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Abstract
The Transformer architecture has revolutionized the Nat-
ural Language Processing (NLP) community by provid-
ing immense gains in accuracy for several NLP tasks, es-
pecially through the creation of Large Language Models
(LLMs). Transformers will not remain state-of-the-art, how-
ever. As superior architectures, especially those implemented
on neuromorphic accelerators, become available, we will
need cross-architecture pretraining methods that efficiently
transfer knowledge from outdated machine learning models
to more advanced ones. This paper presents superstilling, an
adaptation of Hinton et al.’s well-known distillation technique
to transfer parametric knowledge between models with vastly
different sizes, forward propagation methods, and weight up-
date algorithms. We validate this method on one of these three
possibilities - transferring knowledge from a small model to
a much larger one - and show that superstilling can decrease
sample complexity by up to 50% during early pretraining, and
by more than 10% at the knowledge saturation point.

Introduction
The Transformer architecture (Vaswani et al. 2017) shows
enormous promise in domains such as common-sense rea-
soning, few-shot learning, conversational text generation,
and API management, and is gaining widespread traction in
commercial industry. And yet, despite this prowess, trans-
formers will almost certainly be supplanted by newer, more
powerful machine learning models. Retentive networks, in-
troduced by Sun et al. (2023), leverage a chunkwise re-
current algorithm with parallelization benefits comparable
to the transformer’s famed attention mechanisms while re-
quiring far less computation during inference. Other re-
searchers have proposed adaptations of attention mecha-
nisms for spiking neural networks, a combination which
shows promise for future implementation on low-power neu-
romorphic hardware (Zhou et al. 2023; Li, Lei, and Yang
2022). As these and other innovations gain traction, a host
of new Large Language Models (LLMs) will inevitably be
brought online, each of them requiring Terabytes of data and
millions of dollars to train. Even without architectural inno-
vations, prior trends suggest that transformer-based LLMs
will continue to increase in capabilities with more size, data,
and compute (Kaplan et al. 2020).

Ironically, most of these new LLMs will be trained on the
same or on similar data as their less advanced counterparts,

Figure 1: Superstilling: In this reversed distillation
paradigm, the output probabilities of the Teacher model are
used in addition to one-hot ground truth labels during model
pretraining. The cross-entropy loss from both sources is then
weighted and summed to produce the final loss.

due to limitations in the amount of high-quality text data
available for training language models of such scale (Vil-
lalobos et al. 2022; Muennighoff et al. 2023). This fact raises
an interesting question. If we cannot copy the model weights
directly to the new LLM, can we instead leverage the learned
internal representations to transfer pretraining information
more effectively than training the new LLM from scratch?

This paper introduces an application of model distilla-
tion (Hinton, Vinyals, and Dean 2015) toward data-efficient
training of large-scale language models. Distillation is a pro-
cess whereby behaviors learned by a large machine learning
model, called the Teacher, are evoked within a much smaller
model, called the Student. This is achieved by providing the
student model with the full output probability distribution
of the teacher, essentially increasing the amount of informa-
tion provided by each training example and thus simplifying
the loss surface of the task to be learned. Typically, distilled
models are able to replicate or nearly-replicate the perfor-
mance of the teacher model by replicating its output proba-
bilities, even when the student would not be able to learn the
task directly from the original training data. Model distilla-
tion has been used to reduce inference costs by as much as
40%, while still retaining about 97% of the original capabili-
ties (Sanh et al. 2019). In some cases, successful distillation
has been achieved using a student that was only 2.6% as



large as the initial model (Costa-jussà et al. 2022).
Inspired by the remarkable ability of distillation to pack

more information into fewer parameters, our research team
began to wonder: Rather than using this process to reduce
model size, could we instead use it to improve training ef-
ficiency? Specifically, we asked whether model distillation
could be used to train new LLMs in a data efficient and ar-
chitecturally agnostic way.

We term this reverse distillation method superstilling. In
contrast to the standard use of model distillation as a tech-
nique for reducing model size, our superstilling method
(Fig. 1) is designed to improve sample efficiency by lever-
aging knowledge from a deprecated model in the training of
its successor. In this paradigm, the roles of the teacher and
student are reversed, and the output distribution of a smaller
and/or representationally inferior teacher model is used to
train a student model with superior representational capac-
ity.

