

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CoFACT: CONFORMAL FACTUALITY GUARANTEES FOR LANGUAGE MODELS UNDER COVARIATE SHIFT

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel in natural language processing (NLP) tasks but often generate false or misleading information, known as hallucinations, raising reliability concerns in high-stakes applications. To provide statistical guarantees on the factuality of LLM outputs, conformal prediction based techniques have been proposed. Despite their strong theoretical guarantees, they rely heavily on the exchangeability assumption between calibration and test data, which is frequently violated in real-world scenarios with dynamic covariate shifts. To overcome this limitation, we introduce **CoFact**, a conformal prediction framework that uses online density ratio estimation to adaptively reweigh calibration data, ensuring alignment with evolving test distributions. With this approach, CoFact bypasses the exchangeability requirement and provides robust factuality guarantees under non-stationary conditions. To theoretically justify CoFact, we establish an upper bound on the gap between the actual hallucination rate and the target level α , demonstrating that the bound asymptotically approaches zero as the number of rounds and calibration samples increase. Empirically, CoFact is evaluated on MedLFQA, WikiData, and the newly introduced **WildChat+** dataset, which captures real-world covariate shifts through user-generated prompts. Results demonstrate that CoFact consistently outperforms existing methods, maintaining reliability even under dynamic conditions.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of natural language processing (NLP) tasks (Touvron et al., 2023; Devlin et al., 2019; OpenAI, 2023). Despite their impressive capabilities, their reliability and trustworthiness remain significant concerns. A critical issue is hallucination, where LLMs generate false or misleading information (Nadeau et al., 2024) that can lead to severe consequences in sensitive areas like healthcare (Jung, 2025), finance (Kang & Liu, 2023), and legal advice (Dahl et al., 2024). These limitations pose significant barriers to the broader adoption of LLMs in critical applications.

To address this issue, recent research have sought to improve the reliability of their outputs (Lewis et al., 2020; Chuang et al., 2023; Nakano et al., 2022). While these methods enhance factuality, they fall short of providing precise statistical guarantees, which are essential for high-stakes applications. To bridge this gap, a line of work has explored the use of conformal prediction to establish statistical guarantees on the factuality of LLM outputs. Specifically, Mohri & Hashimoto (2024) proposed splitting LLM-generated outputs into atomic sub-claims and filtering out those with factuality scores below a threshold determined via conformal inference, thereby offering marginal guarantees on factuality. Building on this, Cherian et al. (2024) extended the framework to provide subgroup-specific guarantees using conditional conformal prediction (Gibbs et al., 2025).

Although conformal inference-based methods provide factuality guarantees, they rely heavily on the assumption of exchangeability between calibration and test data (Vovk et al., 2005). In practice, however, this assumption is frequently violated due to factors such as topic drift (Reimer et al., 2023) and changes in user composition (Li et al., 2023). For example, Reimer et al. (2023) observed that the frequency of Covid-19-related terms in user queries fluctuated dramatically during the pandemic, exhibiting distinct peaks and troughs over time. Similar dynamics are also found in our analysis of real-world user prompt data, where topics evolve rapidly, as discussed in Section 5.2. Under such

054 conditions, the distribution of test prompts can deviate significantly from that of the calibration set,
 055 thereby violating the exchangeability assumption.
 056

057 Since the exchangeability assumption underpins the theoretical reliability of conformal prediction,
 058 its violation fundamentally compromises these guarantees, rendering such methods ineffective for
 059 ensuring reliable factuality in dynamic, real-world settings. To address this critical limitation, in this
 060 paper, we aim to answer the following question:

061 *Given a stream of prompts from an unknown and dynamically evolving distribution,
 062 how can we provide factuality guarantees for the outputs of LLMs?*

063 Answering this question presents two key challenges: (1) test samples arrive sequentially under con-
 064 tinuous **covariate shifts**, making conformal prediction methods handling **covariate shift** that require
 065 static density ratio estimation across the entire test dataset infeasible (Tibshirani et al., 2019); and
 066 (2) in our scenario, unlike existing online conformal prediction methods (Gibbs & Candes, 2021;
 067 Gibbs & Candès, 2024; Areces et al., 2025), we do not have access to ground-truth labels for test
 068 samples after predictions, which prevents direct application of these methods.

069 To address these challenges, we introduce **CoFact**, a novel conformal prediction framework that
 070 integrates techniques from online learning into conformal prediction framework seamlessly. CoFact
 071 handles the continuous shifting by employing an online density ratio estimation mechanism that dy-
 072 namically activates and updates multiple expert models across different time intervals. This adaptive
 073 approach enables CoFact to effectively track and learn the evolving density ratios between calibra-
 074 tion and test distributions in real time. Leveraging these density ratio estimates, CoFact strategically
 075 reweights calibration examples to align with the shifting test distribution. Through such integration,
 076 CoFact **bypasses** the traditional exchangeability assumption, providing robust reliability guarantees
 077 for LLMs even under a continual shifting prompt stream.

078 We theoretically establish an upper bound on the gap between the actual hallucination rate and
 079 the user-specified hallucination level α under shifting distributions, demonstrating that this bound
 080 asymptotically approaches zero as the number of rounds and calibration samples increase. This
 081 analysis offers a novel perspective that addresses limitations in existing methodologies.

082 To empirically demonstrate the effectiveness of CoFact, we evaluate CoFact on two well-established
 083 benchmarks, MedLFQA and WikiData, as well as a newly introduced benchmark, **WildChat+**. Built
 084 upon WildChat (Zhao et al., 2023), WildChat+ includes prompts generated by real users, effectively
 085 capturing real-world **covariate shifts** and enabling a more comprehensive evaluation. Experi-
 086 mental results demonstrate that CoFact significantly outperforms existing conformal prediction methods
 087 that rely on the exchangeability assumption, consistently maintaining factuality guarantees even
 088 under dynamically shifting distributions. These findings underscore CoFact’s effectiveness in pro-
 089 viding reliability guarantees in complex and dynamic real-world scenarios.

090 In summary, our contributions are as follows:

- 092 • **Novel Framework:** We propose **CoFact**, a conformal prediction framework designed to provide
 093 reliability guarantees for LLMs in the presence of continually shifting distributions.
- 094 • **Theoretical Guarantees:** We present rigorous theoretical analysis, establishing an upper bound
 095 on the gap between the actual hallucination rate and the target level α under shifting distributions.
 096 This analysis provides a solid foundation for CoFact’s reliability in dynamic environments.
- 097 • **New Dataset:** To enable robust evaluation in real-world scenarios, we introduce **WildChat+**,
 098 which contains real user prompts along with LLM-generated responses and factuality annotations.
- 099 • **Extensive Experiments:** We conduct a comprehensive set of experiments across multiple bench-
 100 marks, including MedLFQA, WikiData, and WildChat+. The results demonstrate CoFact’s effec-
 101 tiveness in maintaining reliability guarantees under diverse and evolving distributions.

103 2 PRELIMINARIES

105 **Conformal Prediction** Conformal prediction is a statistical framework that converts the outputs
 106 of a black-box predictor (e.g., a single label) into prediction sets (e.g., a list of labels) that are guar-
 107 anteed to include the true label with a user-specified confidence level of $1 - \alpha$. Formally, given an
 108 i.i.d. calibration set $\{(X_i, Y_i)\}_{i=1}^n$, where X_i and Y_i represent the features and labels, respectively,

108 and a test sample X_{n+1} that is exchangeable with the calibration data, conformal prediction constructs a prediction set $\hat{C}(X_{n+1})$ such that the true label Y_{n+1} is included with probability at least $1 - \alpha$:

$$111 \quad \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1})) \geq 1 - \alpha. \quad (1)$$

113 To introduce the basic ideas behind conformal inference, we first define some notation, following
 114 Tibshirani et al. (2019). We denote by $\text{Quantile}(\alpha; \Psi)$ the level- α quantile of a distribution Ψ .
 115 Formally, for $X \sim \Psi$, the quantile is defined as:

$$116 \quad \text{Quantile}(\alpha; \Psi) = \inf\{x : \mathbb{P}[X \leq x] \geq \alpha\}.$$

118 For empirical distributions, we denote the quantile of a multiset of values v_1, \dots, v_n as:

$$120 \quad \text{Quantile}(\alpha; \{v_i\}_{i=1}^n) = \text{Quantile}\left(\alpha; \frac{1}{n} \sum_{i=1}^n \delta_{v_i}\right),$$

123 where δ_a represents a point mass at a (i.e., the distribution that places all its probability mass at a).
 124 The central idea of conformal prediction involves the use of conformity score $V(X_i, Y_i)$, which
 125 quantifies how well the label Y_i corresponds to the features X_i . Using this score, the prediction
 126 set $\hat{C}(X_{n+1})$ is constructed by including all candidate labels y for which the conformity score
 127 $V(X_{n+1}, y)$ exceeds or meets a threshold τ . Given the conformity scores from the calibration set
 128 $\{V(X_i, Y_i)\}_{i=1}^n$, the threshold τ is determined as the $(1 - \alpha)$ -quantile of these scores combined with
 129 $\{\infty\}$ to ensure proper coverage. Formally,

$$130 \quad \tau = \text{Quantile}(1 - \alpha; \{V(X_i, Y_i)\}_{i=1}^n \cup \{\infty\}). \quad (2)$$

132 **Conformal Factuality Control** To generate a single response with guaranteed factuality, rather
 133 than a prediction set containing multiple potential factual responses, Mohri & Hashimoto (2024)
 134 proposes treating each response as a set of atomic claims and using conformal prediction to filter
 135 out hallucinated claims. Specifically, their method assumes access to an annotated calibration set
 136 consisting of n i.i.d. prompt-response-claim-label tuples, denoted as $D_0 = \{(P_i, R_i, C_i, \mathbf{W}_i)\}_{i=1}^n$.
 137 Here, P_i represents the prompt for sample i , R_i is the corresponding response generated by the LLM,
 138 $C_i = \{C_{i,j}\}_{j=1}^{k_i}$ denotes the set of claims extracted from R_i , and $\mathbf{W}_i = \{W_{i,j}\}_{j=1}^{k_i}$ represents the
 139 binary factuality labels for each claim, where $W_{i,j} = 1$ indicates that $C_{i,j}$ is factual, and $W_{i,j} = 0$
 140 indicates that it is hallucinated.

