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ABSTRACT

Forgetting is often seen as an unwanted characteristic in both human and machine
learning. However, we propose that forgetting can in fact be favorable to learning.
We introduce forget-and-relearn as a powerful paradigm for shaping the learning
trajectories of artificial neural networks. In this process, the forgetting step selec-
tively removes undesirable information from the model, and the relearning step
reinforces features that are consistently useful under different conditions. The
forget-and-relearn framework unifies many existing iterative training algorithms
in the image classification and language emergence literature, and allows us to
understand the success of these algorithms in terms of the disproportionate forget-
ting of undesirable information. We leverage this understanding to improve upon
existing algorithms by designing more targeted forgetting operations. Insights
from our analysis provide a coherent view on the dynamics of iterative training in
neural networks and offer a clear path towards performance improvements.

1 INTRODUCTION

Forgetting is an inescapable component of human memory. It occurs naturally as neural synapses
get removed or altered over time (Wang et al., 2020), and is often thought to be an undesirable char-
acteristic of the human mind. Similarly, in machine learning, the phenomena of catastrophic forget-
ting is often blamed for certain failure modes in the performance of neural networks (McCloskey
& Cohen, 1989; Ratcliff, 1990; French, 1999)1. However, substantial evidence in psychology and
neuroscience have shown that forgetting and learning have a symbiotic relationship (Bjork & Bjork,
2019; Gravitz, 2019). A well-known example is the “spacing effect”, which refers to the obser-
vation that long-term recall is enhanced by spacing, rather than massing, repeated study sessions.
Bjork & Allen (1970) demonstrated that the key to the spacing effect is the decreased accessibility
of information in-between sessions.

In this work, we study a general learning paradigm that we refer to as forget-and-relearn, and show
that forgetting can also benefit learning in artificial neural networks. To generalize to unseen data,
we want our models to capture generalizable concepts rather than purely statistical regularities, but
these desirable solutions are a small subset of the solution space and often more difficult to learn
naturally (Geirhos et al., 2020). Recently, a number of training algorithms have been proposed to im-
prove generalization by iteratively refining the learned solution. Knowledge evolution (Taha et al.,
2021) improves generalization by iteratively reinitializing one part of the network while continu-
ously training the other. Iterative magnitude pruning (Frankle & Carbin, 2019; Frankle et al., 2019)
removes weights through an iterative pruning-retraining process, and outperforms unpruned mod-
els in certain settings. Hoang et al. (2018) iteratively utilize synthetic machine translation corpus
through back-translations of monolingual data. Furlanello et al. (2018); Xie et al. (2020) employ it-
erative self-distillation to outperform successive teachers. Iterated learning2 (Kirby, 2001) has been

∗Correspondance at: zhou.hattie@gmail.com.
1Our paper title is derived from that of French (1999), Catastrophic Forgetting in Connectionist Networks.
2We distinguish the use of the term “iterated learning”, which is a specific algorithm, with “iterative train-

ing”, which refers to any training procedure that includes multiple generations of training.
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shown to improve compositionality in emergent languages (Ren et al., 2020; Vani et al., 2021) and
prevent language drift (Lu et al., 2020). We propose that many existing iterative algorithms are in-
stances of a more general forget-and-relearn process, and that their success can be understood by
studying the shared underlying mechanism.

Forget-and-relearn is an iterative training paradigm which alternates between a forgetting stage
and a relearning stage. At a high level, we define a forgetting stage as any process that results in
a decrease in training accuracy. More specifically, let D = {(Xi, Yi)}i∈[n] be the training dataset.
Let U represent uniform noise sampled from (0, 1), which we use as a source of randomness for
stochastic functions. Given a neural architecture, letF be the set of functions computable by a neural
network with that architecture, and for any N ∈ F , let Acc(N) = 1

n

∑n
i=1 I{N(Xi) = Yi} be the

training accuracy of N . Let Nt be a network trained on D, and let C := E[Acc(Ñ)] represent the
performance of a randomly initialized classifier onD. We say that f : F×(0, 1)→ F is a forgetting
operation if two conditions hold: (i) P (Acc(f(Nt, U)) < Acc(Nt) | Acc(Nt) > C) = 1; (ii) the
mutual information I(f(Nt, U),D) is positive. The first criterion ensures that forgetting will allow
for relearning due to a decrease in accuracy. The second criterion captures the idea that forgetting
equates to a partial removal of information rather than a complete removal. For standard neural
networks, it is sufficient to show that training accuracy is lower than the model prior to forgetting,
but higher than chance accuracy for the given task.

The Forget-and-Relearn Hypothesis. Given an appropriate forgetting operation, iterative re-
training after forgetting will amplify unforgotten features that are consistently useful under different
learning conditions induced by the forgetting step. A forgetting operation that favors the preserva-
tion of desirable features can thus be used to steer the model towards those desirable characteristics.

We show that many existing algorithms which have successfully demonstrated improved general-
ization have a forgetting step that disproportionately affects undesirable information for the given
task. Our hypothesis stresses the importance of selective forgetting, and shows a path towards better
algorithms. We illustrate the power of this perspective by showing that we can significantly improve
upon existing work in their respective settings through the use of more targeted forgetting opera-
tions. Our analysis in Section 5 sheds insight on the mechanism through which iterative retraining
leads to parameter values with better generalization properties.

2 EXISTING ALGORITHMS AS INSTANCES OF FORGET-AND-RELEARN

In this section and the rest of the paper, we focus on two settings where iterative training algorithms
have been proposed to improve performance: image classification and language emergence. We
summarize and recast a number of these iterative training algorithms as instances of forget-and-
relearn. We also relate our notion of forgetting to other ones in the literature in Appendix A5.

Image Classification. A number of iterative algorithms for image classification uses a reinitializa-
tion and retraining scheme, and these reinitialization steps can be seen as a simple form of forgetting.
Iterative magnitude pruning (IMP) (Frankle & Carbin, 2019; Frankle et al., 2019) removes weights
based on final weight magnitude, and does so iteratively by removing an additional percentage of
weights each round. Each round, small magnitude weights are set to zero and frozen, while the
remaining weights are rewound to their initial values. Zhou et al. (2019a) show that the masking and
weight rewinding3 procedure still retains information from the previous training round by demon-
strating that the new initialization achieves better-than-chance accuracy prior to retraining. Thus, we
can view IMP as a forget-and-relearn process with an additional sparsity constraint. RIFLE (Li et al.,
2020) shows that transfer learning performance can be improved by periodically reinitializing the
final layer during the finetuning stage, which brings meaningful updates to the low-level features in
earlier layers. We can view this reinitialization step as a forgetting operation that enables relearning.

Knowledge evolution (KE) (Taha et al., 2021) splits the network’s weights into a fit-hypothesis and
a reset-hypothesis, and trains the network in generations in order to improve generalization perfor-
mance. At the start of each generation of training, weights in the reset-hypothesis are reinitialized,

3In this work, we use “rewind” to mean resetting weights back to their original initialization. We use “reset”
and “reinitialize” interchangeably to indicate a new initialization.
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while weights in the fit-hypothesis are retained. Taha et al. (2021) suggest that KE is similar to
dropout where neurons learn to be more independent. However, it is hard to translate the dropout
intuition to the case of a single subnetwork. Another intuition compares to ResNet, since KE can
induce a zero mapping of the reset-hypothesis without reducing capacity. But this zero-mapping
always occurs with sufficient training, and it is unclear why it would benefit generalization.

