
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DND: BOOSTING LARGE LANGUAGE MODELS WITH
DYNAMIC NESTED DEPTH

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Dynamic Nested Depth (DND), a novel method that improves per-
formance for off-the-shelf LLMs by selecting critical tokens to reprocess in a
nested depth manner. Specifically, at the end of the given transformer layer, DND
identifies more critical tokens with a router and feeds them back for an extra round
of processing, effectively “reviewing” difficult tokens while avoiding redundant
computation for easier ones. The dynamic selection mechanism is tailored for
precise control via two novel strategies: a router controlling loss to enhance token
selection distinguishability, and a threshold control scheme to ensure selection sta-
bility. We demonstrate the effectiveness of DND by directly integrating it into pre-
trained dense and MoE models during a post-training phase. On diverse bench-
marks, DND boosts the performances of the dense Qwen3-1.7B, Llama3.2-1B,
and Gemma3-1B by 1.88%, 2.61%, and 2.50% and the MoE Qwen3-30B-A3B by
0.87%, all with a minimal parameter and computing increase.

1 INTRODUCTION

Large Language Models (LLMs) have transformed artificial intelligence with their powerful abil-
ities. The main strategy for improving them has been scaling, as empirical laws show that model
performance predictably increases with more parameters, data, and computation (Achiam et al.,
2023; Team et al., 2024; Yang et al., 2025; Liu et al., 2024). However, this scaling paradigm has
significant drawbacks. The computational overhead for both training and inference grows expo-
nentially with model size. This trend underscores a critical need for more efficient approaches to
enhance model performance beyond simple brute-force scaling.

A key insight from (Gloeckle et al., 2024) is that prediction difficulty varies significantly across
tokens; some are trivial to predict, while others demand deep computational processing. This dis-
parity motivates token-level adaptive computation, where models can focus resources on the most
critical inputs. A foundational version of this approach is token pruning, which has been shown
to be effective across language understanding (Bae et al., 2025), model compression (Yang et al.,
2022b), and vision (Hojjat et al., 2025). By filtering out uninformative tokens, these methods reduce
computational overhead and can even improve robustness by mitigating noise. This establishes a bi-
nary choice: a token is either discarded or processed normally. Furthermore, we propose the natural
next step: instead of merely retaining challenging tokens for standard processing, we should allocate
additional computation to them, ensuring these critical tokens are properly understood.

Our choice of how to allocate additional computation is inspired by latent strategies in test-time
scaling (Hao et al., 2024; Saunshi et al., 2025). Unlike using explicit output expansion like COT,
these methods recur computation in hidden states, scaling inference without extra text generation.
They observed that reasoning tokens place uneven demands on computation: as illustrated in Fig. 1,
most tokens serve fluency, while a few critical ones drive complex planning or logical transitions.

Inspired by these two perspectives, we propose to integrate token-level selection with latent-space
deepening. Instead of uniformly applying extra recurrent depth to all tokens, we dynamically select
the subset of tokens that pose greater difficulty and reprocess them through transformer layers. This
design not only concentrates additional computation on the most critical tokens but also allows the
model to refine their hidden representations through internal “review” iterations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Transformer Layer

Token Selection

Transformer Layer

Transformer Layer

Token Selection

Transformer Layer

Q: "Two quantum states with energies E1 and E2
have a lifetime of 10-9 sec and 10-8 sec, respectively.

We want to clearly distinguish these two energy
levels. Which one could be their energy difference?

 Choices: A. 10-9 eV B. 10-11 eV C. 10-4 eV D. 10-8 eV"
Share

...
...

A: "For a state with a finite lifetime, the
energy uncertainty ΔE is : ΔE ≈ ħ / (2Δt).
...

 Transformer Layer

Linear Selection Router

 Transformer Layer

Shallow → Deep

Nested Depth

Figure 1: DND Motivation. The tokens highlighted in red denote critical elements in the QA pair.
We propose a strategy within the transformer layers to identify and allocate additional computation
to these critical tokens. Ls and Le indicate the starting and end layers that adopted this strategy.

To achieve dynamic selection and recalculation of critical tokens, we propose a novel architecture
and training strategy. Specifically, as shown on the right of Fig. 1, we incorporate a linear layer as
a router at the end of the transformer block with DND strategies. To achieve more robust routing
and avoid potential information leakage during the inference of auto-regressive LLMs (Raposo et al.,
2024), we adopt a token-choice routing strategy. In this approach, each token is routed independently
based on whether its output exceeds a predefined threshold. The selected tokens are reorganized into
a new sequence and are re-fed to compute the dynamic nested output. Moreover, as DND is a post-
training method, we carefully design a normalized fusion strategy that integrates the dynamic nested
output with the original forward output to preserve global pre-training knowledge.

In terms of training strategies, since our routing method treats each token independently, it lacks
the precision of the top-k ratio routing when selecting tokens for recurrent computation (Raposo
et al., 2024). To address this, we carefully design training strategies to control both the routers that
determine token selection preferences and the thresholds that ultimately decide whether a token is
selected. To enhance token selection distinguishability, we optimize the router’s output distribution,
encouraging the outputs across tokens to be distinguishable through a router controlling loss. To
stabilize the token selection ratio during training, we adopt a threshold control scheme, where the
threshold is updated based on the error between the expected ratio and the actual ratio computed
over a sample buffer. Furthermore, to ensure more synchronized control, we update the threshold by
blending it with the average top-k routing values using an exponential moving average (EMA).

Our method is a post-training approach that can be directly integrated into existing dense and
Mixture-of-Experts (MoE) architectures. Experiments demonstrate its efficacy: by effectively se-
lecting tokens, it substantially improves model performance across language, mathematics, rea-
soning, and coding tasks. The effectiveness is validated on both three small-scale dense models,
Qwen3-1.7B, Llama3.2-1B, Gemma3-1B and a large-scale sparse MoE model, Qwen3-30B-A3B.
Overall, our core contributions are:

• We introduce Dynamic Nested Depth (DND), an efficient paradigm that adaptively identi-
fies critical tokens and selectively deepens their computation via nested re-processing.

• We design a tailored training strategy with a routing distribution control for token selection
precision and an adaptive threshold control scheme for selection stability.

• Extensive experiments show that DND can be directly integrated into both dense and MoE
architectures through post-training to achieve notable performance gains with minimal pa-
rameter and computation increase.

2 RELATED WORKS

2.1 ADAPTIVE TOKEN SELECTION

Token-level adaptive selection is most commonly applied in model quantization and compres-
sion (Yang et al., 2022b;a; Bondarenko et al., 2021), where Bayesian optimization methods are
used to determine the appropriate compression ratios for tokens with varying levels of importance.
This approach not only reduces computational redundancy but also mitigates the adverse effects of
irrelevant tokens on the model’s attention mechanism. Beyond the realm of model compression, to-
ken selection has also been explored in the field of computer vision (Luo et al., 2025; Gadhikar et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024; Hojjat et al., 2025). Motivated by the fact that visual representations often contain significant
redundancy—due to irrelevant background information and high similarity between neighboring
tokens—researchers have developed adaptive token selection strategies to address this issue. This
strategy has been successfully applied to various vision tasks, including classification, detection,
and retrieval. In general-purpose models, token selection is most notably employed in Mixture-of-
Experts (MoE) architectures (Jiang et al., 2024; Yang et al., 2025; Liu et al., 2024), where a linear
router dynamically assigns input tokens to specialized expert modules. Building on these insights,
we propose the Dynamic Nested Depth (DND) approach, which adaptively selects tokens that are
critical to represent and dynamically extends the model’s depth for their processing.

