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ABSTRACT

Large Language Models (LLMs) excel in natural language processing (NLP) tasks
but often generate false or misleading information, known as hallucinations, rais-
ing reliability concerns in high-stakes applications. To provide statistical guar-
antees on the factuality of LLM outputs, conformal prediction based techniques
have been proposed. Despite their strong theoretical guarantees, they rely heav-
ily on the exchangeability assumption between calibration and test data, which
is frequently violated in real-world scenarios with dynamic distribution shifts. To
overcome this limitation, we introduce CoFact, a conformal prediction framework
that uses online density ratio estimation to adaptively reweigh calibration data,
ensuring alignment with evolving test distributions. With this approach, CoFact
bypasses the exchangeability requirement and provides robust factuality guaran-
tees under non-stationary conditions. To theoretically justify CoFact, we establish
an upper bound on the gap between the actual hallucination rate and the target
level α, demonstrating that the bound asymptotically approaches zero as the num-
ber of rounds and calibration samples increase. Empirically, CoFact is evaluated
on MedLFQA, WikiData, and the newly introduced WildChat+ dataset, which
captures real-world distribution shifts through user-generated prompts. Results
demonstrate that CoFact consistently outperforms existing methods, maintaining
reliability even under dynamic conditions.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional performance across a wide range
of natural language processing (NLP) tasks (Touvron et al., 2023; Devlin et al., 2019; OpenAI,
2023). Despite of their impressive capabilities, their reliability and trustworthiness remain signif-
icant concerns. A critical issue is hallucination, where LLMs generate false or misleading infor-
mation (Nadeau et al., 2024) that can lead to severe consequences in sensitive areas like healthcare
(Jung, 2025), finance (Kang & Liu, 2023), and legal advice (Dahl et al., 2024). These limitations
pose significant barriers to the broader adoption of LLMs in critical applications.

To address this issue, recent research have sought to improve the reliability of their outputs (Lewis
et al., 2020; Chuang et al., 2023; Nakano et al., 2022). While these methods enhance factuality, they
fall short of providing precise statistical guarantees, which are essential for high-stakes applications.
To bridge this gap, a line of work has explored the use of conformal prediction to establish statistical
guarantees on the factuality of LLM outputs. Specifically, Mohri & Hashimoto (2024) proposed
splitting LLM-generated outputs into atomic sub-claims and filtering out those with factuality scores
below a threshold determined via conformal inference, thereby offering marginal guarantees on
factuality. Building on this, Cherian et al. (2024) extended the framework to provide subgroup-
specific guarantees using conditional conformal prediction (Gibbs et al., 2025).

Although conformal inference-based methods provide factuality guarantees, they rely heavily on
the assumption of exchangeability between calibration and test data (Vovk et al., 2005). In practice,
however, this assumption is frequently violated due to factors such as topic drift (Reimer et al., 2023)
and changes in user composition (Li et al., 2023). For example, Reimer et al. (2023) observed that
the frequency of Covid-19-related terms in user queries fluctuated dramatically during the pandemic,
exhibiting distinct peaks and troughs over time. Similar dynamics are also found in our analysis of
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real-world user prompt data, where topics evolve rapidly, as discussed in Section 5.2. Under such
conditions, the distribution of test prompts can deviate significantly from that of the calibration set,
thereby violating the exchangeability assumption.

Since the exchangeability assumption underpins the theoretical reliability of conformal prediction,
its violation fundamentally compromises these guarantees, rendering such methods ineffective for
ensuring reliable factuality in dynamic, real-world settings. To address this critical limitation, in this
paper, we aim to answer the following question:

Given a stream of prompts from an unknown and dynamically evolving distribution,
how can we provide factuality guarantees for the outputs of LLMs?

Answering this question presents two key challenges: (1) test samples arrive sequentially under
continuous distribution shifts, making conformal prediction methods handling covariate shift that
require static density ratio estimation across the entire test dataset infeasible (Tibshirani et al., 2019);
and (2) in our scenario, unlike existing online conformal prediction methods (Gibbs & Candes, 2021;
Gibbs & Candès, 2024; Areces et al., 2025), we do not have access to ground-truth labels for test
samples after predictions, which prevents direct application of these methods.

To address these challenges, we introduce CoFact, a novel conformal prediction framework that
integrates techniques from online learning into conformal prediction framework seamlessly. CoFact
handles the continuous shifting by employing an online density ratio estimation mechanism that dy-
namically activates and updates multiple expert models across different time intervals. This adaptive
approach enables CoFact to effectively track and learn the evolving density ratios between calibra-
tion and test distributions in real time. Leveraging these density ratio estimates, CoFact strategically
reweighs calibration examples to align with the shifting test distribution. Through such integration,
CoFact bypass the traditional exchangeability assumption, providing robust reliability guarantees
for LLMs even under a continual shifting prompt stream.

We theoretically establish an upper bound on the gap between the actual hallucination rate and
the user-specified hallucination level α under shifting distributions, demonstrating that this bound
asymptotically approaches zero as the number of rounds and calibration samples increase. This
analysis offers a novel perspective that addresses limitations in existing methodologies.

To empirically demonstrate the effectiveness of CoFact, we evaluate CoFact on two well-established
benchmarks, MedLFQA and WikiData, as well as a newly introduced benchmark, WildChat+. Built
upon WildChat (Zhao et al., 2023), WildChat+ includes prompts generated by real users, effec-
tively capturing real-world distributional shifts and enabling a more comprehensive evaluation. Ex-
perimental results demonstrate that CoFact significantly outperforms existing conformal prediction
methods that rely on the exchangeability assumption, consistently maintaining factuality guarantees
even under dynamically shifting distributions. These findings underscore CoFact’s effectiveness in
providing reliability guarantees in complex and dynamic real-world scenarios.

In summary, our contributions are as follows:

• Novel Framework: We propose CoFact, a conformal prediction framework designed to provide
reliability guarantees for LLMs in the presence of continually shifting distributions.

• Theoretical Guarantees: We present rigorous theoretical analysis, establishing an upper bound
on the gap between the actual hallucination rate and the target level α under shifting distributions.
This analysis provides a solid foundation for CoFact’s reliability in dynamic environments.

• New Dataset: To enable robust evaluation in real-world scenarios, we introduce WildChat+,
which contains real user prompts along with LLM-generated responses and factuality annotations.

• Extensive Experiments: We conduct a comprehensive set of experiments across multiple bench-
marks, including MedLFQA, WikiData, and WildChat+. The results demonstrate CoFact’s effec-
tiveness in maintaining reliability guarantees under diverse and evolving distributions.

2 PRELIMINARIES

Conformal Prediction Conformal prediction is a statistical framework that transforms the outputs
of a black-box predictor into prediction sets that are guaranteed to contain the true label with a user-
specified probability 1−α. Formally, given an i.i.d. calibration set {(Xi, Yi)}ni=1, where Xi and Yi
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represent the features and labels, respectively, and a test sample Xn+1 that is exchangeable with the
calibration data, conformal prediction constructs a prediction set Ĉ(Xn+1) such that the true label
Yn+1 is included with probability at least 1− α:

P(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α. (1)

To introduce the basic ideas behind conformal inference, we first define some notation, following
Tibshirani et al. (2019). We denote by Quantile(α; Ψ) the level-α quantile of a distribution Ψ.
Formally, for X ∼ Ψ, the quantile is defined as:

Quantile(β; Ψ) = inf{x : P[X ≤ x] ≥ α}.

For empirical distributions, we denote the quantile of a multiset of values v1, . . . , vn as:

Quantile(α; {vi}ni=1) = Quantile

(
α;

1

n

n∑
i=1

δvi

)
,

where δa represents a point mass at a (i.e., the distribution that places all its probability mass at a).
The central idea of conformal prediction involves the use of conformity score V (Xi, Yi), which
quantifies how well the label Yi corresponds to the features Xi. Using this score, the prediction
set Ĉ(Xn+1) is constructed by including all candidate labels y for which the conformity score
V (Xn+1, y) exceeds or meets a threshold τ . Given the conformity scores from the calibration set
{V (Xi, Yi)}ni=1, the threshold τ is determined as the (1−α)-quantile of these scores combined with
{∞} to ensure proper coverage. Formally,

τ = Quantile (1− α; {V (Xi, Yi)}ni=1 ∪ {∞}) . (2)

Conformal Factuality Control To generate a single response with guaranteed factuality, rather
than a prediction set containing multiple potential factual responses, Mohri & Hashimoto (2024)
proposes treating each response as a set of atomic claims and using conformal prediction to filter
out hallucinated claims. Specifically, their method assumes access to an annotated calibration set
consisting of n i.i.d. prompt-response-claim-label tuples, denoted as D0 = {(Pi, Ri,Ci,Wi)}ni=1.
Here, Pi represents the prompt for sample i,Ri is the corresponding response generated by the LLM,
Ci = {Ci,j}kij=1 denotes the set of claims extracted from Ri, and Wi = {Wi,j}kij=1 represents the
binary factuality labels for each claim, where Wi,j = 1 indicates that Ci,j is factual, and Wi,j = 0
indicates that it is hallucinated.

