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Abstract

Retrieving semantically relevant code func-001
tions given a natural language (NL) or pro-002
gramming language (PL) query is a task of003
great practical value towards building produc-004
tivity enhancing tools for software develop-005
ers. Recent approaches to solve this task006
involve leveraging transformer based masked007
language models that are pre-trained on NL008
and PL and fine-tuned for code search using a009
contrastive learning objective. However, these010
approaches suffer from uninformative in-batch011
negative samples.012

We propose DyHardCode: a contrastive learn-013
ing framework that leverages hard negative ex-014
amples, which are mined globally from the015
entire training corpus to improve the quality016
of code and natural language representations.017
We experiment with different hard negative018
mining strategies, and provide explanations to019
the effectiveness of our method from the per-020
spectives of optimization and adversarial learn-021
ing. We show that DyHardCode leads to im-022
provements in multiple code search tasks. Our023
approach achieves an average (across 6 pro-024
gramming languages) mean reciprocal ranking025
(MRR) score of 0.750 as opposed to the previ-026
ous state of the art result of 0.713 MRR on the027
CodeSearchNet benchmark.1028

1 Introduction029

The availability of large scale datasets consisting of030

human written software in the past decade through031

platforms like Github has resulted in a fascinating032

array of tasks that can be performed with program-033

ming languages. These tasks are aimed towards034

improving developer productivity in different ways.035

In this work, we focus on the natural language036

code search task, where the user input is a query037

in natural language and the system response is ex-038

pected to be the most relevant piece of code from039

a large corpus of code snippets. Resources like040

1Code and models are available at <redacted>

Figure 1: DyHardCode: Contrastive Learning of NL
and PL representations with Dynamic Hard negatives.

StackOverflow are immensely useful for program- 041

mers with all levels of experience due to the natu- 042

ral language descriptions associated with the code 043

snippets. However, such openly accessible commu- 044

nity forums typically exist only for open-sourced 045

libraries and it would be difficult to develop such 046

forums for a new private tool without a large user 047

community. Besides, such platforms may not be ex- 048

haustive in covering all the different functionalities 049

of a software development tool. 050

Automated natural language (NL) to code search 051

can be a promising framework to address these lim- 052

itations. Recent work by Xu et al. (2021) studies 053

the effectiveness of code generation and code re- 054

trieval tools when offered to a set of developers 055

inside the IDE. They report that generation and re- 056

trieval modules complement each other in assisting 057

the user. Particularly, they find retrieval modules 058

are preferred over generation ones when the user is 059

implementing more complex functionalities, thus 060

endorsing the need for better code retrieval tools. 061

Given the significance of code search, we inves- 062

tigate current state-of-the-art approaches, which 063

are primarily based on fine-tuning a pre-trained (on 064

both natural and programming languages) encoder 065

using a contrastive loss. Related work on text re- 066
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trieval (unimodal setup of NL only) (Xiong et al.,067