2.2 DYNAMIC REASONING DEPTH

Dynamic adjustment mechanisms for inference paths can generally be classified into two primary
approaches. The first line of work focuses on reducing computational redundancy, with notable
techniques such as early exit (Zhou et al., 2025; Leviathan et al., 2023) and MOD (Raposo et al.,
2024), which dynamically reduce the depth of computation layers to lower overall redundancy. The
second line of research investigates the test-time scaling law, which shows that repeatedly processing
tokens within a single layer can enhance final inference accuracy. A sophisticated variant of this
approach is the Latent Strategy (Hao et al., 2024; Saunshi et al., 2025), where reasoning is carried
out within hidden states—either by completing all steps before producing an answer or by leveraging
recurrent inference to iteratively refine them.

The most closely related studies to our work are ITT (Chen et al., 2025) and MOR (Bae et al., 2025),
both of which dynamically select a subset of tokens for additional computation and yield certain
performance improvements. While sharing MOR (Bae et al., 2025)’s goal of improving performance
via dynamically increased computational depth, the two still differ fundamentally. MOR attempts
to improve parameter efficiency during pretraining through a recurrent structure, which requires
training a model from scratch on over 200B tokens. This is extremely costly and makes it difficult
to apply the approach directly to existing open-source SOTA models. In contrast, DND focuses
on unlocking the potential of existing state-of-the-art pretrained models and proposes a plug-and-
play post-training method. Besides, our work differs from MOR in model scale, training phase,
architecture, and routing control (detailed in Appendix. Sec . C). MOR is limited to 1B-parameter,
whereas our DND successfully scales to a 30B MoE model. We also address a key limitation in
token selection control. Unlike MOR, which relies on z-loss (Zoph et al., 2022) for approximate
load balancing, we achieve precise, stable token selection. Our method jointly enhances routing
discriminability and adjusts thresholds via EMA-synchronized buffer errors.

3 METHODOLOGY

Our method is primarily divided into two main parts: the model architecture design (Sec. 3.1) and
the training strategies (Sec. 3.2), where we detail how we implement dynamic nested depth (DND)
and the carefully designed training strategies used to ensure the effectiveness of the architecture.

3.1 ARCHITECTURE

In the model architecture section, we will introduce how tokens are selected (Sec. 3.1.1), how the
new nested depth output is computed (Sec. 3.1.2), and how the vanilla output and dynamic nested
output are fused to obtain the final output (Sec. 3.1.3). The whole architecture is shown in Fig. 2.
Moreover, we apply the DND strategy only to the intermediate layers of the model, keeping the
initial and final layers unchanged to preserve the reasoning patterns learned during pre-training (Ma
et al., 2023; Xia et al., 2023). The layers where the DND is applied are denoted as from Ls to Le.

3.1.1 ROUTING DESIGN

When considering the routing paradigm, as shown in Fig. 3 (a), routing the entire sequence with ex-
pert choice creates a mismatch with the next-token prediction paradigm of auto-regressive models.
This is because the full sequence cannot be accessed during early decoding without risking informa-
tion leakage (Raposo et al., 2024). To address this, we adopt token-choice selection, as illustrated in
Fig. 3 (b), which dynamically decides whether each token should undergo further processing.

Concretely, after an initial forward pass through a transformer layer, we obtain the hidden states of
the token sequence, referred to as the vanilla output Xv. To determine token preferences for further

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The Vanilla Pass The Nested Pass

Norm Layer

Attention Layer

Norm Layer

FFN

 Router

Norm Layer

Attention Layer

Norm Layer

FFN

 Router

Vanilla Output of
Selected Tokens

Normalized Fusion Strategies

Unselected Tokens

Selected Tokens
＋

Vanilla Dynamic Nested

 Router

(1-)

①

① ②

②

③

③

(Share Weights)

Input

Nested Depth

After first forward

Figure 2: DND Framework. The central idea of DND is a dynamic nested pass of critical tokens
after the vanilla forward process of the transformer layers. Whether a token is selected or not is
determined by a router. The block’s final output is a merged result of vanilla output and nested
output, governed by normalized routing weights.

computation, we employ a router similar to that in MoE architectures, implemented as a simple
linear layer R : Rdmodel → R, where dmodel denotes the hidden size of the transformer model. For
each token in the sequence, the router takes its hidden state from the vanilla pass, xi

v ∈ Rdmodel , as
input and distributes a preference score. This score is then normalized using a sigmoid function,
σ(·), to yield a probability pi ∈ (0, 1):

pi = σ(R(xi
v)) (1)

The selection decision for each token is made independently by comparing its routing probability pi

against a pre-defined threshold τ . A token i is selected for reprocessing if and only if pi > τ .

3.1.2 NESTED DEPTH DESIGN

Once the tokens for recurrence are identified, they undergo a nested processing pass through the
same transformer layer. We construct a binary mask M according to the routing result, where each
element mi is defined as:

mi =

{
1, if pi > τ

0, if pi ≤ τ
(2)

With the binary mask, the chosen states are assembled into a compact sequence for recurrent com-
putation, refining the representations of the selected tokens. This process can be expressed as:

Xd = Unpack(Li(Pack(Xv,M) +E′
pos),M) (3)

where Xd are the output hidden states from this dynamic nested pass. The Pack(Xv,M) operator
selects tokens from the input sequence Xv using a mask M to form a compact subsequence. This
subsequence is then given new positional embeddings E′

pos and processed by the i-th transformer
layer Li. Finally, the Unpack operator scatters the results back to their original positions within
a zero-padded tensor, guided by the same mask M. This recurrence allows the model to perform
internal “review” iterations, dedicating additional computational depth to refine the representations
of the critical tokens without altering the simpler ones.

3.1.3 FUSION DESIGN

To ensure that the model effectively enhances the representations of critical tokens via the DND
strategy while retaining the knowledge of global token interactions acquired during pretraining, we
propose a normalized fusion strategy. Specifically, we merge the outputs from the vanilla pass (Xv)
and the dynamic nested pass (Xd) using a gating mechanism. The final output X is computed as:

xi =

{
(β · pi) · xi

v + (1− β · pi) · xi
d, if pi > τ

xi
v, if pi ≤ τ

(4)

Here, xi refers to the merged hidden state of the i-th token. β is a learnable parameter that acts
as a balancing factor between the original and nested paths. Similar to (Raposo et al., 2024), this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 Router

Top 25%

(a) Expert Choice (b) Token Choice

 Router
0.5

1

0

Threshold Eq. (9) (10)

(c) Training strategy towards
token choice selection

Gradient Vanish

Figure 3: Routing Design and Training Strategies. Figure (a) illustrates expert-choice routing,
where the top-k proportion is selected over the entire sequence. Figure (b) shows token-choice rout-
ing, which selects tokens independently and suits auto-regressive models. Figure (c) summarizes our
training strategy: routing outputs are optimized to enhance token distinguishability by dispersing the
token-level routing distribution via Lsd and preventing it from collapsing into gradient-vanishing re-
gions via Ldp. In addition, buffer proportional control (Eq. (9)) and EMA synchronization (Eq. (10))
effectively regulate the stability of the selection by computing the real-time error ratio.

fusion is modulated by the token’s own routing score pi, ensuring that tokens deemed more difficult
(higher pi) incorporate a larger portion of their recomputed representation. This design provides a
smooth and adaptive integration, effectively stabilizing the learning process and allowing the model
to control the influence of the additional computation dynamically.