The objective is to output a filtered response F (Cn+1) for a test sample (Pn+1, Rn+1), which
is exchangeable with the calibration data, such that the probability of including any hallucinated
claims is bounded by a pre-defined level α:

P (∃Cn+1,j ∈ F (Cn+1) such that Wn+1,j = 0) ≤ α. (3)

The filtered response F (Cn+1) is constructed by excluding claims with low factuality scores:

F (Cn+1) = {Cn+1,j ∈ Cn+1 | p(Cn+1,j , Pn+1) ≥ τ}, (4)

where τ is the (1− α)-quantile of the conformity scores {V (Ci,Wi)}ni=1 ∪ {∞}. The conformity
score V (Ci,Wi) is defined as:

V (Ci,Wi) = inf {τ | ∀Ci,j ∈ F (Ci),Wi,j = 1} , (5)

and p(Cn+1,j , Pn+1) represents the factuality score, which measures how likely the claim Cn+1,j

is to be factual given the prompt Pn+1.

Building on the above framework, Cherian et al. (2024) argue that the guarantee provided by confor-
mal factuality control is only marginal, meaning it applies globally across all test samples but does
not account for specific subgroups of data. To address this limitation, they propose a group-wise
guarantee inspired by conditional conformal prediction (Gibbs et al., 2025). This approach ensures
that the factuality guarantee holds for all subgroupsG ∈ G, where the groups are defined by a family
of functions. Specifically, the group-wise guarantee ensures:

P (∃Cn+1,j ∈ F (Cn+1) such that Wn+1,j = 0 | Zn+1 ∈ G) ≤ α for all G ∈ G. (6)
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Table 1: Glossary of commonly used symbols.

Symbol Meaning Symbol Meaning
Pi i-th prompt Zi Tuple (Pi, Ri,Ci)
Ri Response to Pi generated by the LLM D0, D0 Calibration dataset/distribution
Ci Claims parsed from Ri Dt, Dt Test dataset/distribution at time t
Wi Factuality labels of Ci r∗t , r̂t True/estimated density ratio
Ci,j j-th claim of Ci w∗

t , ŵt True/estimated importance weights
Wi,j Factuality label of Ci,j F , F̂ Filtered sub-claims using w∗

t /ŵt

3 METHODOLOGY

In this section, we provide a detailed introduction to our proposed framework, CoFact. We begin
by outlining the problem setup, including the distribution shift settings and our goal. Next, we
present an oracle method that assumes access to the true density ratio to address the distribution
shift. Lastly, we introduce our practical algorithm, which leverages online density ratio estimation
to operate effectively in real-world scenarios.

3.1 PROBLEM SETUP

For clarity and notational simplicity, we define Zi as the prompt-response pair, i.e., Zi =
(Pi, Ri,Ci). Thus, each sample in the calibration set can be represented as (Zi,Wi). We con-
sider an online setting with distribution shift, where we initially have access to a calibration set
D0 of size n, independently drawn from an initial distribution D0. At each subsequent round
t ∈ [T ] ≜ {1, . . . , T}, an unlabeled dataset Dt of size nt is independently sampled from the
current distribution Dt, which may evolve continuously over time. For simplicity, and without loss
of generality, we assume nt = 1, representing the test sample arriving at time t as Zn+t. To address
the challenges posed by the distribution shift, we introduce the following assumption:
Assumption 1 (Continuous Shifting Distribution). For any Z ∈ Z in the prompt-response space
and any round t ∈ [T ], the conditional distribution of W given Z remains unchanged, i.e.,

Dt(W | Z) = D0(W | Z),
and the density ratio between Dt and D0 satisfies:

r∗t (Z) =
Dt(Z)
D0(Z)

≤ B <∞.

Objective Our objective is to generate a filtered response F̂ (Cn+t) for each test sample Zn+t
at round t, ensuring that the probability of including any hallucinated claims remains below a pre-
defined threshold α. Given the challenges of providing exact guarantees at each time step under
non-stationary distributions, we adopt the metric of prior works (Gibbs & Candes, 2021; Gibbs &
Candès, 2024) and focus on bounding the gap between the average hallucination rate over T rounds
and the target level α:

∣∣∣ 1T ∑T
t=1 êrrt − α

∣∣∣, where the error indicator for round t is defined as:

êrrt = 1

[
∃Cn+t,i ∈ F̂ (Cn+t) such that Wn+t,i = 0

]
. (7)

Here, F̂ denotes the filtered response constructed by our method, distinguishing it from F , which is
constructed using the true density ratio. The latter will be introduced in the next subsection. To aid
understanding, Table 1 provides a glossary of commonly used symbols.

3.2 CONFORMAL FACTUALITY CONTROL UNDER DISTRIBUTION SHIFT WITH ORACLE

We first consider the ideal scenario where the true density ratio r∗t (Z) is available for all t ∈ [T ]. In
this case, a standard approach to address distribution shift is to reweigh the calibration samples and
the test sample using the density ratio when calculating the threshold τt (Tibshirani et al., 2019).
Formally, given the conformity scores computed on the calibration set {Vi}ni=1 = {V (Zi,Wi)}ni=1
and the test sample Zn+t, the threshold τt at any round t ∈ [T ] is defined as:

τt = Quantile(1− α;

n∑
i=1

w∗
t (Zi)δVi

+ w∗
t (Zn+t)δ∞), (8)
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where w∗
t is the weight function derived from the normalized density ratio:

w∗
t (Z) =

r∗t (Z)∑n
i=1 r

∗
t (Zi) + r∗t (Zn+t)

. (9)

Using this threshold, the filtered response is constructed as:

F (Cn+t) = {Cn+t,j ∈ Cn+t | p(Cn+t,j , Pn+t) ≥ τt}, (10)

where p(Cn+t,j , Pn+t) represents the factuality score of the j-th claim given the prompt Pn+t.
Corollary 1. Given a calibration set D0 and a test sample Zn+t independent with D0, if the true
density ratio r∗t (Z) is available for all t ∈ [T ], then the filtered response constructed using Equa-
tion 10 with the threshold defined by Equation 8 satisfies the following guarantee:

P (∃Cn+t,i ∈ F (Cn+t) such that Wn+t,i = 0) ≤ α. (11)

This result directly follows from Theorem 1 in Mohri & Hashimoto (2024) and Corollary 1 in
Tibshirani et al. (2019).

3.3 CONFORMAL FACTUALITY CONTROL WITH ONLINE DRE

While guarantees on the hallucination rate can be established under the assumption of access to
the true density ratios, the true density ratios are typically inaccessible in practice—particularly in
scenarios where the underlying distribution is continuously evolving. To address this challenge, we
adapt the method proposed in Zhang et al. (2023) to estimate a sequence of density ratios, {r̂t}Tt=1,
that approximate the true density ratios, {r∗t }Tt=1, under a dynamically changing distribution. In
this section, we first reformulate the problem of online density ratio estimation (DRE) as a dynamic
regret minimization problem. Next, we provide a brief overview of the online ensemble method
employed to minimize dynamic regret. Finally, we describe how the estimated density ratios are
integrated into the CoFact framework.

3.3.1 ONLINE DRE VIA DYNAMIC REGRET MINIMIZATION

As shown by Sugiyama et al. (2012), the problem of density ratio estimation can be reformulated as
a Bregman divergence minimization problem. Consequently, to accurately estimate the density ratio
at each time step t ∈ [T ], we solve the following optimization problem to obtain r̂t:

min
r∈Hr

Lψt (r)− Lψt (r
∗
t ), (12)

where Lψt is the loss function for the density ratio, defined as:

Lψt (r) = EZ∼D0 [∂ψ(r(Z))r(Z)− ψ(r(Z))]− EZ∼Dt [∂ψ(r(Z))] . (13)

Here, ψ is the associated divergence function. By choosing different forms of ψ, various existing
density ratio estimation methods can be recovered, including LSIF (Kanamori et al., 2009), the
logistic regression method (Bickel et al., 2009), and UKL (Nguyen et al., 2007).

Building on this single-round density ratio estimation, it is natural to construct a sequence of esti-
mators {r̂t}t∈[T ] that perform well over time by minimizing the cumulative loss gap:

T∑
t=1

(
Lψt (r̂t)− Lψt (r

∗
t )
)
.