2021; Karpukhin et al., 2020) promotes the use of068

finding similar examples from the training corpus069

for use as negative candidates in the contrastive070

learning setup. We follow this line of ideas to de-071

sign better representation learning schemes for the072

code search task. Our primary contributions in this073

direction are as follows:074

• We first define the possible aspects of the NL075

code search problem that distinguish it from076

the unimodal text retrieval problem and identify077

limitations of the existing contrastive learning078

schemes that merely use local in-batch negatives079

to learn NL-PL representations for the semantic080

code search task (Section 2).081

• We then propose DyHardCode (Figure 1), a con-082

trastive learning framework that leverages global083

hard negatives, and compare multiple hard neg-084

ative mining variants for the bimodal setup of085

NL-PL that lead to better representation learn-086

ing for the NL-code search task. We further087

provide explanations to its effectiveness from088

the perspectives of optimization and adversarial089

learning (Section 3).090

• We achieve state-of-the-art results on the Code-091

SearchNet code retrieval benchmark (Husain092

et al., 2019) for six programming langauges, and093

also the AdvTest set of Python (Section 4).094

2 Natural Language Code Search095

We focus on the problem of returning a rele-096

vant code snippet from a given corpus C =097

{y1, . . . , y|C|} for a natural language (NL) query098

xq. While there are multiple ways to use a deep099

learning model for this task, we follow the setup100

of Guo et al. (2021), where, based on the simi-101

larity score between the query embedding xq and102

the candidate embeddings yc (from the corpus C),103

we obtain a ranking for the candidates. We can104

then compute the average mean reciprocal ranking105

(MRR) over queries from the held out test set to106

evaluate the resulting code search model.107

The training dataset to learn such a model for108

the natural language code search task consists of109

bimodal pairs {xi, yi}, where we denote the NL110

description ( docstrings) of the i-th datapoint by111

xi and its corresponding programming language112

(PL) code2 (function or class) by yi. Given such113

a bimodal dataset, our goal is to learn good repre-114

2we use the term “PL” and “code” interchangably

sentations such that a vector representing a piece 115

of code is close to the vector representing the doc- 116

string description of the code. 117

One alternative way to solve the code search task 118

is to train a unified encoder that can take as its input 119

the concatenation of the NL query xq and a candi- 120

date code snippet yci , and return the probability of 121

yci being the correct response for the query (can 122

be formulated as binary classification). Intuitively, 123

such a model could benefit from the interactions 124

between the NL and PL tokens in the self-attention 125

layers of the Transformer (Vaswani et al., 2017). 126

However, it would need |C| (size of the candidate 127

code corpus) forward passes for each new query 128

during inference, making it hard to scale to real 129

world setups where |C| is large. In contrast to this, 130

our approach (where we compute the NL and PL 131

embeddings independently and then calculate their 132

similarity) can benefit by processing the candidate 133

PL embeddings from C offline, and we would only 134

need to process the NL query xq during inference. 135

It is also possible to combine these two ap- 136

proaches, by having a retrieval model that picks 137

the top K candidates based on the similarity of 138

the query and candidate embeddings (computed 139

independently), followed by a unified encoder that 140

ranks these top K candidates. While this approach 141

could enjoy the advantage of using a more powerful 142

model that operates on the concatenation (yci , xq), 143

it would be slightly slower and inefficient than the 144

approach we have chosen for this work. 145

Let θ denote the model parameters and fθ(x) ∈ 146

Rd be the model’s representation for input x (vari- 147

able length sequence). While we could have differ- 148

ent models for the two modalities, for simplicity, 149

we will assume a single model fθ(·) to obtain repre- 150

sentations for both NL and PL inputs. For a model 151

to be a good retriever, we need fθ(xi) to be close 152

to fθ(yi) ∈ Rd than to fθ(yj) ∀j 6= i, as per some 153

similarity metric (e.g. cosine distance or L2 dis- 154

tance); here {xi, yi} is a pair of the NL docstring 155

xi describing the code (PL part) yi. To have a good 156

initialization for θ, we leverage recent work in code 157

pre-training and make use of the transformer en- 158

coder based CodeBERT model (Guo et al., 2021) 159

that is pre-trained on PL and NL using a hybrid 160

objective of replaced token detection and masked 161

language modeling. We also use the GraphCode- 162

BERT model (Guo et al., 2021) that leverages the 163

inherent structure of code by considering the data 164

flow of the source code in its pre-training stage. 165
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Previous studies (Lu et al., 2021; Feng et al.,166

2020; Guo et al., 2021) formulate the training of θ167

as the following optimization problem:168

min
θ

N∑
i=1

− log
exp (fθ(xi)

T fθ(yi)/σ)∑
j∈B exp (fθ(xi)T fθ(yj)/σ)

(1)169

where N is the number of training NL-PL pairs, σ170

is a temperature hyper-parameter (this can be made171

learnable too), and B denotes the current training172

mini-batch. Intuitively, with this contrastive learn-173

ing framework (Gutmann and Hyvärinen, 2010),174

{xi, yi} is a positive pair - representations of which175

are pulled closer, while {xi, yj} for all j ∈ B and176

j 6= i are negative pairs - representations of which177

are pushed apart.178

The number of negatives considered and their179

quality can affect the model performance (Arora180

et al., 2019). It has been shown that this widely181

used contrastive loss is a lower bound on the mutual182

information between two representations (Oord183

et al., 2018; Wu et al., 2020). A larger number184

of negatives increases the tightness of the bound,185

hence learning with more negatives can better max-186

imize the mutual information.3 Existing work187

on self-supervised contrastive learning (He et al.,188

2020; Chen et al., 2020) also empirically shows189

that using more negatives improves representation190

learning performance.191

Consistent with these findings, we observe that192

when training with the objective in Eq. (1), the193

number of negatives per positive pair impacts194

the quality of PL and NL representations learned195

for code search, with larger number of negatives196

leading to better performance. Since the nega-197

tives in the above setup are determined by the198

training batch-size |B| (in-batch negatives), we199

observe that the performance of the model im-200

proves with larger batch sizes. We report MRR201

of 0.7546, 0.7554, 0.7582, 0.7682 for batch-sizes202

of 32, 64, 128, 512 respectively on the Ruby NL-203

Code search dev set with the GraphCodeBERT204

model train for 10 epochs.205

2.1 Limitations of Local In-batch Negatives206

With random sampling4 during the mini-batch con-207

struction, the negatives chosen in the codesearch208

finetuning setup, that would be paired with xi, will209

3However, very large number of negatives may also hurt
the performance as analyzed by Arora et al. (2019) in a differ-
ent setting.