3.2 TRAINING STRATEGIES

Our training strategy is primarily designed to ensure that the model successfully learns to distinguish
tokens in order to perform recurrent computation. As our token-choice routing lacks the explicit
ratio control of top-k mechanisms, we carefully designed strategies to control the two key factors in
selection: the router’s output distribution (Sec. 3.2.1) and the selection threshold (Sec. 3.2.2).

3.2.1 ROUTER CONTROLLING LOSS

A primary challenge in controlling the router is ensuring its output scores, pi, are sufficiently distin-
guishable. If scores cluster within a narrow range, the token selection process becomes unstable, as
minor fluctuations in the threshold τ can cause drastic changes in the selection ratio.

To address this, as shown in Fig. 3 (c), we introduce a control strategy built upon a dual-objective
loss function. The core idea is to create a dynamic tension between two competing goals:

1. Score Dispersion: We encourage the scores within a sequence to spread out across a wide
range. This makes the selection robust by creating clear distinctions between tokens.

2. Distribution Preservation: We simultaneously constrain the scores to remain near the
center of the sigmoid function’s dynamic range. This ensures the router remains sensitive
and responsive to its inputs, avoiding gradient vanish.

These competing objectives work in concert to produce a distribution of routing scores that is both
discriminative and stable. We formulate the final routing objective as the total router loss, Lrouter,
which is jointly optimized with the model’s main cross-entropy loss. The loss is defined as:

Lrouter = λsdLsd + λdpLdp (5)

where Lsd is the Score Dispersion Loss and Ldp is the Distribution Preservation Loss. The hyperpa-
rameters λsd and λdp balance the influence of each component.

Score Dispersion Loss. To counteract the tendency for router scores to cluster, we apply a Score
Dispersion Loss, Lsd. This loss, based on information entropy, is designed to push the score dis-
tribution towards diversity at each targeted layer. For each layer l in this range, we take its se-
quence of N routing scores p(l) = {p1,(l), . . . , pN,(l)} and normalize them to form a distribution:
p′,i,(l) = pi,(l)/

∑N
j=1 p

j,(l). The total loss is the sum of the information entropy from each layer,
turning the goal of maximizing entropy into a minimization problem for the optimizer:

Lsd =

Le∑
l=Ls

(
−H(p′(l))

)
= −

Le∑
l=Ls

N∑
i=1

p′,i,(l) log(p′,i,(l)) (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This formulation incentivizes the router to produce a diverse set of scores, making the routing output
discriminative enough across tokens, therefore less sensitive to minor threshold adjustments.

Distribution Preservation Loss. While the router loss, Lrouter, promotes a dispersed distribution
of routing scores, its reliance on a sigmoid activation function leads to vanishing gradients as outputs
approach 0 or 1. This issue is particularly pronounced when the target selection ratio is low (e.g.,
20%) or high (e.g., 80%), as the model may push many scores into the sigmoid’s saturation regions.
Consequently, the model may lose the ability to discriminate between tokens with scores near the
decision threshold. To mitigate this, we introduce a Distribution Preservation Loss, Ldp, which
counteracts this effect by applying a Mean Squared Error penalty to scores that deviate from 0.5,
thereby preserving gradient flow and enhancing discriminability:

Ldp =

Le∑
l=Ls

(
1

N

N∑
i=1

(pi,(l) − 0.5)2
)

(7)

where pi,(l) is the score of the i-th token at layer l. This objective effectively pulls the score distri-
butions towards the center of the sigmoid’s dynamic range, ensuring the routers remain responsive
to changes in token hidden states.

Together, these two losses create a balanced “push-pull” dynamic. The entropy-based dispersion
loss pushes scores apart to cover a wider spectrum, while the MSE-based preservation loss pulls
them collectively towards the responsive center. The result is a router that produces scores that are
discriminative enough, facilitating more accurate and reliable token selection.

3.2.2 THRESHOLD CONTROL SCHEME

The preceding section introduced our method for enhancing the discriminability of router outputs.
To further refine token selection, we propose a dynamic threshold control scheme, which adap-
tively regulates the threshold to achieve the desired proportion of selected tokens flexibly. Previous
approaches using z-loss could only balance between selecting and not selecting tokens (Bae et al.,
2025). Inspired by the balance loss proposed in DeepSeek-V3 (Liu et al., 2024), we design a method
that computes the average selection ratio error in a buffer to adjust the threshold accordingly. Addi-
tionally, we leverage an EMA synchronization to assist in optimizing the threshold.

Buffer Proportional Control. Our primary mechanism for threshold control is a loss-free method
that makes real-time adjustments to the threshold τ . For each mini-batch B of training steps, this
controller computes an error signal, e, representing the deviation between the actual selection ratio
during training and a pre-defined target ratio, ktarget. e is formulated as:

e =

∑
b∈B

∑Nb
i=1 m

i
b∑

b∈B Nb
− ktarget (8)

where Nb is the number of tokens in sample b, and mi
b is the binary selection mask. Based on this

error, the threshold is immediately updated via a simple but effective control law:
τ ← τ + α · e (9)

where α is a small step size (proportional gain). This mechanism provides immediate feedback to
stabilize the selection ratio against short-term fluctuations. If too many tokens are selected (e > 0),
τ increases to induce a decreasing selection trend; if too few are selected (e < 0), τ decreases.

EMA Synchronization. While the buffer proportional controller excels at rapid, local adjust-
ments, its effectiveness can degrade when the optimization directions of routing and the threshold
are misaligned. To prevent this drawback, we introduce an auxiliary mechanism that acts as a low-
frequency synchronization loop. Periodically (e.g., every 50 steps), we compute a smoothed ideal
threshold. Specifically, we maintain a buffer of the most recent Nb samples. For each step in this
buffer, we calculate its corresponding τtopk—the threshold value that would have precisely selected
the target ratio. The average of these values, denoted as τ̄topk, serves as a more stable and robust
estimate of the ideal threshold around these optimization steps. The operational threshold τ is then
gently nudged towards this averaged estimate using an exponential moving average (EMA):

τ = (1− γ) · τ + γ · τ̄topk (10)
where γ is a smoothing factor. This process ensures the router and threshold remain synchronized,
preventing sustained periods of over- or under-selection and promoting long-term training stability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: SFT Performance Comparison of Different Small-Scale Dense LLMs. Performing full-
scale SFT with the DND strategy on the three widely used base models yields additional average
improvements of 1.88, 2.61, and 2.50 points over full-scale SFT alone.

