around the tar-
Figure 5: Threshold Adjustment get, which compromises stability. In contrast, incorporating
during Training. With EMA synchro- our EMA synchronization (blue line) enables rapid thresh-
nization, the threshold can be adjusted old adjustments, maintaining synchronization between the
smoothly and in real time. router and threshold, thereby ensuring stable selection.

Threshold Value
€ e

=

-
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Figure 6a: Selected Ratio Comparisons. The aver- Figure 6b: Selected Ratio Comparisons. Oscilla-
age selection ratio is stably controlled with our pro- tions arising from insufficient discrimination are re-
posed buffer proportional control strategy. duced by introducing the router controlling loss.

Selected Ratio Visualization during Training. As shown in Fig. [6a] introducing EMA synchro-
nization alone struggles to regulate token selection, as its non-real-time adjustments often misalign
with the model’s optimization trajectory, resulting in large and persistent oscillations. By introduc-
ing buffer proportional control, we provide a high-frequency corrective loop. As a result, oscillations
are rapidly suppressed to within a tight 5% band, successfully stabilizing the selection. Besides, as
shown in Fig. [6b] introducing the router controlling loss significantly reduces the magnitude of os-
cillations, demonstrating its effectiveness in enhancing the discriminability of token routing outputs.

Selected Ratio across Transformer Layers with DND.
0.6 Q: "Two quantum states with energies - and have a lifetime of 10*-9

sec and 10”-8 sec, respectively. We want to clearly distinguish these two

Shallow Layers Middle Layers Deep Layers Dataset " a !
0.5 Drop energy levels. Which one their energy difference?
: Choices: A. 10*-9 eV B. 10*-11 eV C. 10*-4 eV D. 10*-8 eV"
—— MBPP
iFEval A: "For a state with a finite lifetime, the energy uncertainty AE is

approximately: AE =h/ (2At).

For 1: lifetime At =10- °s AE: =h/(2At )=(6.582 x 10" ' eV-s)
OQ\ /(2% 10" °s)=3.29 x 10" “eV
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)
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Figure 7a: Selected Ratio during Evaluation. Token se- Figure 7b: Visualization Results. Highlighted

lection ratio tends to be slightly higher in the middle layers tokens are frequently selected, with darker red
as well as in the shallowest and deepest layers. indicating higher selection in deeper layers.

Selected Ratio Visualization during Evaluation. To validate our training methodology, we evalu-
ated the DND model’s inference-time behavior across a diverse suite of benchmarks, including agent
tasks, reasoning, and code generation. The average token selection ratios across all layers consis-
tently aligned with our target, ranging from 0.178 to 0.242, which confirms the effectiveness of our
whole control strategy. A more granular, layer-wise analysis in Fig. [7a| reveals a nuanced pattern
where selection is slightly elevated in the middle layers and the first layers from each end. Comple-
menting this quantitative success, a qualitative visualization of the GPQA dataset in Fig. [7b|reveals
an interesting phenomenon. Tokens selected by shallower layers (lighter colors) are predominantly
essential nouns, while those selected by deeper layers (darker colors) correspond to more abstract
or syntactically critical components like mathematical expressions and key verbs. This suggests that
the model learns a hierarchical processing strategy, using earlier layers to identify key entities and
later layers to perform more complex relational and logical operations.

5 CONCLUSION

In this work, we introduce Dynamic Nested Depth (DND), a novel and efficient method for enhanc-
ing Large Language Model performance. DND adaptively identifies critical tokens and selectively
deepens their computation via nested re-processing. This is achieved through a token-choice routing
design with a normalized output fusion strategy. The precision and stability of this selection pro-
cess are guaranteed by our router controlling loss and threshold control scheme. We validated DND
on both dense (Qwen3-1.7B, Llama3.2-1B, Gemma3-1B) and larger-scale sparse MoE (Qwen3-
30B-A3B) models, demonstrating substantial accuracy improvements with a negligible parameter
increase (< 0.1M) and minimal computing increase. These results affirm that targeted, dynamic
nested depth computation is a powerful method for boosting LLMs’ performance.
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A COMPUTATIONAL OVERHEAD ANALYSIS OF THE DYNAMIC TOKEN
RECALCULATION STRATEGY

We conduct a formal analysis of the computational overhead introduced by the dynamic nested
depth strategy within a Qwen3-MoE architecture. The strategy aims to refine the representations
of critical tokens by performing a secondary, partial forward pass. Our objective is to quantify the
percentage increase in Floating-Point Operations (FLOPs) for a scenario with a sequence length of
16,384 tokens (S = 16, 384), where 20% of tokens (r = 0.2) are selected for this recalculation.
The DND mechanism is selectively applied to the 40 intermediate layers of the 48-layer model,
excluding the initial four and final four layers.