4or sequential sampling over a dataset where the training
instances are in no particular order

be random and a majority of them will be unrelated 210

to the pair {xi, yi} under consideration. Xiong 211

et al. (2021) provide theoretical results that identify 212

issues like diminishing gradient norms, large gradi- 213

ent variances, and slow convergence when training 214

retrieval models with such in-batch local negatives 215

(Section 3.2 in Xiong et al. (2021)). With random 216

mini-batches, majority of the negative samples are 217

likely to be uninformative for the learning of useful 218

representations for retrieval. While these analy- 219

ses were made for text retrieval in the context of 220

tasks like web search and open domain question 221

answering, similar limitations could exist for our 222

NL-PL bimodal setup, which are yet to be explored. 223

One possible approach to overcome these issues is 224

to construct mini-batches such that the examples 225

within a minibatch are similar, but this could re- 226

quire sophisticated and expensive pre-processing, 227

making it less preferrable. 228

Recent work on text retrieval in the unimodal 229

setup (NL only) (Karpukhin et al., 2020) has ex- 230

plored the use of negatives that are similar to the 231

training instance xi. These informative instances 232

are found by using discrete methods like TF-IDF 233

or BM25 (Robertson and Zaragoza, 2009). Xiong 234

et al. (2021) find that hard negatives can be directly 235

found using the model that is being optimized, with- 236

out using any sparse retrieval methods. Such im- 237

provements to retrieval have not been studied for 238

the multi-modal setting of NL and Code. Our goal 239

is to study the application of similar dense retrieval 240

ideas to the NL-Code search problem and propose 241

an effective solution that can perform better than 242

the naive contrastive learning framework that uses 243

in-batch negatives only. In Section 3, we study 244

and compare the possible ways in which dense text 245

retrieval methods can be adapted for our problem. 246

3 DyHardCode: Mining Global Hard 247

Negatives Dynamically 248

To address the limitation of uninformative nega- 249

tives, we propose to extract similar examples from 250

the training corpus and use them as hard negatives 251

in an online manner during training, while keeping 252

the minibatch construction random. To facilitate 253

this, we construct a FAISS index (Johnson et al., 254

2017) consisting of the representations of all the 255

training set pairs: {fθ(xi)}Ni=1 and {fθ(yi)}Ni=1. 256

The resulting objective (θ) being minimized is: 257

N∑
i=1

− log
exp (fθ(xi)

T fθ(yi)/σ)∑
j∈B ∪H(i,K) exp (fθ(xi)

T fθ(yj)/σ)
(2) 258
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whereH(i,K) represents the set of the top-K hard-259