General Knowledge & Alignment Math & STEM Coding & Agent
Average BBH PIQA C-Eval MMLU IFEval GPQA GSM8K MBPP Human BFCL MultiPLE

Qwen3-1.7B 59.53 40.82 75.38 60.00 64.11 65.47 28.54 79.38 68.38 61.59 58.73 52.45
+ ITT 59.58 41.23 75.99 59.51 64.92 65.08 27.85 80.29 68.67 60.78 58.62 52.45
+ DND 61.41 45.84 76.25 60.38 64.45 66.87 34.34 80.15 71.90 62.71 59.80 52.80
∆ (+-) +1.88 +5.02 +0.87 +0.38 +0.34 +1.40 +5.80 +0.77 +3.52 +1.12 +1.07 +0.35

Llama3.2-1B 45.37 25.73 65.48 47.82 53.28 52.45 10.73 63.23 49.54 50.42 44.89 35.47
+ DND 47.98 29.43 66.51 49.21 55.63 55.68 14.59 66.57 52.91 52.16 47.52 37.56
∆ (+-) +2.61 +3.70 +1.03 +1.39 +2.35 +3.23 +3.86 +3.34 +3.37 +1.74 +2.63 +2.09

Gemma3-1B 47.08 25.93 70.27 50.14 55.98 54.52 16.49 65.53 49.29 52.62 40.69 36.43
+ DND 49.58 30.62 71.33 51.00 58.04 56.91 21.79 68.68 52.96 53.76 42.88 37.41
∆ (+-) +2.50 +4.69 +1.06 +0.86 +2.06 +2.39 +5.30 +3.15 +3.67 +1.14 +2.19 +0.98

4 EXPERIMENTS

4.1 EVALUATION BENCHMARK

We provide an extensive empirical evaluation of DND over a wide variety of benchmarks, demon-
strating its effectiveness and robustness. The evaluation suite covers three primary domains: 1.
General Knowledge & Alignment: MMLU (Hendrycks et al., 2020), CEval (Huang et al., 2023),
CMMLU (Li et al., 2023), BBH (Srivastava et al., 2022), DROP (Dua et al., 2019), IFEval (Zhou
et al., 2023), PIQA (Bisk et al., 2020). 2. Mathematics & STEM: Math (Hendrycks et al.,
2021), GSM8k (Cobbe et al., 2021), MATH-500, AIME24, GPQA-Diamond (Rein et al., 2023),.
3. Coding & Agent: MBPP, MBPP+ (Austin et al., 2021), HumanEval+ (Chen et al., 2021),
LCB-v5(LiveCodeBench-v5) (Jain et al., 2024), LCB-v6(LiveCodeBench-v6) (Jain et al., 2024),
MultiPL-E (Cassano et al., 2022), BFCL v3 (Live).

4.2 TRAINING DETAILS

Our DND model undergoes standard full-scale supervised fine-tuning (SFT) using a comprehensive
and diverse dataset, with all parameters set as trainable and the same learning rate applied. Our
training data incorporates a significant volume of synthetic material built upon a high-quality seed
set of 1-2 million instances curated from human annotations and open-source materials. The model’s
weights are initialized from the Qwen3-1.7B Base, Llama-3.2-1B, Gemma3-1B-pt, and Qwen3-
30B-A3B Base. Detailed hyperparameters and training settings are provided in Appendix Sec.B.

4.3 MAIN RESULTS

Base Evaluation. As shown in Tab. 1, our method achieves obvious improvements across the three
widely used base models. Especially on datasets that require complex reasoning, such as BBH and
GPQA, the performance boost is particularly notable, with all three models showing an additional
performance improvement of around 5%. Additionally, we found that when the SFT is conducted
with ITT (Chen et al., 2025) under the same computation cost, the performance improvement is not
as pronounced. The limited performance gains stem from the use of Top-P–based token selection for
auto-regressive LLM, which introduces a mismatch between training and inference, and may also
lead to potential information leakage according to (Raposo et al., 2024).
Scaling Evaluation. As shown in Tab. 2, our DND strategy consistently improves the performance
of the Qwen3-30B-A3B model, achieving an average gain of +0.87 across 17 benchmarks without
any performance degradation. The impact of DND is most pronounced in Coding and Agent tasks,
yielding notable gains of +2.05 on BFCL v3, +1.42 on LCB-v6, and +1.24 on LCB-v5. These results
strongly support our hypothesis that DND effectively filters extraneous noise, allowing the model
to focus its capacity on sparse, high-value tokens essential for complex reasoning, planning, and
code generation. Importantly, the benefits are not limited to specialized domains: substantial im-
provements are also observed in General and Alignment tasks (+1.83 on C-Eval), alongside robust
generalization on challenging Math and STEM benchmarks. Crucially, these substantial perfor-
mance gains are realized with a negligible increase of only 0.03M parameters, highlighting DND as
a highly parameter-efficient approach for unlocking significant capabilities in LLMs. FLOPs and
Throughput Evaluation. As demonstrated in Appendix Sec. A, reviewing 20% of the tokens adds

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance Comparison of Qwen3-30B-A3B with and wothout DND. The final col-
umn shows the difference (∆) between the SFT results of vanilla Qwen3-A3B-30B and Qwen3-
A3B-30B+DND. And we list Qwen3-32B and Qwen3-30B-A3B Chat model for reference.

Task Qwen3-32B
(Non-Thinking)

Qwen3-30B-A3B
(Non-Thinking)

Qwen3-A3B-30B
(SFT)

Qwen3-A3B-30B+DND
(SFT)

∆
(w vs w/o DND)

General & Alignment Tasks
MMLU 82.93 80.12 85.41 85.91 +0.50
CMMLU 84.63 83.13 84.82 85.19 +0.37
BBH 85.45 82.55 86.90 87.03 +0.13
DROP 84.02 86.38 86.21 86.48 +0.27
C-Eval 87.53 85.95 83.09 84.92 +1.83
IFEval 85.27 84.55 83.09 84.31 +1.22
Mathematic & STEM Tasks
MATH 85.26 84.68 88.63 88.78 +0.15
MATH-500 87.40 88.70 92.60 92.80 +0.20
GSM8K 94.54 95.30 94.30 95.10 +0.80
AIME24 27.71 28.33 51.46 52.37 +0.91
GPQA-Diamond 53.60 51.71 56.76 57.67 +0.91
Coding & Agent Tasks
HumanEval+ 82.93 84.15 85.59 86.58 +0.99
MBPP+ 72.75 75.16 78.84 79.54 +0.70
MultiPLE 68.62 66.04 72.60 73.72 +1.12
LiveCodeBench v5 31.44 28.89 29.94 31.18 +1.24
LiveCodeBench v6 28.57 29.43 31.14 32.56 +1.42
BFCL v3 (Live) 75.09 73.69 75.43 77.48 +2.05
Average 72.81 73.44 75.70 76.57 +0.87

Table 3: Comparison of Speed across Different Input and Decode Lengths. The speeds are
measured using BF16 Quantization of LLM and accelerated with vLLM kernels.