Language Emergence. Several existing algorithms in the language emergence subfield can also
be seen as forget-and-relearn algorithms. Emergent communication is often studied in the context of
a multi-agent referential game called the Lewis game (Lewis, 2008; Foerster et al., 2016; Lazaridou
et al., 2016). In this game, a sender agent must communicate information about the attributes of
a target object to a receiver agent, who then has to correctly identify the target object. Composi-
tionality is a desirable characteristic for the language that agents use, as it would allow for perfect
out-of-distribution generalization to unseen combinations of attributes.

Li & Bowling (2019) hypothesize that compositional languages are easier to teach, and propose an
algorithm to exert an “ease-of-teaching” pressure on the sender through periodic resetting of the
receiver. We can instead view the receiver resetting as partial forgetting in the multi-agent model.
Ren et al. (2020) use iterated learning to improve the compositionality of the emergent language.
Their algorithm consists of (i) an interacting phase where agents learn to solve the task jointly, (ii)
a transmitting phase where a temporary dataset is generated from the utterances of a sender agent,
and (iii) an imitation phase where a newly-initialized sender is pretrained on a temporary dataset of
the previous sender’s utterances, before starting a new interacting phase, and this process iterates.
A crucial component during imitation is to limit the number of training iterations, which creates a
learning bottleneck that prevents the new model from fully copying the old model. This restricted
transfer of information can be seen as a forgetting operation, and showcases an alternative approach
to selective forgetting that removes information that is harder to learn.

3 PARTIAL WEIGHT PERTURBATION AS TARGETED FORGETTING

In this section, we show that common forms of partial weight perturbation disproportionately affect
information that can hinder generalization in both image classification and language emergence set-
tings, and can thus be seen as a targeted forgetting operation under the forget-and-relearn hypothesis.
We provide full details on the perturbation method studied in Appendix A1.1.

3.1 IMAGE CLASSIFICATION

What information is undesirable depends on the task at hand. For the issue of overfitting in im-
age classification, we want to favor features that are simple, general and beneficial for generaliza-
tion (Valle-Pérez et al., 2019). Several works have shown that easy examples are associated with
locally simpler functions and more generalizable features, while difficult examples require more ca-
pacity to fit and are often memorized (Baldock et al., 2021; Yosinski et al., 2014; Kalimeris et al.,
2019; Arpit et al., 2017). Thus, as a proxy, we define undesirable information here as features asso-
ciated with memorized examples. In order to evaluate whether partial weight perturbation selectively
forgets undesirable information, we create two types of example splits for our training data: (i) easy
or difficult examples, and (ii) true or mislabeled examples. At each training iteration, we make a
copy of the model and perform a forgetting operation on the copy. We then evaluate both models
and measure separately the training accuracy on the two groups of examples. We perform these
experiments using a two-layer MLP trained on MNIST4. We further extend to a 4-layer convolution
model and a ResNet18 on CIFAR-10, and to ResNet50 on ImageNet in Appendix A1.2.

For the definition of easy or difficult examples, we follow prior work (Jiang et al., 2020; Baldock
et al., 2021) and use the output margin as a measure of example difficulty. The output margin is
defined as the difference between the largest and second-largest logits. We label 10% of training
examples with the smallest output margin in the current batch as difficult examples. In the noisy
labels experiment, we sample 10% of the training data5 and assign random labels to this group.

4We use an MLP with hidden layers 300-100-10, trained using SGD with a constant learning rate of 0.1.
5To simplify the task, we restrict to using only 10% of the MNIST training set so that the random label

examples can be learned quickly.
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(a) Easy vs difficult examples.
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(b) True vs mislabeled examples.

Figure 1: The left panels in (a) and (b) show training accuracy of the two example groups for two
types of weight perturbation. The right panels in (a) and (b) show the accuracy of each example
group for the same model with weight perturbation applied. Same colors represent the same for-
getting operation, and dashed lines represent the accuracy on the difficult or mislabeled examples.
Results are averaged over 5 runs.
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(a) Perturb through reinitialization of masked weights.
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(b) Perturb through setting masked weights to 0.

Figure 2: The left panels in (a) and (b) show train accuracy of the compositional (Comp) and non-
compositional (Perm) language examples; blue lines here are hidden behind orange lines. The right
panels in (a) and (b) show the accuracy of each group for the same model with weight perturba-
tion applied. Same colors represent the same forgetting operation, and dashed lines represent the
accuracy on the non-compositional examples. Results are averaged over 5 runs.

We consider KE-style perturbation to be the reinitialization of a random subset of the weights, and
IMP-style perturbation to be the zeroing of small magnitude weights and rewinding of the remaining
weights. More details are provided in Table A1. Figure 1 shows that both types of weight pertur-
bation adversely impact difficult or mislabeled example groups more severely than the easy or true
labeled examples, even when both example groups reach 100% train accuracy. Related to our ob-
servations, Hooker et al. (2019) show that pruned models disproportionately affect tails of the data
distribution. There are also theoretical works tying robustness-to-parameter-noise to compressibil-
ity, flat minima, and generalization (Zhou et al., 2019b; Arora et al., 2018; Foret et al., 2021).

3.2 COMPOSITIONAL LANGUAGE EMERGENCE

In the version of the Lewis game we study, the objective is to identify objects with two attributes:
SHAPE and COLOR. The sender receives a one-hot representation of the SHAPE and COLOR attributes
of an object and produces a discrete message. The receiver takes this message as input and needs to
classify the correct object from a set of candidate objects. The two agents are typically parameter-
ized as LSTMs (Hochreiter & Schmidhuber, 1997) and trained simultaneously using REINFORCE
(Williams, 1992) or Gumbel-softmax (Jang et al., 2017; Maddison et al., 2017). A compositional
language would have a consistent and independent attribute-symbol mapping for all input objects.
This is desirable for out-of-distribution generalization, since unseen combinations of attributes will
still have a meaningful language output. Thus, the undesirable information in this task corresponds
to a non-compositional language. We define two candidate languages as designed by Li & Bowling
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(2019), and use them to provide possible targets to the model. One language is compositional, where
each attribute (4 shapes and 8 colors) is represented by a distinct and consistent symbol-position.
The other language is non-compositional, which is formed by randomly permuting the mappings
between messages and objects from the compositional language. In this case, each object still has a
unique message, but the individual symbols do not correspond to a consistent meaning for shape or
color. An example of a compositional and permuted language is provided in Table A2 and A3.

Since the sender controls the language output, we simplify the Lewis game here and train only the
sender model to fit a given language through supervised learning. The target language is formed by
mixing the two pre-specified languages. For the 32 objects in the dataset, half of them are mapped to
the compositional language and half to the non-compositional language. Similar to the experiments
in Section 3.1, we make a copy of the model at each training iteration, and perform the forgetting
operation on the copy. We evaluate both models and measure the accuracy of the two example
groups separately. For the weight perturbations, we consider either a mask based on initial weight
magnitude or a random mask. For both mask criteria, we either reinitialize the masked weights or
set them to 0. More details can be found in Table A4. As shown in Figure 2, we find that all forms
of weight perturbation under study lead to more forgetting of the non-compositional language.