est negatives for the i-th training instance {xi, yi}260

globally ( from the entire training corpus).261

In the text retrieval setup (single modality of NL262

only), one could pick the nearest neighbors directly263

from a single FAISS index and use them as hard264

negatives. However, in the NL code search task,265

we have a number of possible choices as listed in266

Table 1. These variants differ in the query embed-267

ding we use: fθ(xi) or fθ(yi), and in the choice of268

the index being probed: NL index {fθ(xj)}
|C|
j=1 or269

the PL index {fθ(yj)}
|C|
j=1. We name this general270

framework of leveraging Dynamic Hard negatives271

for Semantic Code search as DyHardCode (illus-272

trated in Figure 1). We note that the negative exam-273

ples returned for an input instance are dynamic as274

the query embedding fθ(xi) or fθ(yi) will change275

with the model parameters θ being updated over276

the training iterations.277

We train GraphCodeBERT using these variants278

on the CodeSearchNet Ruby corpus and report the279

performance in Table 1. We observe performance280

gains with all variants that leverage hard negatives281

over the choice of random negatives, highlighting282

that the quality along with the quantity of negative283

examples matter in contrastive representation learn-284

ing. Given a batch B of bimodal instances {xi, yi},285

we obtain K nearest neighbors for each training in-286

stance using one of the methods in Table 1. While287

the K neighbors can serve as hard negatives for288

a training instance, we also utilize the B − 1 in-289

batch negatives and the K × (B − 1) neighbors290

returned for the fellow in-batch examples as candi-291

date negatives. Thus the number of negatives for292

each instance would be ((K + 1) × B) − 1. We293

use this setup for all subsequent experiments that294

use hard global negatives. We chose the text-code295

variant for training the retrieval model on the 6 pro-296

gramming languages (Table 3) as it produces the297

best empirical performance (on the development298

set). We provide more justification for chosing this299

variant in Section 3.3.300

3.1 Gradient Norms and Hard Negatives301

Xiong et al. (2021) provide theoretical analysis302

that establishes the connection between the gra-303

dient norms and convergence rate (Section 3 of304

their paper). Intuitively, their analysis suggests305

that a negative instance with larger gradient norm306

is more likely to reduce the non-stochastic train-307

ing loss, and hence should be sampled more often308

(a) Training Loss (b) Grad Norm

Figure 2: Loss and Gradient norm for different negative
mining schemes. Description of these variants can be
found in Table 1.

in the training mini-batch than the ones with di- 309

minishing gradients. Thus, a training scheme with 310

larger gradient norms for the negatives would be 311

more effective. Such correlation between larger 312

gradient norms and better training convergence has 313

also been reported for BERT fine-tuning (Mosbach 314

et al., 2020). 315

In order to better understand the effectiveness 316

of our hard negative mining strategies as per the 317

above mentioned result, we record the training 318

loss and the gradient norms of different layers of 319

the transformer encoder in the GraphCodeBERT 320

model. These are shown in Figure 2. In line with 321

Xiong et al. (2021)’s results, we observe that the 322

uninformative random negatives lead to lower loss 323
5 and gradient norms, while global negatives main- 324

tain a higher gradient norm, which can reason the 325

effectiveness of using hard negatives. 326

In Table 2, we present an example of a train- 327

ing instance from the Python CodeSearchNet cor- 328

pus and the hard negatives (top nearest neighbor) 329

obtained from the corpus using different mining 330

variants. These are observed before the first train- 331

ing iteration, so the nearest neighbors are retrieved 332

using the pre-trained GraphCodeBERT model em- 333

beddings that has seen no fine-tuning data. While 334

the neighbor retrieved by text-text is semantically 335

closest to the query, the outputs from text-code and 336

code-code also share some structural similarities 337

with the input (try and except blocks) as com- 338

pared to the randomly picked code snippet which 339

is fairly unrelated. 340

5as it is trivial for the model to classify the true pair from
the trivially negative ones
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Method label Description (how negatives are picked for {xi, yi}) MRR
(Ruby
Dev set)

MRR
(Ruby
Test set)

random Pick random instances from the training corpus C 0.7751 0.7244

text-code Find NN of fθ(xi) directly in the PL index {fθ(yj)}
|C|
j=1.

Index updated every epoch
0.7886 0.7404

text-code; no in-
dex updates

Same as text-code. No index updates. 0.7501 0.7130

text-text Find NN of fθ(xi) in the NL index {fθ(xj)}
|C|
j=1, use cor-

responding PL part of the neighbors (yj) as the global hard
negatives. Index updated every epoch.

0.7803 0.7346

code-code Find NN of fθ(yi) in the PL index {fθ(yj)}
|C|
j=1. Index

updated every epoch.
0.7828 0.7411

code-text Find NN of fθ(yi) in the NL index {fθ(xj)}
|C|
j=1. Index

updated every epoch.
0.7738 0.724

Table 1: Comparison of different ways of designing hard negatives for the i-th training instance {xi, yi}. Strategies
that leverage hard negatives (text-code, text-text and code-code) lead to better performance than using random
uninformative ones (random), with the exception of code-text. We advocate using the text-code negative mining
variant which is consistent with our training objective and leads to the best result on the development set. For
this particular hard negative mining variant (text-code), we experiment with turning the FAISS index updates off
(text-code; no index updates) to observe the importance of frequent index updates. All variants are trained for 10
epochs, with updates performed every epoch (no index updates for random). We useK = 10 negatives per training
instance for all variants to have a fair comparison.