Implementation To implement this optimization, we make the following design choices:

• Function Class and Divergence Function Specification: We instantiate the density ratio func-
tion class Hr as a logistic regression model:

Hr ≜ Hθ =
{
z 7→ exp(−ϕ(z)⊤θ)

∣∣ ∥ϕ(z)∥2 ≤ R, ∥θ∥2 ≤ S
}
,

i.e., we model the density ratio estimator r̂t as r̂t(·) = exp(−ϕ(·)⊤θ̂t), where ϕ(z) is a feature
mapping function (e.g., the representation extracted by a neural network), and θ̂t is the parameter
corresponding to r̂t. The bounded norms of ϕ(z) and θ ensure that the generalization gap can be
analyzed. Moreover, we choose the divergence function ψ as:

ψ = ψLR ≜ t log t− (t+ 1) log(t+ 1).

5
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• Empirical Risk Minimization: Since the true distributions D0 and Dt are inaccessible in practice,
we use samples from a calibration set D0 = {Zi}ni=1 and a test set Dt. At each time step t ∈ [T ],
r̂t is obtained by solving the following empirical risk minimization problem:

min
θ∈Θ

T∑
t=1

L̂t(θ)− L̂t(θ
∗
t ), (14)

where Θ is the parameter space, and L̂t is defined as:

L̂t(θ) = EZ∼D0
[∂ψ(r(Z; θ))r(Z; θ)− ψ(r(Z; θ))]− EZ∼Dt

[∂ψ(r(Z; θ))] . (15)

Based on the above design choices, we are actually finding a sequence of parameters {θ̂t}Tt=1 to
minimize the empirical dynamic regret in Equation 14.

3.3.2 ONLINE ENSEMBLE FRAMEWORK FOR DYNAMIC REGRET MINIMIZATION

To find the parameter sequence that minimizes dynamic regret, we adopt the online ensemble frame-
work proposed by Zhang et al. (2023), which maintains a pool of experts. Each expert estimates the
density ratio over its designated lifetime, and predictions from all active experts are aggregated to
construct a global model at each time step, providing the final density ratio estimation. The frame-
work operates through three key steps at each time step:

1. Active-set update: Experts are initialized with lifetimes chosen geometrically (20, 21, 22, . . .),
and are re-initialized upon the expiration of their lifetimes.

2. Model aggregation: The parameters of active experts are weighted based on their historical
performance and aggregated to form the global model θ̂t. This aggregation step enables the
global model to adaptively emphasize different segments of historical data, thereby enhancing its
ability to capture distribution shifts.

3. Expert update: Active experts update their parameters θt,i using an online Newton step (ONS)
method, which minimizes the regret L̂ψt (θt,i)− L̂ψt (θ

∗
t ) at the current time step.

For a comprehensive description of the algorithm, please refer to Appendix C.

3.3.3 THE OVERALL FRAMEWORK

After obtaining the density ratio estimator r̂t parameterized by θ̂ at time step t, we substitute it for
the true density ratio r∗t in Equation 8 to compute the threshold τ̂t. This threshold is then used to
filter hallucinated claims in the response:

τ̂t = Quantile

(
1− α;

n∑
i=1

ŵt(Zi)δVi
+ ŵt(Zn+t)δ∞

)
, (16)

where ŵt(Z) is the normalized estimated density ratio:

ŵt(Z) =
r̂t(Z)∑n

i=1 r̂t(Zi) + r̂t(Zn+t)
. (17)

Filtered responses are then given by:

F̂ (Cn+t) = {C(n+t)j ∈ Cn+t | p(C(n+t)j , Pn+t) ≤ τ̂t}. (18)

4 THEORETICAL GUARANTEE

To obtain the theoretical guarantee on the hallucination rate, we need to make the following as-
sumptions on the function class of the density ratio estimator r∗t and the property of the divergence
function ψ.

Assumption 2. The true density ratio r∗t is contained in the hypothesis space as r∗t ∈ Hr = HLR
θ ≜{

z 7→ exp(−ϕ(z)⊤θ) | θ ∈ Θ
}

for any t ∈ [T ] and the norm of θ and ϕ(z) are bounded by S and
R respectively, i.e., ∥θ∥2 ≤ S and ∥ϕ(z)∥2 ≤ R.

6
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Assumption 3. The divergence function ψ is µ-strongly convex function satisfying t∂3ψ(t) ≤ 0 and
∂3ψ(t) ≤ 0 for all t ∈ dom ψ.

This assumption can be satisfied by many commonly used divergence functions such as ψLS(t) =
(t − 1)2/2 and ψLR(t) = t log t − (t + 1) when the input is bounded, which is guaranteed by
Assumption 2.
Theorem 1. Under the assumptions 1, 2 and 3, with probability at least 1− δ, the gap between the
averaged hallucination rate over T time steps and the target level α is bounded as∣∣∣∣∣ 1T

T∑
t=1

êrrt − α

∣∣∣∣∣ ≤ Õ
(
max

{
T− 2

3V
2
3

T , T
− 1

2

}
+ 1/n

)
(19)

when the parameter of the online ensemble is properly set. Here, VT =
∑T
t=2 ∥Dt(z)−Dt−1(z)∥1

measures the variation of input densities and the notation Õ hides logarithmic factors of T and 1/δ.

In this theorem, we can observe that the gap converges to 0 as the time horizon T and calibration
set size n increase, and the convergence rate depends on the variation of input densities. This
observation is consistent with our intuition that the more drastic the distribution shift is, the harder
it is to adapt to the changing distribution. The proof of Theorem 1 is provided in Appendix D.2.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of CoFact through experiments on both simulated
and real-world distribution shifts. For all experiments, we set the target factuality level to 1 − α =
0.9. We compare CoFact against the following baseline methods: (1) SCP (Mohri & Hashimoto,
2024), which employs standard conformal prediction to provide marginal factuality guarantees; and
(2) CondCP (Cherian et al., 2024), which uses conditional conformal prediction to achieve group-
wise factuality guarantees. To assess the performance of each method, we use two key metrics:
Factuality and Claims Retained, defined as follows:

Factuality = 1− 1

T

T∑
t=1

êrrt, and Claims Retained =
1

T

T∑
t=1

|F̂ (Cn+t)|
|Cn+t|

. (20)

5.1 RESULTS ON SIMULATED DISTRIBUTION SHIFTS

Datasets We evaluate our method under simulated continual distribution shifts using two es-
tablished datasets: MedLFQA (Jeong et al., 2024) and WikiData (Cherian et al., 2024). The
MedLFQA dataset is a long-form medical question-answering benchmark with answers given by
experts or LLMs, which are used to evaluate the factuality for sub-claims. WikiData is constructed
by generating short biographies for sampled Wikipedia names. The factuality of sub-claims is eval-
uated through an adapted FAcTscore procedure, leveraging evidence from Wikipedia passages.

Since neither MedLFQA nor WikiData naturally exhibits distribution shifts, we simulate such shifts
as follows. The dataset is first randomly divided into a calibration set (D0) and a test set (Dtest)
of the same size. Then, at each time step t, the test samples Zn+t are drawn from Dtest according
to a time-varying distribution Dt, which is defined as a mixture of two base distributions, D′ and
D′′. To emulate continual distribution shifts, we define four patterns for Dt: periodic shifts fol-
lowing sine (Sin) or square wave (Squ) patterns, gradual linear transitions from D′ to D′′ over T
time steps (Lin), and rapid stochastic alternations between D′ and D′′ based on a fixed probability
(Ber). Additional details on the dataset construction and shift simulation procedures are provided in
Appendix E.1 and Appendix E.2.

Results We conduct experiments on MedLFQA and WikiData under the four types of simulated
distribution shifts for T = 2000 time steps. The results for MedLFQA and WikiData are summa-
rized in Table 2 and Table 3. Several key observations can be drawn from these tables. First, SCP
experiences a significant drop in factuality under all types of distribution shifts across both datasets
and fails to achieve the target factuality level of 0.9. This highlights the vulnerability of SCP when
the exchangeability assumption is violated, which can severely degrade its performance. Second,
while CondCP achieves high factuality on the MedLFQA dataset, it suffers from an extremely low
claims retention rate. Additionally, CondCP exhibits very low factuality on the WikiData dataset,

7
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Table 2: Averaged factuality and claims retained on the MedLFQA dataset under four types of shifts.
Values in the range [0.89, 0.91] are highlighted in bold. Each experiment is repeated five times with
different random seeds, and the results are reported as the mean ± standard deviation.

