Contrastive Learning of Natural Language and Code Representations
for Semantic Code Search

Anonymous ACL submission

Abstract

Retrieving semantically relevant code func-
tions given a natural language (NL) or pro-
gramming language (PL) query is a task of
great practical value towards building produc-
tivity enhancing tools for software develop-
ers. Recent approaches to solve this task
involve leveraging transformer based masked
language models that are pre-trained on NL
and PL and fine-tuned for code search using a
contrastive learning objective. However, these
approaches suffer from uninformative in-batch
negative samples.

We propose DyHardCode: a contrastive learn-
ing framework that leverages hard negative ex-
amples, which are mined globally from the
entire training corpus to improve the quality
of code and natural language representations.
We experiment with different hard negative
mining strategies, and provide explanations to
the effectiveness of our method from the per-
spectives of optimization and adversarial learn-
ing. We show that DyHardCode leads to im-
provements in multiple code search tasks. Our
approach achieves an average (across 6 pro-
gramming languages) mean reciprocal ranking
(MRR) score of 0.750 as opposed to the previ-
ous state of the art result of 0.713 MRR on the
CodeSearchNet benchmark.!

1 Introduction

The availability of large scale datasets consisting of
human written software in the past decade through
platforms like Github has resulted in a fascinating
array of tasks that can be performed with program-
ming languages. These tasks are aimed towards
improving developer productivity in different ways.

In this work, we focus on the natural language
code search task, where the user input is a query
in natural language and the system response is ex-
pected to be the most relevant piece of code from
a large corpus of code snippets. Resources like

!Code and models are available at <redacted>
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Figure 1: DyHardCode: Contrastive Learning of NL
and PL representations with Dynamic Hard negatives.

StackOverflow are immensely useful for program-
mers with all levels of experience due to the natu-
ral language descriptions associated with the code
snippets. However, such openly accessible commu-
nity forums typically exist only for open-sourced
libraries and it would be difficult to develop such
forums for a new private tool without a large user
community. Besides, such platforms may not be ex-
haustive in covering all the different functionalities
of a software development tool.

Automated natural language (NL) to code search
can be a promising framework to address these lim-
itations. Recent work by Xu et al. (2021) studies
the effectiveness of code generation and code re-
trieval tools when offered to a set of developers
inside the IDE. They report that generation and re-
trieval modules complement each other in assisting
the user. Particularly, they find retrieval modules
are preferred over generation ones when the user is
implementing more complex functionalities, thus
endorsing the need for better code retrieval tools.

Given the significance of code search, we inves-
tigate current state-of-the-art approaches, which
are primarily based on fine-tuning a pre-trained (on
both natural and programming languages) encoder
using a contrastive loss. Related work on text re-


<redacted>

trieval (unimodal setup of NL only) (Xiong et al.,
2021; Karpukhin et al., 2020) promotes the use of
finding similar examples from the training corpus
for use as negative candidates in the contrastive
learning setup. We follow this line of ideas to de-
sign better representation learning schemes for the
code search task. Our primary contributions in this
direction are as follows:

* We first define the possible aspects of the NL
code search problem that distinguish it from
the unimodal text retrieval problem and identify
limitations of the existing contrastive learning
schemes that merely use local in-batch negatives
to learn NL-PL representations for the semantic
code search task (Section 2).

* We then propose DyHardCode (Figure 1), a con-
trastive learning framework that leverages global
hard negatives, and compare multiple hard neg-
ative mining variants for the bimodal setup of
NL-PL that lead to better representation learn-
ing for the NL-code search task. We further
provide explanations to its effectiveness from
the perspectives of optimization and adversarial
learning (Section 3).

¢ We achieve state-of-the-art results on the Code-
SearchNet code retrieval benchmark (Husain
et al., 2019) for six programming langauges, and
also the AdvTest set of Python (Section 4).