Input Length Decode Length Speed (tokens/s) Relative Speed
Qwen3-30B-A3B + DND (%)

1024 2048 148.68 136.19 91.6
6144 2048 208.60 193.51 92.8
1024 6144 76.16 70.52 92.6
6144 6144 100.89 93.93 93.1

only about 6% extra FLOPs when applying the DND strategy to the Qwen3-30B-A3B model. To
further assess the inference speed of our model in practical settings relative to the baseline, follow-
ing SGLang, as shown in the Tab. 3, we measured the throughput of both Qwen3-30B-A3B and
Qwen3-30B-A3B+DND models under four standard sequence lengths using a single H100 GPU
with a single batch. The measurement results in the table show that, while achieving performance
improvements, our model consistently reaches 91.6-93.1% of the speed of the vanilla model under
different circumstances.

4.4 ABLATION STUDY

As shown in Tab. 4, we conducted ablation experiments of the DND strategy on Qwen3-1.7B.
Training Strategies. We conducted ablation experiments on the proposed training strategy. We
found that when using only the DND framework with a simple z-loss-like method to control token
selection, performance dropped noticeably, yielding an average improvement of only 1.01 points
over Qwen3-1.7B’s SFT performance. This highlights the importance of our carefully designed
training strategy. Moreover, router and threshold control function as complementary components
for token selection control. While each method individually provides marginal gains, their combi-
nation leads to a clear improvement of approximately one percentage point in average accuracy.
Hyper-parameters of Architecture. Besides, we conducted ablation experiments on several im-
portant hyperparameters of the model architecture. For the expected token selection ratio, we tested
10%, 20%, and 30%. We found that when only 10% of tokens were selected, the number of tokens
participating in attention computation was likely too small, resulting in a modest improvement of
just 0.8% over the baseline. In contrast, selecting approximately 20–30% of tokens achieved better
performance. To balance computational efficiency, we chose an expected selection ratio of 20% for
our DND method in the Qwen3-30B-A3B scaling experiments. We also performed ablations on the
number of shallowest and deepest layers retained in the original architecture, finding that keeping
about four layers at both the beginning and the end yielded the best performance. This configuration
was retained in the DND experiments on Qwen3-30B-A3B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of Qwen3-1.7B with DND under different settings. TC indicates thresh-
old control (including buffer proportional control and EMA synchronization), RC indicates router
control (including proposed Lsd and Ldp), layer (Ls : Le) indicates the layers with DND.

Metric / Setting Qwen3-1.7B +DND +DND +DND +DND +DND +DND +DND +DND

RC (Lsd and Ldp) – ✓ × × ✓ ✓ ✓ ✓ ✓
TC (BPC & EMA) – ✓ × ✓ × ✓ ✓ ✓ ✓
ktarget(%) – 20 20 20 20 10 30 20 20
layer (Ls : Le) – 4: 23 4: 23 4: 23 4: 23 4: 23 4: 23 5: 22 3: 24

Average 59.53 61.41 60.54 60.58 60.68 60.33 61.03 61.05 60.36
∆ (+-) 0.00 1.88 1.01 1.05 1.15 0.80 1.50 1.52 0.83

BBH 40.82 45.84 44.69 43.47 44.37 44.95 45.17 44.85 44.95
C-Eval 60.00 60.38 60.21 60.38 60.17 59.61 60.32 60.44 59.61
MMLU 64.11 64.45 64.33 64.45 64.26 64.38 64.66 64.25 64.56
GPQA-D 28.54 34.34 29.92 31.94 32.79 29.17 33.82 33.82 29.26
PIQA 75.38 76.25 75.87 76.38 76.05 75.95 76.33 76.15 75.95
BFCL 58.73 59.80 59.21 59.32 59.50 59.40 59.92 59.60 59.40
IFEval 65.47 66.87 66.55 66.35 66.19 65.99 67.27 67.31 65.99
GSM8K 79.38 80.15 79.92 79.80 79.77 79.77 79.15 79.53 79.85
Humaneval+ 61.59 62.71 61.59 61.59 61.82 62.15 62.80 62.96 62.15
MBPP 68.38 71.90 70.73 69.84 69.79 69.32 69.09 69.56 69.32
MultiPLE 52.45 52.80 52.95 52.88 52.80 52.88 52.82 53.05 52.88

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Selection Count

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

To
ke

n
L

og
it

E
nt

ro
py

Trend Line: y = 0.06x + 0.27
Pearson r = 0.3359

Relationship between Token Selection Count and Token Logit Entropy

Token Generated during Decoding
Trend Line

Figure 4a: Entropy of Selected Tokens. The selec-
tion frequency of a token correlates positively with
its original logit entropy in the vanilla pass.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Selection Count

-2.0

-1.5

-1.0

-0.5

0.0

0.5

L
og

it
E

nt
ro

py
 D

iff
er

en
ce

 (D
N

D
 -

Va
ni

lla
) Trend Line: y = -0.07x + 0.25

Pearson r = -0.5831

Relationship between Token Selection Count and Logit Entropy Difference

Token Generated during Decoding
Trend Line

Figure 4b: Logits Variation after DND. For rarely
selected tokens, logit entropy fluctuates evenly, but
it decreases as selection frequency increases.

4.5 TOKEN SELECTION ANALYSIS

Why critical tokens are selected? As shown in Fig. 4a, to examine whether the tokens selected
by our DND model are indeed critical, we analyze the relation between the selection frequency of
tokens routed by Qwen3-30B-A3B+DND and the vanilla model’s logit entropy without any repro-
cessing. According to the findings in (Ma et al., 2025), high entropy in the logit indicates that the
model is uncertain about which vocabulary to select or is hesitating between multiple possible an-
swers. We find that tokens with higher logit entropy are frequently selected by the router across
multiple layers. This shows that DND preferentially selects tokens with greater uncertainty, validat-
ing the motivation behind critical token selection and confirming the effectiveness of the router.
Why better representations are learned? Furthermore, as shown in Fig. 4b, to validate that our
DND strategy reduces the model’s hesitation or uncertainty about critical tokens, we evaluated the
variation in logit entropy for the same token after applying the DND strategy, compared to the en-
tropy in the vanilla model. We found that after nested reviews, the logit entropy of the selected
tokens significantly decreased, proving the effectiveness of our method.

0 100 200 300 400 500
Training Step

0.10

0.12

0.14

0.16

0.18

Th
re

sh
ol

d
V

al
ue

Impact of EMA Synchronization

wo EMA Synchronization + small factor.
with EMA Synchronization.
wo EMA Synchronization + large factor.

Figure 5: Threshold Adjustment
during Training. With EMA synchro-
nization, the threshold can be adjusted
smoothly and in real time.

Threshold Visualization during Training. As illustrated
in Fig. 5, we analyze the threshold dynamics of the 24th
layer in our DND (Qwen3-30B-A3B) model by presenting
the effect of two different approaches for threshold control.
Adopting buffer proportional control alone exhibits a criti-
cal tuning challenge: a small adjustment factor (purple line)
causes the threshold to adapt too slowly, consistently fail-
ing to reach the target selection ratio and thereby impairing
early training performance. Conversely, an excessively large
factor (pink line) leads to volatile oscillations around the tar-
get, which compromises stability. In contrast, incorporating
our EMA synchronization (blue line) enables rapid thresh-
old adjustments, maintaining synchronization between the
router and threshold, thereby ensuring stable selection.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Training Step

-0.05

0.00

0.05

0.10

0.15
E

rr
or

 (S
el

ec
te

d
R

at
io

 -
T

ar
ge

t R
at

io
) Impact of Buffer Proportional Control on Selected Ratio

Without Buffer Proportional Control
With Buffer Proportional Control

Figure 6a: Selected Ratio Comparisons. The aver-
age selection ratio is stably controlled with our pro-
posed buffer proportional control strategy.