141 The objective is to output a filtered response $F(\mathbf{C}_{n+1})$ for a test sample (P_{n+1}, R_{n+1}) , which
 142 is exchangeable with the calibration data, such that the probability of including any hallucinated
 143 claims is bounded by a pre-defined level α :

$$144 \quad \mathbb{P}(\exists C_{n+1,j} \in F(\mathbf{C}_{n+1}) \text{ such that } W_{n+1,j} = 0) \leq \alpha. \quad (3)$$

146 The filtered response $F(\mathbf{C}_{n+1})$ is constructed by excluding claims with low factuality scores:

$$148 \quad F(\mathbf{C}_{n+1}) = \{C_{n+1,j} \in \mathbf{C}_{n+1} \mid p(C_{n+1,j}, P_{n+1}) \geq \tau\}, \quad (4)$$

149 where τ is the $(1 - \alpha)$ -quantile of the conformity scores $\{V(\mathbf{C}_i, \mathbf{W}_i)\}_{i=1}^n \cup \{\infty\}$. The conformity
 150 score $V(\mathbf{C}_i, \mathbf{W}_i)$ is defined as:

$$151 \quad V(\mathbf{C}_i, \mathbf{W}_i) = \inf \{\tau \mid \forall C_{i,j} \in F(\mathbf{C}_i), W_{i,j} = 1\}, \quad (5)$$

153 and $p(C_{n+1,j}, P_{n+1})$ represents the factuality score, which measures how likely the claim $C_{n+1,j}$
 154 is to be factual given the prompt P_{n+1} .

155 Building on the above framework, Cherian et al. (2024) argue that the guarantee provided by confor-
 156 mal factuality control is only marginal, meaning it applies globally across all test samples but does
 157 not account for specific subgroups of data. To address this limitation, they propose a group-wise
 158 guarantee inspired by conditional conformal prediction (Gibbs et al., 2025). This approach ensures
 159 that the factuality guarantee holds for all subgroups $G \in \mathcal{G}$, where the groups are defined by a family
 160 of functions. Specifically, the group-wise guarantee ensures:

$$161 \quad \mathbb{P}(\exists C_{n+1,j} \in F(\mathbf{C}_{n+1}) \text{ such that } W_{n+1,j} = 0 \mid Z_{n+1} \in G) \leq \alpha \quad \text{for all } G \in \mathcal{G}. \quad (6)$$

Table 1: Glossary of commonly used symbols.

Symbol	Meaning	Symbol	Meaning
P_i	i -th prompt	Z_i	Tuple (P_i, R_i, C_i)
R_i	Response to P_i generated by the LLM	D_0, \mathcal{D}_0	Calibration dataset/distribution
C_i	Claims parsed from R_i	D_t, \mathcal{D}_t	Test dataset/distribution at time t
\mathbf{W}_i	Factuality labels of C_i	r_t^*, \hat{r}_t	True/estimated density ratio
$C_{i,j}$	j -th claim of C_i	w_t^*, \hat{w}_t	True/estimated importance weights
$W_{i,j}$	Factuality label of $C_{i,j}$	F, \hat{F}	Filtered sub-claims using w_t^*/\hat{w}_t

3 METHODOLOGY

In this section, we provide a detailed introduction to our proposed framework, CoFact. We begin by outlining the problem setup, including the continual covariate shift settings and our goal. Next, we present an oracle method that assumes access to the true density ratio to address the covariate shift. Lastly, we introduce our practical algorithm, which leverages online density ratio estimation to operate effectively in real-world scenarios.

3.1 PROBLEM SETUP

For clarity and notational simplicity, we define Z_i as the prompt-response pair, i.e., $Z_i = (P_i, R_i, C_i)$. Thus, each sample in the calibration set can be represented as (Z_i, \mathbf{W}_i) . We consider an online setting with covariate shift, where we initially have access to a calibration set D_0 of size n , independently drawn from an initial distribution \mathcal{D}_0 . At each subsequent round $t \in [T] \triangleq \{1, \dots, T\}$, an unlabeled dataset D_t of size n_t is independently sampled from the current distribution \mathcal{D}_t , which may evolve continuously over time. For simplicity, and without loss of generality, we assume $n_t = 1$, representing the test sample arriving at time t as Z_{n+t} . To address the challenges posed by the covariate shift, we introduce the following assumption:

Assumption 1 (Continuous Covariate Shift). *For any $Z \in \mathcal{Z}$ in the prompt-response space and any round $t \in [T]$, the conditional distribution of \mathbf{W} given Z remains unchanged, i.e.,*

$$\mathcal{D}_t(\mathbf{W} | Z) = \mathcal{D}_0(\mathbf{W} | Z),$$

and the density ratio between \mathcal{D}_t and \mathcal{D}_0 satisfies:

$$r_t^*(Z) = \frac{\mathcal{D}_t(Z)}{\mathcal{D}_0(Z)} \leq B < \infty.$$

Objective Our objective is to generate a filtered response $\hat{F}(C_{n+t})$ for each test sample Z_{n+t} at round t , ensuring that the probability of including any hallucinated claims remains below a pre-defined threshold α . Given the challenges of providing exact guarantees at each time step under non-stationary distributions, we adopt the metric of prior works (Gibbs & Candes, 2021; Gibbs & Candès, 2024) and focus on bounding the gap between the average hallucination rate over T rounds and the target level α : $\left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \alpha \right|$, where the error indicator for round t is defined as:

$$\widehat{\text{err}}_t = \mathbb{1} \left[\exists C_{n+t,i} \in \hat{F}(C_{n+t}) \text{ such that } W_{n+t,i} = 0 \right]. \quad (7)$$

Here, \hat{F} denotes the filtered response constructed by our method, distinguishing it from F , which is constructed using the true density ratio. The latter will be introduced in the next subsection. To aid understanding, Table 1 provides a glossary of commonly used symbols.

3.2 CONFORMAL FACTUALITY CONTROL UNDER COVARIATE SHIFT WITH ORACLE

We first consider the ideal scenario where the true density ratio $r_t^*(Z)$ is available for all $t \in [T]$. In this case, a standard approach to address covariate shift is to reweigh the calibration samples and the test sample using the density ratio when calculating the threshold τ_t (Tibshirani et al., 2019). Formally, given the conformity scores computed on the calibration set $\{V_i\}_{i=1}^n = \{V(Z_i, \mathbf{W}_i)\}_{i=1}^n$ and the test sample Z_{n+t} , the threshold τ_t at any round $t \in [T]$ is defined as:

$$\tau_t = \text{Quantile}(1 - \alpha; \sum_{i=1}^n w_t^*(Z_i) \delta_{V_i} + w_t^*(Z_{n+t}) \delta_\infty), \quad (8)$$

216 where w_t^* is the weight function derived from the normalized density ratio:
 217

$$218 \quad 219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237 \quad 238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad 244 \quad 245 \quad 246 \quad 247 \quad 248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad 254 \quad 255 \quad 256 \quad 257 \quad 258 \quad 259 \quad 260 \quad 261 \quad 262 \quad 263 \quad 264 \quad 265 \quad 266 \quad 267 \quad 268 \quad 269$$

$$w_t^*(Z) = \frac{r_t^*(Z)}{\sum_{i=1}^n r_t^*(Z_i) + r_t^*(Z_{n+t})}. \quad (9)$$

Using this threshold, the filtered response is constructed as:

$$F(\mathbf{C}_{n+t}) = \{C_{n+t,j} \in \mathbf{C}_{n+t} \mid p(C_{n+t,j}, P_{n+t}) \geq \tau_t\}, \quad (10)$$

where $p(C_{n+t,j}, P_{n+t})$ represents the factuality score of the j -th claim given the prompt P_{n+t} .

Corollary 1. *Given a calibration set D_0 and a test sample Z_{n+t} independent with D_0 , if the true density ratio $r_t^*(Z)$ is available for all $t \in [T]$, then the filtered response constructed using Equation 10 with the threshold defined by Equation 8 satisfies the following guarantee:*

$$\mathbb{P}(\exists C_{n+t,i} \in F(\mathbf{C}_{n+t}) \text{ such that } W_{n+t,i} = 0) \leq \alpha. \quad (11)$$

This result directly follows from Theorem 1 in Mohri & Hashimoto (2024) and Corollary 1 in Tibshirani et al. (2019).

3.3 CONFORMAL FACTUALITY CONTROL WITH ONLINE DRE

While guarantees on the hallucination rate can be established under the assumption of access to the true density ratios, the true density ratios are typically inaccessible in practice—particularly in scenarios where the underlying distribution is continuously evolving. To address this challenge, we adapt the method proposed in Zhang et al. (2023) to estimate a sequence of density ratios, $\{\hat{r}_t\}_{t=1}^T$, that approximate the true density ratios, $\{r_t^*\}_{t=1}^T$, under a dynamically changing distribution. In this section, we first reformulate the problem of online density ratio estimation (DRE) as a dynamic regret minimization problem. Next, we provide a brief overview of the online ensemble method employed to minimize dynamic regret. Finally, we describe how the estimated density ratios are integrated into the CoFact framework.

3.3.1 ONLINE DRE VIA DYNAMIC REGRET MINIMIZATION

As shown by Sugiyama et al. (2012), the problem of density ratio estimation can be reformulated as a Bregman divergence minimization problem. Consequently, to accurately estimate the density ratio at each time step $t \in [T]$, we solve the following optimization problem to obtain \hat{r}_t :

$$\min_{r \in \mathcal{H}_r} L_t^\psi(r) - L_t^\psi(r_t^*), \quad (12)$$

where L_t^ψ is the loss function for the density ratio, defined as:

$$L_t^\psi(r) = \mathbb{E}_{Z \sim \mathcal{D}_0} [\partial\psi(r(Z))r(Z) - \psi(r(Z))] - \mathbb{E}_{Z \sim \mathcal{D}_t} [\partial\psi(r(Z))]. \quad (13)$$

Here, ψ is the associated divergence function. By choosing different forms of ψ , various existing density ratio estimation methods can be recovered, including LSIF (Kanamori et al., 2009), the logistic regression method (Bickel et al., 2009), and UKL (Nguyen et al., 2007).