Lin Squ Sin Ber
Factuality Claims Retained Factuality Claims Retained Factuality Claims Retained Factuality Claims Retained

SCP 0.811 ± 0.014 0.912 ± 0.011 0.808 ± 0.017 0.911 ± 0.012 0.810 ± 0.014 0.910 ± 0.010 0.828 ± 0.022 0.910 ± 0.006
CondCP 0.940 ± 0.004 0.389 ± 0.028 0.937 ± 0.007 0.400 ± 0.030 0.939 ± 0.005 0.394 ± 0.030 0.949 ± 0.010 0.364 ± 0.057
CoFact 0.895 ± 0.026 0.715 ± 0.031 0.897 ± 0.022 0.718 ± 0.030 0.894 ± 0.018 0.715 ± 0.031 0.900 ± 0.019 0.714 ± 0.036

Table 3: Averaged factuality and claims retained on WikiData. Settings are the same as Table 2.
Lin Squ Sin Ber

Factuality Claims Retained Factuality Claims Retained Factuality Claims Retained Factuality Claims Retained
SCP 0.884 ± 0.006 0.780 ± 0.005 0.883 ± 0.006 0.781 ± 0.005 0.883 ± 0.006 0.781 ± 0.004 0.875 ± 0.010 0.782 ± 0.005

CondCP 0.724 ± 0.010 0.910 ± 0.002 0.726 ± 0.009 0.910 ± 0.003 0.725 ± 0.010 0.910 ± 0.002 0.716 ± 0.007 0.909 ± 0.004
CoFact 0.896 ± 0.010 0.748 ± 0.006 0.895 ± 0.009 0.748 ± 0.006 0.895 ± 0.008 0.748 ± 0.006 0.897 ± 0.008 0.749 ± 0.006

indicating that group-wise factuality guarantees alone are insufficient for maintaining robust perfor-
mance in shifting environments. Finally, among the three methods evaluated, our proposed method
consistently achieves factuality closest to the target level of 0.9 under all types of distribution shifts
across both datasets, demonstrating its effectiveness in adapting to dynamic distribution changes.

Furthermore, we visualize how factuality evolves over time on the WikiData dataset in Figure 1.
Due to CondCP’s significantly lower factuality compared to SCP and our method, we exclude its
results from the figure for clarity. To produce smooth curves, factuality is calculated using a sliding
window that spans 50 steps before and after the current time step. The figure reveals that our method
consistently maintains factuality near the target level of 0.9 over time. Notably, the curve represent-
ing our method remains above that of SCP, particularly beyond time step 1000, further underscoring
the advantage of our approach in adapting to shifting distributions.

5.2 RESULTS ON REAL-WORLD DISTRIBUTION SHIFTS

Dataset and Analysis To evaluate our method in a real-world shifting setting, we construct a new
benchmark WildChat+ from WildChat Zhao et al. (2023), which contains user-generated prompts
in the wild. For further construction details of the dataset, please refer to Appendix E.1. We conduct
data analysis on the WildChat+ dataset to show that the topics of prompts in the dataset change over
time. Specifically, we first use the Latent Dirichlet Allocation (LDA) algorithm to identify 10 topics
in the dataset and then split the dataset into 40 time intervals according to the timestamps of the
conversations. After that, we plot the proportion of each topic in each time interval in Figure 2.
From the figure, we can observe that the topics in the dataset change over time, which demonstrates
the existence of a continual distribution shift in the dataset.

Results To evaluate our method under real-world distribution shifts, we perform experiments on
the WildChat+ dataset. We split the data into two parts according to their timestamp: the first 40%
of the data is used as the calibration set, while the remaining 60% serves as the test set. The results
are presented in Figure 3. From the figure, several observations can be made. First, both SCP
and CondCP struggle to reach the target factuality level of 0.9, underscoring the need for methods
designed for dynamic conditions. Second, while CoFactinitially performs similarly to SCP before
time step 200, it progressively adapts to the changing distribution and achieves factuality near the
target level of 0.9 after time step 200. This demonstrates the effectiveness of our method in handling
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Figure 1: Factuality over time on the WikiData dataset. Each subplot corresponds to a different type
of distribution shift, with the X-axis denoting the time steps and the Y-axis representing factuality.
Factuality is computed using a sliding window that includes 50 steps before and after each time step.
The curve shows the mean across 5 runs, while the shaded area indicates the standard deviation.
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Figure 2: Topic proportions over time on WildChat+. X-axis represent the index of time intervals
and Y-axis represent the proportion of each topic. Each line represent a topic identified by LDA.
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Figure 3: Factuality and retained claims ratio over time on the WildChat+ dataset. The X-axis
represents the time steps, while the Y-axis displays the factuality and retained claims ratio. Factuality
is computed in the same manner as described in Figure 1. The curves represent the mean across 5
runs, and the shaded areas indicate the standard deviation.

evolving distributions. It is worth noting that although CondCP achieves higher claims retention
compared to SCP and our method, its overall factuality remains significantly lower. As a result,
CondCP fails to meet the primary objective of the task: ensuring a reliable factuality guarantee.

Case Study To demonstrate the effectiveness of our method, we present a concrete example based
on the filtered response to the prompt: ”What is Visual Studio Code?” The filtered claims is ex-
pressed by red strikethrough text.
Visual Studio Code is a free, open-source code editor developed by Microsoft. It is a lightweight
yet powerful tool that supports various programming languages and offers features such as syn-
tax highlighting, code completion, debugging, and Git integration. Visual Studio Code is highly
customizable through extensions and themes, making it popular among developers for writing and
debugging code.
From this filtered response, we can see that our method successfully removes the hallucinated claim
”open-source” while preserving the majority of the accurate information. This example highlights
the capability of our approach to mitigate hallucinations in LLM-generated responses. Due to space
constraints, we provide another case study in Appendix F.

6 CONCLUSION

In this paper, we tackle the critical challenge of providing factuality guarantees for LLMs in the
presence of dynamic, real-world distribution shifts. To address the limitations of existing methods
that rely on the exchangeability assumption, we introduce CoFact, a novel conformal prediction
framework that utilizes online density ratio estimation to adaptively reweigh calibration data, en-
suring alignment with evolving test distributions. Through both theoretical analysis and empirical
evaluation, we demonstrate that CoFact consistently outperforms existing approaches in maintaining
reliable factuality guarantees under dynamic and non-stationary conditions. The discussion of the
limitations and future work can be found in Appendix G.
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7 ETHICS STATEMENT

This paper introduces WildChat+, a derived dataset based on WildChat, which consists of real-world
user-generated prompts. Due to the nature of real-world data, the dataset may contain personal in-
formation or potentially harmful content. While WildChat employs measures such as anonymization
and the removal of sensitive information to address these concerns, it is still possible that some such
content remains. Consequently, WildChat+ may also include similar issues. We strongly encourage
users to handle the dataset responsibly and exercise caution. Beyond the concerns outlined above,
we do not foresee any additional ethical issues associated with this study.

8 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The code required to
reproduce the experiments presented in this paper is included in the supplementary materials, and
the implementation details are thoroughly described in Appendix E.3. Additionally, the detailed pro-
cessing and construction procedures for our dataset are thoroughly described in the Appendix E.1.
All assumptions underlying our theoretical results are clearly stated in Section 3.1 and 4 of the main
text, and complete proofs of these results are provided in the Appendix D.2.
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A THE USE OF LLMS

In this work, LLMs were solely used for text polishing to enhance the clarity and readability of
the manuscript. LLMs played no role in generating research ideas, problem formulations, proofs,
theorems, algorithms, experiments, results, figures, or evaluations. All content produced or refined
by LLMs was meticulously reviewed and validated by the authors to ensure its accuracy and consis-
tency with the intended meaning. The technical contributions and intellectual work presented in this
study are entirely the authors’ own.

B RELATED WORK

Hallucination and Its Mitigation Hallucination in LLMs represents a critical research challenge,
driving extensive efforts to improve their factuality. Based on the stage of application, these efforts
can generally be divided into two categories: inference-level and training-level methods. At the in-
ference stage, a common approach is retrieval-augmented generation (RAG), which grounds model
responses in external knowledge sources (Lewis et al., 2020; Fan et al., 2024; Jiang et al., 2023).
Training-level strategies include reinforcement learning from human feedback (RLHF) (Bai et al.,
2022; Ouyang et al., 2022), supervised fine-tuning with factual supervision (Lin et al., 2022; Nakano
et al., 2022), and factuality-oriented decoding techniques (Chuang et al., 2023; Lee et al., 2022).

In addition to these heuristic approaches, recent research has introduced methods with statistical
guarantees. For instance, Mohri & Hashimoto (2024) applied conformal prediction to LLMs to
provide marginal guarantees on factuality, while Cherian et al. (2024) extended this framework
to group-wise guarantees using conditional conformal prediction (Gibbs et al., 2025). However,
these methods are built on the assumption of exchangeability between calibration and test data—an
assumption that is often violated in real-world distribution shifts. This highlights the need for more
robust methods that are better suited to practical scenarios.