0 100 200 300 400
Training Step

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

E
rr

or
 (S

el
ec

te
d

R
at

io
 -

Ta
rg

et
 R

at
io

)

Impact of Router Controlling Loss on Selected Ratio

Without Router Controlling Loss
With Router Controlling Loss

Figure 6b: Selected Ratio Comparisons. Oscilla-
tions arising from insufficient discrimination are re-
duced by introducing the router controlling loss.

Selected Ratio Visualization during Training. As shown in Fig. 6a, introducing EMA synchro-
nization alone struggles to regulate token selection, as its non-real-time adjustments often misalign
with the model’s optimization trajectory, resulting in large and persistent oscillations. By introduc-
ing buffer proportional control, we provide a high-frequency corrective loop. As a result, oscillations
are rapidly suppressed to within a tight 5% band, successfully stabilizing the selection. Besides, as
shown in Fig. 6b, introducing the router controlling loss significantly reduces the magnitude of os-
cillations, demonstrating its effectiveness in enhancing the discriminability of token routing outputs.

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Se
le

ct
ed

 R
at

io

Shallow Layers Middle Layers Deep Layers

Selected Ratio across Transformer Layers with DND.

Dataset
Drop
MBPP
iFEval

Figure 7a: Selected Ratio during Evaluation. Token se-
lection ratio tends to be slightly higher in the middle layers
as well as in the shallowest and deepest layers.

Q: "Two quantum states with energies E1 and E2 have a lifetime of 10^-9
sec and 10^-8 sec, respectively. We want to clearly distinguish these two
energy levels. Which one could be their energy difference?
Choices: A. 10^-9 eV B. 10^-11 eV C. 10^-4 eV D. 10^-8 eV"

A: "For a state with a finite lifetime, the energy uncertainty ΔE is
approximately: ΔE ≈ ħ / (2Δt).

For state 1: lifetime Δt₁ = 10⁻ ⁹ s ΔE₁ ≈ ħ / (2Δt₁) = (6.582 × 10⁻ ¹⁵ eV·s)
/ (2 × 10⁻ ⁹ s) ≈ 3.29 × 10⁻ ⁶ eV

For state 2: lifetime Δt₂ = 10⁻ ⁸ s ΔE₂ ≈ ħ / (2Δt₂) = (6.582 × 10⁻ ¹⁵ eV·s)
/ (2 × 10⁻ ⁸ s) ≈ 3.29 × 10⁻ ⁷ eV

To resolve two energy levels, the energy difference ΔE between them
should be at least comparable to the larger of the two uncertainties.
So only option C (10⁻ ⁴ eV) is large enough to be resolved. Answer: C"

Figure 7b: Visualization Results. Highlighted
tokens are frequently selected, with darker red
indicating higher selection in deeper layers.

Selected Ratio Visualization during Evaluation. To validate our training methodology, we evalu-
ated the DND model’s inference-time behavior across a diverse suite of benchmarks, including agent
tasks, reasoning, and code generation. The average token selection ratios across all layers consis-
tently aligned with our target, ranging from 0.178 to 0.242, which confirms the effectiveness of our
whole control strategy. A more granular, layer-wise analysis in Fig. 7a reveals a nuanced pattern
where selection is slightly elevated in the middle layers and the first layers from each end. Comple-
menting this quantitative success, a qualitative visualization of the GPQA dataset in Fig. 7b reveals
an interesting phenomenon. Tokens selected by shallower layers (lighter colors) are predominantly
essential nouns, while those selected by deeper layers (darker colors) correspond to more abstract
or syntactically critical components like mathematical expressions and key verbs. This suggests that
the model learns a hierarchical processing strategy, using earlier layers to identify key entities and
later layers to perform more complex relational and logical operations.

5 CONCLUSION

In this work, we introduce Dynamic Nested Depth (DND), a novel and efficient method for enhanc-
ing Large Language Model performance. DND adaptively identifies critical tokens and selectively
deepens their computation via nested re-processing. This is achieved through a token-choice routing
design with a normalized output fusion strategy. The precision and stability of this selection pro-
cess are guaranteed by our router controlling loss and threshold control scheme. We validated DND
on both dense (Qwen3-1.7B, Llama3.2-1B, Gemma3-1B) and larger-scale sparse MoE (Qwen3-
30B-A3B) models, demonstrating substantial accuracy improvements with a negligible parameter
increase (< 0.1M) and minimal computing increase. These results affirm that targeted, dynamic
nested depth computation is a powerful method for boosting LLMs’ performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. ArXiv, abs/2108.07732, 2021. URL https://api.
semanticscholar.org/CorpusID:237142385.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
challenges of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Federico Cassano, John Gouwar, Daniel Nguyen, Sy Duy Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to bench-
marking neural code generation. 2022. URL https://api.semanticscholar.org/
CorpusID:254854172.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Advait Gadhikar, Souptik Kumar Majumdar, Niclas Popp, Piyapat Saranrittichai, Martin Rapp,
and Lukas Schott. Attention is all you need for mixture-of-depths routing. arXiv preprint
arXiv:2412.20875, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:
221516475.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. ArXiv, abs/2103.03874, 2021. URL https://api.semanticscholar.org/
CorpusID:232134851.

11

https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:254854172
https://api.semanticscholar.org/CorpusID:254854172
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ali Hojjat, Janek Haberer, Soren Pirk, and Olaf Landsiedel. Thinkingvit: Matryoshka thinking
vision transformer for elastic inference. arXiv preprint arXiv:2507.10800, 2025.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng
Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval:
A multi-level multi-discipline chinese evaluation suite for foundation models. arXiv preprint
arXiv:2305.08322, 2023.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. ArXiv, abs/2403.07974, 2024. URL https:
//api.semanticscholar.org/CorpusID:268379413.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv
preprint arXiv:2306.09212, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

Siqi Luo, Haoran Yang, Yi Xin, Mingyang Yi, Guangyang Wu, Guangtao Zhai, and Xiaohong
Liu. Tr-pts: Task-relevant parameter and token selection for efficient tuning. arXiv preprint
arXiv:2507.22872, 2025.

Huan Ma, Jingdong Chen, Joey Tianyi Zhou, Guangyu Wang, and Changqing Zhang. Estimating
llm uncertainty with evidence. arXiv preprint arXiv:2502.00290, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. ArXiv, abs/2311.12022, 2023. URL https://api.semanticscholar.org/
CorpusID:265295009.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

12

https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:265295009

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Tao Yang, Dongyue Li, Zhuoran Song, Yilong Zhao, Fangxin Liu, Zongwu Wang, Zhezhi He, and
Li Jiang. Dtqatten: Leveraging dynamic token-based quantization for efficient attention archi-
tecture. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
700–705. IEEE, 2022a.

Tao Yang, Fei Ma, Xiaoling Li, Fangxin Liu, Yilong Zhao, Zhezhi He, and Li Jiang. Dtatrans:
Leveraging dynamic token-based quantization with accuracy compensation mechanism for ef-
ficient transformer architecture. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 42(2):509–520, 2022b.