Building on this single-round density ratio estimation, it is natural to construct a sequence of estimators $\{\hat{r}_t\}_{t \in [T]}$ that perform well over time by minimizing the cumulative loss gap:

$$\sum_{t=1}^T (L_t^\psi(\hat{r}_t) - L_t^\psi(r_t^*)).$$

Implementation To implement this optimization, we make the following design choices:

- **Function Class and Divergence Function Specification:** We instantiate the density ratio function class \mathcal{H}_r as a logistic regression model:

$$\mathcal{H}_r \triangleq \mathcal{H}_\theta = \{\mathbf{z} \mapsto \exp(-\phi(\mathbf{z})^\top \theta) \mid \|\phi(\mathbf{z})\|_2 \leq R, \|\theta\|_2 \leq S\},$$

i.e., we model the density ratio estimator \hat{r}_t as $\hat{r}_t(\cdot) = \exp(-\phi(\cdot)^\top \hat{\theta}_t)$, where $\phi(\mathbf{z})$ is a feature mapping function (e.g., the representation extracted by a neural network), and $\hat{\theta}_t$ is the parameter corresponding to \hat{r}_t . The bounded norms of $\phi(\mathbf{z})$ and θ ensure that the generalization gap can be analyzed. Moreover, we choose the divergence function ψ as:

$$\psi = \psi_{\text{LR}} \triangleq t \log t - (t+1) \log(t+1).$$

270 • **Empirical Risk Minimization:** Since the true distributions \mathcal{D}_0 and \mathcal{D}_t are inaccessible in practice,
 271 we use samples from a calibration set $D_0 = \{Z_i\}_{i=1}^n$ and a test set D_t . At each time step $t \in [T]$,
 272 \hat{r}_t is obtained by solving the following empirical risk minimization problem:
 273

$$274 \min_{\theta \in \Theta} \sum_{t=1}^T \hat{L}_t(\theta) - \hat{L}_t(\theta_t^*), \quad (14)$$

275 where Θ denotes the parameter space, θ_t^* is the optimal parameter corresponding to the true density
 276 ratio r_t^* , defined as $r_t^*(\cdot) = \exp(-\phi(\cdot)^\top \theta_t^*)$, and
 277

$$278 \hat{L}_t(\theta) = \mathbb{E}_{Z \sim D_0} [\partial\psi(r(Z; \theta))r(Z; \theta) - \psi(r(Z; \theta))] - \mathbb{E}_{Z \sim D_t} [\partial\psi(r(Z; \theta))]. \quad (15)$$

280 Based on the above design choices, we are actually finding a sequence of parameters $\{\hat{\theta}_t\}_{t=1}^T$ to
 281 minimize the empirical dynamic regret in Equation 14.
 282

283 3.3.2 ONLINE ENSEMBLE FRAMEWORK FOR DYNAMIC REGRET MINIMIZATION

284 To find the parameter sequence that minimizes dynamic regret, we adopt the online ensemble frame-
 285 work proposed by Zhang et al. (2023), which maintains a pool of experts. Each expert estimates the
 286 density ratio over its designated lifetime, and predictions from all active experts are aggregated to
 287 construct a global model at each time step, providing the final density ratio estimation. The frame-
 288 work operates through three key steps at each time step:
 289

- 290 1. **Active-set update:** Experts are initialized with lifetimes chosen geometrically $(2^0, 2^1, 2^2, \dots)$,
 291 and are re-initialized upon the expiration of their lifetimes.
- 292 2. **Model aggregation:** The parameters of active experts are weighted based on their historical
 293 performance and aggregated to form the global model $\hat{\theta}_t$. This aggregation step enables the
 294 global model to adaptively emphasize different segments of historical data, thereby enhancing its
 295 ability to capture covariate shifts.
- 296 3. **Expert update:** Active experts update their parameters $\theta_{t,i}$ using an online Newton step (ONS)
 297 method, which minimizes the regret $\hat{L}_t^\psi(\theta_{t,i}) - \hat{L}_t^\psi(\theta_t^*)$ at the current time step.
 298

299 For a comprehensive description of the algorithm, please refer to Appendix C.
 300

301 3.3.3 THE OVERALL FRAMEWORK

302 After obtaining the density ratio estimator \hat{r}_t parameterized by $\hat{\theta}$ at time step t , we substitute it for
 303 the true density ratio r_t^* in Equation 8 to compute the threshold $\hat{\tau}_t$. This threshold is then used to
 304 filter hallucinated claims in the response:
 305

$$306 \hat{\tau}_t = \text{Quantile} \left(1 - \alpha; \sum_{i=1}^n \hat{w}_t(Z_i) \delta_{V_i} + \hat{w}_t(Z_{n+t}) \delta_\infty \right), \quad (16)$$

308 where $\hat{w}_t(Z)$ is the normalized estimated density ratio:
 309

$$310 \hat{w}_t(Z) = \frac{\hat{r}_t(Z)}{\sum_{i=1}^n \hat{r}_t(Z_i) + \hat{r}_t(Z_{n+t})}. \quad (17)$$

313 Filtered responses are then given by:
 314

$$315 \hat{F}(\mathbf{C}_{n+t}) = \{C_{(n+t)j} \in \mathbf{C}_{n+t} \mid p(C_{(n+t)j}, P_{n+t}) \geq \hat{\tau}_t\}. \quad (18)$$

316 4 THEORETICAL GUARANTEE

317 To obtain the theoretical guarantee on the hallucination rate, we need to make the following as-
 318 sumptions on the function class of the density ratio estimator r_t^* and the property of the divergence
 319 function ψ .
 320

321 **Assumption 2.** The true density ratio r_t^* is contained in the hypothesis space as $r_t^* \in \mathcal{H}_r = \mathcal{H}_\theta^{LR} \triangleq$
 322 $\{\mathbf{z} \mapsto \exp(-\phi(\mathbf{z})^\top \theta) \mid \theta \in \Theta\}$ for any $t \in [T]$ and the norm of θ and $\phi(\mathbf{z})$ are bounded by S and
 323 R respectively, i.e., $\|\theta\|_2 \leq S$ and $\|\phi(\mathbf{z})\|_2 \leq R$.
 324

324 **Assumption 3.** The divergence function ψ is μ -strongly convex function satisfying $t\partial^3\psi(t) \leq 0$ and
 325 $\partial^3\psi(t) \leq 0$ for all $t \in \text{dom } \psi$.
 326

327 This assumption can be satisfied by many commonly used divergence functions such as $\psi_{\text{LS}}(t) =$
 328 $(t-1)^2/2$ and $\psi_{\text{LR}}(t) = t \log t - \log(t+1)$ when the input is bounded, which is guaranteed by
 329 Assumption 2.

330 **Theorem 1.** Under the assumptions 1, 2 and 3, with probability at least $1 - \delta$, the gap between the
 331 averaged hallucination rate over T time steps and the target level α is bounded as

$$332 \quad 333 \quad 334 \quad \left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \alpha \right| \leq \tilde{\mathcal{O}} \left(\max \left\{ T^{-\frac{2}{3}} V_T^{\frac{2}{3}}, T^{-\frac{1}{2}} \right\} + 1/n \right) \quad (19)$$

335 when the parameter of the online ensemble is properly set. Here, $V_T = \sum_{t=2}^T \|\mathcal{D}_t(\mathbf{z}) - \mathcal{D}_{t-1}(\mathbf{z})\|_1$
 336 measures the variation of input densities and the notation $\tilde{\mathcal{O}}$ hides logarithmic factors of T and $1/\delta$.
 337

338 In this theorem, we can observe that the gap converges to 0 as the time horizon T and calibration
 339 set size n increase, and the convergence rate depends on the variation of input densities. This
 340 observation is consistent with our intuition that the more drastic the covariate shift is, the harder it is
 341 to adapt to the changing distribution. The proof of Theorem 1 is provided in Appendix D.2.
 342

343 5 EXPERIMENTS

344 In this section, we demonstrate the effectiveness of CoFact through experiments on both simulated
 345 and real-world covariate shifts. For all experiments, we set the target factuality level to $1 - \alpha = 0.9$.
 346 We compare CoFact against the following baseline methods: (1) **SCP** (Mohri & Hashimoto, 2024),
 347 which employs standard conformal prediction to provide marginal factuality guarantees; and (2)
 348 **CondCP** (Cherian et al., 2024), which uses conditional conformal prediction to achieve group-
 349 wise factuality guarantees. To assess the performance of each method, we use two key metrics:
 350 **Factuality** and **Claims Retained**, defined as follows:
 351

$$352 \quad \text{Factuality} = 1 - \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t, \quad \text{and} \quad \text{Claims Retained} = \frac{1}{T} \sum_{t=1}^T \frac{|\hat{F}(\mathbf{C}_{n+t})|}{|\mathbf{C}_{n+t}|}. \quad (20)$$

355 5.1 RESULTS ON SIMULATED COVARIATE SHIFTS

356 **Datasets** We evaluate our method under simulated continual covariate shifts using two established
 357 datasets: **MedLFQA** (Jeong et al., 2024) and **WikiData** (Cherian et al., 2024). The MedLFQA
 358 dataset is a long-form medical question-answering benchmark with answers given by experts or
 359 LLMs, which are used to evaluate the factuality for sub-claims. WikiData is constructed by gen-
 360 erating short biographies for sampled Wikipedia names. The factuality of sub-claims is evaluated
 361 through an adapted FAcTsore procedure, leveraging evidence from Wikipedia passages.
 362

363 Since neither MedLFQA nor WikiData naturally exhibits covariate shifts, we simulate such shifts
 364 as follows. The dataset is first randomly divided into a calibration set (D_0) and a test set (D_{test}) of
 365 the same size. Then, at each time step t , the test samples Z_{n+t} are drawn from D_{test} according to a
 366 time-varying distribution \mathcal{D}_t , which is defined as a mixture of two base distributions, \mathcal{D}' and \mathcal{D}'' . To
 367 emulate continual covariate shifts, we define four patterns for \mathcal{D}_t : periodic shifts following sine (**Sin**)
 368 or square wave (**Squ**) patterns, gradual linear transitions from \mathcal{D}' to \mathcal{D}'' over T time steps (**Lin**), and
 369 rapid stochastic alternations between \mathcal{D}' and \mathcal{D}'' based on a fixed probability (**Ber**). Additional
 370 details on the dataset construction and shift simulation procedures are provided in Appendix E.1
 and Appendix E.2.

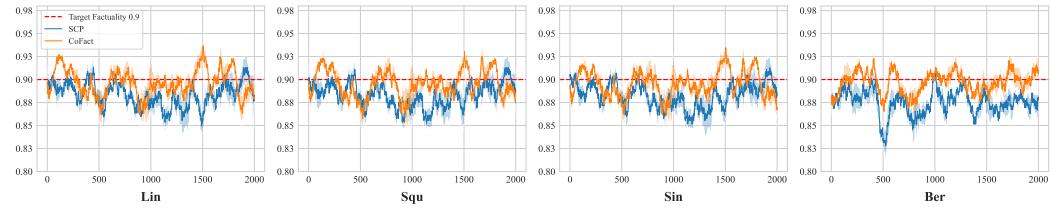
371 **Results** We conduct experiments on MedLFQA and WikiData under the four types of simulated
 372 covariate shifts for $T = 2000$ time steps. The results for MedLFQA and WikiData are sum-
 373 marized in Table 2 and Table 3. Several key observations can be drawn from these tables. First, SCP
 374 experiences a significant drop in factuality under all types of covariate shifts across both datasets
 375 and fails to achieve the target factuality level of 0.9. This highlights the vulnerability of SCP when
 376 the exchangeability assumption is violated, which can severely degrade its performance. Second,
 377 while CondCP achieves high factuality on the MedLFQA dataset, it suffers from an extremely low
 378 claims retention rate. Additionally, CondCP exhibits very low factuality on the WikiData dataset,

378
 379 Table 2: Averaged factuality and claims retained on the MedLFQA dataset under four types of shifts.
 380 Values in the range [0.89, 0.91] are highlighted in bold. Each experiment is repeated five times with
 381 different random seeds, and the results are reported as the mean \pm standard deviation.