2 Natural Language Code Search

We focus on the problem of returning a rele-
vant code snippet from a given corpus C =
{y1,--,yjc/} for a natural language (NL) query
x4. While there are multiple ways to use a deep
learning model for this task, we follow the setup
of Guo et al. (2021), where, based on the simi-
larity score between the query embedding x, and
the candidate embeddings y. (from the corpus C),
we obtain a ranking for the candidates. We can
then compute the average mean reciprocal ranking
(MRR) over queries from the held out test set to
evaluate the resulting code search model.

The training dataset to learn such a model for
the natural language code search task consists of
bimodal pairs {z;,y;}, where we denote the NL
description ( docstrings) of the i-th datapoint by
x; and its corresponding programming language
(PL) code? (function or class) by y;. Given such
a bimodal dataset, our goal is to learn good repre-

2we use the term “PL” and “code” interchangably

sentations such that a vector representing a piece
of code is close to the vector representing the doc-
string description of the code.

One alternative way to solve the code search task
is to train a unified encoder that can take as its input
the concatenation of the NL query z, and a candi-
date code snippet y.,, and return the probability of
Y., being the correct response for the query (can
be formulated as binary classification). Intuitively,
such a model could benefit from the interactions
between the NL and PL tokens in the self-attention
layers of the Transformer (Vaswani et al., 2017).
However, it would need |C| (size of the candidate
code corpus) forward passes for each new query
during inference, making it hard to scale to real
world setups where |C| is large. In contrast to this,
our approach (where we compute the NL and PL
embeddings independently and then calculate their
similarity) can benefit by processing the candidate
PL embeddings from C offline, and we would only
need to process the NL query z, during inference.

It is also possible to combine these two ap-
proaches, by having a retrieval model that picks
the top K candidates based on the similarity of
the query and candidate embeddings (computed
independently), followed by a unified encoder that
ranks these top K candidates. While this approach
could enjoy the advantage of using a more powerful
model that operates on the concatenation (y.,, ),
it would be slightly slower and inefficient than the
approach we have chosen for this work.

Let 6 denote the model parameters and fy(z) €
R? be the model’s representation for input 2: (vari-
able length sequence). While we could have differ-
ent models for the two modalities, for simplicity,
we will assume a single model fy(-) to obtain repre-
sentations for both NL and PL inputs. For a model
to be a good retriever, we need fy(z;) to be close
to fo(y;) € R% than to fp(y;) Vi # i, as per some
similarity metric (e.g. cosine distance or Lo dis-
tance); here {z;,y;} is a pair of the NL docstring
x; describing the code (PL part) y;. To have a good
initialization for 6, we leverage recent work in code
pre-training and make use of the transformer en-
coder based CodeBERT model (Guo et al., 2021)
that is pre-trained on PL and NL using a hybrid
objective of replaced token detection and masked
language modeling. We also use the GraphCode-
BERT model (Guo et al., 2021) that leverages the
inherent structure of code by considering the data
flow of the source code in its pre-training stage.



Previous studies (Lu et al., 2021; Feng et al.,
2020; Guo et al., 2021) formulate the training of 6
as the following optimization problem:

where N is the number of training NL-PL pairs, o
is a temperature hyper-parameter (this can be made
learnable too), and B denotes the current training
mini-batch. Intuitively, with this contrastive learn-
ing framework (Gutmann and Hyvérinen, 2010),
{x;,y;} is a positive pair - representations of which
are pulled closer, while {x;, y;} for all j € B and
j # 1 are negative pairs - representations of which
are pushed apart.

The number of negatives considered and their
quality can affect the model performance (Arora
et al., 2019). It has been shown that this widely
used contrastive loss is a lower bound on the mutual
information between two representations (Oord
et al., 2018; Wu et al., 2020). A larger number
of negatives increases the tightness of the bound,
hence learning with more negatives can better max-
imize the mutual information.> Existing work
on self-supervised contrastive learning (He et al.,
2020; Chen et al., 2020) also empirically shows
that using more negatives improves representation
learning performance.