4 TARGETED FORGETTING IMPROVES PERFORMANCE

According to the forget-and-relearn hypothesis, the forgetting step should strike a balance between
enabling relearning in the next generation and retaining desirable information from the previous
generation. We show in this section that through targeted forgetting of undesirable information and
preserving of desirable information, we can significantly improve upon existing algorithms.

4.1 REDUCING OVERFITTING IN IMAGE CLASSIFICATION

We build upon the KE algorithm since it is widely applicable and leverages a large number of iter-
ative training generations. Following Taha et al. (2021), we study tasks that have a small number
of training examples per class, where the network is prone to overfitting, and adopt the same exper-
imental framework unless otherwise specified. Detailed hyperparameters, training procedure, and
dataset descriptions can be found in Appendix A2.1-A2.2.

As described by Taha et al. (2021), in KE the mask criteria M is determined prior to training and
generated randomly for weight-level splitting (WELS), or based on the location of the kernel for
kernel-level splitting (KELS). Given a split-rate sr, sr% of weights (for WELS) or kernels (for
KELS) in each layer l has a corresponding M l value of 1. For a neural network parameterized by
Θ, we define the fit-hypothesis as M � Θ and reset-hypothesis as (1 −M) � Θ. At the start of
each generation, the weights in the fit-hypothesis are kept the same, and the weights in the reset-
hypothesis are reinitialized. Then, the network is trained from this new initialization for e epochs,
where e is the same for each generation.

Can we perform the forgetting step in a way that more explicitly targets difficult examples in order to
improve generalization performance? Baldock et al. (2021) introduce prediction depth as a measure
of example difficulty in a given model. Prediction depth refers to the layer after which an example’s
activations can generate the same predictions using a KNN probe as the model’s final predictions.
They show that increasing prediction depth corresponds to increasing example difficulty. They study
this correspondence using various notions of example difficulty, including output margin, adversarial
input margin, and speed of learning for each data point.

Based on the observations in Baldock et al. (2021), we hypothesize that by reinitializing the later
layers of the neural network, we can remove information associated with difficult examples more
precisely than the mask criteria used in KE. Thus, we propose a new forgetting procedure called
later-layer forgetting (LLF). Given a layer threshold L, we define the LLF mask criterion for each
layer l as:

M l
LLF =

{
1 if l < L
0 if l ≥ L (1)

We note that the concept of difficult examples is used only as a proxy for information in the network
that is more complex, brittle, and specialized. We do not suggest that these examples should not be
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learned. In fact, memorization of examples in the tails of the data distribution are often important
for generalization (Feldman & Zhang, 2020), which we also achieve in the relearning stage.

Following Taha et al. (2021), we perform LLF on top of non-iterative loss objectives designed to re-
duce overfitting. We report performance with label-smoothing (SMTH) (Müller et al., 2019; Szegedy
et al., 2016) with α = 0.1, and the CS-KD regularizer (Yun et al., 2020) with T = 4 and λcls = 3.
Additionally, we add a long baseline which trains the non-iterative method for the same total number
of epochs as the corresponding iterative methods. We present results for ResNet18 (He et al., 2016)
in Table 1 and DenseNet169 (Huang et al., 2017) in Table A10. We find that LLF substantially out-
performs both the long baseline and the KE models across all datasets for both model architectures.

Taha et al. (2021) introduced KE to specifically work in the low data regime. LLF as a direct
extension of KE is expected to work in the same regime. For completeness, we also evaluate LLF
using ResNet50 on Tiny-ImageNet (Le & Yang, 2015), and WideResNet (Zagoruyko & Komodakis,
2016) and DenseNet-BC on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) in Appendix A2.3.
We see a significant gain on Tiny-ImageNet, but not on CIFAR-10 or CIFAR-100.

Analysis of Related Work. Surprisingly, we find that when compared to the long baselines with
equal computation cost, KE actually underperforms in terms of generalization performance, which
is contrary to the claims in Taha et al. (2021). We can understand this low performance by looking at
the first few training epochs in each generation in Figure 3a. We see that after the first generation, the
training accuracy remains near 100% after the forgetting operation. This lack of forgetting suggests
that KE would not benefit from retraining under the forget-and-relearn hypothesis. We also observe
that KE experiences optimization difficulties post forgetting, as evidenced by a decrease in training
accuracy in the first epochs of each generation. This could explain why it under-performs the long
baseline. Although KE can enable a reduction in inference cost by using only the slim fit-hypothesis,
our analysis reveals that this benefit comes at the cost of lower performance.

Concurrent work (Alabdulmohsin et al., 2021) studies various types of iterative reinitialization ap-
proaches and proposes a layer-wise reinitialization scheme, which proceeds from bottom to top and
reinitializing one fewer layer each generation. We refer to this method as LW and provide a compar-
ison to their method in Table 1. We find that LLF outperforms LW across all datasets we consider.
More discussion on this comparison can be found in Appendix A2.4.

Analysis of LLF. In order to view the success of LLF and other similar iterative algorithms in
terms of the selective forgetting of undesirable information, we should also observe that selective
forgetting of desirable information should lead to worse results. We can test this by reversing the
LLF procedure: instead of reinitializing the later layers, we can reinitialize the earlier layers. The
standard LLF for Flower reinitializes all layers starting from block 4 in ResNet18, which amounts to
reinitializing 75% of parameters. The reverse versions starting from block 4 and block 3 reinitializes
25% and 6% of weights respectively. We see in Figure 3b that the reverse experiments indeed
perform worse than both LLF and the long baseline.

Additionally, by looking at how prediction depth changes with the long baseline compared to LLF
training in Figure A3, we can observe that LLF pushes more examples to be classified in the earlier
layers. This further suggests that forget-and-relearn with LLF encourages difficult examples to be
relearned using simpler and more general features in the early layers.

4.2 INCREASING COMPOSITIONALITY IN EMERGENT LANGUAGES

In order to promote compositionality in the emergent language, Li & Bowling (2019) propose to
periodically reinitialize the receiver during training. They motivate this by showing that it is faster
for a new receiver to learn a compositional language, and hypothesize that forcing the sender to
teach the language to new receivers will encourage the language to be more compositional. As is
common in this line of work (Brighton & Kirby, 2006; Lazaridou et al., 2018; Li & Bowling, 2019;
Ren et al., 2020), compositionality of the language is measured using topographic similarity (ρ),
which is defined as the correlation between distances of pairs of objects in the attribute space and
the corresponding messages in the message space. Li & Bowling (2019) show that ρ, measured
using Hamming distances for objects and messages, is higher with the ease-of-teaching approach
than training without resetting the receiver.
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Table 1: Comparing KE and Later Layer Forgetting for ResNet18. Results are mean accuracy and
standard error over 3 runs and reported for hyperparameter settings with best validation performance.
KE experiments use KELS split with a split rate of 0.8. LLF uses L ∈ {10, 14}, corresponding to
block 3 and 4 in ResNet18. N3, N8, N10 indicate the additional number of training generations on
top of the baseline model. LLF consistently outperforms all other methods.