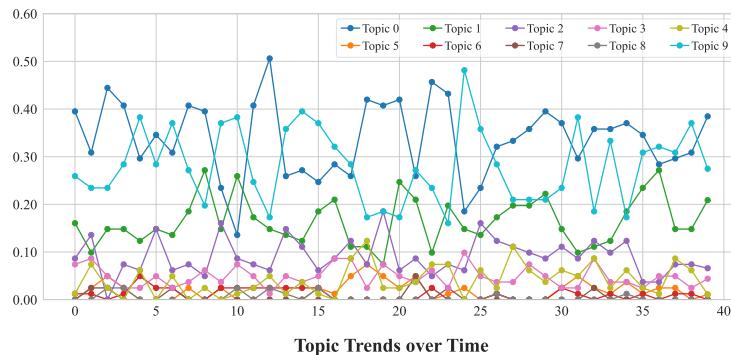
	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
SCP	0.811 \pm 0.014	0.912 \pm 0.011	0.808 \pm 0.017	0.911 \pm 0.012	0.810 \pm 0.014	0.910 \pm 0.010	0.828 \pm 0.022	0.910 \pm 0.006
CondCP	0.940 \pm 0.004	0.389 \pm 0.028	0.937 \pm 0.007	0.400 \pm 0.030	0.939 \pm 0.005	0.394 \pm 0.030	0.949 \pm 0.010	0.364 \pm 0.057
CoFact	0.895 \pm 0.026	0.715 \pm 0.031	0.897 \pm 0.022	0.718 \pm 0.030	0.894 \pm 0.018	0.715 \pm 0.031	0.900 \pm 0.019	0.714 \pm 0.036

385
 386 Table 3: Averaged factuality and claims retained on WikiData. Settings are the same as Table 2.

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
SCP	0.884 \pm 0.006	0.780 \pm 0.005	0.883 \pm 0.006	0.781 \pm 0.005	0.883 \pm 0.006	0.781 \pm 0.004	0.875 \pm 0.010	0.782 \pm 0.005
CondCP	0.724 \pm 0.010	0.910 \pm 0.002	0.726 \pm 0.009	0.910 \pm 0.003	0.725 \pm 0.010	0.910 \pm 0.002	0.716 \pm 0.007	0.909 \pm 0.004
CoFact	0.896 \pm 0.010	0.748 \pm 0.006	0.895 \pm 0.009	0.748 \pm 0.006	0.895 \pm 0.008	0.748 \pm 0.006	0.897 \pm 0.008	0.749 \pm 0.006



391
 392 Figure 1: Factuality over time on the WikiData dataset. Each subplot corresponds to a different type
 393 of covariate shift, with the X-axis denoting the time steps and the Y-axis representing factuality.
 394 Factuality is computed using a sliding window that includes 50 steps before and after each time step.
 395 The curve shows the mean across 5 runs, while the shaded area indicates the standard deviation.



402
 403 Figure 2: Topic proportions over time on WildChat+. X-axis represent the index of time intervals and
 404 Y-axis represent the proportion of each topic. Each line represent a topic identified by BERTopic.

414 indicating that group-wise factuality guarantees alone are insufficient for maintaining robust performance
 415 in shifting environments. Finally, among the three methods evaluated, our proposed method
 416 consistently achieves factuality closest to the target level of 0.9 under all types of covariate shifts
 417 across both datasets, demonstrating its effectiveness in adapting to dynamic distribution changes.

418 Furthermore, we visualize how factuality evolves over time on the WikiData dataset in Figure 1.
 419 Due to CondCP’s significantly lower factuality compared to SCP and our method, we exclude its
 420 results from the figure for clarity. To produce smooth curves, factuality is calculated using a sliding
 421 window that spans 50 steps before and after the current time step. The figure reveals that our method
 422 consistently maintains factuality near the target level of 0.9 over time. Notably, the curve representing
 423 our method remains above that of SCP, particularly beyond time step 1000, further underscoring
 424 the advantage of our approach in adapting to shifting distributions.

425 5.2 RESULTS ON REAL-WORLD COVARIATE SHIFTS

426 **Dataset and Analysis** To evaluate our method in a real-world shifting setting, we construct a new
 427 benchmark **WildChat+** from WildChat Zhao et al. (2023), which contains user-generated prompts
 428 in the wild. For further construction details of the dataset, please refer to Appendix E.1. We conduct

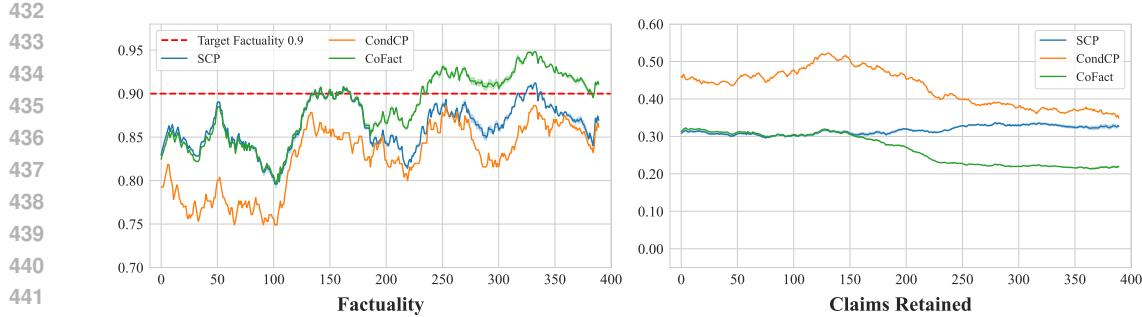


Figure 3: Factuality and retained claims ratio over time on the WildChat+ dataset. The X-axis represents the time steps, while the Y-axis displays the factuality and retained claims ratio. Factuality is computed in the same manner as described in Figure 1. The curves represent the mean across 5 runs, and the shaded areas indicate the standard deviation.

data analysis on the WildChat+ dataset to show that the topics of prompts in the dataset change over time. Specifically, we first use the Latent Dirichlet Allocation (LDA) algorithm to identify 10 topics in the dataset and then split the dataset into 40 time intervals according to the timestamps of the conversations. After that, we plot the proportion of each topic in each time interval in Figure 2. From the figure, we can observe that the topics in the dataset change over time, which demonstrates the existence of a continual covariate shift in the dataset.

Results To evaluate our method under real-world covariate shifts, we perform experiments on the WildChat+ dataset. We split the data into two parts according to their timestamp: the first 40% of the data is used as the calibration set, while the remaining 60% serves as the test set. The results are presented in Figure 3. From the figure, several observations can be made. First, both SCP and CondCP struggle to reach the target factuality level of 0.9, underscoring the need for methods designed for dynamic conditions. Second, while CoFact initially performs similarly to SCP before time step 200, it progressively adapts to the changing distribution and achieves factuality near the target level of 0.9 after time step 200. This demonstrates the effectiveness of our method in handling evolving distributions. It is worth noting that although CondCP achieves higher claims retention compared to SCP and our method, its overall factuality remains significantly lower. As a result, CondCP fails to meet the primary objective of the task: ensuring a reliable factuality guarantee.

Case Study To demonstrate the effectiveness of our method, we present a concrete example based on the filtered response to the prompt: "What is Visual Studio Code?" The filtered claims is expressed by red strikethrough text.

Visual Studio Code is a free, [open-source](#) code editor developed by Microsoft. It is a [lightweight](#) yet powerful tool that supports various programming languages and offers features such as syntax highlighting, code completion, [debugging](#), and Git integration. Visual Studio Code is highly customizable through extensions [and themes](#), making it popular among developers for writing [and debugging code](#).

From this filtered response, we can see that our method successfully removes the hallucinated claim "open-source" while preserving the majority of the accurate information. This example highlights the capability of our approach to mitigate hallucinations in LLM-generated responses. Due to space constraints, we provide another case study in Appendix G.

6 CONCLUSION

In this paper, we tackle the critical challenge of providing factuality guarantees for LLMs in the presence of dynamic, real-world covariate shifts. To address the limitations of existing methods that rely on the exchangeability assumption, we introduce **CoFact**, a novel conformal prediction framework that utilizes online density ratio estimation to adaptively reweigh calibration data, ensuring alignment with evolving test distributions. Through both theoretical analysis and empirical evaluation, we demonstrate that CoFact consistently outperforms existing approaches in maintaining reliable factuality guarantees under dynamic and non-stationary conditions. The discussion of the limitations and future work can be found in Appendix H.