Conformal Prediction Conformal prediction (CP) provides a formal framework for constructing
prediction sets with guaranteed coverage (Shafer & Vovk, 2008; Vovk et al., 2005). Recently, there
has been growing interest in applying CP to calibrate LLM outputs and improve their reliability
(Campos et al., 2024). At the response level, Kumar et al. (2023) and Quach et al. (2023) leverage
CP to identify low-confidence outputs, enhancing the reliability of model predictions. At the token
level, Ulmer et al. (2024) and Ravfogel et al. (2023) employ CP-guided decoding to improve text
quality. While these methods have demonstrated empirical success in improving reliability, they
often fail to produce a single response with guaranteed factuality—an outcome that is typically
more practical and desirable than generating a prediction set containing potential valid outputs.

Another important research direction involves extending CP to online settings, which better reflect
real-world sequential applications. Gibbs & Candes (2021) introduced adaptive conformal inference
(ACI) to maintain coverage under distribution shifts. Building on this, Gibbs & Candès (2024)
proposed adaptive step-size tuning to improve ACI’s robustness. More recently, Areces et al. (2025)
and Bhatnagar et al. (2023) developed advanced online learning algorithms that guarantee coverage
at a finer granularity, rather than averaging coverage over the entire time horizon. However, most
online CP methods rely on the assumption of immediate access to ground-truth labels for test data
following predictions—an assumption that is not feasible in the context of hallucination mitigation
for LLMs, where feedback on output correctness is typically unavailable. Consequently, existing
online CP frameworks are unsuitable for this problem, highlighting the need for new approaches
designed to address these constraints.

C OMITTED ALGORITHM DETAILS

In this section, we outline the approach to minimizing dynamic regret, as defined in Equation 14, us-
ing the online ensemble framework proposed by Zhang et al. (2023). At a high level, the framework
maintains a pool of experts, where each expert models a density ratio estimator over its designated
lifetime. At each time step, the predictions from all active experts are aggregated to form a global
model, which provides the final density ratio estimation.
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Algorithm 1 CoFact’s Online DRE Framework, adapted from Zhang et al. (2023)

Require: Calibration data D0 = {Zi}ni=1, number of time steps T
1: Initialize the set of lifetime length list C = [1, 2, 4, ...⌈log2 T ⌉]
2: Initialize the active set of experts A with |C| initialized experts
3: for t = 1, . . . , T do
4: for L ∈ C do
5: if t ≡ 0 mod L then
6: Reinitialize the expert (its θ, ε and v) corresponding to the lifetime length L, i.e.,

A[log2 L]

7: for Ei ∈ A do
8: Update pt,i using εt−1,i and vt−1,i

9: Aggregate the global model θ̂t
10: for Ei ∈ A do
11: Update the parameters of Ei, i.e., θ̂t+1,i

12: Update the potential vt,i and step size εt,i

The overall algorithm is detailed in Algorithm 1, which consists of three main steps: active-set
update (lines 3–6), model aggregation (lines 7–9), and expert update (lines 10–12). Below, we
provide an overview of each step.

Active-set update. The algorithm maintains a set of experts, each assigned a lifetime length cho-
sen geometrically as 20, 21, 22, . . .. At each time step t, the algorithm checks if any expert’s lifetime
has expired. If so, the expired expert is re-initialized with updated parameters, including the model
parameter θ̂t,i, the potential vt,i, and the step size ϵt,i. Specifically, the initialization procedure is as
follows:

• Model parameter initialization. The model parameter θ̂t,i is initialized to the current global
model: θ̂t,i = θ̂t.

• Potential initialization. The potential vt,i is initialized as vt,i = 1/T .

• Step size initialization. The step size ϵt,i is initialized as ϵt,i = min{1/2,
√
lnT}.

Model aggregation. After updating the active experts, the algorithm aggregates their predictions
to form a global model. This global model is then used to make predictions for the current test
sample Zn+t. For each expert, a ”potential” vt,i is maintained to reflect its historical performance,
while a step size ϵt,i controls the update of this potential. The weights and the global model are
computed as follows:

pt,i =
ϵt−1,ivt−1,i∑
i∈A ϵt−1,ivt−1,i

, and θ̂t =
∑
i∈A

pt,iθ̂t,i.

Expert update. Once the global model θ̂t is obtained, each active expert Ei is updated using the
newly arrived test sample Zn+t. The expert update consists of two components: model parameter
update and updates to the potential and step size.

1. Model parameter update. The model parameter θ̂t,i is updated using the online Newton step
(ONS) method (Hazan et al., 2007; Agarwal et al., 2006), which incorporates second-order in-
formation to achieve efficient and adaptive updates. The update rule is given by:

θ̂t+1,i = Π
At,i

Θ

[
θ̂t,i − γA−1

t,i ∇L̂t(θ̂t,i)
]
,

where At,i is the accumulated second-order matrix defined as:

At,i = λI +

t∑
τ=si

∇L̂τ (θ̂τ,i)∇L̂τ (θ̂τ,i)⊤,

and si denotes the last initialization time step of expert Ei. The term Π
At,i

Θ represents the pro-
jection of the updated parameter onto the feasible set Θ, with the projection performed under the

15
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norm induced by the matrix At,i. This ensures that the updated parameter remains within the
allowable parameter space.

2. Potential and step size update. The potential vt,i and step size ϵt,i are updated to reflect the ex-
pert’s performance. First, we define the term mt,i, which captures the performance gap between
the expert θ̂t,i and the global model θ̂t over the linearized loss:

mt,i =
⟨∇L̂t(θ̂t), θ̂t − θ̂t,i⟩

SR
.

Using mt,i, the updates are performed as follows:
• Potential update. The potential vt,i is updated as:

vt,i = vt−1,i · (1 + ϵt−1,imt,i)
ϵt,i

ϵt−1,i .

• Step size update. The step size ϵt,i is updated as:

ϵt,i = min

{
1

2
,

√
lnT

1 +
∑t
τ=si

m2
τ,i

}
.

D THEOREM AND PROOF

D.1 USEFUL LEMMA

Lemma 1 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables with Xi ∈
[llow, llow + L] almost surely. Define the sample mean X̄n = 1

n

∑n
i=1Xi and µ = E[X̄n]. Then for

any δ > 0, with probability at least 1− δ,

|X̄n − µ| ≤ L ·
√

log(2/δ)

2n
. (21)

Lemma 2 (Azuma–Hoeffding Inequality). Let {Mt}nt=1 be a martingale difference sequence with
respect to the filtration {Ft}nt=0, i.e.,

E[Mt | Ft−1] = 0, ∀ t = 1, . . . , n.

Suppose the differences are bounded almost surely by
|Mt| ≤ c, ∀ t = 1, . . . , n.

Define the partial average Bn = 1
n

∑n
t=1Mt. Then for any δ > 0 with probability at least 1 − δ,

we have

|Bn| ≤ c

√
2

n
log(2/δ). (22)

Lemma 3 (Theorem 1 in Zhang et al. (2023)). Suppose Assumptions 2 and 3 hold. Denote [z]+ =
max{z, 0}. Let d be the dimension of the parameter space Θ. Then, for any density ratio estimator
r̂t(Z) = h(Z; θ) ∈ Hr, the empirical estimation error is bounded by

1

T

T∑
t=1

Ex∼D0(x) [|r
∗
t (x)− r̂t(x)|] ≤

√√√√ 4

µT

[
T∑
t=1

L̃ψt (r̂t)−
T∑
t=1

L̃ψt (r
∗
t )

]
+

+O

(√
d log(T/δ)

µ
√
n

)
,

(23)
provided that h(Z, θ) is bounded for any Z ∈ Z and θ ∈ Θ and Lipschitz continuous.
Lemma 4 (Theorem 2 in Zhang et al. (2023)). Suppose Assumptions 2 and 3 hold. Then, with
probability at least 1−δ, the dynamic regret of the density ratio estimator sequence {r̂t}Tt=1 learned
from Algorithm 1 is bounded by

T∑
t=1

L̃ψt (r̂t)−
T∑
t=1

L̃ψt (r
∗
t ) ≤ Õ

(
max

{
T

1
3V

2
3

T , 1
}
+
T

n

)
, (24)

when the parameters are set as γ = 3(1 + β) and λ = 1. In the above, VT =
∑T
t=2 ∥Dt(x) −

Dt−1(x)∥1 measures the variation of input densities. β = exp(SR) represents the maximum value
of the estimated density ratio r̂t.
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Corollary 2. Suppose Assumption 2 and 3 hold. Then, with probability at least 1− δ, the dynamic
regret of the density ratio estimator r̂t(x) = exp(−ϕ(z)⊤θ̂t) is bounded by

1

T

T∑
t=1

Ex∼D0
[|r∗t (x)− r̂t(x)|] ≤ Õ

(
n−

1
2 +max

{
T− 1

3V
1
3

T , T
− 1

2

})
. (25)

when the parameters are set as γ = 3(1 + β) and λ = 1. In the above, VT =
∑T
t=2 ∥Dt(x) −

Dt−1(x)∥1 measures the variation of input densities.