Critically, unlike fine-tuning or direct weight transfer, our
superstilling method imposes no constraints on the relative
architectures of the two models. Thus, the method may be
feasibly employed whenever a company or group of re-
searchers adopts a new machine learning architecture, ex-
pands their compute budget, or acquires new resources. Su-
perstilling can be applied even when the teacher’s original
training data is unwanted or no longer available, for exam-
ple by pairing the teacher’s output probability distribution
with ground truth knowledge from a different data source.
It can therefore be applied in federated learning scenarios
as well as scenarios where the teacher model’s weights are
available solely via API access.

The remainder of this paper is structured as follows: (1)
We present the superstilling method and apply it to train
transformer-based language models with up to 160M param-
eters, (2) We validate our superstilling approach by compar-
ing sample efficiency with respect to perplexity, and show
that gains of 10% to 50% can be achieved, (3) We discuss
practical guidelines for the application of superstilling in
commercial contexts, including methods for reduced com-
pute cost over successive superstilling iterations, as well as
possibilities for a slight speedup in training time under spe-
cific conditions.

Background and Related Work
The Transformer architecture (Vaswani et al. 2017) is cur-
rently the backbone of large-scale language model research,
and has been applied with great success in domains rang-
ing common-sense reasoning (Bosselut et al. 2019; Ryt-
ting and Wingate 2021) to few-shot learning (Brown et al.
2020; Radford et al. 2019), conversational text generation
(Zhang et al. 2020; OpenAI 2023), and API management
(Schick et al. 2023). Like models that have come before,
however, it will likely be supplanted by novel innovations
in the field. In addition to advancements mentioned in the
introduction, current lines of research are exploring modi-
fied machine learning architectures that incorporate exter-
nal knowledge via graph embeddings; are embodied and/or
knowledge-grounded (Driess et al. 2023; Zakka et al. 2023;
Nakano et al. 2021); incorporate visual input (Zhang et al.

2021; Alayrac et al. 2022; Yang et al. 2023); leverage archi-
tectures based on squared RELUs and depth-wise attentional
convolutions (So et al. 2021); or combine attention mecha-
nisms with fast recurrence for more efficient training (Lei
2021).

Training Cost of Large-Scale Language Models
The efficiency of LLM model training is an active area of
machine learning research (Shen et al. 2022; Ma et al. 2019;
Lei 2021). GPT-3, a powerful and popular LLM, was trained
on a 500-billion token dataset (Brown et al. 2020). Train-
ing for BERT, another common language model, required a
dataset of 3.3 billion words (Kenton and Toutanova 2019).
Given that transformer-based LMs have been shown to con-
tinually increase in capabilities with more size, data, and
compute (Kaplan et al. 2020), it seems likely that the size
of the average large-scale language model will continue to
increase. Of particular importance to our research is the fact
that many of these LLMs are trained using similar or identi-
cal data.

Many researchers are exploring methods to reduce the
compute cost of LLM training. Of particular interest is the
work of (Korthikanti et al. 2023), who introduced methods
for reducing the re-computation of network activations, re-
sulting in significant memory savings. Exploring an alter-
nate approach, So et al. (2021) performed a search over vari-
ations to the transformer architecture in order to find one
that might be more efficient. Primer, the variant architecture
they discovered, significantly reduced training costs. These
efforts are orthogonal to our own in method, but are similar
in aim.

Model Distillation
Model Distillation, introduced by Hinton, Vinyals, and Dean
(2015), is a process that transfers the knowledge contained
in one neural network or ensemble of networks to another
(typically smaller) neural network. Distillation functions by
using the entire probability distribution produced by a pre-
viously trained model, called the Teacher, to calculate the
training loss for smaller Student model. The student model
learns both from the Teacher’s output as well as from the
ground truth labels contained in the training data. Through
this process, the student learns from the teacher not only
the most likely output given the input, but also the relative
likelihood of all other tokens or possible output categories.
This allows the student to learn much more information per
training sample. Distillation has been used frequently and
with great success. For example, Sanh et al. (2019) used
it to create a smaller version of BERT, leading to a 40%
reduction in model size while retaining about 97% of the
model’s performanece. Costa-jussà et al. (2022) utilized Dis-
tillation for a set of machine-translation models created as
part of Facebook’s No Language Left Behind program. The
distilled models, trained specifically on low-resource lan-
guages, were highly capable despite being only about 2.5%
as large as the initial model. Gordon and Duh (2020) ob-
served similar benefits from distillation in machine transla-
tion across multiple domains of language use.