486 7 ETHICS STATEMENT
487488 This paper introduces WildChat+, a derived dataset based on WildChat, which consists of real-world
489 user-generated prompts. Due to the nature of real-world data, the dataset may contain personal in-
490 formation or potentially harmful content. While WildChat employs measures such as anonymization
491 and the removal of sensitive information to address these concerns, it is still possible that some such
492 content remains. Consequently, WildChat+ may also include similar issues. We strongly encourage
493 users to handle the dataset responsibly and exercise caution. Beyond the concerns outlined above,
494 we do not foresee any additional ethical issues associated with this study.495 8 REPRODUCIBILITY STATEMENT
496497 We have made significant efforts to ensure the reproducibility of our results. The code required to
498 reproduce the experiments presented in this paper is included in the supplementary materials, and
499 the implementation details are thoroughly described in Appendix E.3. Additionally, the detailed pro-
500 cessing and construction procedures for our dataset are thoroughly described in the Appendix E.1.
501 All assumptions underlying our theoretical results are clearly stated in Section 3.1 and 4 of the main
502 text, and complete proofs of these results are provided in the Appendix D.2.503 REFERENCES
504505 Amit Agarwal, Elad Hazan, Satyen Kale, and Robert E. Schapire. Algorithms for portfolio man-
506 agement based on the Newton method. In *Proceedings of the 23rd International Conference*
507 on Machine Learning, ICML '06, pp. 9–16, New York, NY, USA, June 2006. Association for
508 Computing Machinery. ISBN 978-1-59593-383-6. doi: 10.1145/1143844.1143846.509 510 Felipe Areces, Christopher Mohri, Tatsunori Hashimoto, and John Duchi. Online Conformal Predic-
511 tion via Online Optimization. In *Forty-Second International Conference on Machine Learning*,
512 June 2025.513 514 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
515 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
516 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
517 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
518 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
519 Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback,
520 April 2022.521 522 Aadyot Bhatnagar, Huan Wang, Caiming Xiong, and Yu Bai. Improved Online Conformal Predic-
523 tion via Strongly Adaptive Online Learning. In *Proceedings of the 40th International Conference*
524 on Machine Learning, pp. 2337–2363. PMLR, July 2023.525 526 Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative Learning Under Covariate
527 Shift. *Journal of Machine Learning Research*, 10(75):2137–2155, 2009. ISSN 1533-7928.528 529 Margarida Campos, António Farinhas, Chrysoula Zerva, Mário A. T. Figueiredo, and André F. T.
530 Martins. Conformal Prediction for Natural Language Processing: A Survey. *Transactions of the*
531 *Association for Computational Linguistics*, 12:1497–1516, 2024. doi: 10.1162/tacl_a_00715.532 533 John J. Cherian, Isaac Gibbs, and Emmanuel J. Candès. Large language model validity via enhanced
534 conformal prediction methods. *Advances in Neural Information Processing Systems*, 37:114812–
535 114842, December 2024.536 537 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He. DoLa:
538 Decoding by Contrasting Layers Improves Factuality in Large Language Models. In *The Twelfth*
539 *International Conference on Learning Representations*, October 2023.540 541 Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large Legal Fictions: Profiling
542 Legal Hallucinations in Large Language Models. *Journal of Legal Analysis*, 16(1):64–93, January
543 2024. ISSN 2161-7201. doi: 10.1093/jla/laae003.

540 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
 541 Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy Doran, and
 542 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 543 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 544 and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Compu-
 545 tational Linguistics. doi: 10.18653/v1/N19-1423.

546 Wenqi Fan, Yujian Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua,
 547 and Qing Li. A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language
 548 Models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
 549 Data Mining*, KDD '24, pp. 6491–6501, New York, NY, USA, August 2024. Association for
 550 Computing Machinery. ISBN 979-8-4007-0490-1. doi: 10.1145/3637528.3671470.

551

552 Isaac Gibbs and Emmanuel Candes. Adaptive Conformal Inference Under Distribution Shift. In *Ad-
 553 vances in Neural Information Processing Systems*, volume 34, pp. 1660–1672. Curran Associates,
 554 Inc., 2021.

555 Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
 556 distribution shifts. *Journal of Machine Learning Research*, 25(162):1–36, 2024.

557

558 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guar-
 559 antees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008,
 560 March 2025. ISSN 1369-7412. doi: 10.1093/rssb/qkaf008.

561

562 Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
 563 optimization. *Machine Learning*, 69(2):169–192, August 2007. ISSN 1573-0565. doi: 10.1007/
 564 s10994-007-5016-8.

565 Minbyul Jeong, Hyeon Hwang, Chanwoong Yoon, Taewhoo Lee, and Jaewoo Kang. OLAPH:
 566 Improving Factuality in Biomedical Long-form Question Answering, October 2024.

567

568 Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 569 Jamie Callan, and Graham Neubig. Active Retrieval Augmented Generation. In Houda Bouamor,
 570 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods
 571 in Natural Language Processing*, pp. 7969–7992, Singapore, December 2023. Association for
 572 Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.495.

573

574 Kyu-Hwan Jung. Large Language Models in Medicine: Clinical Applications, Technical Chal-
 575 lenges, and Ethical Considerations. *Healthcare Informatics Research*, 31(2):114–124, April 2025.
 576 ISSN 2093-3681. doi: 10.4258/hir.2025.31.2.114.

577

578 Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A Least-squares Approach to Direct
 579 Importance Estimation. *Journal of Machine Learning Research*, 10(48):1391–1445, 2009. ISSN
 1533-7928.

580

581 Haoqiang Kang and Xiao-Yang Liu. Deficiency of Large Language Models in Finance: An Empiri-
 582 cal Examination of Hallucination, November 2023.

583

584 Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and An-
 585 drew Beam. Conformal Prediction with Large Language Models for Multi-Choice Question An-
 586 swering, July 2023.

587

588 Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale N. Fung, Mohammad Shoeybi, and
 589 Bryan Catanzaro. Factuality Enhanced Language Models for Open-Ended Text Generation. *Ad-
 590 vances in Neural Information Processing Systems*, 35:34586–34599, December 2022.

591

592 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 593 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 594 Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In *Advances in
 595 Neural Information Processing Systems*, volume 33, pp. 9459–9474. Curran Associates, Inc.,
 596 2020.

594 Moxin Li, Wenjie Wang, Fuli Feng, Yixin Cao, Jizhi Zhang, and Tat-Seng Chua. Robust Prompt
 595 Optimization for Large Language Models Against Distribution Shifts. In Houda Bouamor, Juan
 596 Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natu-*
 597 *ral Language Processing*, pp. 1539–1554, Singapore, December 2023. Association for Computa-
 598 *tional Linguistics*. doi: 10.18653/v1/2023.emnlp-main.95.

599 Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic Human
 600 Falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings*
 601 *of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 602 *Papers)*, pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics.
 603 doi: 10.18653/v1/2022.acl-long.229.

604 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
 605 Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained Atomic Evaluation of Factual
 606 Precision in Long Form Text Generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 607 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 608 pp. 12076–12100, Singapore, December 2023. Association for Computational Linguistics. doi:
 609 10.18653/v1/2023.emnlp-main.741.

610 Christopher Mohri and Tatsunori Hashimoto. Language Models with Conformal Factuality Guar-
 611 antees. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 36029–
 612 36047. PMLR, July 2024.

613 David Nadeau, Mike Kroutikov, Karen McNeil, and Simon Baribeau. Benchmarking Llama2, Mis-
 614 tral, Gemma and GPT for Factuality, Toxicity, Bias and Propensity for Hallucinations, April 2024.

615 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 616 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloun-
 617 dou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman.
 618 WebGPT: Browser-assisted question-answering with human feedback, June 2022.

619 XuanLong Nguyen, Martin J Wainwright, and Michael Jordan. Estimating divergence functionals
 620 and the likelihood ratio by penalized convex risk minimization. In *Advances in Neural Infor-*
 621 *mation Processing Systems*, volume 20. Curran Associates, Inc., 2007.

622 OpenAI. Gpt-4 technical report. <https://openai.com/research/gpt-4>, 2023.

623 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 624 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 625 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike,
 626 and Ryan Lowe. Training language models to follow instructions with human feedback. *Advances*
 627 *in Neural Information Processing Systems*, 35:27730–27744, December 2022.

628 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and Regina
 629 Barzilay. Conformal Language Modeling. In *The Twelfth International Conference on Learning*
 630 *Representations*, October 2023.

631 Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. Conformal Nucleus Sampling. In Anna
 632 Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Compu-*
 633 *tational Linguistics: ACL 2023*, pp. 27–34, Toronto, Canada, July 2023. Association for Compu-
 634 *tational Linguistics*. doi: 10.18653/v1/2023.findings-acl.3.

635 Jan Heinrich Reimer, Sebastian Schmidt, Maik Fröbe, Lukas Gienapp, Harrisen Scells, Benno Stein,
 636 Matthias Hagen, and Martin Potthast. The Archive Query Log: Mining Millions of Search Re-
 637 sult Pages of Hundreds of Search Engines from 25 Years of Web Archives. In *Proceedings of*
 638 *the 46th International ACM SIGIR Conference on Research and Development in Information Re-*
 639 *trieval*, SIGIR ’23, pp. 2848–2860, New York, NY, USA, July 2023. Association for Computing
 640 Machinery. ISBN 978-1-4503-9408-6. doi: 10.1145/3539618.3591890.

641 Glenn Shafer and Vladimir Vovk. A Tutorial on Conformal Prediction. *Journal of Machine Learning*
 642 *Research*, 9(12):371–421, 2008. ISSN 1533-7928.

648 Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching under the
 649 Bregman divergence: A unified framework of density-ratio estimation. *Annals of the In-*
 650 *stitute of Statistical Mathematics*, 64(5):1009–1044, October 2012. ISSN 1572-9052. doi:
 651 10.1007/s10463-011-0343-8.

652 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal Pre-
 653 diction Under Covariate Shift. In *Advances in Neural Information Processing Systems*, volume 32.
 654 Curran Associates, Inc., 2019.

655 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 656 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 657 mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
 658 Language Models, February 2023.

659 Dennis Ulmer, Chrysoula Zerva, and Andre Martins. Non-Exchangeable Conformal Language Gen-
 660 eration with Nearest Neighbors. In Yvette Graham and Matthew Purver (eds.), *Findings of the As-*
 661 *sociation for Computational Linguistics: EACL 2024*, pp. 1909–1929, St. Julian’s, Malta, March
 662 2024. Association for Computational Linguistics.

663 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
 664 Springer, 2005.

665 HuaJun Xi, Kangdao Liu, Hao Zeng, Wenguang Sun, and Hongxin Wei. Exploring the Noise Ro-
 666 bustness of Online Conformal Prediction. In *The Thirty-ninth Annual Conference on Neural*
 667 *Information Processing Systems*, October 2025.

668 Yu-Jie Zhang, Zhen-Yu Zhang, Peng Zhao, and Masashi Sugiyama. Adapting to Continuous Co-
 669 variate Shift via Online Density Ratio Estimation. *Advances in Neural Information Processing*
 670 *Systems*, 36:29074–29113, December 2023.

671 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. WildChat:
 672 1M ChatGPT Interaction Logs in the Wild. In *The Twelfth International Conference on Learning*
 673 *Representations*, October 2023.