Huixue Zhou, Hengrui Gu, Xi Liu, Kaixiong Zhou, Mingfu Liang, Yongkang Xiao, Srinivas Govin-
dan, Piyush Chawla, Jiyan Yang, Xiangfei Meng, et al. The efficiency vs. accuracy trade-off:
Optimizing rag-enhanced llm recommender systems using multi-head early exit. arXiv preprint
arXiv:2501.02173, 2025.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models. ArXiv, abs/2311.07911,
2023. URL https://api.semanticscholar.org/CorpusID:265157752.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

13

https://api.semanticscholar.org/CorpusID:265157752

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A COMPUTATIONAL OVERHEAD ANALYSIS OF THE DYNAMIC TOKEN
RECALCULATION STRATEGY

We conduct a formal analysis of the computational overhead introduced by the dynamic nested
depth strategy within a Qwen3-MoE architecture. The strategy aims to refine the representations
of critical tokens by performing a secondary, partial forward pass. Our objective is to quantify the
percentage increase in Floating-Point Operations (FLOPs) for a scenario with a sequence length of
16,384 tokens (S = 16, 384), where 20% of tokens (r = 0.2) are selected for this recalculation.
The DND mechanism is selectively applied to the 40 intermediate layers of the 48-layer model,
excluding the initial four and final four layers.

The FLOPs for a single decoder layer are dominated by the self-attention mechanism and the
Mixture-of-Experts (MoE) feed-forward network. The computational complexity of self-attention is
quadratic with respect to sequence length (FLOPsattn ≈ 4NhdhS

2), while the MoE MLP complexity
is linear (FLOPsmoe ≈ 6SkHImoe). The additional computation from the DND policy’s nested pass,
processing a fraction r of the tokens, is therefore FLOPsadded ≈ r2 ·FLOPsattn(S)+r ·FLOPsmoe(S).
The analysis is based on the parameters detailed in Tab. 5.

Table 5: Key Model and Strategy Parameters

Parameter Symbol Value

Sequence Length (original) S 16,384
Hidden Size H 2,048
Number of Attention Heads Nh 32
Head Dimension dh 128
Total Decoder Layers Ltotal 48
Layers with DND enabled Ldnd 40
MoE Intermediate Size Imoe 768
Activated Experts per Token k 8
Recalculation Ratio r 0.20

For a standard layer operating on a 16k sequence, the self-attention component requires approxi-
mately 4.40 × 1015 FLOPs, and the MoE MLP requires 1.24 × 1015 FLOPs, totaling 5.64 × 1015

FLOPs per layer. The additional computation from the nested pass is calculated as (0.2)2 · (4.40×
1015)+(0.2) ·(1.24×1015) ≈ 0.424×1015 FLOPs. This constitutes a per-layer overhead of 7.52%
for the DND-enabled layers. When scaled across the entire model, the total computational overhead
is proportional to the fraction of layers implementing the strategy.

Overheadtotal =

(
FLOPsadded

FLOPslayer

)
× Ldnd

Ltotal
= 7.52%× 40

48
≈ 6.27%

In conclusion, the DND strategy with a 20% token recalculation ratio results in a modest total com-
putational overhead of approximately 6.27%. This increase in FLOPs should be weighed against
the potential gains in model performance that the targeted recalculation may provide.

B MORE DETAILS

Hyper-parameters. For the value of Ls and Le, we determined through ablation experiments that
Ls = 4 and Le = 43. In terms of the proportion of tokens to review, we balance performance
and efficiency through ablation experiments on the Qwen1.7B model, ultimately setting the ktarget to
20%. For the initialization of the parameter β, to prevent overly gentle learning of the DND logic
in the early training phase, we initialize it to 0.1. Regarding the hyperparameters defined in the
training strategy loss function, due to the approximate 60x magnitude difference between the two
loss extremes, we set λsd to 3e-4 and λdp to 0.02. The buffer size Nb and the adjustment factor α
are set to 5 and 5e-3 to balance stability and real-time performance, and γ is set to 0.2. To ensure
stability during initial training, we initialize token routers with all zeros and set the threshold to 0.5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Differences between our DND approach and MOR. Both methods aim to improve per-
formance via increased computational depth, but differ significantly in implementation and control.

Aspect MOR Ours (DND)
Validation & Scaling
Application Stage Pre-training (Train from scratch). Post-training (SFT).

Model Scale Limited to models with around 1B parameters. Applied from 1B dense to 30B MoE models.

Purpose
Achieve comparable performance with fewer
parameters by using dynamically cycled depth
under the same FLOPs budget.

Achieve better performance with almost unchanged
parameter count by adding only a small amount of
extra depth computation.

Compatibility Requires from-scratch pre-training and
substantial architectural changes when applying.

Strong compatibility; Can be directly applied
to existing models post-training.

Methodology

Architecture Dynamic depth output is treated as the final state. Employs a normalized fusion strategy to combine
dynamic and original outputs.

Token Selection Relies on z-loss, an indirect load-balancing. Introduces a precise ratio control method via
discriminative routing output and dynamic thresholds.

Control Precision Lacks precise control over the ratio of different depths. Flexibly regulates the token selection proportion
to any specified target.

Training Details. The post-training stage uses the AdamW optimizer (Loshchilov & Hutter,
2017), with β1 = 0.9, β2 = 0.95, weight decay of 0.1, and gradient clipping at 1.0. During the
post-training stage, we employ a cosine learning rate scheduler with a learning rate of 5 × 10−6

that gradually decays to a minimum of 1 × 10−6. All experiments are run on H800 GPUs. For
Qwen3-1.7B, training is conducted for two epochs across 128 GPUs, taking one day. For Qwen3-
30B-A3B, training is conducted for four epochs across 256 GPUs, taking approximately three days.
For Llama-3.2-1B and Gemma3-1B, training is conducted for two epochs across 64 GPUs, taking
approximately 1-2 days.

Evaluation Metrics. The evaluation includes several specialized testing protocols:

AIME Evaluation: On AIME24, we run inference 16 times per question for each model and report
the average accuracy.
IFEval Scoring: The final score for IFEval is the average of the strict accuracies at both the prompt
and instruction levels.

C DETAILED COMPARISONS WITH MOR

As shown in the Tab. 6, our DND differs significantly from MOR in terms of validated model scale,
compatible training paradigms, model architecture, and token selection control strategies.

D MORE TOKEN SELECTION ANALYSIS

Beyond the entropy analysis of token logits in Sec. 4.5, we further examined another selection
pattern of DND across layers. Specifically, we measured the variation in each token’s hidden state
across transformer layers. As shown in Fig. 8, we found that DND tends to select tokens whose
representations change more strongly after passing through a certain transformer layer. This suggests
that the model may be less confident about such tokens and therefore chooses to revisit them to obtain
a more reliable representation.

E MORE VISUALIZATIONS

In the main text, we present visualizations of token selection by DND on general language tasks.
In this section, we further provide visualizations for mathematics and coding tasks in Fig. 9 and
Fig. 10. As shown, DND selectively allocates additional computation to key intermediate results and
calculation steps in mathematics, while focusing on critical variables and essential logical comments
in code. These observations align with our motivation and further validate the effectiveness of DND.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Analysis of the Relationship between DND’s Selection Preference and the Magnitude
of Hidden State Changes across Transformer Layers. DND exhibits a stronger preference for
selecting tokens whose representations undergo larger changes after passing through a given layer.