Method Flower CUB Aircraft MIT Dog
Smth (N1) 51.02 ±0.09 58.92 ±0.24 57.16 ±0.91 56.04 ±0.39 63.64 ±0.16

Smth long (N3) 59.51 ±0.17 66.03 ±0.13 62.55 ±0.25 59.53 ±0.60 65.39 ±0.55
Smth + KE (N3) 57.95 ±0.65 63.49 ±0.39 60.56 ±0.36 58.78 ±0.54 64.23 ±0.05
Smth + LLF (N3) (Ours) 63.52 ±0.13 70.76 ±0.24 68.88 ±0.11 63.28 ±0.69 67.54 ±0.12
Smth long (N10) 66.89 ±0.23 70.50 ±0.13 65.29 ±0.51 61.29 ±0.49 66.19 ±0.03
Smth + KE (N10) 63.25 ±0.17 66.51 ±0.07 63.32 ±0.30 59.58 ±0.62 63.86 ±0.20
Smth + LLF (N10) (Ours) 70.87 ±0.41 72.47 ±0.31 70.82 ±0.50 64.40 ±0.58 68.51 ±0.39
Smth + LW (N8) 68.43 ±0.27 70.87 ±0.15 69.10 ±0.27 61.67 ±0.32 66.97 ±0.24
Smth + LLF (N8) (Ours) 69.48 ±0.24 72.30 ±0.28 70.37 ±0.49 63.58 ±0.16 68.45 ±0.25
CS-KD (N1) 57.57 ±0.61 66.61 ±0.02 65.18 ±0.68 58.61 ±0.25 66.48 ±0.12

CS-KD long (N3) 64.44 ±0.62 69.50 ±0.24 65.31 ±0.67 57.16 ±0.34 66.43 ±0.24
CS-KD + KE (N3) 63.48 ±1.30 68.76 ±0.57 67.16 ±0.23 58.88 ±0.63 67.05 ±0.31
CS-KD + LLF (N3) (Ours) 67.20 ±0.51 72.58 ±0.02 71.65 ±0.21 62.41 ±0.45 68.77 ±0.24
CS-KD long (N10) 68.68 ±0.28 69.59 ±0.40 64.58 ±0.07 56.12 ±0.43 64.96 ±0.17
CS-KD + KE (N10) 67.29 ±0.74 69.54 ±0.60 68.70 ±0.33 57.61 ±0.91 67.11 ±0.11
CS-KD + LLF (N10) (Ours) 74.68 ±0.19 73.51 ±0.35 72.01 ±0.23 62.89 ±0.59 69.20 ±0.12
CS-KD + LW (N8) 73.72 ±0.74 71.81 ±0.21 70.82 ±0.34 59.18 ±0.41 68.09 ±0.24
CS-KD + LLF (N8) (Ours) 73.48 ±0.31 73.47 ±0.35 71.95 ±0.23 62.26 ±0.47 69.24 ±0.29

We challenge this “ease-of-teaching” interpretation in Li & Bowling (2019) and offer an alternative
explanation. Instead of viewing the resetting of the receiver as inducing an ease-of-teaching pressure
on the sender, we can view it as an asymmetric form of forgetting in the two-agent system. This
form of forgetting is sub-optimal, since we care about the quality of the messages, which is con-
trolled by the sender. This motivates a balanced forgetting approach for the Lewis game, whereby
both sender and receiver can forget non-compositional aspects of their shared language. Therefore,
we propose an explicit forgetting mechanism that removes the asymmetry from the Li & Bowling
(2019) setup. We do this by partially reinitializing the weights of both the sender and the receiver
and refer to this method as partial balanced forgetting (PBF). We use the “same weight reinit” per-
turbation method from Section 3.2 with 90% of weights masked. Further training details are found
in Appendix A3. We show in Figure 4c that this method, which does not exert an “ease-of-teaching”
pressure, significantly outperforms both no resetting and resetting only the receiver in terms of ρ.

5 UNDERSTANDING THE FORGET-AND-RELEARN DYNAMIC

In Section 4, we discussed the importance of targeted forgetting in the forget-and-relearn dynamic.
In this section, we study the mechanism through which iterative retraining shapes learning.

5.1 IMAGE CLASSIFICATION

We consider two hypotheses for why iterative retraining with LLF helps generalization. We note
that these hypotheses are not contradictory and can both be true.

1. Later layers improve during iterative retraining with LLF. Due to co-adaptation during training,
the later layers may be learning before the more stable early layer features are fully developed
(notably in early epochs of the first generation), which might lead to more overfitting in the later

7



Published as a conference paper at ICLR 2022

0 5
0

20

40

60

80

100

200 205 400 405 600 605 800 805
Training Iteration

Tr
ai

ni
ng

 A
cc

ur
ac

y

KE
LLF

(a) Train accuracy at initialization and in the
first 6 epochs of training for 5 generations.

0 10 20 30 40 50
Training Generation

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y

standard LLF - block4
reverse reinit - block4
reverse reinit - block3

(b) Test accuracy of resetting
early layers vs. later layers

0 10 20 30 40 50
Training Generation

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y

standard LLF
freeze early layers
freeze later layers
freeze fixed later layers

(c) Test accuracy for different
freeze layer settings

Figure 3: Analysis experiments performed on Flower dataset with ResNet18. (b)-(c) show the min,
max, and average of 3 runs. (a) shows that KE induces no forgetting after the first 2 generations.
(b) shows that resetting early layers significantly under-performs LLF. (c) shows that freezing early
layers prevents any improvement in subsequent training, while freezing later layers still leads to
significant improvements.

layers in some settings. Reinitializing the later layers might give them an opportunity to be relearned
by leveraging fully developed features from the earlier layers.

2. Early layers improve during iterative retraining with LLF. Since the early layers are continuously
refined through iterative training, the features which are consistently useful under new learning
conditions may be amplified. These features may be beneficial to generalization.

To test hypothesis 1, we freeze the early layer after the initial training generation and reinitialize the
later layers for retraining in subsequent generations. If the later layers improve as a result of learning
on top of well-developed early layer features, we should expect a performance improvement during
relearning even when early layers are frozen. As shown in Figure 3c under “freeze early layers”, we
observe no significant performance improvement in this setting, suggesting that simply relearning
later layers has little effect on generalization performance.

To test hypothesis 2, we design a reverse experiment where the later layers (except for the output
FC layer) are reinitialized and then frozen at each subsequent relearning generation. The early lay-
ers are trained continuously in each generation. As shown in Figure 3c under “freeze later layers”,
we find that even with a random frozen layer in the middle, iterative retraining of the early layers
still improves performance significantly. To test the interpretation that early layers improve through
learning under different conditions, we perform the same experiment as before, except we keep the
later layers frozen at the same initialization in each generation. This reduces the amount of vari-
ability seen during iterative retraining. As shown in Figure 3c under “freeze fixed later layers”, we
find the performance of this to be much worse than the version with a different reinitialization each
generation, demonstrating the importance of having variable conditions for relearning. These anal-
yses suggest that the main function of iterative retraining is to distill features from the unforgotten
knowledge that are consistently useful under different learning conditions.

5.2 COMPOSITIONALITY

The analysis in Section 5.1 supports the hypothesis that features that are consistently learned across
generations are strengthened in the iterative retraining process. If this hypothesis explains why itera-
tive algorithms improve compositionality in the Lewis game, it would predict that (i) compositional
mappings are consistently learned across generations, (ii) the compositional mapping is strengthened
during repeated retraining, and (iii) ρ increases during the retraining stage.