3.2 Asynchronous Index Update341

The FAISS index (NL part: {fθ0(xi)}Ni=1 and PL342

part {fθ0(yi)}Ni=1) is constructed at the beginning343

of the training with the initial model parameters θ0.344

As training progresses and the model parameters345

are updated, the representations stored in the index346

would get stale. This could lead to poorer quality347

of neighbors returned for a query and worsen the348

quality of negatives. To mitigate this, we update349

the FAISS index with the latest model parameters350

after every epoch. The construction/updating of351

the index requires a forward pass over the entire352

training dataset, this requires a small fraction of the353

time required in the regular training epochs, and354

lesser computational resources.355

To empirically verify the importance of these356

updates, we consider a variant of the text-code min-357

ing strategy where we do not update the FAISS358

index, labeled "text-code; no index updates". Table359

1 shows the results with this strategy on the Ruby360

CodeSearchNet corpus. The drop in the MRR score361

validates the importance of the index updates. We362

also present the loss and gradient norms for the363

this particular variant in Figure 2. For most itera-364

tions, the training loss corresponding to the variant365

without index updates is higher than that of the ran- 366

dom variant, but lower than the variants with index 367

updates. This suggests that while it is a more chal- 368

lenging and informative setup than random (which 369

happens to be an easy task due to trivially unrelated 370

negatives, and training loss close to 0), other vari- 371

ants with index updates provide a stronger training 372

signal for learning a retrieval model. The gradient 373

norms corresponding to this variant (text-code; no 374

index updates) happen to be lower than the variants 375

with index updates, suggesting the effectiveness of 376

updating the NL and/or PL index in improving the 377

convergence of dense retrieval training. 378

3.3 DyHardCode as Adversarial Learning 379

DyHardCode can be interpreted as an implicit im- 380

plementation of an adversarial learning algorithm. 381

Let L(θ,H) denote the contrastive loss defined in 382

Equation 2 (we consider the temperature σ as part 383

of the parameters θ), our hard negatives H can be 384

considered as adversaries that try to maximize , 385

while we train θ to minimize : 386

θ∗ = L(θ,H∗)
where H∗ = L(θ,H)

(3) 387

We optimize H and θ alternatively for each 388
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Query
(NL part xi, PL part yi)

Check to make
sure the supplied
directory path does
not exist if so
create it. The
method catches
OSError exceptions
and returns a
descriptive message
instead of re -
raising the error.

def e n s u r e _ d i r ( d ) :
i f not os . p a t h . e x i s t s ( d ) :

t r y :
os . m a k e d i r s ( d )

e x c ep t OSError a s oe :
i f os . e r r n o == e r r n o .ENOENT:

msg = twdd ( " " " One or more d i r e c t o r i e s i n
t h e pa th ( { } ) do n o t e x i s t . I f
you are s p e c i f y i n g a new d i r e c t o r y
f o r o u t p u t p l e a s e e n s u r e a l l o t h e r
d i r e c t o r i e s i n t h e pa th c u r r e n t l y e x i s t . " " " )
re turn msg . format ( d )

e l s e :
msg = twdd ( " " " An e r r o r o c c u r r e d t r y i n g t o c r e a t e
t h e o u t p u t d i r e c t o r y ( { } ) w i t h message : { } " " " )
re turn msg . format ( d , oe . s t r e r r o r )

Mining variant NL hard negative examples PL hard negative examples

Random
Create an instance
object

def g e t _ g r o u p _ i n s t a n c e ( s e l f , p a r e n t ) :
o = copy . copy ( s e l f )
o . i n i t _ i n s t a n c e ( p a r e n t )
re turn o

text-code: Find NN of
fθ(xi) directly in the PL
index {fθ(yi)}Ni=1, use re-
turned yj as hard -ve

Move the temporary
log file to the
MultiQC data
directory if it
exists.

def move_tmp_log ( l o g g e r ) :
t r y :

l o g g i n g . shutdown ( )
s h u t i l . move ( log_tmp_fn , os . p a t h . j o i n ( c o n f i g . d a t a _ d i r ,

’ m u l t i q c . l o g ’ ) )
u t i l _ f u n c t i o n s . r o b u s t _ r m t r e e ( l o g _ t m p _ d i r )

e xc ep t ( A t t r i b u t e E r r o r , TypeError , I O E r r o r ) :
pass

text-text: Find NN of
fθ(xi) in the NL index
{fθ(xi)}Ni=1, use corre-
sponding PL part yj of the
NN xj as hard -ve

Create a dir for
the given dirfile
and display an error
message if it fails.

def c r e a t e _ d i r ( s e l f , j b f i l e ) :
t r y :

j b f i l e . c r e a t e _ d i r e c t o r y ( )
e x c ep t os . e r r o r :

s e l f . s t a t u s b a r . showMessage ( " " " Could n o t c r e a t e
pa th : %s " " " % j b f i l e . g e t _ p a t h ( ) )

code-code: Find NN of
fθ(yi) in the PL index
{fθ(yi)}Ni=1, use returned
yj as hard -ve