Reverse Distillation
Reverse Distillation is a relatively small research area, and
much of the existing literature resides in the domain of
computer vision. For example, Yuan et al. (2020) showed
that there is a link between knowledge distillation and label
smoothing regularization. While they experimented with re-
verse distillation, the core purpose of their experiments was
to show that various distillation methods – including reverse
distillation – can improve accuracy on vision tasks. They do
not address LLMs. Chaudhury et al. (2021) similarly show
that reverse distillation leads to performance gains in the
field of computer vision and also discuss a link between dis-
tillation and label smoothing. Jiang and Deng (2023) use re-
verse distillation to calibrate the confidence of neural net-
works, making them safer to use in high-risk scenarios. To
combat the effects of noise inherent in natural data, Raipuria,
Bonthu, and Singhal (2021) experiment with reverse distil-
lation, determining that it is quite effective.

To our knowledge, the current work comprises the first
exploration of reverse distillation with the specific aim of
reducing sample complexity. In addition to focusing on the
critical and timely challenge of improving efficiency for
large-scale language models, we also provide a validation
of prior observations within a new domain, and identify sev-
eral reasons why this method may be particularly applicable
within the economic landscape of LLM development.

Method
We conducted experiments at two scales to investigate the
effects of superstilling on LLM sample complexity. At the
smaller scale, with models consisting of 53 million param-
eters, we show that superstilling gains much more knowl-
edge per training sample than traditional pretraining meth-
ods. We also show that superstilling is most useful in the
earliest epochs of training, with efficiency gains leveling off
as the student model nears the teacher model in accuracy.

We also conducted experiments using models with up to
161 million parameters – about the size of GPT-1 (Radford
et al. 2018). Results from these experiments show that super-
stilling continues to increase sample efficiency on models of
more significant size. We show in these experiments that su-
perstilling can in certain cases achieve better performance in
less clock time.

Training Data
Our small-scale experiments leveraged a limited dataset con-
sisting of 5 classic books acquired from Project Gutenberg
(Hart 2023): Little Women, Peter Pan, The Railway Chil-
dren, Black Beauty, and The Blue Fairy Book. These works
were selected as a small but representative sample of West-
ern literary aesthetics from the 19th and 20th centuries. Re-
sults from these initial experiments were validated using a
larger dataset containing over 1500 books (118 million to-
kens). These datasets as compiled contain only modern En-
glish text, a fact which simplifies training and limits the vo-
cabulary size. (In the future, extending this work to other
languages would be desirable.)

Training data was preprocesed by converting all char-
acters to lowercase, and was then tokenized using a stan-
dard spaCy tokenizer. For the larger dataset, vocabulary size
was clipped at 50,000 tokens, with the least common words
pruned.

Model Specifications
We conducted both small- and large-scale experiments to de-
termine the effectiveness of superstilling in reducing sam-
ple complexity. The smaller experiments used a teacher
model comprised of a 2-layer transformer decoder-only
mode trained on 5 classic children’s books. The student
model was exactly twice the size of the teacher (i.e. 4 trans-
former decoder blocks rather than 2) and was trained on
the same dataset. Both teacher and student had an inner
model dimension of 768, feed-forward dimension of 3072,
and 12 attention heads per layer. They were trained using
a set of hyperparameters in line wit GPT-1 (Radford et al.
2018): a learning rate of 3.0e-4 and an Adam optimizer with
β1 = 0.9, β2 = 0.98, and ϵ = 1.0e-8. Context window was
256 tokens, and the batch size was 16.

The large-scale experiments used a 4-layer model as the
teacher with a 12-layer model as the student. Both models
were trained on the the larger dataset (1500 books) with the
same hyperparameters and model dimensions as the small-
scale experiments, except that the context window was ex-
tended to 512 tokens and the batch size was increased to 32.

In both the small- and large-scale experiments, a baseline
model equal in size to the student was trained for compari-
son, using the same hyperparameters and context size as the
superstilled models.

Preliminary experiments suggested that it might be bene-
ficial to superstill only for the first 20-30% of training, due
to the declining benefit of teacher-supplied output distribu-
tions as the student’s capabilities approach (or exceed) those
of the teacher. The experiments reported here leverage this
insight, and report efficiency results for each of two transi-
tion points. Early in the training cycle, superstilling is lever-
aged; after transition, the student model is trained only on
the original data.