For iterated learning, Ren et al. (2020) show that by limiting the number of training iterations in the
imitation phase, the new sender can learn a language with better ρ than the previous one, arguing
that the compositional components of the language are learned first. The success of iterated learning
has primarily been attributed to this increase in compositionality during the imitation phase, which
follows the explanation in the cognitive science theories from which iterated learning derives (Kirby,
2001). However, when viewed as an instance of forget-and-relearn, our hypothesis predicts that the
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Figure 4: Topographic similarity (ρ) in the Lewis game with different forms of forgetting. (a)
presents the ρ across all phases of iterated learning; (b) zooms into the first 40000 steps to illustrate
that ρ improves in two stages for every generation: first during reinitialization and imitation (forget),
but it is generally during interaction that the sender starts outperforming the previous generation’s ρ
(relearn). (c) plots ρ at the end of each generation for the ease-of-teaching setting.

improved performance in iterated learning is primarily driven by the interaction (retraining) phase.
The retraining phase reinforces features that are consistently learned, and we conjecture that these
correspond to the compositional mappings. We show in Figure 4b that the interaction phase is
indeed primarily responsible for the improvement in ρ. By looking at ρ during both the imitation
and interaction phases using optimal hyperparameters under the setting in Ren et al. (2020), we see
that increases in ρ occur during the interaction phase, while the optimal imitation phase does not
even need to result in a higher ρ than the end of the previous generation.

To show that the compositional components of the language are repeatedly learned and strengthened
during retraining, we visualize the learned mappings from each input dimension to message dimen-
sion in Appendix A4. We see that the same compositional mappings are retained across generations
while the non-compositional aspects fluctuate and decrease in magnitude. We also observe that the
probability of compositional mappings increase with increasing number of generations, illustrating
the strengthening effects of iterative retraining.

6 CONCLUSION

We introduce forget-and-relearn as a general framework to unify a number of seemingly disparate
iterative algorithms in the literature. Our work reveals several insights into what makes iterative
training a successful paradigm. We show that various forms of weight perturbation, commonly found
in iterative algorithms, disproportionately forget undesirable information. We hypothesize that this is
a key factor to the success of these algorithms, and support this conjecture by showing that how well
we can selectively forget undesirable information corresponds to the performance of the resulting
algorithms. Although we focus discussion on the forgetting of undesirable information, our analysis
in Section 5 implies that this is in service of preserving desirable information. We demonstrate
that the relearning stage amplifies the unforgotten information, and distills from it features that are
consistently useful under different initial conditions induced by the forgetting step.

This work has implications in understanding and designing new iterative algorithms. It places em-
phasis on what is forgotten rather than what is learned, and demonstrates that designing new methods
for targeted information removal can be a fruitful area of research. It can often be easier to define
and suppress unwanted behavior than to delineate good behavior, and we illustrate two ways of do-
ing so. Our results suggest that there exists a Goldilocks zone of forgetting. Forget too little and the
network could easily retrain to the same basin; forget too much and the network would fail to accu-
mulate progress over multiple relearning rounds. Where this zone lies raises interesting questions in
our understanding of neural network training that can be explored in future work. Finally, the idea
that features that are consistently useful under different learning conditions is reminiscent of the line
of work in invariant predictions (Arjovsky et al., 2019; Mitrovic et al., 2021; Zhang et al., 2021;
Parascandolo et al., 2021). Understanding this dynamic in the iterative regime may point the way to
creating algorithms that capture the same benefit without the expensive iterative training process.
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A APPENDIX

A1 PARTIAL WEIGHT PERTURBATION AS TARGETED FORGETTING

A1.1 DETAILS ON WEIGHT PERTURBATION METHODS

We can categorize this class of forgetting method in terms of both a mask criteria and a mask action.
The mask criteria is a function m : Rd → {0, 1}d, which determines which weights will be changed
during the forgetting step by producing a binary mask with the same dimensions as the parameters
of the neural network. The mask action s : Rd → Rd determines how the replacement values
of the weights are computed. The mask-1 action s1 operates on weights with mask value 1, and
mask-0 action s0 operates on weights with mask value 0. For a neural network parameterized by Θ,
forgetting through partial weight perturbation can then be defined by the update rule

Θ← m(Θ)� s1(Θ) + (1−m(Θ))� s0(Θ). (2)

Table A1: Types of weight perturbations for image classification experiments. Random mask criteria
means that masks are generated randomly, and IMP-style mask criteria equals to 1 for corresponding
weights with large final magnitudes. Mask-1 Action refers to the operation on weights with corre-
sponding mask value of 1, and Mask-0 Action refers to the operation on weights with corresponding
mask value of 0.

Method Mask Criteria Mask-1 Action Mask-0 Action
KE-style Random Reinit Random Identity Reinitialize
IMP-style Weight Rewind |Θfinal| Rewind Set to 0

Table A2: A example of a compositional language adopted from Li & Bowling (2019).

black blue green grey pink purple red yellow

circle bc lc gc rc pc uc dc yc
square bs ls gs rs ps us ds ys
star ba la ga ra pa ua da ya
triangle bt lt gt rt pt ut dt yt

Table A3: A example of a non-compositional language adopted from Li & Bowling (2019).

black blue green grey pink purple red yellow

circle ys gc lc pa bc ut ua rs
square ga la yc ra dc pt rc dt
star yt ls ba bs bt lt uc gs
triangle pc ps da ds rt us ya gt

A1.2 EXTENSION TO CIFAR-10 AND IMAGENET

We extend our analyses of partial weight perturbation to CIFAR-10 (Krizhevsky et al., 2009) on a
4-layer convolutional model (Conv4) and a ResNet18 model, and to ImageNet (Deng et al., 2009)
on ResNet50. All CIFAR-10 models are evaluated using a 50% reset rate. We find reliable trends
for both KE-style and IMP-style forgetting for all datasets.

For CIFAR-10, we follow the exact same procedure as the MNIST experiments. Following the
setup in Frankle & Carbin (2019), Conv4 model is trained using the Adam optimizer, and ResNet18
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Table A4: Types of weight perturbations for compositionality experiments. Random mask criteria
means that masks are generated randomly, and weight mask criteria equals to 1 for corresponding
weights with large final magnitudes. Frequency indicates how often masks are resampled. Mask-1
Action refers to the operation on weights with corresponding mask value of 1, and Mask-0 Action
refers to the operation on weights with corresponding mask value of 0.