Consistent with these findings, we observe that
when training with the objective in Eq. (1), the
number of negatives per positive pair impacts
the quality of PL and NL representations learned
for code search, with larger number of negatives
leading to better performance. Since the nega-
tives in the above setup are determined by the
training batch-size |B| (in-batch negatives), we
observe that the performance of the model im-
proves with larger batch sizes. We report MRR
of 0.7546,0.7554,0.7582,0.7682 for batch-sizes
of 32,64, 128, 512 respectively on the Ruby NL-
Code search dev set with the GraphCodeBERT
model train for 10 epochs.

2.1 Limitations of Local In-batch Negatives

With random sampling* during the mini-batch con-
struction, the negatives chosen in the codesearch
finetuning setup, that would be paired with z;, will

SHowever, very large number of negatives may also hurt
the performance as analyzed by Arora et al. (2019) in a differ-
ent setting.

“or sequential sampling over a dataset where the training
instances are in no particular order

be random and a majority of them will be unrelated
to the pair {x;,y;} under consideration. Xiong
et al. (2021) provide theoretical results that identify
issues like diminishing gradient norms, large gradi-
ent variances, and slow convergence when training
retrieval models with such in-batch local negatives
(Section 3.2 in Xiong et al. (2021)). With random
mini-batches, majority of the negative samples are
likely to be uninformative for the learning of useful
representations for retrieval. While these analy-
ses were made for text retrieval in the context of
tasks like web search and open domain question
answering, similar limitations could exist for our
NL-PL bimodal setup, which are yet to be explored.
One possible approach to overcome these issues is
to construct mini-batches such that the examples
within a minibatch are similar, but this could re-
quire sophisticated and expensive pre-processing,
making it less preferrable.

Recent work on text retrieval in the unimodal
setup (NL only) (Karpukhin et al., 2020) has ex-
plored the use of negatives that are similar to the
training instance z;. These informative instances
are found by using discrete methods like TF-IDF
or BM25 (Robertson and Zaragoza, 2009). Xiong
et al. (2021) find that hard negatives can be directly
found using the model that is being optimized, with-
out using any sparse retrieval methods. Such im-
provements to retrieval have not been studied for
the multi-modal setting of NL and Code. Our goal
is to study the application of similar dense retrieval
ideas to the NL-Code search problem and propose
an effective solution that can perform better than
the naive contrastive learning framework that uses
in-batch negatives only. In Section 3, we study
and compare the possible ways in which dense text
retrieval methods can be adapted for our problem.

3 DyHardCode: Mining Global Hard
Negatives Dynamically

To address the limitation of uninformative nega-
tives, we propose to extract similar examples from
the training corpus and use them as hard negatives
in an online manner during training, while keeping
the minibatch construction random. To facilitate
this, we construct a FAISS index (Johnson et al.,
2017) consisting of the representations of all the
training set pairs: {fy(z:)}Y, and {fo(yi)}Y,.
The resulting objective (#) being minimized is:
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where H (i, K) represents the set of the top- K hard-
est negatives for the i-th training instance {z;, y; }
globally ( from the entire training corpus).

In the text retrieval setup (single modality of NL
only), one could pick the nearest neighbors directly
from a single FAISS index and use them as hard
negatives. However, in the NL code search task,
we have a number of possible choices as listed in
Table 1. These variants differ in the query embed-
ding we use: fy(x;) or fg(y;), and in the choice of
the index being probed: NL index { fy(z ])}‘]ﬂl or

the PL index { fg(yj)}ljcz‘l. We name this general
framework of leveraging Dynamic Hard negatives
for Semantic Code search as DyHardCode (illus-
trated in Figure 1). We note that the negative exam-
ples returned for an input instance are dynamic as
the query embedding fy(x;) or fp(y;) will change
with the model parameters 6 being updated over
the training iterations.