Superstilling Procedure
Following Hinton, Vinyals, and Dean (2015), we train the
student model with the same data as the teacher using the
following loss function:

L = w1 ∗ T 2 ∗ lt + w2 ∗ ld
where T is the temperature used to soften the teacher’s out-
puts, and lt and ld are the cross-entropy losses of the stu-
dent model with the teacher model and the data, respectively.
w1 and w2 weight the two different aspects of the loss. We
found via a coarse parameter search that using a temperature
T = 6 and setting w1 = 0.6 and w2 = 0.4 worked well.

In our small-scale experiments, we first train a 2-layer
transformer for 50 epochs. This is the teacher model. We
then trained two 4-layer student models (53M parameters)
via the superstilling method; one student model superstilled
for all 50 training epochs while the other transitioned to tra-
ditional cross-entropy loss after epoch 14. We also trained a



Figure 2: Model perplexity calculated over a datset containing 5 children’s books. The vertical axis is plotted on a log-scale. This
experiment was run using a small-scale transformer architecture with 4 layers and 53 million trainable parameters. Perplexity
was measured every 10 epochs.

4-layer baseline model using the standard method (i.e. cross-
entropy loss with respect to the training data).

The large-scale experiments were conducted in a simi-
lar manner, using a 4-layer teacher model and 12-layer stu-
dent model (161M parameters). Due to the increased dataset
size and existing resource constraints, the number of training
epochs was capped at 9. To compare the results of each set of
models, we compute perplexity with respect to the training
data. In the case of the large models, we compute perplexity
on the first 1% of the data.

Evaluation
Knowledge acquisition for each model was measured in
terms of perplexity, or the ability of the model to predict
its own training data. Perplexity is a well-established metric
in the language model literature, and can be loosely inter-
preted as the extent to which a model is “surprised” by a
statistical sample (Jelinek et al. 1977). In our experiments,
lower perplexity scores suggest that the model is approach-
ing knowledge saturation. In contrast, a high perplexity sug-
gests that the model is unable to predict its own training data,
and hence is not well adapted to its task.

Because perplexity is a function not only of the model’s
suitedness for the task, but also of the inherent uncertainty
within the task itself, perplexity values will vary across
evaluation datasets. In the case of language model training,
larger datasets will tend to produce higher perplexity val-
ues, even when the model has mastered its task quite well.
This occurs because language is inherently nondeterminis-
tic, with many possible completions for a given input se-

Table 1: Final perplexity achieved by small-scale models

Model PPL

Standard Transformer 1.066
Superstill All Epochs 1.097
Superstill Until Epoch 14 1.06

quence. Larger datasets expose the model to a high number
of these completions, and hence reduce its ability to predict
any specific completion with confidence.

Results
Results are presented in Figures 2 and 3. From Figure 2,
it can be seen that for the small-scale models, superstill-
ing achieves a markedly lower perplexity during early train-
ing. However, by epoch 30, superstilling alone no longer
provides any advantage, whereas a model with a super-
stilling ”head start” followed by traditional training con-
tinues to outperform the baseline model well past epoch
40. We hypothesize that this is due to the increased repre-
sentational power of the student model. Once the student
model achieves a certain level of performance, the (some-
times inaccurate) information from the teacher model pro-
vides less benefit than the ground truth labels alone. As Fig-
ure 2 shows, the combined method (”Superstill Until Epoch
14”) demonstrates consistent and stronger gains in perfor-
mance per epoch trained.

The large-scale experiments (Figure 3) confirm the benefit



Figure 3: Model perplexity calculated over the entire large dataset of 1500 books (large-scale transformer architecture with 12
layers and 161 million trainable parameters). Perplexity was measured every epoch. Epoch 0 is the first pass over the data

Table 2: Final perplexity achieved by large-scale models

Model PPL

Standard Transformer 20.746
Superstill Until Epoch 1 20.378
Superstill Until Epoch 3 20.034

of superstilling. As before, superstilling on the first 33% of
the data enables significantly lower perplexity at each epoch
compared to the standard method. At any given epoch n, the
superstilled model demonstrates gains commensurate with
the epoch n+1 of the standard model. In particular, we can
see from Table 3 that the superstilled model has reduced
the sample complexity by 50% at epoch 1 (because it has
reached comparable performance with only 50% of the data
seen by the standard model at epoch 2). These gains be-
come less dramatic the longer the models train. By epoch
8, when knowledge saturation is nearly complete, the su-
perstilled model achieves only a 12% reduction in sample
complexity. We note with interest that, given recent analysis
of the Chinchilla point for LLM training (Hoffmann et al.
2022), future state-of-the-art language models are unlikely
to achieve knowledge saturation using currently available
training data. Henc,e the gains achieved by our superstill-
ing method would fall somewhere between 50% and 12% in
real-world applications.