The FLOPs for a single decoder layer are dominated by the self-attention mechanism and the
Mixture-of-Experts (MoE) feed-forward network. The computational complexity of self-attention is
quadratic with respect to sequence length (FLOPs,,, ~ 4N, dj, S?), while the MoE MLP complexity
is linear (FLOPS e &~ 65k H I1,.). The additional computation from the DND policy’s nested pass,
processing a fraction r of the tokens, is therefore FLOPS geq & 72 - FLOPS 4 (S) 47 - FLOPS 0 (S).
The analysis is based on the parameters detailed in Tab. [5]

Table 5: Key Model and Strategy Parameters

Parameter Symbol  Value
Sequence Length (original) S 16,384
Hidden Size H 2,048
Number of Attention Heads Ny, 32
Head Dimension dy, 128
Total Decoder Layers Liotal 48
Layers with DND enabled Lana 40
MOoE Intermediate Size Tinoe 768
Activated Experts per Token k 8
Recalculation Ratio r 0.20

For a standard layer operating on a 16k sequence, the self-attention component requires approxi-
mately 4.40 x 10> FLOPs, and the MoE MLP requires 1.24 x 10'> FLOPs, totaling 5.64 x 10'°
FLOPs per layer. The additional computation from the nested pass is calculated as (0.2)? - (4.40 x
10%%)4(0.2) - (1.24 x 10®) = 0.424 x 10'® FLOPs. This constitutes a per-layer overhead of 7.52%
for the DND-enabled layers. When scaled across the entire model, the total computational overhead
is proportional to the fraction of layers implementing the strategy.

FLOPS,44e Lan,
Overheadr, = ( Sadd d) x —dnd

FLOPSlayer

In conclusion, the DND strategy with a 20% token recalculation ratio results in a modest total com-
putational overhead of approximately 6.27%. This increase in FLOPs should be weighed against
the potential gains in model performance that the targeted recalculation may provide.

B MORE DETAILS

Hyper-parameters. For the value of L and L., we determined through ablation experiments that
L; = 4 and L. = 43. In terms of the proportion of tokens to review, we balance performance
and efficiency through ablation experiments on the Qwen1.7B model, ultimately setting the K to
20%. For the initialization of the parameter 3, to prevent overly gentle learning of the DND logic
in the early training phase, we initialize it to 0.1. Regarding the hyperparameters defined in the
training strategy loss function, due to the approximate 60x magnitude difference between the two
loss extremes, we set Ay to 3e-4 and A\gp to 0.02. The buffer size V;, and the adjustment factor «
are set to 5 and 5e-3 to balance stability and real-time performance, and -y is set to 0.2. To ensure
stability during initial training, we initialize token routers with all zeros and set the threshold to 0.5.
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Table 6: Differences between our DND approach and MOR. Both methods aim to improve per-
formance via increased computational depth, but differ significantly in implementation and control.

Aspect | MOR | Ours (DND)
Validation & Scaling
Application Stage | Pre-training (Train from scratch). | Post-training (SFT).
Model Scale ‘ Limited to models with around 1B parameters. ‘ Applied from 1B dense to 30B MoE models.
Achieve comparable performance with fewer Achieve better performance with almost unchanged
Purpose parameters by using dynamically cycled depth parameter count by adding only a small amount of
under the same FLOPs budget. extra depth computation.
Compatibilit Requires from-scratch pre-training and Strong compatibility; Can be directly applied
P ¥ substantial architectural changes when applying. to existing models post-training.
Methodology
. . . Employs a normalized fusion strategy to combine
Architecture Dynamic depth output is treated as the final state.

dynamic and original outputs.

Introduces a precise ratio control method via

Token Selection ‘ Relies on z-loss, an indirect load-balancing. discriminative routing output and dynamic thresholds

Flexibly regulates the token selection proportion

Control Precision to any specified target.