We train GraphCodeBERT using these variants
on the CodeSearchNet Ruby corpus and report the
performance in Table 1. We observe performance
gains with all variants that leverage hard negatives
over the choice of random negatives, highlighting
that the quality along with the quantity of negative
examples matter in contrastive representation learn-
ing. Given a batch B of bimodal instances {x;, y; },
we obtain K nearest neighbors for each training in-
stance using one of the methods in Table 1. While
the K neighbors can serve as hard negatives for
a training instance, we also utilize the B — 1 in-
batch negatives and the K x (B — 1) neighbors
returned for the fellow in-batch examples as candi-
date negatives. Thus the number of negatives for
each instance would be ((K + 1) x B) — 1. We
use this setup for all subsequent experiments that
use hard global negatives. We chose the text-code
variant for training the retrieval model on the 6 pro-
gramming languages (Table 3) as it produces the
best empirical performance (on the development
set). We provide more justification for chosing this
variant in Section 3.3.

3.1 Gradient Norms and Hard Negatives

Xiong et al. (2021) provide theoretical analysis
that establishes the connection between the gra-
dient norms and convergence rate (Section 3 of
their paper). Intuitively, their analysis suggests
that a negative instance with larger gradient norm
is more likely to reduce the non-stochastic train-
ing loss, and hence should be sampled more often
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Figure 2: Loss and Gradient norm for different negative
mining schemes. Description of these variants can be
found in Table 1.

in the training mini-batch than the ones with di-
minishing gradients. Thus, a training scheme with
larger gradient norms for the negatives would be
more effective. Such correlation between larger
gradient norms and better training convergence has
also been reported for BERT fine-tuning (Mosbach
et al., 2020).

In order to better understand the effectiveness
of our hard negative mining strategies as per the
above mentioned result, we record the training
loss and the gradient norms of different layers of
the transformer encoder in the GraphCodeBERT
model. These are shown in Figure 2. In line with
Xiong et al. (2021)’s results, we observe that the
uninformative random negatives lead to lower loss
> and gradient norms, while global negatives main-
tain a higher gradient norm, which can reason the
effectiveness of using hard negatives.

In Table 2, we present an example of a train-
ing instance from the Python CodeSearchNet cor-
pus and the hard negatives (top nearest neighbor)
obtained from the corpus using different mining
variants. These are observed before the first train-
ing iteration, so the nearest neighbors are retrieved
using the pre-trained GraphCodeBERT model em-
beddings that has seen no fine-tuning data. While
the neighbor retrieved by text-text is semantically
closest to the query, the outputs from text-code and
code-code also share some structural similarities
with the input (t ry and except blocks) as com-
pared to the randomly picked code snippet which
is fairly unrelated.

Sas it is trivial for the model to classify the true pair from
the trivially negative ones



Method label ~ Description (how negatives are picked for {z;, y;}) MRR MRR
(Ruby (Ruby
Dev set) Test set)
random Pick random instances from the training corpus C' 0.7751 0.7244
text-code Find NN of fy(x;) directly in the PL index {fs(y;)}/”,. 0.7886  0.7404
Index updated every epoch
text-code; noin- Same as text-code. No index updates. 0.7501 0.7130
dex updates
text-text Find NN of fy(z;) in the NL index { fy (xj)}ljc;ll, use cor- 0.7803 0.7346
responding PL part of the neighbors (y;) as the global hard
negatives. Index updated every epoch.
code-code Find NN of fy(y;) in the PL index { fy (yj)}‘jc;ll. Index 0.7828 0.7411
updated every epoch.
code-text Find NN of fp(y;) in the NL index { fg(xj)}‘jcll. Index 0.7738 0.724

updated every epoch.

Table 1: Comparison of different ways of designing hard negatives for the i-th training instance {x;, y; }. Strategies
that leverage hard negatives (text-code, text-text and code-code) lead to better performance than using random
uninformative ones (random), with the exception of code-text. We advocate using the text-code negative mining
variant which is consistent with our training objective and leads to the best result on the development set. For
this particular hard negative mining variant (text-code), we experiment with turning the FAISS index updates off
(text-code; no index updates) to observe the importance of frequent index updates. All variants are trained for 10
epochs, with updates performed every epoch (no index updates for random). We use K = 10 negatives per training

instance for all variants to have a fair comparison.