674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A THE USE OF LLMs**
703704 In this work, LLMs were solely used for text polishing to enhance the clarity and readability of
705 the manuscript. LLMs played no role in generating research ideas, problem formulations, proofs,
706 theorems, algorithms, experiments, results, figures, or evaluations. All content produced or refined
707 by LLMs was meticulously reviewed and validated by the authors to ensure its accuracy and consis-
708 tency with the intended meaning. The technical contributions and intellectual work presented in this
709 study are entirely the authors' own.
710711 **B RELATED WORK**
712713 **Hallucination and Its Mitigation** Hallucination in LLMs represents a critical research challenge,
714 driving extensive efforts to improve their factuality. Based on the stage of application, these efforts
715 can generally be divided into two categories: inference-level and training-level methods. At the in-
716 ference stage, a common approach is retrieval-augmented generation (RAG), which grounds model
717 responses in external knowledge sources (Lewis et al., 2020; Fan et al., 2024; Jiang et al., 2023).
718 Training-level strategies include reinforcement learning from human feedback (RLHF) (Bai et al.,
719 2022; Ouyang et al., 2022), supervised fine-tuning with factual supervision (Lin et al., 2022; Nakano
720 et al., 2022), and factuality-oriented decoding techniques (Chuang et al., 2023; Lee et al., 2022).
721722 In addition to these heuristic approaches, recent research has introduced methods with statistical
723 guarantees. For instance, Mohri & Hashimoto (2024) applied conformal prediction to LLMs to
724 provide marginal guarantees on factuality, while Cherian et al. (2024) extended this framework
725 to group-wise guarantees using conditional conformal prediction (Gibbs et al., 2025). However,
726 these methods are built on the assumption of exchangeability between calibration and test data—an
727 assumption that is often violated in real-world covariate shifts. This highlights the need for more
728 robust methods that are better suited to practical scenarios.
729730 **Conformal Prediction** Conformal prediction (CP) provides a formal framework for constructing
731 prediction sets with guaranteed coverage (Shafer & Vovk, 2008; Vovk et al., 2005). Recently, there
732 has been growing interest in applying CP to calibrate LLM outputs and improve their reliability
733 (Campos et al., 2024). At the response level, Kumar et al. (2023) and Quach et al. (2023) leverage
734 CP to identify low-confidence outputs, enhancing the reliability of model predictions. At the token
735 level, Ulmer et al. (2024) and Ravfogel et al. (2023) employ CP-guided decoding to improve text
736 quality. While these methods have demonstrated empirical success in improving reliability, they
737 often fail to produce a single response with guaranteed factuality—an outcome that is typically
738 more practical and desirable than generating a prediction set containing potential valid outputs.
739740 Another important research direction involves extending CP to online settings, which better reflect
741 real-world sequential applications. Gibbs & Candes (2021) introduced adaptive conformal inference
742 (ACI) to maintain coverage under distribution shifts. Building on this, Gibbs & Candès (2024)
743 proposed adaptive step-size tuning to improve ACI's robustness. More recently, Areces et al. (2025)
744 and Bhatnagar et al. (2023) developed advanced online learning algorithms that guarantee coverage
745 at a finer granularity, rather than averaging coverage over the entire time horizon. However, most
746 online CP methods rely on the assumption of immediate access to ground-truth labels for test data
747 following predictions—an assumption that is not feasible in the context of hallucination mitigation
748 for LLMs, where feedback on output correctness is typically unavailable. Consequently, existing
749 online CP frameworks are unsuitable for this problem, highlighting the need for new approaches
750 designed to address these constraints.
751752 **C OMITTED ALGORITHM DETAILS**
753754 In this section, we outline the approach to minimizing dynamic regret, as defined in Equation 14, us-
755 ing the online ensemble framework proposed by Zhang et al. (2023). At a high level, the framework
756 maintains a pool of experts, where each expert models a density ratio estimator over its designated
757 lifetime. At each time step, the predictions from all active experts are aggregated to form a global
758 model, which provides the final density ratio estimation.
759

Algorithm 1 CoFact’s Online DRE Framework, adapted from Zhang et al. (2023)

```

756 Require: Calibration data  $D_0 = \{Z_i\}_{i=1}^n$ , number of time steps  $T$ 
757 1: Initialize the set of lifetime length list  $\mathcal{C} = [1, 2, 4, \dots, \lceil \log_2 T \rceil]$ 
758 2: Initialize the active set of experts  $\mathcal{A}$  with  $|\mathcal{C}|$  initialized experts
759 3: for  $t = 1, \dots, T$  do
760 4:   for  $L \in \mathcal{C}$  do
761 5:     if  $t \equiv 0 \pmod{L}$  then
762 6:       Reinitialize the expert (its  $\theta$ ,  $\varepsilon$  and  $v$ ) corresponding to the lifetime length  $L$ , i.e.,
763    $\mathcal{A}[\log_2 L]$ 
764 7:   for  $\mathcal{E}_i \in \mathcal{A}$  do
765 8:     Update  $p_{t,i}$  using  $\varepsilon_{t-1,i}$  and  $v_{t-1,i}$ 
766 9:   Aggregate the global model  $\hat{\theta}_t$ 
767 10:  for  $\mathcal{E}_i \in \mathcal{A}$  do
768 11:    Update the parameters of  $\mathcal{E}_i$ , i.e.,  $\hat{\theta}_{t+1,i}$ 
769 12:    Update the potential  $v_{t,i}$  and step size  $\varepsilon_{t,i}$ 
770
771

```

772 The overall algorithm is detailed in Algorithm 1, which consists of three main steps: active-set
773 update (lines 3–6), model aggregation (lines 7–9), and expert update (lines 10–12). Below, we
774 provide an overview of each step.

775 **Active-set update.** The algorithm maintains a set of experts, each assigned a lifetime length
776 chosen geometrically as $2^0, 2^1, 2^2, \dots$. At each time step t , the algorithm checks if any expert’s lifetime
777 has expired. If so, the expired expert is re-initialized with updated parameters, including the model
778 parameter $\hat{\theta}_{t,i}$, the potential $v_{t,i}$, and the step size $\varepsilon_{t,i}$. Specifically, the initialization procedure is as
779 follows:

780

- 781 • **Model parameter initialization.** The model parameter $\hat{\theta}_{t,i}$ is initialized to the current global
782 model: $\hat{\theta}_{t,i} = \hat{\theta}_t$.
- 783 • **Potential initialization.** The potential $v_{t,i}$ is initialized as $v_{t,i} = 1/T$.
- 784 • **Step size initialization.** The step size $\varepsilon_{t,i}$ is initialized as $\varepsilon_{t,i} = \min\{1/2, \sqrt{\ln T}\}$.

785 **Model aggregation.** After updating the active experts, the algorithm aggregates their predictions
786 to form a global model. This global model is then used to make predictions for the current test
787 sample Z_{n+t} . For each expert, a “potential” $v_{t,i}$ is maintained to reflect its historical performance,
788 while a step size $\varepsilon_{t,i}$ controls the update of this potential. The weights and the global model are
789 computed as follows:

790

$$p_{t,i} = \frac{\varepsilon_{t-1,i} v_{t-1,i}}{\sum_{i \in \mathcal{A}} \varepsilon_{t-1,i} v_{t-1,i}}, \quad \text{and} \quad \hat{\theta}_t = \sum_{i \in \mathcal{A}} p_{t,i} \hat{\theta}_{t,i}.$$

791 **Expert update.** Once the global model $\hat{\theta}_t$ is obtained, each active expert \mathcal{E}_i is updated using the
792 newly arrived test sample Z_{n+t} . The expert update consists of two components: model parameter
793 update and updates to the potential and step size.

794

- 795 1. **Model parameter update.** The model parameter $\hat{\theta}_{t,i}$ is updated using the online Newton step
796 (ONS) method (Hazan et al., 2007; Agarwal et al., 2006), which incorporates second-order in-
797 formation to achieve efficient and adaptive updates. The update rule is given by:

800

$$\hat{\theta}_{t+1,i} = \Pi_{\Theta}^{A_{t,i}} \left[\hat{\theta}_{t,i} - \gamma A_{t,i}^{-1} \nabla \hat{L}_t(\hat{\theta}_{t,i}) \right],$$

801 where $A_{t,i}$ is the accumulated second-order matrix defined as:

802

$$A_{t,i} = \lambda I + \sum_{\tau=s_i}^t \nabla \hat{L}_\tau(\hat{\theta}_{\tau,i}) \nabla \hat{L}_\tau(\hat{\theta}_{\tau,i})^\top,$$

803 and s_i denotes the last initialization time step of expert \mathcal{E}_i . The term $\Pi_{\Theta}^{A_{t,i}}$ represents the pro-
804 jection of the updated parameter onto the feasible set Θ , with the projection performed under the

norm induced by the matrix $A_{t,i}$. This ensures that the updated parameter remains within the allowable parameter space.

2. **Potential and step size update.** The potential $v_{t,i}$ and step size $\epsilon_{t,i}$ are updated to reflect the expert's performance. First, we define the term $m_{t,i}$, which captures the performance gap between the expert $\hat{\theta}_{t,i}$ and the global model $\hat{\theta}_t$ over the linearized loss:

$$m_{t,i} = \frac{\langle \nabla \hat{L}_t(\hat{\theta}_t), \hat{\theta}_t - \hat{\theta}_{t,i} \rangle}{SR}.$$

Using $m_{t,i}$, the updates are performed as follows:

- **Potential update.** The potential $v_{t,i}$ is updated as:

$$v_{t,i} = v_{t-1,i} \cdot (1 + \epsilon_{t-1,i} m_{t,i})^{\frac{\epsilon_{t,i}}{\epsilon_{t-1,i}}}.$$

- **Step size update.** The step size $\epsilon_{t,i}$ is updated as:

$$\epsilon_{t,i} = \min \left\{ \frac{1}{2}, \sqrt{\frac{\ln T}{1 + \sum_{\tau=s_i}^t m_{\tau,i}^2}} \right\}.$$

D THEOREM AND PROOF

D.1 USEFUL LEMMA

Lemma 1 (Hoeffding's Inequality). *Let X_1, \dots, X_n be independent random variables with $X_i \in [l_{\text{low}}, l_{\text{high}} + L]$ almost surely. Define the sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[X_n]$. Then for any $\delta > 0$, with probability at least $1 - \delta$,*

$$|\bar{X}_n - \mu| \leq L \cdot \sqrt{\frac{\log(2/\delta)}{2n}}. \quad (21)$$

Lemma 2 (Azuma–Hoeffding Inequality). *Let $\{M_t\}_{t=1}^n$ be a martingale difference sequence with respect to the filtration $\{\mathcal{F}_t\}_{t=0}^n$, i.e.,*

$$\mathbb{E}[M_t | \mathcal{F}_{t-1}] = 0, \quad \forall t = 1, \dots, n.$$

Suppose the differences are bounded almost surely by

$$|M_t| \leq c, \quad \forall t = 1, \dots, n.$$

Define the partial average $B_n = \frac{1}{n} \sum_{t=1}^n M_t$. Then for any $\delta > 0$ with probability at least $1 - \delta$, we have

$$|B_n| \leq c \sqrt{\frac{2}{n} \log(2/\delta)}. \quad (22)$$

Lemma 3 (Theorem 1 in Zhang et al. (2023)). *Suppose Assumptions 2 and 3 hold. Denote $[z]_+ = \max\{z, 0\}$. Let d be the dimension of the parameter space Θ . Then, for any density ratio estimator $\hat{r}_t(Z) = \hat{h}(Z; \theta) \in \mathcal{H}_r$, the empirical estimation error is bounded by*

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{x \sim D_0(x)} [|r_t^*(x) - \hat{r}_t(x)|] \leq \sqrt{\frac{4}{\mu T} \left[\sum_{t=1}^T \tilde{L}_t^\psi(\hat{r}_t) - \sum_{t=1}^T \tilde{L}_t^\psi(r_t^*) \right]_+} + \mathcal{O}\left(\frac{\sqrt{d \log(T/\delta)}}{\mu \sqrt{n}}\right), \quad (23)$$

provided that $h(Z, \theta)$ is bounded for any $Z \in \mathcal{Z}$ and $\theta \in \Theta$ and Lipschitz continuous.