In addition to the experiments shown in Table 3, we also
explored large-scale models that had been superstilled for
only 1 training epoch, and found that model performance

exceeded that of the standard method, while also achieving a
slight reduction in wall-clock time required to reach a given
level of perplexity. We discuss this result further in the next
section.

Discussion
Our results suggest that superstilling may be a viable tech-
nique for data-efficient training of large-scale language
models. In addition to the performance gains achieved dur-
ing early training1, this method is model agnostic, and unlike
fine-tuning or direct weight transfer methods may be em-
ployed even when the model architectures are radically dif-
ferent. Additionally, the reduced sample complexity of the
superstilled training method may enable significant gains in
terms of financial cost and wall-clock time.

On the topic of wall clock time, consider the following:
our current superstilled training method requires data to pass
through both the teacher and the student models during train-
ing. This additional compute cost largely negates the bene-
fits of the observed increases in sample complexity. How-
ever, one can envision a more streamlined implementation
in which the teacher’s distributions have been stored as a
precomputed dataset which can be used over and over again
with increasingly sophisticated language models. In this sce-
nario, the extra compute cost is incurred only once, but the
financial and wall-clock benefits of superstilling can be car-
ried forward across multiple state-of-the-art LLMs.

1We note that, given known limitations of high-quality text data,
future state-of-the-art language models may be unable to train to
convergence. See Hoffmann et al. (2022).



Table 3: Reduction in Sample Complexity

Model Epo. 0 Epo. 1 Epo. 2 Epo. 3 Epo. 4 Epo. 5 Epo. 6 Epo. 7 Epo. 8

Standard Transformer 40.919 31.128 27.395 25.427 23.855 22.774 21.984 21.363 20.746
Superstill Until Epoch 3 33.671 27.274 25.125 23.775 22.45 21.707 21.133 20.600 20.034

% Sample Complexity Reduced NA 50% 33% 25% 20% 17% 14% 12%

Superstilling is a powerful method for improving the sam-
ple complexity of LLMS, and shows strong potential for
energy- and data-efficiency of future language model train-
ing. Additionally, it may be particularly well suited to low-
resource settings involving specialized and/or proprietary
datasets, where limitations in the amount of available data
demand that each training instance provide as much infor-
mation as possible. Further work is needed to explore this
possibility.

Limitations

This work was conducted on language models with up to
161 million trainable parameters. While the results appear
to be consistent across model sizes, a full-scale analysis on
models up to 70 million parameters is recommended. As this
would incur significant energy expenditure and correspond-
ing environmental cost, we advise that any such efforts be
combined with the development of novel LLMS for defini-
tive useful purposes, in order to maximize benefit and avoid
energy waste.

The data used in these experiments is exclusively in the
English language, and comprises only narrative prose from
the 19th and 20th centuries. Given the potential influence of
corpus selection on language model attributes, as noted by
Fulda (2020), the comparative effectiveness of this method
on other languages and corpora cannot be guaranteed.

Additionally, we acknowledge that in recommending the
training of new models from old ones, any biases from the
old model will likely be incorporated in the new one due to
the direct transfer of knowledge inherent in our method.

Conclusion

In this paper we propose superstilling as a training method
to reduce sample complexity during the creation of state-
of-the-art LLMs. By leveraging the parametric knowledge
that is already present in pretrained models, we can reduce
the amount of data needed to attain a specific perplexity
score by more than 10%, and outline a path toward attaining
wall clock speedups via this same method. The superstilling
method is complementary to other work on language model
training efficiency, and can be combined with various archi-
tectural innovations to further increase training efficiency.
Our experiments demonstrate the effectiveness of superstill-
ing on Transformer-based models of up to 161M parameters
on English-language text generation tasks. We hope that this
will be a useful tool for other researchers.
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