Return the ConfigObj
for the specified
file

def l o a d _ c o n f i g ( f , sp e c ) :
d i rname = os . p a t h . d i rname ( f )
i f not os . p a t h . e x i s t s ( d i rname ) :

os . m a k e d i r s ( d i rname )
c = Conf igObj ( i n f i l e =f , c o n f i g s p e c =spec ,
i n t e r p o l a t i o n = F a l s e , c r e a t e _ e m p t y =True )

t r y :
c l e a n _ c o n f i g ( c )

e x c ep t C o n f i g E r r o r , e :
msg = " " " C on f i g %s c o u l d n o t be lo ade d . Reason : %s " " "
% ( c . f i l e n a m e , e ) l o g . debug ( msg )
r a i s e C o n f i g E r r o r ( msg )

re turn c

Table 2: Negative Mining variants.

epoch, by index update and model update. By389

training against the adversaries, the model needs to390

minimize the loss in difficult scenarios, therefore391

learning more robust and discriminative model as392

we validate later with experiments in Section 4.2.393

Among the four designs for hard negative selection394

discussed before (Table 1), text-code can be best395

explained by our adversarial learning framework.396

Text-code selects hard negatives H that directly397

maximize L(θ,H), whereas other three designs398

cannot guarantee to maximize L. Since text-code399

also produces the best empirical performance on400

Ruby dev set (Table 1), we use it for the other 5401

programming languages.402

4 Experiments403

We perform experiments with our DyHardCode404

on two NL code search tasks. The first one is on405

the popular CodeSearchNet corpus (4.1), while the 406

second one is on an adversarial test (4.2) to show 407

the robustness of our method. 408

4.1 Natural Language Code Search 409

We use the CodeSearchNet code corpus (Husain 410

et al., 2019) to train our retrieval model. The 411

dataset provides bimodal pairs (natural language 412

docstring and corresponding code) in six program- 413

ming languages - Python, Java, Go, Ruby, Php, 414

Javascript. We replicate the setting of Guo et al. 415

(2021)6 by filtering low quality queries using hand- 416

crafted rules and expanding the size of target set 417

seen during inference from 1000 to the whole cor- 418

pus to make the setup more realistic. 419

With the Mean Reciprocal Rank (MRR) as the 420

6github.com/microsoft/CodeBERT/GraphCodeBERT
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Model/Method Ruby Javascript Go Python Java Php Overall

NBow 0.162 0.157 0.330 0.161 0.171 0.152 0.189
CNN 0.276 0.224 0.680 0.242 0.263 0.260 0.324
BiRNN 0.213 0.193 0.688 0.290 0.304 0.338 0.338
selfAtt 0.275 0.287 0.723 0.398 0.404 0.426 0.419

RoBERTa 0.587 0.517 0.850 0.587 0.599 0.560 0.617
RoBERTa (code) 0.628 0.562 0.859 0.610 0.620 0.579 0.643
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.618 0.693
GraphCodeBERT (Guo et al., 2021) 0.703 0.644 0.897 0.692 0.691 0.649 0.713

DyHardCode (CodeBERT) 0.715 0.666 0.917 0.713 0.729 0.636 0.729
DyHardCode (GraphCodeBERT) 0.740 0.687 0.921 0.738 0.738 0.677 0.750

Table 3: Mean Reciprocal Ranking (MRR) values of different methods on the codesearch task on 6 Programming Languages
from the CodeSearchNet corpus (test set). The first set consists of four finetuning-based baseline methods (NBow: Bag of
words, CNN: convolutional neural network, BiRNN: bidirectional recurrent neural network, and multi-head attention), followed
by the second set of models that are pre-trained then finetuned for code search (RoBERTa: pre-trained on text by Liu et al.
(2019), RoBERTa (code): RoBERTa pre-trained only on code, CodeBERT: pre-trained on code-text pairs by Feng et al. (2020),
GraphCodeBERT: pre-trained using structure-aware tasks by Guo et al. (2021)). In the last two rows, we report the results with
our DyHardCode scheme using the pre-trained CodeBERT and GraphCodeBERT models.