D.2 THE PROOF OF THEOREM 1

For clarity, let Et denote the event that there exists any hallucinated claim in the prediction set
obtained by true density ratio using at time step t, i.e.,

Et =
{
∃Cn+t,i ∈ F (Cn+t) such that Wn+t,i = 0

}
. (26)

Similarly, we denote the event that there exists any hallucinated claim in the prediction set obtained
by estimated density ratio at time step t as Êt, i.e.,

Êt =
{
∃Cn+t,i ∈ F̂ (Cn+t) such that Wn+t,i = 0

}
. (27)

As a result, we have errt = 1[Et] and êrrt = 1[Êt].

Lemma 5. The empirical error rate 1
T

∑T
t=1 êrrt concentrates around its expectation

1
T

∑T
t=1 P[Êt]. Specifically, for any δ > 0, with probability at least 1− δ,∣∣∣∣∣ 1T

T∑
t=1

êrrt −
1

T

T∑
t=1

P[Êt]

∣∣∣∣∣ ≤√ 2
T log(2/δ). (28)

Proof. Define the centered random variables

Yt = 1[Êt]− P[Êt], t = 1, . . . , T.

Clearly, |Yt| ≤ 1. Let Ft−1 = σ(D0, D1, . . . , Dt−1) be the filtration generated by the calibration
set and past test samples. We first verify that {Yt}Tt=1 forms a martingale difference sequence with
respect to {Ft}Tt=0.

Since (Cn+t,Wn+t) is independent of Ft−1 and F̂ is Ft−1-measurable, it follows that

E[1[Êt] | Ft−1] = P(Êt | Ft−1) = P(Êt|F̂ ).

Consequently,

E[Yt | Ft−1] = E[1[Êt]− P[Êt] | Ft−1] = P(Êt|F̂ )− P(Êt|F̂ ) = 0.

Thus, {Yt} is a martingale difference sequence bounded in [−1, 1].

By applying Azuma–Hoeffding’s inequality (Lemma 2), we proof the lemma.

Lemma 6. Suppose Assumption 1 holds. Let r̂t and r∗t be the estimated and true density ratios at
time step t, respectively, and let Zn+t be a test sample drawn independently at time step t. Then, the
following inequality holds with probability at least 1− δ:

1

T

T∑
t=1

|r̂t(Zn+t)− r∗t (Zn+t)| ≤
B

T

T∑
t=1

EZ∼D0 [|r∗t (Z)− r̂t(Z)|] +

√
2

T
log

(
2

δ

)
· β′, (29)

where β′ is a bound on the differences |r̂t(z)− r∗t (z)| for all z.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. We first define the centered variable for each time step t:

Ut = |r̂t(Zn+t)− r∗t (Zn+t)| − EZ∼Dt
[|r̂t(Z)− r∗t (Z)|] . (30)

Given the independence between r̂t and the test sample Zn+t, and the fact that r̂t is measurable with
respect to Ft−1 = σ(D0, D1, . . . , Dt−1), we can show that {Ut}Tt=1 forms a martingale difference
sequence with respect to the filtration {Ft}Tt=1 similar to the proof of Lemma 5. Applying the
Azuma-Hoeffding inequality, we obtain that with probability at least 1− δ,∣∣∣∣∣ 1T

T∑
t=1

|r̂t(Zn+t)− r∗t (Zn+t)| −
1

T

T∑
t=1

EZ∼Dt [|r̂t(Z)− r∗t (Z)|]

∣∣∣∣∣
≤

√
2

T
log

(
2

δ

)
· β′,

(31)

Next, we bound the expected difference under the true data distribution Dt, which can be related to
the initial distribution D0:

1

T

T∑
t=1

EZ∼Dt [|r̂t(Z)− r∗t (Z)|] =
1

T

T∑
t=1

EZ∼D0 [|r∗t (Z)(r̂t(Z)− r∗t (Z))|]

≤ B

T

T∑
t=1

EZ∼D0
[|r∗t (Z)− r̂t(Z)|] ,

(32)

where B is a bound on r∗t (Z).

Combining Equation 31 and Equation 32, we prove the lemma.

Lemma 7. Suppose Assumption 1 holds. Given the hypothesis space Hr satisfying Assumption 2,
let β′ = maxr∈Hr,z∈Z |r(z) − r∗t (z)| and Gh = maxZ∈Z,θ∈Θ ∥∇h(Z, θ)∥2. For any sequence
of density ratio estimators {r̂t}Tt=1 and corresponding true density ratio {r∗t }Tt=1 under distribution
D0, the following bound holds with probability at least 1− δ:∣∣∣∣∣ 1T

T∑
t=1

EZ∼D0
[|r̂t(Z)− r∗t (Z)|]−

1

T

T∑
t=1

EZ∼D0
[|r̂t(Z)− r∗t (Z)|]

∣∣∣∣∣ ≤ 2β′

√
d log

(
6SGhT

δ

)
2n

+
2

T

(33)

Proof. To establish the bound, we consider the discrepancy between the empirical and expected
absolute errors across a sequence of estimators. The primary challenge arises from the dependence
between the estimators r̂t and their parameters θ̂t, which precludes the direct application of Hoeffd-
ing’s inequality. To navigate this, we employ a two-step approach involving Hoeffding’s inequality
and the covering number theory.

Firstly, for a fixed model r ∈ Hr and a specific time t ∈ [T ], define:

gr(Z) = |r(Z)− r∗t (Z)| (34)

and let Ui = EZ∼D0
[gr(Z)]− gr(Zi), where Zi are i.i.d. samples from D0. Since gr is independent

of D0, the variables Ui are independent and bounded by [−β′, β′]. By Hoeffding’s inequality, we
have: ∣∣∣∣∣EZ∼D0

[gr(Z)]−
1

n

n∑
i=1

gr(Zi)

∣∣∣∣∣ ≤ β′

√
log(2/δ)

2n
(35)

with probability at least 1− δ.

Secondly, we extend the analysis to the entire hypothesis space Hr using the concept of covering
numbers. Define N (Hr, ϵ, ∥ · ∥∞) as the ϵ-covering number of Hr. By applying a union bound over
all models in an ϵ-net of Hr, we obtain:∣∣∣∣∣EZ∼D0

[gr′(Z)]−
1

n

n∑
i=1

gr′(Zi)

∣∣∣∣∣ ≤ β′

√√√√ log
(

2N (Hr,ϵ,∥·∥∞)
δ

)
2n

(36)
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for all r′ ∈ N (Hr, ϵ, ∥ · ∥∞), with probability at least 1− δ.

To establish a comprehensive bound on the difference between the expected and empirical measures
of risk over the hypothesis space Hr, we decompose the discrepancy for any model r ∈ Hr into
three terms related to approximation, estimation, and covering errors. This decomposition allows us
to systematically address each source of error and apply probabilistic bounds accordingly.

First, we define the discrepancy for a fixed model r and its approximation r′ from the ϵ-net of Hr:∣∣∣∣∣EZ∼D0
[gr(Z)]−

1

n

n∑
i=1

gr(Zi)

∣∣∣∣∣
≤ |EZ∼D0 [gr(Z)]− EZ∼D0 [gr′(Z)]|︸ ︷︷ ︸

Term(a)

+

∣∣∣∣∣EZ∼D0 [gr′(Z)]−
1

n

n∑
i=1

gr′(Zi)

∣∣∣∣∣︸ ︷︷ ︸
Term(b)

+

∣∣∣∣∣ 1n
n∑
i=1

gr′(Zi)−
1

n

n∑
i=1

gr(Zi)

∣∣∣∣∣︸ ︷︷ ︸
Term(c)

.

(37)

We analyze each term separately:

• Term (a) |EZ∼D0 [gr(Z)]− EZ∼D0 [gr′(Z)]| captures the approximation error due to using r′

instead of r. By the properties of the ϵ-net, this term is bounded by ϵ.

• Term (b)
∣∣EZ∼D0

[gr′(Z)]− 1
n

∑n
i=1 gr′(Zi)

∣∣ represents the estimation error for the approximat-
ing model r′. Using Hoeffding’s inequality and considering the covering number of Hr, this term
is bounded by :

β′

√√√√ log
(

2N (Hr,ϵ,∥·∥∞)
δ

)
2n

. (38)

with probability at least 1− δ.