3.2 Asynchronous Index Update

The FAISS index (NL part: {fg, (x;)}Y, and PL
part { fa, (y:) }1.,) is constructed at the beginning
of the training with the initial model parameters 6.
As training progresses and the model parameters
are updated, the representations stored in the index
would get stale. This could lead to poorer quality
of neighbors returned for a query and worsen the
quality of negatives. To mitigate this, we update
the FAISS index with the latest model parameters
after every epoch. The construction/updating of
the index requires a forward pass over the entire
training dataset, this requires a small fraction of the
time required in the regular training epochs, and
lesser computational resources.

To empirically verify the importance of these
updates, we consider a variant of the text-code min-
ing strategy where we do not update the FAISS
index, labeled "text-code; no index updates". Table
1 shows the results with this strategy on the Ruby
CodeSearchNet corpus. The drop in the MRR score
validates the importance of the index updates. We
also present the loss and gradient norms for the
this particular variant in Figure 2. For most itera-
tions, the training loss corresponding to the variant

without index updates is higher than that of the ran-
dom variant, but lower than the variants with index
updates. This suggests that while it is a more chal-
lenging and informative setup than random (which
happens to be an easy task due to trivially unrelated
negatives, and training loss close to 0), other vari-
ants with index updates provide a stronger training
signal for learning a retrieval model. The gradient
norms corresponding to this variant (text-code; no
index updates) happen to be lower than the variants
with index updates, suggesting the effectiveness of
updating the NL and/or PL index in improving the
convergence of dense retrieval training.

3.3 DyHardCode as Adversarial Learning

DyHardCode can be interpreted as an implicit im-
plementation of an adversarial learning algorithm.
Let £(0, H) denote the contrastive loss defined in
Equation 2 (we consider the temperature o as part
of the parameters ), our hard negatives H can be
considered as adversaries that try to maximize ,

while we train 6 to minimize :
0" =L(0,H")
. 3)
where H* = L(0, H)

We optimize H and 6 alternatively for each



Check to make

sure the supplied
directory path does
not exist if so
create it. The
method catches
OSError exceptions
and returns a
descriptive message
instead of re -
raising the error.

Query
(NL part z;, PL part y;)

def ensure_dir(d):
if not os.path.exists(d):
try:
os.makedirs (d)
except OSError as oe:
if os.errno == errno .ENOENT:
msg = twdd("""One or more directories in
the path ({}) do not exist. If
you are specifying a new directory
for output please ensure all other
directories in the path currently exist.""")
return msg.format(d)
else:
msg = twdd("""An error occurred trying to create
the output directory ({}) with message: {}""" )
return msg.format(d, oe.strerror)

Mining variant NL hard negative examples

PL hard negative examples

Create an instance

def get_group_instance (self, parent):

Random object o = copy.copy(self)
o.init_instance (parent)
return o
. Move the temporary def move_tmp_log(logger):
text-code: Find NN of 1log file to the try:

MultiQC data
directory 1if it
exists.

fo(x;) directly in the PL

index {fo(y;)} Y|, use re-
turned y; as hard -ve

logging . shutdown( )
shutil .move(log_tmp_fn, os.path.join(config.data_dir,
multiqc.log’))
util_functions.robust_rmtree (log_tmp_dir)
except (AttributeError, TypeError, IOError ):
pass

Create a dir for
the given dirfile
and display an error
message 1f it fails.

text-text: Find NN of
fo(z;) in the NL index
{fo(z:)}XY,, use corre-
sponding PL part y; of the
NN z; as hard -ve

def create_dir(self, jbfile):
try:
jbfile.create_directory ()
except os.error:
self.statusbar.showMessage( """ Could not create
path: %s""" % jbfile.get_path())

Return the ConfigObj
for the specified
file

code-code: Find NN of
fa(y;) in the PL index
{fo(ys)}¥,, use returned
y; as hard -ve

def load_config(f, spec):
dirname = os.path.dirname(f)
if not os.path.exists(dirname):
os.makedirs (dirname)
¢ = ConfigObj(infile=f, configspec=spec,
interpolation=False , create_empty=True)
try:
clean_config(c)
except ConfigError, e:
msg = """Config %s could not be loaded. Reason:
% ( c.filename, e ) log.debug(msg)
raise ConfigError(msg)
return c

s """

Table 2: Negative Mining variants.

epoch, by index update and model update. By
training against the adversaries, the model needs to
minimize the loss in difficult scenarios, therefore
learning more robust and discriminative model as

we validate later with experiments in Section 4.2.