Lemma 4 (Theorem 2 in Zhang et al. (2023)). *Suppose Assumptions 2 and 3 hold. Then, with probability at least $1 - \delta$, the dynamic regret of the density ratio estimator sequence $\{\hat{r}_t\}_{t=1}^T$ learned from Algorithm 1 is bounded by*

$$\sum_{t=1}^T \tilde{L}_t^\psi(\hat{r}_t) - \sum_{t=1}^T \tilde{L}_t^\psi(r_t^*) \leq \tilde{\mathcal{O}}\left(\max\left\{T^{\frac{1}{3}} V_T^{\frac{2}{3}}, 1\right\} + \frac{T}{n}\right), \quad (24)$$

when the parameters are set as $\gamma = 3(1 + \beta)$ and $\lambda = 1$. In the above, $V_T = \sum_{t=2}^T \|\mathcal{D}_t(\mathbf{x}) - \mathcal{D}_{t-1}(\mathbf{x})\|_1$ measures the variation of input densities. $\beta = \exp(SR)$ represents the maximum value of the estimated density ratio \hat{r}_t .

864 **Corollary 2.** Suppose Assumption 2 and 3 hold. Then, with probability at least $1 - \delta$, the dynamic
 865 regret of the density ratio estimator $\hat{r}_t(\mathbf{x}) = \exp(-\phi(\mathbf{z})^\top \hat{\theta}_t)$ is bounded by
 866

$$867 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{\mathbf{x} \sim D_0} [|r_t^*(\mathbf{x}) - \hat{r}_t(\mathbf{x})|] \leq \tilde{O} \left(n^{-\frac{1}{2}} + \max \left\{ T^{-\frac{1}{3}} V_T^{\frac{1}{3}}, T^{-\frac{1}{2}} \right\} \right). \quad (25)$$

870 when the parameters are set as $\gamma = 3(1 + \beta)$ and $\lambda = 1$. In the above, $V_T = \sum_{t=2}^T \|\mathcal{D}_t(\mathbf{x}) -$
 871 $\mathcal{D}_{t-1}(\mathbf{x})\|_1$ measures the variation of input densities.
 872

873 D.2 THE PROOF OF THEOREM 1

875 For clarity, let \mathcal{E}_t denote the event that there exists any hallucinated claim in the prediction set
 876 obtained by true density ratio using at time step t , i.e.,
 877

$$878 \quad \mathcal{E}_t = \left\{ \exists C_{n+t,i} \in F(\mathbf{C}_{n+t}) \text{ such that } W_{n+t,i} = 0 \right\}. \quad (26)$$

880 Similarly, we denote the event that there exists any hallucinated claim in the prediction set obtained
 881 by estimated density ratio at time step t as $\hat{\mathcal{E}}_t$, i.e.,
 882

$$883 \quad \hat{\mathcal{E}}_t = \left\{ \exists C_{n+t,i} \in \hat{F}(\mathbf{C}_{n+t}) \text{ such that } W_{n+t,i} = 0 \right\}. \quad (27)$$

885 As a result, we have $\text{err}_t = \mathbb{1}[\mathcal{E}_t]$ and $\widehat{\text{err}}_t = \mathbb{1}[\hat{\mathcal{E}}_t]$.
 886

887 **Lemma 5.** The empirical error rate $\frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t$ concentrates around its expectation
 888 $\frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t]$. Specifically, for any $\delta > 0$, with probability at least $1 - \delta$,
 889

$$890 \quad \left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] \right| \leq \sqrt{\frac{2}{T} \log(2/\delta)}. \quad (28)$$

893 *Proof.* Define the centered random variables

$$894 \quad Y_t = \mathbb{1}[\hat{\mathcal{E}}_t] - \mathbb{P}[\hat{\mathcal{E}}_t], \quad t = 1, \dots, T.$$

895 Clearly, $|Y_t| \leq 1$. Let $\mathcal{F}_{t-1} = \sigma(D_0, D_1, \dots, D_{t-1})$ be the filtration generated by the calibration
 896 set and past test samples. We first verify that $\{Y_t\}_{t=1}^T$ forms a martingale difference sequence with
 897 respect to $\{\mathcal{F}_t\}_{t=0}^T$.
 898

899 Since $(\mathbf{C}_{n+t}, \mathbf{W}_{n+t})$ is independent of \mathcal{F}_{t-1} and \hat{F} is \mathcal{F}_{t-1} -measurable, it follows that
 900

$$901 \quad \mathbb{E}[\mathbb{1}[\hat{\mathcal{E}}_t] \mid \mathcal{F}_{t-1}] = \mathbb{P}(\hat{\mathcal{E}}_t \mid \mathcal{F}_{t-1}) = \mathbb{P}(\hat{\mathcal{E}}_t \mid \hat{F}).$$

902 Consequently,
 903

$$904 \quad \mathbb{E}[Y_t \mid \mathcal{F}_{t-1}] = \mathbb{E}[\mathbb{1}[\hat{\mathcal{E}}_t] - \mathbb{P}[\hat{\mathcal{E}}_t] \mid \mathcal{F}_{t-1}] = \mathbb{P}(\hat{\mathcal{E}}_t \mid \hat{F}) - \mathbb{P}(\hat{\mathcal{E}}_t \mid \hat{F}) = 0.$$

905 Thus, $\{Y_t\}$ is a martingale difference sequence bounded in $[-1, 1]$.
 906

907 By applying Azuma–Hoeffding’s inequality (Lemma 2), we proof the lemma. \square
 908

909 **Lemma 6.** Suppose Assumption 1 holds. Let \hat{r}_t and r_t^* be the estimated and true density ratios at
 910 time step t , respectively, and let Z_{n+t} be a test sample drawn independently at time step t . Then, the
 911 following inequality holds with probability at least $1 - \delta$:
 912

$$913 \quad \frac{1}{T} \sum_{t=1}^T |\hat{r}_t(Z_{n+t}) - r_t^*(Z_{n+t})| \leq \frac{B}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_0} [|r_t^*(Z) - \hat{r}_t(Z)|] + \sqrt{\frac{2}{T} \log \left(\frac{2}{\delta} \right)} \cdot \beta', \quad (29)$$

914 where β' is a bound on the differences $|\hat{r}_t(z) - r_t^*(z)|$ for all z .
 915

918 *Proof.* We first define the centered variable for each time step t :

$$919 \quad 920 \quad U_t = |\hat{r}_t(Z_{n+t}) - r_t^*(Z_{n+t})| - \mathbb{E}_{Z \sim \mathcal{D}_t} [|\hat{r}_t(Z) - r_t^*(Z)|]. \quad (30)$$

921 Given the independence between \hat{r}_t and the test sample Z_{n+t} , and the fact that \hat{r}_t is measurable with
922 respect to $\mathcal{F}_{t-1} = \sigma(D_0, D_1, \dots, D_{t-1})$, we can show that $\{U_t\}_{t=1}^T$ forms a martingale difference
923 sequence with respect to the filtration $\{\mathcal{F}_t\}_{t=1}^T$ similar to the proof of Lemma 5. Applying the
924 Azuma-Hoeffding inequality, we obtain that with probability at least $1 - \delta$,

$$925 \quad 926 \quad \left| \frac{1}{T} \sum_{t=1}^T |\hat{r}_t(Z_{n+t}) - r_t^*(Z_{n+t})| - \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_t} [|\hat{r}_t(Z) - r_t^*(Z)|] \right| \\ 927 \quad 928 \quad \leq \sqrt{\frac{2}{T} \log \left(\frac{2}{\delta} \right)} \cdot \beta', \quad (31)$$

931 Next, we bound the expected difference under the true data distribution \mathcal{D}_t , which can be related to
932 the initial distribution \mathcal{D}_0 :

$$934 \quad 935 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_t} [|\hat{r}_t(Z) - r_t^*(Z)|] = \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_0} [|r_t^*(Z)(\hat{r}_t(Z) - r_t^*(Z))|] \\ 936 \quad 937 \quad \leq \frac{B}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_0} [|r_t^*(Z) - \hat{r}_t(Z)|], \quad (32)$$

938 where B is a bound on $r_t^*(Z)$.

941 Combining Equation 31 and Equation 32, we prove the lemma. \square

942 **Lemma 7.** *Suppose Assumption 1 holds. Given the hypothesis space \mathcal{H}_r satisfying Assumption 2,
943 let $\beta' = \max_{r \in \mathcal{H}_r, z \in \mathcal{Z}} |r(z) - r_t^*(z)|$ and $G_h = \max_{Z \in \mathcal{Z}, \theta \in \Theta} \|\nabla h(Z, \theta)\|_2$. For any sequence
944 of density ratio estimators $\{\hat{r}_t\}_{t=1}^T$ and corresponding true density ratio $\{r_t^*\}_{t=1}^T$ under distribution
945 \mathcal{D}_0 , the following bound holds with probability at least $1 - \delta$:*

$$946 \quad 947 \quad \left| \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_0} [|\hat{r}_t(Z) - r_t^*(Z)|] - \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim \mathcal{D}_0} [|\hat{r}_t(Z) - r_t^*(Z)|] \right| \leq 2\beta' \sqrt{\frac{d \log \left(\frac{6SG_h T}{\delta} \right)}{2n}} + \frac{2}{T} \\ 948 \quad 949 \quad (33)$$

951 *Proof.* To establish the bound, we consider the discrepancy between the empirical and expected
952 absolute errors across a sequence of estimators. The primary challenge arises from the dependence
953 between the estimators \hat{r}_t and their parameters $\hat{\theta}_t$, which precludes the direct application of Hoeffding's
954 inequality. To navigate this, we employ a two-step approach involving Hoeffding's inequality
955 and the covering number theory.