• Term (c)
∣∣ 1
n

∑n
i=1 gr′(Zi)−

1
n

∑n
i=1 gr(Zi)

∣∣ is also bounded by ϵ, similar to term (a), due to the
ϵ-closeness of r and r′.

Adding these terms, the total bound for any model r ∈ Hr is:

∣∣∣∣∣EZ∼D0
[gr(Z)]−

1

n

n∑
i=1

gr(Zi)

∣∣∣∣∣ ≤ 2ϵ+ β′

√√√√ log
(

2N (Hr,ϵ,∥·∥∞)
δ

)
2n

. (39)

By setting ϵ = 1
T and summing over all t ∈ [T ], the final aggregated bound for the entire sequence

of estimators under consideration becomes:∣∣∣∣∣ 1T
T∑
t=1

EZ∼D0
[gr̂t(Z)]−

1

T

T∑
t=1

1

n

n∑
i=1

gr̂t(Zi)

∣∣∣∣∣ ≤ 2

T
+ β′

√√√√ log
(

2N (Hr,1/T,∥·∥∞)
δ

)
2n

. (40)

Next, we focus on bounding the covering number of the hypothesis space Hr. Since we parameterize
the density ratio functions in Hr using a parametric model h(x, θ) with parameters θ in a bounded
set Θ, we can relate the covering number of Hr to that of Θ.

Let θ, θ′ ∈ Θ be the parameters corresponding to the two density ratio functions r, r′ ∈ Hθ. We can
show that for any ∥θ − θ′∥2 ≤ ϵ, the following inequality holds:

∥r − r′∥∞ = max
Z∈Z

|r(Z, θ)− r(Z, θ′)| ≤ Gh∥θ − θ′∥2,
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where Gh = maxZ∈Z,θ∈Θ ∥∇h(Z, θ)∥2 is the Lipschitz continuity constant of h.

As a result, we can bound the covering number of Hr in terms of ∥ · ∥∞ by the covering number of
Θ in terms of ∥ · ∥2. Specifically, we have:

N (Hr, 1/T, ∥ · ∥∞) ≤ N (Θ, 1/(GhT ), ∥ · ∥2).

Given that the parameter space Θ is essentially a L2-ball with radius S, its covering number is
bounded by (3S/ϵ)d. Therefore, choosing ϵ = 1/(GhT ), we obtain:

N (Θ, 1/(GhT ), ∥ · ∥2) ≤ (3SGhT )
d.

Combining these results, we conclude:

N (Hθ, 1/T, ∥ · ∥∞) ≤ (3SGhT )
d.

Substituting this bound into our earlier expression, we complete the proof.

Lemma 8. Suppose Assumption 1 holds. Given the hypothesis space Hr satisfying Assumption 2
and divergence function ψ satisfying Assumption 3. For any sequence of density ratio estimators
{r̂t}Tt=1 and corresponding true density ratios {r∗t }Tt=1 under distribution D0, the following bound
holds with probability at least 1− δ:

1

T

T∑
t=1

|r̂t(Zn+t)− r∗t (Zn+t)| ≤ Õ
(
n−

1
2 +max{T− 1

3V
1
3

T , T
− 1

2 }
)

(41)

Proof. The proof is straightforward by combining the results from Lemma 6, Lemma 7, and Corol-
lary 2.

Lemma 9. Suppose assumptions 1, 2 and 3 hold. Let {Et}Tt=1 and {Êt}Tt=1 represent two sequences
of events defined in Equation 26 and 27. The difference in their average probabilities satisfies:∣∣∣∣∣ 1T

T∑
t=1

P[Et]−
1

T

T∑
t=1

P[Êt]

∣∣∣∣∣ ≤ Õ
(
n−

1
2 +max

{
T− 1

3V
1
3

T , T
− 1

2

})
. (42)

Proof. Define the true weighted cumulative distribution function (CDF) at time step t as:

Ψt(v) =
∑

i∈[n]∪{n+t}

w∗
t (Zi)1[vi ≤ v],

where w∗
t (Zi) are the true weights derived from the true density ratio r∗t , and vi denotes the value

of V (Ci,Wi). For simplicity, vn+t is set to ∞.

Similarly, the estimated weighted CDF at time step t is:

Ψ̂t(v) =
∑

i∈[n]∪{n+t}

ŵt(Zi)1[vi ≤ v],

where ŵt(Zi) =
r̂t(Zi)∑

j∈[n]∪{n+t} r̂t(Zj)
are the estimated weights based on the estimated density ratio

r̂t.

Due to the nested property, i.e., the size of F̂t non-decreasing w.r.t τ̂t, the following equation holds:

Et = {V (Cn+t,Wn+t) > τt}, Êt = {V (Cn+t,Wn+t) > τ̂t},
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where τt and τ̂t are thresholds derived from Ψt and Ψ̂t, respectively. Using these definitions, we can
express the difference in average probabilities as:∣∣∣∣∣ 1T

T∑
t=1

P[Et]−
1

T

T∑
t=1

P[Êt]

∣∣∣∣∣ =
∣∣∣∣∣ 1T

T∑
t=1

Ψt(τ̂t)−Ψt(τt)

∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑
t=1

Ψt(τ̂t)−Ψt(τt) + Ψt(τt)− Ψ̂t(τ̂t)

∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑
t=1

Ψt(τ̂t)− Ψ̂t(τ̂t)

∣∣∣∣∣ .
The last equality holds because Ψt(τt) = Ψ̂t(τ̂t) = 1− α, by definition of the thresholds τt and τ̂t.
Expanding Ψt(τ̂t) and Ψ̂t(τ̂t), we have:∣∣∣∣∣ 1T

T∑
t=1

Ψt(τ̂t)− Ψ̂t(τ̂t)

∣∣∣∣∣ =
∣∣∣∣∣∣ 1T

T∑
t=1

∑
i∈[n]∪{n+t}

1[vi ≤ τ̂t] (w
∗
t (Zi)− ŵt(Zi))

∣∣∣∣∣∣ .
Substituting w∗

t (Zi) and ŵt(Zi), we obtain:∣∣∣∣∣∣ 1T
T∑
t=1

∑
i∈[n]∪{n+t}

1[vi ≤ τ̂t]

(
r∗t (Zi)∑

j∈[n]∪{n+t} r
∗
t (Zj)

− r̂t(Zi)∑
j∈[n]∪{n+t} r̂t(Zj)

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1T
T∑
t=1

∑
i∈[n]∪{n+t}

1[vi ≤ τ̂t]

(
r∗t (Zi) ·

∑
j∈[n]∪{n+t} r̂t(Zj)− r̂t(Zi)

∑
j∈[n]∪{n+t} r

∗
t (Zj)∑

j∈[n]∪{n+t} r
∗
t (Zj) ·

∑
j∈[n]∪{n+t} r̂t(Zj)

)∣∣∣∣∣∣ .
Simplifying the numerator of the fraction, let:

Termi = r∗t (Zi) ·
∑

j∈[n]∪{n+t}

r̂t(Zj)− r̂t(Zi) ·
∑

j∈[n]∪{n+t}

r∗t (Zj).

Expanding Termi, we have:

Termi = r∗t (Zi) ·
∑

j∈[n]∪{n+t}

(r̂t(Zj)− r∗t (Zj)) + (r∗t (Zi)− r̂t(Zi)) ·
∑

j∈[n]∪{n+t}

r∗t (Zj).

Summing over i ∈ [n] ∪ {n+ t}, we bound |Termi| as:∑
i∈[n]∪{n+t}

|Termi| ≤
∑

i∈[n]∪{n+t}

r∗t (Zi)·
∑

j∈[n]∪{n+t}

|r̂t(Zj)−r∗t (Zj)|+
∑

i∈[n]∪{n+t}

|r∗t (Zi)−r̂t(Zi)|·
∑

j∈[n]∪{n+t}

r∗t (Zj).

Combining terms and simplifying, we find:∣∣∣∣∣ 1T
T∑
t=1

P[Et]−
1

T

T∑
t=1

P[Êt]

∣∣∣∣∣
=

∣∣∣∣∣∣ 1T
T∑
t=1

∑
i∈[n]∪{n+t}

1[vi ≤ τ̂t]

(
Termi∑

j∈[n]∪{n+t} r
∗
t (Zj) ·

∑
j∈[n]∪{n+t} r̂t(Zj)

)∣∣∣∣∣∣
≤ 1

T

T∑
t=1

∑
i∈[n]∪{n+t}

|Termi|∑
j∈[n]∪{n+t} r

∗
t (Zj) ·

∑
j∈[n]∪{n+t} r̂t(Zj)

≤ 1

T

T∑
t=1

2∑
j∈[n]∪{n+t} r̂t(Zj)

·
∑

j∈[n]∪{n+t}

|r̂t(Zj)− r∗t (Zj)|
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Using the assumption that r̂t(Zj) and r∗t (Zj) are bounded, we further simplify:∣∣∣∣∣ 1T
T∑
t=1

P[Et]−
1

T

T∑
t=1

P[Êt]

∣∣∣∣∣ ≤ 2β

 1

T

T∑
t=1

1

n

∑
j∈[n]

|r̂t(Zj)− r∗t (Zj)|+
1

n
· 1
T

T∑
t=1

|r̂t(Zn+t)− r∗t (Zn+t)|

 .
Finally, bounding the terms using Corollary 2 and Lemma 8, we conclude the proof.