Lacks precise control over the ratio of different depths.

Training Details. The post-training stage uses the AdamW optimizer (Loshchilov & Hutter,
2017), with 81 = 0.9, B2 = 0.95, weight decay of 0.1, and gradient clipping at 1.0. During the
post-training stage, we employ a cosine learning rate scheduler with a learning rate of 5 x 10~°
that gradually decays to a minimum of 1 x 1075, All experiments are run on H800 GPUs. For
Qwen3-1.7B, training is conducted for two epochs across 128 GPUs, taking one day. For Qwen3-
30B-A3B, training is conducted for four epochs across 256 GPUs, taking approximately three days.
For Llama-3.2-1B and Gemma3-1B, training is conducted for two epochs across 64 GPUs, taking
approximately 1-2 days.

Evaluation Metrics. The evaluation includes several specialized testing protocols:

AIME Evaluation: On AIME24, we run inference 16 times per question for each model and report
the average accuracy.
IFEval Scoring: The final score for IFEval is the average of the strict accuracies at both the prompt
and instruction levels.

C DETAILED COMPARISONS WITH MOR

As shown in the Tab.[6} our DND differs significantly from MOR in terms of validated model scale,
compatible training paradigms, model architecture, and token selection control strategies.

D MORE TOKEN SELECTION ANALYSIS

Beyond the entropy analysis of token logits in Sec. 3] we further examined another selection
pattern of DND across layers. Specifically, we measured the variation in each token’s hidden state
across transformer layers. As shown in Fig. [§] we found that DND tends to select tokens whose
representations change more strongly after passing through a certain transformer layer. This suggests
that the model may be less confident about such tokens and therefore chooses to revisit them to obtain
a more reliable representation.

E MORE VISUALIZATIONS

In the main text, we present visualizations of token selection by DND on general language tasks.
In this section, we further provide visualizations for mathematics and coding tasks in Fig. [9] and
Fig.[10] As shown, DND selectively allocates additional computation to key intermediate results and
calculation steps in mathematics, while focusing on critical variables and essential logical comments
in code. These observations align with our motivation and further validate the effectiveness of DND.
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The Relation between Representation Similarity and Selection
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Figure 8: Analysis of the Relationship between DND’s Selection Preference and the Magnitude
of Hidden State Changes across Transformer Layers. DND exhibits a stronger preference for
selecting tokens whose representations undergo larger changes after passing through a given layer.

Question: "Dave bought a large pack of french fries and ate fourteen before a hungry seagull stole the pack out of his hand. When the

seagull landed, he gobbled down half the amount of french fries that Dave ate. Then three pigeons bullied him away from the food, and

each pigeon ate three fries. Later, a raccoon stole two thirds of the fries. Ants carried off , leaving five behind.
french fries were in the pack when Dave bought it?

Let's think step by step.

Answer:"

Prediction: "Let's work through this step by step.

1. Let the total number of french fries in the pack be x.
2. Dave ate 14 fries. So, remaining after Dave: x - 14

3. The seagull ate half the amount Dave ate: Half of 14 = 7 fries So, seagull ate 7 fries. after seagull: (x-14)-7=x-21
4. Three pigeons each ate 3 fries: 3 pigeons x 3 fries = 9 fries eaten by pigeons after pigeons: (x-21)-9=x-30

5. A raccoon stole two-thirds of the remaining fries:

Raccoon took (2/3)(x - 30) So, two-thirds gone, one-third : Remaining after raccoon: (1/3)(x - 30)

6. Ants carried off 1 fry, leaving 5 behind: So, before ants took 1, there were 5 + 1 = 6 fries Therefore: (1/3)(x - 30) = 6
Multiply both sides by 3: x-30 =18 x=18+30 x =48

So, the pack had 48 french fries.

Let’s verify:- Start: 48 - Dave eats 14 -> 48 - 14 = 34 - Seagull eats 7 > 34 - 7 = 27 - Pigeons eat 9 - 27 - 9 = 18- Raccoon steals 2/3 of 18 =
125> 18-12=6-Antstake1->6-1=5 All

The answer is 48"

Figure 9: Visualization Results of A Mathematical Example. Highlighted tokens are frequently
selected, with orange indicating higher selection frequency in shallow layers and darker red repre-
senting higher selection in deeper layers.