Among the four designs for hard negative selection
discussed before (Table 1), text-code can be best

explained by our adversarial learning framework.

Text-code selects hard negatives H that directly
maximize L£(0, H), whereas other three designs
cannot guarantee to maximize L. Since text-code
also produces the best empirical performance on
Ruby dev set (Table 1), we use it for the other 5
programming languages.

4 [Experiments

We perform experiments with our DyHardCode
on two NL code search tasks. The first one is on

the popular CodeSearchNet corpus (4.1), while the
second one is on an adversarial test (4.2) to show
the robustness of our method.

4.1 Natural Language Code Search

We use the CodeSearchNet code corpus (Husain
et al., 2019) to train our retrieval model. The
dataset provides bimodal pairs (natural language
docstring and corresponding code) in six program-
ming languages - Python, Java, Go, Ruby, Php,
Javascript. We replicate the setting of Guo et al.
(2021)° by filtering low quality queries using hand-
crafted rules and expanding the size of target set
seen during inference from 1000 to the whole cor-
pus to make the setup more realistic.

With the Mean Reciprocal Rank (MRR) as the

8 github.com/microsoft/CodeBERT/GraphCodeBERT



Model/Method Ruby Javascript Go Python Java Php Overall
NBow 0.162 0.157 0330 0.161 0.171 0.152  0.189
CNN 0.276 0.224 0.680 0242 0.263 0.260 0.324
BiRNN 0.213 0.193 0.688 0.290 0.304 0.338 0.338
selfAtt 0.275 0.287 0.723  0.398 0404 0426 0419
RoBERTa 0.587 0.517 0.850 0.587 0.599 0.560 0.617
RoBERTza (code) 0.628 0.562 0.859 0.610 0.620 0.579 0.643
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.618 0.693
GraphCodeBERT (Guo et al., 2021)  0.703 0.644 0.897 0.692 0.691 0.649 0.713
DyHardCode (CodeBERT) 0.715 0.666 0917 0713 0.729 0.636  0.729
DyHardCode (GraphCodeBERT) 0.740 0.687 0921 0.738 0.738 0.677 0.750

Table 3: Mean Reciprocal Ranking (MRR) values of different methods on the codesearch task on 6 Programming Languages
from the CodeSearchNet corpus (test set). The first set consists of four finetuning-based baseline methods (NBow: Bag of
words, CNN: convolutional neural network, BiRNN: bidirectional recurrent neural network, and multi-head attention), followed
by the second set of models that are pre-trained then finetuned for code search (RoBERTa: pre-trained on text by Liu et al.
(2019), RoBERTa (code): RoBERTa pre-trained only on code, CodeBERT: pre-trained on code-text pairs by Feng et al. (2020),
GraphCodeBERT: pre-trained using structure-aware tasks by Guo et al. (2021)). In the last two rows, we report the results with
our DyHardCode scheme using the pre-trained CodeBERT and GraphCodeBERT models.

evaluation metric of our codesearch task, the test re-
sults of previously proposed methods can be found
in Table 3. GraphCodeBERT (Guo et al., 2021)
has been pre-trained on code by considering the
inherent structure of code (i.e. the data flow graph),
instead of simply treating a code snippet as a se-
quence of tokens. This led to improvements over
CodeBERT baselines for the codesearch task and
is currently the state-of-the-art on this task. The
training (fine-tuning for codesearch) scheme for all
the baselines (top 8 rows in Table 3) uses the objec-
tive described in Eq. (1) and the test set results are
as reported in Guo et al. (2021). During inference,
all models compute the inner product of the query
embedding and the candidate code embeddings as
relevance scores to rank the code snippets in the
corpus of the respective programming language.
We note that with both CodeBERT and Graph-
CodeBERT models, our DyHardCode training
(fine-tuning for codesearch) scheme improves per-
formance over the previous work. GraphCode-
BERT model with our DyHardCode scheme leads
to state of the art results on all six languages and
an overall relative gain of 5.1%, demonstrating the
effectiveness of using hard negatives.