Question: "Dave bought a large pack of french fries and ate fourteen before a hungry seagull stole the pack out of his hand. When the
seagull landed, he gobbled down half the amount of french fries that Dave ate. Then three pigeons bullied him away from the food, and
each pigeon ate three fries. Later, a raccoon stole two thirds of the remaining fries. Ants carried off a final french fry, leaving five behind.
How many french fries were in the pack when Dave bought it?
Let's think step by step.
Answer:"

Prediction: "Let's work through this step by step.

1. Let the total number of french fries in the pack be x.
2. Dave ate 14 fries. So, remaining after Dave: x - 14
3. The seagull ate half the amount Dave ate: Half of 14 = 7 fries So, seagull ate 7 fries. Remaining after seagull: (x - 14) - 7 = x - 21
4. Three pigeons each ate 3 fries: 3 pigeons × 3 fries = 9 fries eaten by pigeons Remaining after pigeons: (x - 21) - 9 = x - 30
5. A raccoon stole two-thirds of the remaining fries:
Raccoon took (2/3)(x - 30) So, two-thirds gone, one-third remains: Remaining after raccoon: (1/3)(x - 30)
6. Ants carried off 1 fry, leaving 5 behind: So, before ants took 1, there were 5 + 1 = 6 fries Therefore: (1/3)(x - 30) = 6
Now solve for x: Multiply both sides by 3: x - 30 = 18 x = 18 + 30 x = 48

So, the pack originally had 48 french fries.
Let’s verify:- Start: 48 - Dave eats 14 → 48 - 14 = 34 - Seagull eats 7 → 34 - 7 = 27 - Pigeons eat 9 → 27 - 9 = 18- Raccoon steals 2/3 of 18 =
12 → 18 - 12 = 6 - Ants take 1 → 6 - 1 = 5 left All matches.
The answer is 48"

Figure 9: Visualization Results of A Mathematical Example. Highlighted tokens are frequently
selected, with orange indicating higher selection frequency in shallow layers and darker red repre-
senting higher selection in deeper layers.

F FAILURE CASE ANALYSIS

As shown in Fig. 11, we present a representative example in which Qwen3-30B-A3B answers cor-
rectly, but Qwen3-30B-A3B+DND fails. In this example, the task is to match foods to their corre-
sponding meals based on the user’s description. Under the DND “reviewing” critical tokens mode,
the temporal cue “Earlier” in the prompt is excessively reviewed, which leads the model to overem-
phasize earlier times of day (roughly morning and noon). As a result, it incorrectly associates coffee
with breakfast and pizza with lunch, and answers “breakfast and lunch” instead of the correct, un-
known category “snack.”

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used as a writing aid in the preparation of this manuscript.
Their use was strictly limited to improving grammar, phrasing, and formatting. All scientific content,
including research ideas, methodology, data analysis, and conclusions, was conceived and developed
exclusively by the authors. The authors have reviewed all AI-generated suggestions and take full
responsibility for the final manuscript’s accuracy and integrity.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Question:"You are given a sequence of N positive integers A=(A_1,A_2,\\dots,A_N).
Find the number of pairs of integers (l,r) satisfying 1\\leq l\\leq r\\leq N such that the subsequence
(A_l,A_{l+1},\\dots,A_r) forms an arithmetic progression.
A sequence (x_1,x_2,\\dots,x_{|x|}) is an arithmetic progression if and only if there exists a d such
that x_{i+1}-x_i=d\\ (1\\leq i < |x|).
In particular, a sequence of length 1 is always an arithmetic progression.
Enclose your code within delimiters as follows.
```python
# YOUR CODE HERE
```
Answer: (use the provided format with backticks)"

Prediction: "```python
Read input
N = int(input())
A = list(map(int, input().split()))

Count arithmetic progressions
count = 0

Every single element is an arithmetic progression
count += N

Check all pairs of elements (length 2)
for i in range(N - 1):
 if A[i] == A[i + 1]:
 count += 1

Check all subsequences of length >= 3
for l in range(N):
 for r in range(l + 2, N): # length >= 3
 # Check if A[l:r+1] is arithmetic
 d = A[l + 1] - A[l]
 is_arithmetic = True
 for i in range(l + 1, r):
 if A[i + 1] - A[i] != d:
 is_arithmetic = False
 break
 if is_arithmetic:
 count += 1

print(count)
```"

Figure 10: Visualization Results of A Code Generation Example. Highlighted tokens are fre-
quently selected, with orange indicating higher selection frequency in shallow layers and darker red
representing higher selection in deeper layers.

    {
        "gold": "[{'log_food': {'food_name': ['frozen mango'], 'meal_type': [ 'snack']}}, {'log_food': {'food_name': ['chai tea'],  'meal_type': ['snack']}}, 
{'log_food': {'food_name': ['pepperoni pizza'], 'meal_type': ['snack']}}, {'log_food': {'food_name': ['coffee'], 'meal_type': ['snack']}}]",

        "prediction": "[log_food(food_name="frozen mango", meal_type="snack"), log_food(food_name="chai tea", meal_type="snack"), 
log_food(food_name="pepperoni pizza", meal_type="lunch"), log_food(food_name="coffee", meal_type="breakfast")]",

        "origin_prompt": [
            {
                "content": ""You are given a list of foods someone ate today: apple (1 piece) and coffee (1 cup). For each food, decide which meal 
type it belongs to: breakfast, lunch, dinner, or snack. Answer with a Python list of strings, one for each food, in the same order.",
                "role": "system"
            },
            {
                "content": "I had 8 pieces of frozen mango and a chai tea.\n\n Earlier I had two slices of pepperoni pizza and a coffee",
                "role": "user"
            }

]
        }
  

Figure 11: Failure Case of DND. DND may make errors by over-interpreting certain latent or weak
pieces of evidence tokens.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H LIMITATIONS AND FUTURE WORKS

• Our experiments primarily focus on validating the effectiveness of the DND strategy during
the post-training stage of LLM. Its impact in pre-training or continual pre-training settings
remains to be further explored.

• While we have applied DND in large auto-regressive models, exploring its applicability
to other types of LLMs, such as diffusion-based LLMs, may be a promising direction for
future research.

• Our subjective analyses reveal layer-wise preferences for different token types and show
that the final token selection ratios vary across layers. Such observations could offer valu-
able insights for the design of future models.

18


	introduction
	Related Works
	Adaptive Token Selection
	Dynamic Reasoning Depth

	Methodology
	Architecture
	Routing Design
	Nested Depth Design
	Fusion Design

	Training Strategies
	Router Controlling Loss
	Threshold Control Scheme


	Experiments
	Evaluation Benchmark
	Training Details
	Main Results
	Ablation Study
	Token Selection Analysis

	Conclusion
	Computational Overhead Analysis of the Dynamic Token Recalculation Strategy
	More Details
	Detailed Comparisons with MOR
	More Token Selection Analysis
	More Visualizations
	Failure Case Analysis
	The Use of Large Language Models (LLMs)
	Limitations and Future Works