Method Mask Criteria Frequency Mask-1 Action Mask-0 Action
Random Reinit Random Per Iter Identity Reinitialize
Random Zero Random Per Iter Identity Set to 0
Same Weight Reinit |Θinit| Once Identity Reinitialize
Same Weight Zero |Θinit| Once Identity Set to 0
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(a) Conv4 on CIFAR-10
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(b) ResNet18 on CIFAR-10

Figure A1: The left panels in (a) and (b) show training accuracy of easy and hard example groups
for different types of weight perturbation. The right panels in (a) and (b) show the accuracy of each
example group for the same model with weight perturbation applied. Same colors represent the
same forgetting operation, and dashed lines represent the accuracy on the hard examples. Results
are averaged over 5 runs. Lowess smoothing is applied for visual clarity.

is trained using SGD. We train on 10% of training data for fast convergence. Results on easy and
hard examples are shown in Figure A1. We find that KE-style forgetting results in consistent and
significant difference between easy and hard examples. However, the IMP-style forgetting operation
renders the post-forgetting accuracy close to chance for CIFAR-10 models, and there is only a small
difference between easy and hard example groups. In the lottery ticket literature, it has long been
observed that “late resetting” is needed to get performant sparse models as datasets and models
get larger (Frankle et al., 2019). In late resetting, we would rewind kept weights to the value a
few epochs after training, rather than to the initial untrained values. We perform a variant of IMP-
style forgetting where weights are rewound to epoch 3. We find that IMP-style forgetting with late
resetting significantly increases accuracy for both groups, and much more so for the easy group
than the hard group. We also show the same trend with true and random labeled example groups in
Figure A2. These results demonstrate that IMP with late resetting achieves more targeted forgetting
of undesirable information, which can be seen through the larger gaps between example groups.
These observations suggest another possible reason for the increased performance when using late
resetting: IMP with late resetting better leverages the benefits of forget-and-relearn.

For ImageNet experiments, given computational constraints, we use a pretrained ResNet50 model
on ImageNet and separate examples into easy and hard groups based on output margin. We only
use training examples that are correctly classified as to not disadvantage the difficult examples. This
means that both group has 100% accuracy pre-forgetting. We then perform various forgetting oper-
ations on top of the pretrained model and measure the accuracy of the two groups post-forgetting.
For KE-style forgetting, we randomly reinitialize 20% of weights on the same pretrained model and
aggregate results over 5 samples. For IMP-style forgetting, we set varying percentages of small
weights to zero as a proxy given we are using a pretrained model and do not have access to initial
or intermediate weights. Results are shown in Table A5, and we find that hard examples are more
severely affected in all cases.
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(a) Conv4 on CIFAR-10

0 20000 40000 60000 80000 100000
Training Iteration

0

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y

KE-Forget True Labels
KE-Forget Random Labels
IMP-Forget (ep0) True Labels
IMP-Forget (ep0) Random Labels
IMP-Forget (ep3) True Labels
IMP-Forget (ep3) Random Labels

0 20000 40000 60000 80000 100000
Training Iteration

10

20

30

40

50

60

70

Po
st

-F
or

ge
t T

ra
in

in
g 

Ac
cu

ra
cy

(b) ResNet18 on CIFAR-10

Figure A2: The left panels in (a) and (b) show training accuracy of true and mislabeled example
groups for different types of weight perturbation. The right panels in (a) and (b) show the accuracy
of each example group for the same model with weight perturbation applied. Same colors represent
the same forgetting operation, and dashed lines represent the accuracy on the mislabeled examples.
Results are averaged over 5 runs. Lowess smoothing is applied for visual clarity.

Table A5: Weight perturbations on ResNet50 for ImageNet. Using a pretrained model, we filter out
the ImageNet training examples that are wrongly classified by the pretrained model. Hard examples
are the 10% of remaining training examples with the largest output margin, and easy examples are
the remaining training examples. We measure the accuracy of the two groups after performing
various forgetting operations on the pretrained models. Random reinit values are the mean and
standard error over 5 samples.

Method Easy Example Accuracy Hard Example Accuracy
Random Reinit 20% of Weights 45.6%± 0.7% 17.9%± 0.3%
Set Small Weights to Zero (50%) 89.8% 47.3%
Set Small Weights to Zero (40%) 97.9% 65.5%
Set Small Weights to Zero (30%) 99.7% 80.1%
Set Small Weights to Zero (20%) 100% 90.3%

A2 TARGETED FORGETTING IMPROVES PERFORMANCE

A2.1 ARCHITECTURES AND TRAINING DETAILS

All networks are trained with stochastic gradient descent (SGD) with momentum of 0.9 and weight
decay of 10−4. We also use a cosine learning rate schedule (Loshchilov & Hutter, 2017). Taha
et al. (2021) use an initial learning rate of 0.256, but we find that a smaller learning rate than what
is used in Taha et al. (2021) to be beneficial for certain datasets, thus we consider a learning rate
in {0.1, 0.256} for all experiments and report the setting with the better validation performance.
Models are trained with a batch size of 32 for 200 epochs each generation. No early stopping is
used.

For the layer threshold L, we determine the value through hyperparameter tuning on a validation set.
In the settings we consider, we find that it is sufficient to sweep through the starting layer or middle
layer of model blocks, beginning from the second block. This allows us to search for L within a
restricted set of 6 of fewer values, making it practical even in deep models. All ResNet18 models
use a default layer threshold of 10 (start of block 3), with exception of the Flower dataset which uses
a threshold of 14 (start of block 4) on the SMTH experiments. All DenseNet169 models use a default
layer threshold of 40 (start of denseblock 3), except for the Aircraft dataset which uses a threshold
of 68 (middle of denseblock 3).
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Table A6: Summary of the five datasets used in Section 4.1, adopted from Taha et al. (2021).

Classes Train Size Val Size Test Size Total Size

Flower (Nilsback & Zisserman, 2008) 102 1020 1020 6149 8189
CUB (Wah et al., 2011) 200 5994 N/A 5794 11788
Aircraft (Maji et al., 2013) 100 3334 3333 3333 10000
MIT67 (Quattoni & Torralba, 2009) 67 5360 N/A 1340 6700
Stanford-Dogs (Khosla et al., 2011) 120 12000 N/A 8580 20580

Table A7: Later Layer Forgetting on Tiny-ImageNet. Results are test accuracy averaged over 3 runs
and reported for hyperparameter settings with best validation performance. N3 and N10 indicate the
additional number of training generations on top of the baseline model. The long baseline scales the
step LR schedule based on the additional epochs.

Method Tiny-ImageNet
Smth (N1) 54.37

Smth long (N3) 51.16
Smth + LLF (N3) (Ours) 56.12
Smth long (N10) 49.27
Smth + LLF (N10) (Ours) 56.92

A2.2 DATASET SUMMARY

Taha et al. (2021) uses different resizing of images for different datasets, and the specific resizing
parameters are not specified in the paper. For consistency, we resize all datasets to (256, 256). We
use a validation split to tune hyperparameters and report results on the test set when available.

A2.3 EXTENSION TO LARGER DATASETS AND MODELS

In this section, we evaluate LLF on larger datasets and models than what was used in the core
comparison with KE. We train ResNet50 on Tiny-ImageNet (Le & Yang, 2015), which consists of
200 classes with 500 training examples each. We adopt the training setup from Ma et al. (2021) and
reset layers starting from the third block (L = 23) during LLF. As illustrated in Table A7, we find
LLF to outperform the baselines on Tiny-ImageNet.

Furthermore, we also adopt two highly competitive baselines for CIFAR-10 and CIFAR-100
(Krizhevsky et al., 2009) in the literature: WideResNet-28-10 (Zagoruyko & Komodakis, 2016)
and DenseNet-BC (k = 12) (Huang et al., 2017). CIFAR-10 contains 10 classes with 5000 training
examples each, while CIFAR-100 contains 100 classes with 500 examples each. For WideResNet-
28-10, we reset from the second block (L = 10), and for DenseNet-BC, we reset only the fully-
connected output layer (L = 99) during LLF. We report our results in Table A8. In these settings,
we do not see any improvements from LLF over our baselines.