Theorem 1. Under the assumptions 1, 2 and 3, with probability at least 1− δ, the gap between the
averaged hallucination rate over T time steps and the target level α is bounded as∣∣∣∣∣ 1T

T∑
t=1

êrrt − α

∣∣∣∣∣ ≤ Õ
(
max

{
T− 2

3V
2
3

T , T
− 1

2

}
+ 1/n

)
(19)

when the parameter of the online ensemble is properly set. Here, VT =
∑T
t=2 ∥Dt(z)−Dt−1(z)∥1

measures the variation of input densities and the notation Õ hides logarithmic factors of T and 1/δ.

Proof. The error decomposition is:∣∣∣∣∣ 1T
T∑
t=1

êrrt − α

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

T∑
t=1

êrrt −
1

T

T∑
t=1

P[Êt]

∣∣∣∣∣︸ ︷︷ ︸
term (a)

+

∣∣∣∣∣ 1T
T∑
t=1

P[Êt]−
1

T

T∑
t=1

P[Et]

∣∣∣∣∣︸ ︷︷ ︸
term (b)

+

∣∣∣∣∣ 1T
T∑
t=1

P[Et]− α

∣∣∣∣∣︸ ︷︷ ︸
term (c)

.

(43)

Using Lemma 5, term (a) is bounded as:

term (a) ≤ Õ(T− 1
2 ).

Using Lemma 9, term (b) is bounded as:

term (b) ≤ Õ
(
n−

1
2 +max

{
T− 1

3V
1
3

T , T
− 1

2

})
.

By definition, P[Et] = α, so term (c) is zero:

term (c) = 0.

Combining these bounds yields:∣∣∣∣∣ 1T
T∑
t=1

êrrt − α

∣∣∣∣∣ ≤ Õ
(
max

{
T− 2

3V
2
3

T , T
− 1

2

}
+ n− 1

2

)
.

This completes the proof.

E OMITTED EXPERIMENTAL DETAILS

E.1 OMITTED DATASET DETAILS

MedLFQA (Jeong et al. (2024)) MedLFQA is a long-form medical question-answering dataset
that integrates several previously established benchmarks. Each prompt in the dataset is paired with
responses generated by either an LLM or a human. To obtain sub-claims annotated with factuality
labels, Cherian et al. (2024) first use GPT-3.5-Turbo to generate responses for the prompts and GPT-
4o to parse these responses into self-contained sub-claims. Then, the factuality of each sub-claim
is assessed by querying GPT-3.5-Turbo, which evaluates the claims based on the LLM or human-
generated responses provided for the prompts.
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WikiData (Cherian et al. (2024)) WikiData is constructed by first sampling names from Wikipedia
and then querying GPT-3.5-Turbo with the prompt: ”Write me a short biography of [NAME].”. After
that, the generated biographies are parsed into self-contained sub-claims using GPT-4o. Factuality
labels for these sub-claims are assigned using a variant of the FAcTScore procedure developed by
Min et al. (2023). This process involves identifying relevant Wikipedia passages using the BM25
ranking function and incorporating them into the LLM prompt to determine whether the claims are
supported.

WildChat+ To evaluate our method in a real-world dynamic setting, we construct a new dataset
from WildChat Zhao et al. (2023), which features user-generated prompts in natural, uncontrolled
environments. Since not all responses elicited by prompts in the dataset are suitable for the hallu-
cination mitigation task, we first filter them by using GPT-4o-mini to identify whether the prompts
can be answered using knowledge available on Wikipedia. For the filtered prompts, GPT-4o assigns
relevant Wikipedia titles, and we retrieve the corresponding passages using the Wikipedia API. Fi-
nally, we apply the FAcTScore procedure, following Cherian et al. (2024), to annotate the factuality
labels of the claims in the responses. Due to the high cost of annotation, we randomly sample 3250
prompts from the filtered prompts for annotation.

E.2 OMITTED DETAILS OF SHIFT SIMULATION

Here, we describe the procedure for sampling Zn+t from Dtest to simulate distribution shifts. Each
prompt is associated with metadata, which is used to define a feature vector x. Prompts Zn+t are
sampled with probabilities proportional to w(x) = exp(xT ((1−ξt)ν′+ξtν′′)), where ν′ and ν′′ are
predefined weight vectors, and ξt ∈ [0, 1] is a time-varying factor. Since both D0 and Dtest originate
from the same underlying distribution, this resampling strategy effectively simulates a shift between
the initial distribution D0 and the time-dependent test distribution Dt.
For the MedLFQA dataset, the feature vector x is defined using five attributes, as detailed in Cherian
et al. (2024): the length of the prompt, the length of the response, the mean log-probability of the
response given the prompt, the standard error of the log-probability of the response given the prompt,
and the dataset from which the prompt originates. ν′ and ν′′ are configured such that ν′′ assigns
higher weights to prompts with longer responses so that the sampling favors prompts with longer
responses over time.

For the WikiData dataset, the feature vector x is constructed using the first, second, and third powers
of the number of views received by the Wikipedia pages corresponding to each prompt, following
Cherian et al. (2024). In this case, ν′ and ν′′ are chosen such that ν′′ assigns higher weights to
prompts associated with less-viewed Wikipedia pages.

The time-varying factor ξt is introduced to model four types of distribution shifts: Linear Shift
(Lin), Square Shift (Squ), Sine Shift (Sin), and Bernoulli Shift (Ber). Each type captures distinct
real-world scenarios in which data distributions evolve over time:

• Linear Shift (Lin): ξt is defined as ξt = t/T , representing a gradual and continuous change in
the environment over T time steps.

• Square Shift (Squ): ξt alternates between 1 and 0 every M steps, where 2M defines the period
length. To model a rapidly changing environment with periodic behavior, we set M = Θ(

√
T ).

• Sine Shift (Sin): ξt follows a sinusoidal pattern, defined as ξt = sin(πt/M), where M represents
the period length. Similar to the Square Shift, we set M = Θ(

√
T ).

• Bernoulli Shift (Ber): ξt retains the value of ξt−1 with probability p ∈ [0, 1], and switches to
1−ξt−1 with probability 1−p. To simulate a rapidly changing environment, we set p = Θ(1/

√
T ).

E.3 OMITTED IMPLEMENTATION DETAILS

We preprocess the MedLFQA and WikiData datasets in accordance with the methodology described
by Cherian et al. (2024). For the baseline methods, SCP and CondConf, we utilize the original code
provided by Cherian et al. (2024). To implement our approach, we adapt the code from Zhang et al.
(2023) to perform the online density ratio estimation procedure, using the same hyperparameter
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configuration as specified in their original implementation. All experiments are conducted on a
machine equipped with a 16-core Ultra 9 285H CPU.

F MORE CASE STUDIES

Prompt: What is MVC in software engineering?

Filtered Response: MVC stands for Model-View-Controller, which is a design pattern commonly
used in software engineering.

- Model: Represents the data and behavior of the application. It acts as a bridge between the View
and the Controller, handling the business logic and data manipulation.

- View: Represents the user interface of the application. It displays the data to the user and sends
user inputs to the Controller.

- Controller: Acts as an intermediary between the Model and the View. It processes user input from
the View, interacts with the Model to retrieve or update data, and updates the View accordingly.

MVC helps to separate concerns and facilitate maintainability, reusability, and scalability of the
codebase. It is commonly used in web development frameworks like Ruby on Rails, ASP.NET
MVC, and Spring MVC.

In this case, CoFact effectively removes the hallucinated claims ”It acts as a bridge between the
View and the Controller” while retaining most of the correct claims.

G LIMITATIONS AND FUTURE WORK

CoFact’s theoretical guarantees apply to the entire time horizon and may not hold for smaller time
intervals. Developing methods that provide finer-grained factuality guarantees is an important di-
rection for future work. Additionally, while CoFact focuses on ensuring the factuality of filtered
claims, other response qualities, such as informativeness and diversity, could also be required in
certain scenarios. Extending CoFact to incorporate these aspects presents another promising avenue
for future research.
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