evaluation metric of our codesearch task, the test re-421

sults of previously proposed methods can be found422

in Table 3. GraphCodeBERT (Guo et al., 2021)423

has been pre-trained on code by considering the424

inherent structure of code (i.e. the data flow graph),425

instead of simply treating a code snippet as a se-426

quence of tokens. This led to improvements over427

CodeBERT baselines for the codesearch task and428

is currently the state-of-the-art on this task. The429

training (fine-tuning for codesearch) scheme for all430

the baselines (top 8 rows in Table 3) uses the objec-431

tive described in Eq. (1) and the test set results are432

as reported in Guo et al. (2021). During inference,433

all models compute the inner product of the query434

embedding and the candidate code embeddings as435

relevance scores to rank the code snippets in the436

corpus of the respective programming language.437

We note that with both CodeBERT and Graph-438

CodeBERT models, our DyHardCode training439

(fine-tuning for codesearch) scheme improves per-440

formance over the previous work. GraphCode-441

BERT model with our DyHardCode scheme leads442

to state of the art results on all six languages and443

an overall relative gain of 5.1%, demonstrating the444

effectiveness of using hard negatives.445

4.2 CodeSearchNet AdvTest Set Evaluation446

To evaluate the robustness of our proposed training447

scheme, we conduct evaluation on the CodeSearch-448

Net AdvTest dataset from the CodeSearchNet cor-449

pus. The function and variable names appearing450

in the code snippets in the test and development451

sets of this Python dataset are normalized (func for 452

function names, arg-i for the i-th variable name). 453

This dataset was processed and released by Lu et al. 454

(2021) to test the understanding and generalization 455

abilities of the model as part of the CodeXGLUE 456

benchmark. We train CodeBERT, which is the 457

reported state of the art model, using our DyHard- 458

Code scheme with K = 10 neighbors for each 459

instance in the batch. We expect that training with 460

our hard negatives will make CodeBERT more ro- 461

bust to such adversarial tests. 462

We present the results in Table 4. We can sub- 463

stantially improve the retrieval performance of the 464

baseline (second row) by increasing the training 465

batch size and further achieve gains by leveraging 466

hard negatives with our DyHardCode framework. 467

The gap in performance for BERT-like models be- 468

tween the original test set and this adversarial one 469

is nonetheless still an open problem that suggests 470

our current models over-rely on the function and 471

variable naming (done by human programmers) 472

and less on the inherent structure of the code in 473

representing source code. 474

4.3 Extension to Code-Code Search 475

We extend the idea of leveraging hard negatives in 476

contrastive learning of representations for retrieval 477

to the Code-Code search task. Here, the query 478

yq and the set of candidates {yci}
|C|
i=1 are both in 479

the PL domain. We use the POJ-104 dataset (Mou 480

et al., 2016) that consists of 104 programming prob- 481

lems each with 500 solutions in C/C++. The evalua- 482
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Model/Method Test MRR Train Batchsize

RoBERTa 0.1833 -
CodeBERT 0.2719 32
CodeBERT 0.3314 128
CodeBERT 0.3419 384
CodeBERT 0.3433 512

DyHardCode 0.3784 64

Table 4: Results on the adversarial test set (Lu et al., 2021)
of the CodeSearchNet (Python). K = 10 for DyHardCode.

Model/Method Test MAP Train Batchsize

RoBERTa 0.7677 -
CodeBERT 0.8267 32
CodeBERT 0.8882 160

DyHardCode 0.8910 160

Table 5: Results on the code-code search task. POJ-104 test
set (Lu et al., 2021). K = 1 for DyHardCode.