For these dataset extensions, we follow the same simple heuristic that was used for the five small
datasets in the main text. Namely, we take existing training setups and hyperparameters from the
literature as is and treat it as one generation, and search for L over a restricted set of values (6 or
fewer). Better results may be obtained through finer hyperparameters tuning.

A2.4 COMPARISON TO LW

Concurrent work (Alabdulmohsin et al., 2021) studies various types of iterative reinitialization ap-
proaches and finds that reinitializing entire layers produced the best performance. They propose a
layer-wise reinitialization scheme, proceeding from bottom to top and reinitializing one fewer layer
each generation. In addition, Alabdulmohsin et al. (2021) performs weight rescaling and activa-
tion normalization for each layer that is not reinitialized. We refer to this method as LW and add

18



Published as a conference paper at ICLR 2022

Table A8: Later Layer Forgetting on CIFAR-10 and CIFAR-100 using WideResNet-28-10 (WRN)
and DenseNet-BC (DN). Results are test accuracy averaged over 3 runs and reported for hyperpa-
rameter settings with best validation performance. We consider three additional training generations
on top of the baseline model. The long baseline scales the step LR schedule based on the additional
epochs.

Method CIFAR-10 CIFAR-100
WRN Smth (N1) 96.09 81.20

WRN Smth long (N3) 96.32 81.29
WRN Smth + LLF (N3) (Ours) 95.91 80.95
DN Smth (N1) 95.21 77.12

DN Smth long (N3) 95.68 78.12
DN Smth + LLF (N3) (Ours) 95.52 78.13

a comparison to their method in Table 1. We find that LLF outperforms LW across all datasets we
consider. However, we note that LLF introduces an additional hyperparameter for the layer thresh-
old, which LW does not require. Additionally, we find that under our experimental settings, several
choices proposed in LW actually harms performance. We remove the addition of weight rescaling
and normalization, and do not reinitialize batchnorm parameters, in order to achieve the best per-
formance under the LW schedule. The forget-and-relearn hypothesis suggests that it is unnecessary
to reinitialize the first few layers. Doing so in LW hinders their progress in the first few genera-
tions of training, and also leads to poorer generalization performance even after completing the full
sequential schedule.
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(b) KNN probe for Long Baseline.
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(c) KNN probe for LLF.

Figure A3: KNN probe train accuracy for various ResNet18 models trained on Flower. The layers
shown are the end of each block and after the softmax operation. We use K=3 to compute accuracy
using the activations from each layer. The different curves in each panel show that overall prediction
depth (as approximated by average KNN accuracy across layers) decreases with more training. LLF
in (c) shows the most significant change, with the KNN probe performing near perfect at layer 6,
which is earlier than the other two methods.

A3 DETAILS ON PARTIAL BALANCED FORGETTING

Our experimental settings follows Li & Bowling (2019). We use one-layer LSTMs with a hidden
size of 100 to parameterize both the sender and receiver agents. We train using batch size of 100,
and use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001. The language
contains a vocabulary size of 8 and a message length of 2. We use 4 SHAPE and 8 COLOR attributes,
and the object set consist of all 32 combinations of these attributes.

The agents are trained with REINFORCE and entropy regularization using the following objectives:

∇θSJ = EπS ,πR [R(t̂, t) · ∇θS log πS(m | t)] + λS · ∇θSH[πS(m | t)]
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Table A9: Comparing KE and Later Layer Forgetting for ResNet18. Results are test accuracy
averaged over 3 runs and reported for hyperparameter settings with best validation performance.
KE experiments use KELS split with a split rate of 0.8. LLF uses L ∈ {10, 14}, corresponding to
block 3 and 4 in ResNet18. N3, N8, N10 indicate the additional number of training generations on
top of the baseline model. LLF consistently outperforms all other methods.

Method Flower CUB Aircraft MIT Dog
Smth (N1) 51.02 58.92 57.16 56.04 63.64

Smth long (N3) 59.51 66.03 62.55 59.53 65.39
Smth + KE (N3) 57.95 63.49 60.56 58.78 64.23
Smth + LLF (N3) (Ours) 63.52 70.76 68.88 63.28 67.54
Smth long (N10) 66.89 70.50 65.29 61.29 66.19
Smth + KE (N10) 63.25 66.51 63.32 59.58 63.86
Smth + LLF (N10) (Ours) 70.87 72.47 70.82 64.40 68.51
Smth + LW (N8) 62.84 70.58 67.36 61.24 66.58
Smth + LW NoNorm NoRescale (N8) 65.97 71.15 67.97 63.13 66.96
Smth + LW(-BN) (N8) 63.67 70.10 66.79 60.10 -
Smth + LW(-BN) NoNorm NoRescale (N8) 68.43 70.87 69.10 61.67 66.97
Smth + LLF (N8) (Ours) 69.48 72.30 70.37 63.58 68.45
CS-KD (N1) 57.57 66.61 65.18 58.61 66.48

CS-KD long (N3) 64.44 69.50 65.23 57.16 66.43
CS-KD + KE (N3) 63.48 68.76 67.16 58.88 67.05
CS-KD + LLF (N3) (Ours) 67.20 72.58 71.65 62.41 68.77
CS-KD long (N10) 68.68 69.59 64.58 56.12 64.96
CS-KD + KE (N10) 67.29 69.54 68.70 57.61 67.11
CS-KD + LLF (N10) (Ours) 74.68 73.51 72.01 62.89 69.20
CS-KD + LW (N8) 65.80 70.94 66.37 57.96 66.74
CS-KD + LW NoNorm NoRescale (N8) 69.96 70.91 69.53 60.22 67.47
CS-KD + LW(-BN) (N8) 69.54 - 68.87 - -
CS-KD + LW(-BN) NoNorm NoRescale (N8) 73.72 71.81 70.82 59.18 68.09
CS-KD + LLF (N8) (Ours) 73.48 73.47 71.95 62.26 69.24

∇θRJ = EπS ,πR [R(t̂, t) · ∇θR log πR(t̂ | m, c)] + λR · ∇θRH[πR(t̂ | m, c)]

We use λS = 0.1 and λR = 0.1 in all our experiments, which differs slightly from Li & Bowling
(2019) that use λR = 0.05, however we observe that the difference is small between these settings.
We train the “no reset” and “reset receiver” baselines for 6000 iterations per generation for 50 gener-
ations, following the hyperparameters in Li & Bowling (2019). We train our PBF method with “same
weight reinit” for 3000 iterations per generation for 100 generations for best performance. However
we note that even using the same 50 generation hyperparameter, PBF significantly outperforms its
baselines.