4.2 CodeSearchNet AdvTest Set Evaluation

To evaluate the robustness of our proposed training
scheme, we conduct evaluation on the CodeSearch-
Net AdvTest dataset from the CodeSearchNet cor-
pus. The function and variable names appearing
in the code snippets in the test and development

sets of this Python dataset are normalized (func for
function names, arg-i for the ¢-th variable name).
This dataset was processed and released by Lu et al.
(2021) to test the understanding and generalization
abilities of the model as part of the CodeXGLUE
benchmark. We train CodeBERT, which is the
reported state of the art model, using our DyHard-
Code scheme with K = 10 neighbors for each
instance in the batch. We expect that training with
our hard negatives will make CodeBERT more ro-
bust to such adversarial tests.

We present the results in Table 4. We can sub-
stantially improve the retrieval performance of the
baseline (second row) by increasing the training
batch size and further achieve gains by leveraging
hard negatives with our DyHardCode framework.
The gap in performance for BERT-like models be-
tween the original test set and this adversarial one
is nonetheless still an open problem that suggests
our current models over-rely on the function and
variable naming (done by human programmers)
and less on the inherent structure of the code in
representing source code.

4.3 Extension to Code-Code Search

We extend the idea of leveraging hard negatives in
contrastive learning of representations for retrieval
to the Code-Code search task. Here, the query
yq and the set of candidates {y., } ‘gl are both in
the PL domain. We use the POJ-104 dataset (Mou
et al., 2016) that consists of 104 programming prob-
lems each with 500 solutions in C/C++. The evalua-



Model/Method Test MRR Train Batchsize

RoBERTa 0.1833 -

CodeBERT 0.2719 32
CodeBERT 0.3314 128
CodeBERT 0.3419 384
CodeBERT 0.3433 512
DyHardCode 0.3784 64

Table 4: Results on the adversarial test set (Lu et al., 2021)
of the CodeSearchNet (Python). K = 10 for DyHardCode.

Model/Method Test MAP Train Batchsize

RoBERTa 0.7677 -

CodeBERT 0.8267 32
CodeBERT 0.8882 160
DyHardCode 0.8910 160

Table 5: Results on the code-code search task. POJ-104 test
set (Lu et al., 2021). K = 1 for DyHardCode.

tion metric used is Mean Average Precision (MAP)
@ R=499. This represents what fraction of the true
499 semantically similar code snippets are returned
in the top K = 499 outputs (nearest neighbors)
by the model. Table 5 shows the baseline results
along with DyHardCode (code-code) applied with
K =1, suggesting the effectiveness of hard neg-
atives for code search in the unimodal (PL only)
setup as well.

5 Related Work

Advances in deep learning for NLP and the abun-
dance of source code data has accelerated research
on several tasks in the PL domain. Code com-
pletion systems (Svyatkovskiy et al., 2020), for
instance, offer possible completions to incomplete
prompts in the source code domain and can aid
developers in writing code faster. Similarly, text to
code generation (Yin and Neubig, 2018; Yin et al.,
2018; Iyer et al., 2018; Xu et al., 2020) systems
generate a source code sequence that solves the task
described in the input natural language description.

In the NL domain, our work is closely related
to dense text retrieval approaches of Xiong et al.
(2021) and Karpukhin et al. (2020) in the unimodal
setup. They propose the use of additional informa-
tive negatives besides the in-batch ones for effec-
tive contrastive learning. Jain et al. (2020) propose
contrastive learning as a pre-training strategy for
general PL tasks like source code summarization

and PL sequence classification.