F FAILURE CASE ANALYSIS

As shown in Fig. [IT] we present a representative example in which Qwen3-30B-A3B answers cor-
rectly, but Qwen3-30B-A3B+DND fails. In this example, the task is to match foods to their corre-
sponding meals based on the user’s description. Under the DND “reviewing” critical tokens mode,
the temporal cue “Earlier” in the prompt is excessively reviewed, which leads the model to overem-
phasize earlier times of day (roughly morning and noon). As a result, it incorrectly associates coffee
with breakfast and pizza with lunch, and answers “breakfast and lunch” instead of the correct, un-
known category “‘snack.”

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used as a writing aid in the preparation of this manuscript.
Their use was strictly limited to improving grammar, phrasing, and formatting. All scientific content,
including research ideas, methodology, data analysis, and conclusions, was conceived and developed
exclusively by the authors. The authors have reviewed all Al-generated suggestions and take full
responsibility for the final manuscript’s accuracy and integrity.
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Question:"You are given a sequence of N positive integers A=(A_1,A_2,\\dots,A_N).
Find the number of of integers (1,r) satisfying 1\\leq I\\leq r\\leq N such that the subsequence
(A_I,A_{1+1},\\dots,A_r) forms an arithmetic progression.
A sequence (x_1,x_2,\\dots,x_{|x|}) is an arithmetic progression if and only if there exists a d such
that x_{i+1}-x_i=d\\ (1\\leq i< |x]).
In particular, a sequence of length 1 is always an arithmetic progression.
within delimiters as follows.
““python
# YOUR CODE HERE

### Answer: (use the provided format with backticks)"
Prediction: "™
# Read input
= int(input())
= list(map(int, input().split()))

python

# Count arithmetic progressions
=0

# Every single element is an arithmetic progression
count += N

# Check all pairs of elements (length 2)
foriin range(N - 1):
if A[i] == A[i + 1]:
count+=1

# Check all subsequences of length >=3
for lin range(N):
for rin range(l + 2, N): #length >=3
# Check if A[l:r+1] is arithmetic
d=A[l+1]-A[l]
is_arithmetic = True
foriinrange(l+1,r):
if Ali + 1] - A[i] !=d:
is_arithmetic = False
break
if is_arithmetic:
count+=1

print(count)

Figure 10: Visualization Results of A Code Generation Example. Highlighted tokens are fre-
quently selected, with orange indicating higher selection frequency in shallow layers and darker red
representing higher selection in deeper layers.

"gold": "[{'log_food": {*food_name": [frozen mango'], 'meal_type": [ 'snack']}}, {'log_food": {'food_name": ['chai tea'], 'meal_type": ['snack’]}},
{!log_food": {'food_name': ['pepperoni pizza'], 'meal_type": ['snack]}}, {log_food" {food_name': ['coffee’], 'meal_type" ['snack']}}]",
"prediction": "[log_food(food_name="frozen mango", meal_type="snack"), log_food(food_name="chai tea", meal_type="snack"),
log_food(food_name="pepperoni pizza", meal_type="lunch"), log_food(food_name="coffee", meal_type="breakfast")]",

"origin_prompt": [
"content": ""You are given a list of foods someone ate today: apple (1 piece) and coffee (1 cup). For each food, decide which meal

type it belongs to: breakfast, lunch, dinner, or snack. Answer with a Python list of strings, one for each food, in the same order.",
"role": "system"

h

{
"content": "l had 8 pieces of frozen mango and a chai tea.\n\n Earlier | had two slices of pepperoni pizza and a coffee",
"role": "user"

}

]
}

Figure 11: Failure Case of DND. DND may make errors by over-interpreting certain latent or weak
pieces of evidence tokens.
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H LIMITATIONS AND FUTURE WORKS

* Our experiments primarily focus on validating the effectiveness of the DND strategy during
the post-training stage of LLM. Its impact in pre-training or continual pre-training settings
remains to be further explored.

* While we have applied DND in large auto-regressive models, exploring its applicability
to other types of LLMs, such as diffusion-based LLMs, may be a promising direction for
future research.

* Our subjective analyses reveal layer-wise preferences for different token types and show
that the final token selection ratios vary across layers. Such observations could offer valu-
able insights for the design of future models.
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