A4 EMERGENT LANGUAGE VISUALIZATIONS

In this section, we aim to visualize the languages learned by the sender in a Lewis game in the set-
tings of Ren et al. (2020) and Li & Bowling (2019). Despite all the runs having near-perfect training
accuracy , the degree of compositionality exhibited by the emergent languages varies significantly
depending on the use of forget-and-retrain as evident in Figure 4. In both these settings, each object
has two attributes that can take values in A1 = {1, . . . , r1} and A2 = {1, . . . , r2} respectively, and
each message has two tokens that can take values in M1 = {1, . . . , s1} and M2 = {1, . . . , s2}
respectively. Let us represent a(j)i as 1 if attribute i has the value j, and 0 otherwise. Similarly, we
represent m(j)

i as 1 if message token i has the value j, and 0 otherwise. When r1 + r2 = s1 + s2
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Table A10: Comparing KE and Later Layer Forgetting for DenseNet169. Results are test accuracy
averaged over 3 runs and reported for hyperparameter settings with best validation performance.
KE experiments use WELS split with a split rate of 0.7. LLF uses L ∈ {40, 68}. N3, N8, N10
indicate the additional number of training generations on top of the baseline model. LLF consistently
outperforms all other methods.

Method Flower CUB Aircraft MIT Dog
Smth (N1) 45.87 61.59 58.06 57.21 66.46

Smth long (N3) 59.39 70.87 67.55 62.29 68.82
Smth + KE (N3) 58.35 68.85 65.63 60.35 68.64
Smth + LLF (N3) (Ours) 62.31 71.97 70.53 64.60 70.19
Smth long (N10) 67.47 71.98 70.69 60.72 67.48
Smth + KE (N10) 65.19 70.20 67.47 60.77 68.62
Smth + LLF (N10) (Ours) 70.09 73.12 74.31 61.69 69.93
CS-KD (N1) 52.95 64.28 64.87 57.61 66.90

CS-KD long (N3) 60.03 63.80 67.68 57.21 67.01
CS-KD + KE (N3) 63.33 66.78 68.47 58.81 68.49
CS-KD + LLF (N3) (Ours) 65.43 73.54 72.22 61.74 70.61
CS-KD long (N10) 63.84 63.58 67.22 55.49 64.69
CS-KD + KE (N10) 69.24 66.34 69.51 58.33 67.73
CS-KD + LLF (N10) (Ours) 72.23 74.20 73.30 63.18 71.07

(i.e. the total number of input attribute values is equal to the total number of message token values),
a compositional language with maximum topographic similarity (ρ) would have each input attribute
activation a(l)k mapped to a unique message token activation m(q)

p .

Thus, we can represent the inputs and the messages both as concatenations of two one-hot vec-
tors a = {a(1)1 , . . . , a

(r1)
1 , a

(1)
2 , . . . , a

(r2)
2 } and m = {m(1)

1 , . . . ,m
(s1)
1 ,m

(1)
2 , . . . ,m

(s2)
2 } respec-

tively. In Figures A4-A8, we illustrate the mappings from input dimensions a to message di-
mensions m. Visualized values closer to 1 indicate a more consistent mapping across the en-
tire dataset, indicating a compositional mapping. Concretely, for each active input dimension
a
(l)
k , we vary A6=k across all its values and collect the corresponding message token probabilities

m̂ = {m̂1
(1), . . . , m̂1

(s1), m̂2
(1), . . . , m̂2

(s2)} produced by the sender via two softmax operations.
Then, the mean of these message probability vectors EA6=k

[m̂] across A6=k is used as the row cor-
responding to input dimension a(l)k . For a perfectly compositional mapping, the visualized matrix
resembles a permutation matrix.

For iterated learning in Figure A4 and PBF in Figure A6, we see the emergence of a composi-
tional mapping. The compositional component is retained across generations whereas the non-
compositional components are disproportionately affected in the forgetting step and are more likely
to get remapped. Finally, during the retraining phases, we see the compositional mappings get
strengthened.

A5 CONNECTIONS TO OTHER TYPES OF FORGETTING

In the continual learning literature, catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff,
1990) refers to the decrease in performance on older tasks due to the learning of new tasks. There is
a large body of literature focused on avoiding catastrophic forgetting (Ratcliff, 1990; Robins, 1995;
French, 1999; Kirkpatrick et al., 2017; Serra et al., 2018). In this work, we view forgetting in a
positive light, to say that it aides learning. It is conceivable that catastrophic forgetting can even be
leveraged to help learning with a well-chosen secondary task in a forget-and-relearn process. It is
worth noting that the continual learning problem is in some sense the opposite of what we consider
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A4: Mappings from input dimension to message dimension learned by the sender using
iterated learning in the setting of Ren et al. (2020), logged after every generation for the first 32200
training iterations across all phases. A compositional language appears as a permutation matrix,
where each input dimension maps to a unique message dimension.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A5: Mappings from input dimension to message dimension learned by the sender without
any form of forget-and-retrain in the setting of Ren et al. (2020), logged uniformly for the first
33000 training iterations. A compositional language would have appeared as a permutation matrix,
where each input dimension maps to a unique message dimension.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A6: Mappings from input dimension to message dimension learned by the sender using
Partial Balanced Forgetting (PBF) in the setting of Li & Bowling (2019), logged after every two
generations for the first 48000 training iterations. A more compositional language has unique non-
overlapping message dimension activations for different input dimensions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A7: Mappings from input dimension to message dimension learned by the sender by reset-
ting the receiver periodically following the setting of Li & Bowling (2019), logged after every
generation for the first 48000 training iterations. A more compositional language has unique non-
overlapping message dimension activations for different input dimensions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A8: Mappings from input dimension to message dimension learned by the sender without
any form of forget-and-retrain in the setting of Li & Bowling (2019), logged uniformly for the
first 48000 training iterations. A more compositional language has unique non-overlapping message
dimension activations for different input dimensions.

in forget-and-relearn. Continual learning seeks to learn different tasks without forgetting old ones,
while we explicitly assume that the tasks are available for iterative relearning.

Shwartz-Ziv & Tishby (2017) studies the progression of mutual information between each layer
and the input and target variables throughout the training of deep neural networks. They reveal
that the converged values lie close to the information bottleneck theoretical bound, which implies
a decrease in the mutual information with the input. In a sense, the information bottleneck leads
to the “forgetting” of unnecessary information. It would be interesting to explore whether there are
fundamental similarities between the information loss caused by SGD training dynamics and the
effect resulting from forget-and-relearn.

Barrett & Zollman (2009) studies forgetting in the Lewis game from the perspective of suboptimal
equilibria. They show that using a learning rule that remembers the entire past (i.e. Herrnstein
reinforcement learning), the model converges to a worse equilibrium than learning rules that discard
past experience. Yalnizyan-Carson & Richards (2021) also studies the benefits of forgetting in
the reinforcement learning formulation. These works further point to the possibility of designing
forgetting mechanisms that are built in to the learning process itself.

Although we claim many iterative training algorithms as instances of forget-and-relearn, there are
also many that we do not, even though they may be related. Algorithms like born-again networks
(Furlanello et al., 2018) and self-training with noisy students (Xie et al., 2020) rely on iterative
self-distillation, and do not have distinct forgetting and relearning stages. Instead, knowledge is
passed to the next generation through pseudo-labels. A number of papers have tried to understand
why students trained through self-distillation often generalize better than their teachers (Phuong &
Lampert, 2019; Tang et al., 2020; Allen-Zhu & Li, 2020; Stanton et al., 2021); perhaps viewing
these methods through the lens of forgetting undesirable information offers an alternative path.
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