In computer vision research, contrastive learning
based frameworks have been studied extensively
for image representation learning (He et al., 2020;
Oord et al., 2018). Self-supervised contrastive
learning enforces two augmented embeddings of
the same image to be close while embeddings of
different images are pushed apart. SImCLR (Chen
et al., 2020) shows that an appropriate tempera-
ture can help the model learn from hard negatives.
Robinson et al. (2021) explicitly mine hard nega-
tive examples to improve representation learning
performance. CLIP (Radford et al., 2021) shows
that a simple image-text contrastive learning on
large-scale datasets learns superior image represen-
tations.

6 Conclusion & Future Directions

We propose the use of global hard negatives in the
contrastive learning of NL and PL representations
for the task of code search. We compare multi-
ple variants of obtaining these global negatives for
a training instance, and find that probing the NL
index with the query NL embedding is an effec-
tive strategy, and further report that this benefits
from updating the index being updated with newer
model checkpoints saved during training.

Our current method finds hard negatives by a
simple nearest neighbor search based on cosine sim-
ilarity. However, work in cross-lingual embedding
learning shows that in high dimensional spaces
this nearest neighbor finding approach leads to a
detrimental phenomenon known as the hubness
problem (Dinu et al., 2015), where a few nodes
(embeddings) become hubs (nearest neighbors of
many other nodes), whereas some others become
anti-hubs (nearest neighbors to none). Since we
also operate on bimodal data, this phenomenon
could also affect our search. In future, we would
like to investigate the Cross-domain Similarity Lo-
cal Scaling (CSLS) that penalizes the embeddings
that are close to many other in the target space
to mitigate the hubness problem (Conneau et al.,
2018). There also has been significant recent work
in unsupervised representation learning of images
using the contrastive loss (Mitrovic et al., 2021;
Grill et al., 2020), ideas from this string of research
can also motivate more progress in training better
code search models.
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- Go Java  Javascript
Training examples 167,288 164,923 58,025
Dev queries 7,325 5,183 3,885
Testing queries 8,122 10,955 3,291
Candidate codes 28,120 40,347 13,981

Table 6: Data statistics of the filtered CodeSearchNet corpus
for Go, Java and Javascript programming languages. For each
query in the dev and test sets, the answer is retrieved from the
set of candidate codes (last row)

- PHP Python Ruby
Training examples 241,241 251,820 24,927
Dev queries 12,982 13,914 1,400
Testing queries 14,014 14,918 1,261
Candidate codes 52,660 43,827 4,360

Table 7: Data statistics of the filtered CodeSearchNet corpus
for PHP, Python and Ruby programming languages. For each
query in the dev and test sets, the answer is retrieved from the
set of candidate codes (last row).

A Experimental details

Computing Infrastructure: All our experi-
ments are conducted using the Nvidia A-100 GPUs
via the Google Cloud Platform, each of which
has 40 GB of RAM. The maximum number of
GPUs we use is 8 for an experiment using Py-
Torch’s dataparallel package. Training duration
for 10 epochs of GraphCodeBERT or CodeBERT
for the results in Table 3 for the ruby, javascript,
go, python, java, php datasets require (roughly)
2.5,7,29.5,59.5,28.5, 55 hrs respectively.

To select the hyper-parameter K (number
of hard negatives) for a chosen batch-size, we
perform 3 training runs of the GraphCodeBERT
model with our objective on the ruby dataset and
try K = {2,4,6,8,10}. The average MRR scores
were {0.7851,0.7867,0.7860,0.7854,0.7869},
thus we choose K 10 for NL-code search.
Given finite GPU memory, the optimal way to
balance batch-size with K is not straightforward
and performing a grid search on the two will be
prohibitively expensive, which is why we did not
tune these choices.

The CodeBERT and GraphCodeBERT pre-
trained models we use in our experiments both
have 125M parameters.

Dataset details: The CodeSearchNet corpus we
use in our experiments is pre-processed in the same
manner as done by (Guo et al., 2021) and its de-
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tailed statistics are mentioned in Table 6. The
Python AdvTest set consists of 251, 820 training
pairs, 9,604 validation set examples and 19,210
test examples. POJ-104 dataset consists of 104
problems each of which has 500 solutions in C/C++
and is divided into a training set of 64 examples,
dev set of 16 examples and test set of 24 examples.
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