tion metric used is Mean Average Precision (MAP)483

@ R=499. This represents what fraction of the true484

499 semantically similar code snippets are returned485

in the top K = 499 outputs (nearest neighbors)486

by the model. Table 5 shows the baseline results487

along with DyHardCode (code-code) applied with488

K = 1, suggesting the effectiveness of hard neg-489

atives for code search in the unimodal (PL only)490

setup as well.491

5 Related Work492

Advances in deep learning for NLP and the abun-493

dance of source code data has accelerated research494

on several tasks in the PL domain. Code com-495

pletion systems (Svyatkovskiy et al., 2020), for496

instance, offer possible completions to incomplete497

prompts in the source code domain and can aid498

developers in writing code faster. Similarly, text to499

code generation (Yin and Neubig, 2018; Yin et al.,500

2018; Iyer et al., 2018; Xu et al., 2020) systems501

generate a source code sequence that solves the task502

described in the input natural language description.503

In the NL domain, our work is closely related504

to dense text retrieval approaches of Xiong et al.505

(2021) and Karpukhin et al. (2020) in the unimodal506

setup. They propose the use of additional informa-507

tive negatives besides the in-batch ones for effec-508

tive contrastive learning. Jain et al. (2020) propose509

contrastive learning as a pre-training strategy for510

general PL tasks like source code summarization511

and PL sequence classification. 512

In computer vision research, contrastive learning 513

based frameworks have been studied extensively 514

for image representation learning (He et al., 2020; 515

Oord et al., 2018). Self-supervised contrastive 516

learning enforces two augmented embeddings of 517

the same image to be close while embeddings of 518

different images are pushed apart. SimCLR (Chen 519

et al., 2020) shows that an appropriate tempera- 520

ture can help the model learn from hard negatives. 521

Robinson et al. (2021) explicitly mine hard nega- 522

tive examples to improve representation learning 523

performance. CLIP (Radford et al., 2021) shows 524

that a simple image-text contrastive learning on 525

large-scale datasets learns superior image represen- 526

tations. 527

6 Conclusion & Future Directions 528

We propose the use of global hard negatives in the 529

contrastive learning of NL and PL representations 530

for the task of code search. We compare multi- 531

ple variants of obtaining these global negatives for 532

a training instance, and find that probing the NL 533

index with the query NL embedding is an effec- 534

tive strategy, and further report that this benefits 535

from updating the index being updated with newer 536

model checkpoints saved during training. 537

Our current method finds hard negatives by a 538

simple nearest neighbor search based on cosine sim- 539

ilarity. However, work in cross-lingual embedding 540

learning shows that in high dimensional spaces 541

this nearest neighbor finding approach leads to a 542

detrimental phenomenon known as the hubness 543

problem (Dinu et al., 2015), where a few nodes 544

(embeddings) become hubs (nearest neighbors of 545

many other nodes), whereas some others become 546

anti-hubs (nearest neighbors to none). Since we 547

also operate on bimodal data, this phenomenon 548

could also affect our search. In future, we would 549

like to investigate the Cross-domain Similarity Lo- 550

cal Scaling (CSLS) that penalizes the embeddings 551

that are close to many other in the target space 552

to mitigate the hubness problem (Conneau et al., 553

2018). There also has been significant recent work 554

in unsupervised representation learning of images 555

using the contrastive loss (Mitrovic et al., 2021; 556

Grill et al., 2020), ideas from this string of research 557

can also motivate more progress in training better 558

code search models. 559
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- Go Java Javascript

Training examples 167,288 164,923 58,025
Dev queries 7,325 5,183 3,885
Testing queries 8,122 10,955 3,291
Candidate codes 28,120 40,347 13,981

Table 6: Data statistics of the filtered CodeSearchNet corpus
for Go, Java and Javascript programming languages. For each
query in the dev and test sets, the answer is retrieved from the
set of candidate codes (last row)

- PHP Python Ruby

Training examples 241,241 251,820 24,927
Dev queries 12,982 13,914 1,400
Testing queries 14,014 14,918 1,261
Candidate codes 52,660 43,827 4,360

Table 7: Data statistics of the filtered CodeSearchNet corpus
for PHP, Python and Ruby programming languages. For each
query in the dev and test sets, the answer is retrieved from the
set of candidate codes (last row).

A Experimental details 725

Computing Infrastructure: All our experi- 726

ments are conducted using the Nvidia A-100 GPUs 727

via the Google Cloud Platform, each of which 728

has 40 GB of RAM. The maximum number of 729

GPUs we use is 8 for an experiment using Py- 730

Torch’s dataparallel package. Training duration 731

for 10 epochs of GraphCodeBERT or CodeBERT 732

for the results in Table 3 for the ruby, javascript, 733

go, python, java, php datasets require (roughly) 734

2.5, 7, 29.5, 59.5, 28.5, 55 hrs respectively. 735

To select the hyper-parameter K (number 736

of hard negatives) for a chosen batch-size, we 737

perform 3 training runs of the GraphCodeBERT 738

model with our objective on the ruby dataset and 739

try K = {2, 4, 6, 8, 10}. The average MRR scores 740

were {0.7851, 0.7867, 0.7860, 0.7854, 0.7869}, 741

thus we choose K = 10 for NL-code search. 742

Given finite GPU memory, the optimal way to 743

balance batch-size with K is not straightforward 744

and performing a grid search on the two will be 745

prohibitively expensive, which is why we did not 746

tune these choices. 747

The CodeBERT and GraphCodeBERT pre- 748

trained models we use in our experiments both 749

have 125M parameters. 750

Dataset details: The CodeSearchNet corpus we 751

use in our experiments is pre-processed in the same 752

manner as done by (Guo et al., 2021) and its de- 753
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tailed statistics are mentioned in Table 6. The754

Python AdvTest set consists of 251, 820 training755

pairs, 9, 604 validation set examples and 19, 210756

test examples. POJ-104 dataset consists of 104757

problems each of which has 500 solutions in C/C++758

and is divided into a training set of 64 examples,759

dev set of 16 examples and test set of 24 examples.760
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