956 Firstly, for a fixed model $r \in \mathcal{H}_r$ and a specific time $t \in [T]$, define:

$$957 \quad 958 \quad g_r(Z) = |r(Z) - r_t^*(Z)| \quad (34)$$

959 and let $U_i = \mathbb{E}_{Z \sim \mathcal{D}_0} [g_r(Z)] - g_r(Z_i)$, where Z_i are i.i.d. samples from \mathcal{D}_0 . Since g_r is independent
960 of \mathcal{D}_0 , the variables U_i are independent and bounded by $[-\beta', \beta']$. By Hoeffding's inequality, we
961 have:

$$962 \quad 963 \quad \left| \mathbb{E}_{Z \sim \mathcal{D}_0} [g_r(Z)] - \frac{1}{n} \sum_{i=1}^n g_r(Z_i) \right| \leq \beta' \sqrt{\frac{\log(2/\delta)}{2n}} \quad (35)$$

964 with probability at least $1 - \delta$.

965 Secondly, we extend the analysis to the entire hypothesis space \mathcal{H}_r using the concept of covering
966 numbers. Define $\mathcal{N}(\mathcal{H}_r, \epsilon, \|\cdot\|_\infty)$ as the ϵ -covering number of \mathcal{H}_r . By applying a union bound over
967 all models in an ϵ -net of \mathcal{H}_r , we obtain:

$$968 \quad 969 \quad \left| \mathbb{E}_{Z \sim \mathcal{D}_0} [g_{r'}(Z)] - \frac{1}{n} \sum_{i=1}^n g_{r'}(Z_i) \right| \leq \beta' \sqrt{\frac{\log \left(\frac{2\mathcal{N}(\mathcal{H}_r, \epsilon, \|\cdot\|_\infty)}{\delta} \right)}{2n}} \quad (36)$$

972 for all $r' \in \mathcal{N}(\mathcal{H}_r, \epsilon, \|\cdot\|_\infty)$, with probability at least $1 - \delta$.
 973

974 To establish a comprehensive bound on the difference between the expected and empirical measures
 975 of risk over the hypothesis space \mathcal{H}_r , we decompose the discrepancy for any model $r \in \mathcal{H}_r$ into
 976 three terms related to approximation, estimation, and covering errors. This decomposition allows us
 977 to systematically address each source of error and apply probabilistic bounds accordingly.
 978

979 First, we define the discrepancy for a fixed model r and its approximation r' from the ϵ -net of \mathcal{H}_r :
 980

$$\begin{aligned}
 & \left| \mathbb{E}_{Z \sim D_0}[g_r(Z)] - \frac{1}{n} \sum_{i=1}^n g_r(Z_i) \right| \\
 & \leq \underbrace{\left| \mathbb{E}_{Z \sim D_0}[g_r(Z)] - \mathbb{E}_{Z \sim D_0}[g_{r'}(Z)] \right|}_{\text{Term(a)}} + \underbrace{\left| \mathbb{E}_{Z \sim D_0}[g_{r'}(Z)] - \frac{1}{n} \sum_{i=1}^n g_{r'}(Z_i) \right|}_{\text{Term(b)}} \\
 & \quad + \underbrace{\left| \frac{1}{n} \sum_{i=1}^n g_{r'}(Z_i) - \frac{1}{n} \sum_{i=1}^n g_r(Z_i) \right|}_{\text{Term(c)}}. \tag{37}
 \end{aligned}$$

991 We analyze each term separately:
 992

- 993 • **Term (a)** $|\mathbb{E}_{Z \sim D_0}[g_r(Z)] - \mathbb{E}_{Z \sim D_0}[g_{r'}(Z)]|$ captures the approximation error due to using r'
 994 instead of r . By the properties of the ϵ -net, this term is bounded by ϵ .
 995
- 996 • **Term (b)** $|\mathbb{E}_{Z \sim D_0}[g_{r'}(Z)] - \frac{1}{n} \sum_{i=1}^n g_{r'}(Z_i)|$ represents the estimation error for the approximating model r' . Using Hoeffding's inequality and considering the covering number of \mathcal{H}_r , this term
 997 is bounded by :
 998

$$\beta' \sqrt{\frac{\log\left(\frac{2\mathcal{N}(\mathcal{H}_r, \epsilon, \|\cdot\|_\infty)}{\delta}\right)}{2n}}. \tag{38}$$

1002 with probability at least $1 - \delta$.
 1003

- 1004 • **Term (c)** $|\frac{1}{n} \sum_{i=1}^n g_{r'}(Z_i) - \frac{1}{n} \sum_{i=1}^n g_r(Z_i)|$ is also bounded by ϵ , similar to term (a), due to the
 1005 ϵ -closeness of r and r' .
 1006

1007 Adding these terms, the total bound for any model $r \in \mathcal{H}_r$ is:
 1008

$$\left| \mathbb{E}_{Z \sim D_0}[g_r(Z)] - \frac{1}{n} \sum_{i=1}^n g_r(Z_i) \right| \leq 2\epsilon + \beta' \sqrt{\frac{\log\left(\frac{2\mathcal{N}(\mathcal{H}_r, \epsilon, \|\cdot\|_\infty)}{\delta}\right)}{2n}}. \tag{39}$$

1013 By setting $\epsilon = \frac{1}{T}$ and summing over all $t \in [T]$, the final aggregated bound for the entire sequence
 1014 of estimators under consideration becomes:
 1015

$$\left| \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{Z \sim D_0}[g_{\hat{r}_t}(Z)] - \frac{1}{T} \sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n g_{\hat{r}_t}(Z_i) \right| \leq \frac{2}{T} + \beta' \sqrt{\frac{\log\left(\frac{2\mathcal{N}(\mathcal{H}_r, 1/T, \|\cdot\|_\infty)}{\delta}\right)}{2n}}. \tag{40}$$

1019 Next, we focus on bounding the covering number of the hypothesis space \mathcal{H}_r . Since we parameterize
 1020 the density ratio functions in \mathcal{H}_r using a parametric model $h(\mathbf{x}, \theta)$ with parameters θ in a bounded
 1021 set Θ , we can relate the covering number of \mathcal{H}_r to that of Θ .
 1022

1023 Let $\theta, \theta' \in \Theta$ be the parameters corresponding to the two density ratio functions $r, r' \in \mathcal{H}_\theta$. We can
 1024 show that for any $\|\theta - \theta'\|_2 \leq \epsilon$, the following inequality holds:
 1025

$$\|r - r'\|_\infty = \max_{Z \in \mathcal{Z}} |r(Z, \theta) - r(Z, \theta')| \leq G_h \|\theta - \theta'\|_2,$$

1026 where $G_h = \max_{Z \in \mathcal{Z}, \theta \in \Theta} \|\nabla h(Z, \theta)\|_2$ is the Lipschitz continuity constant of h .
 1027

1028 As a result, we can bound the covering number of \mathcal{H}_r in terms of $\|\cdot\|_\infty$ by the covering number of
 1029 Θ in terms of $\|\cdot\|_2$. Specifically, we have:

$$1030 \quad \mathcal{N}(\mathcal{H}_r, 1/T, \|\cdot\|_\infty) \leq \mathcal{N}(\Theta, 1/(G_h T), \|\cdot\|_2).$$

1032 Given that the parameter space Θ is essentially a L_2 -ball with radius S , its covering number is
 1033 bounded by $(3S/\epsilon)^d$. Therefore, choosing $\epsilon = 1/(G_h T)$, we obtain:
 1034

$$1035 \quad \mathcal{N}(\Theta, 1/(G_h T), \|\cdot\|_2) \leq (3SG_h T)^d.$$

1037 Combining these results, we conclude:

$$1039 \quad \mathcal{N}(\mathcal{H}_\theta, 1/T, \|\cdot\|_\infty) \leq (3SG_h T)^d.$$

1041 Substituting this bound into our earlier expression, we complete the proof.
 1042 \square

1044 **Lemma 8.** Suppose Assumption 1 holds. Given the hypothesis space \mathcal{H}_r satisfying Assumption 2
 1045 and divergence function ψ satisfying Assumption 3. For any sequence of density ratio estimators
 1046 $\{\hat{r}_t\}_{t=1}^T$ and corresponding true density ratios $\{r_t^*\}_{t=1}^T$ under distribution \mathcal{D}_0 , the following bound
 1047 holds with probability at least $1 - \delta$:

$$1049 \quad \frac{1}{T} \sum_{t=1}^T |\hat{r}_t(Z_{n+t}) - r_t^*(Z_{n+t})| \leq \tilde{\mathcal{O}} \left(n^{-\frac{1}{2}} + \max\{T^{-\frac{1}{3}} V_T^{\frac{1}{3}}, T^{-\frac{1}{2}}\} \right) \quad (41)$$

1053 *Proof.* The proof is straightforward by combining the results from Lemma 6, Lemma 7, and Corol-
 1054 lary 2.
 1055 \square

1057 **Lemma 9.** Suppose assumptions 1, 2 and 3 hold. Let $\{\mathcal{E}_t\}_{t=1}^T$ and $\{\hat{\mathcal{E}}_t\}_{t=1}^T$ represent two sequences
 1058 of events defined in Equation 26 and 27. The difference in their average probabilities satisfies:

$$1060 \quad \left| \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\mathcal{E}_t] - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] \right| \leq \tilde{\mathcal{O}} \left(n^{-\frac{1}{2}} + \max \left\{ T^{-\frac{1}{3}} V_T^{\frac{1}{3}}, T^{-\frac{1}{2}} \right\} \right). \quad (42)$$

1063 *Proof.* Define the true weighted cumulative distribution function (CDF) at time step t as:
 1064

$$1065 \quad \Psi_t(v) = \sum_{i \in [n] \cup \{n+t\}} w_t^*(Z_i) \mathbb{1}[v_i \leq v],$$

1068 where $w_t^*(Z_i)$ are the true weights derived from the true density ratio r_t^* , and v_i denotes the value
 1069 of $V(\mathbf{C}_i, \mathbf{W}_i)$. For simplicity, v_{n+t} is set to ∞ .

1070 Similarly, the estimated weighted CDF at time step t is:
 1071

$$1072 \quad \hat{\Psi}_t(v) = \sum_{i \in [n] \cup \{n+t\}} \hat{w}_t(Z_i) \mathbb{1}[v_i \leq v],$$

1075 where $\hat{w}_t(Z_i) = \frac{\hat{r}_t(Z_i)}{\sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j)}$ are the estimated weights based on the estimated density ratio
 1076 \hat{r}_t .
 1077

1078 Due to the nested property, i.e., the size of \hat{F}_t non-decreasing w.r.t \hat{r}_t , the following equation holds:
 1079

$$\mathcal{E}_t = \{V(\mathbf{C}_{n+t}, \mathbf{W}_{n+t}) > \tau_t\}, \quad \hat{\mathcal{E}}_t = \{V(\mathbf{C}_{n+t}, \mathbf{W}_{n+t}) > \hat{\tau}_t\},$$

1080 where τ_t and $\hat{\tau}_t$ are thresholds derived from Ψ_t and $\hat{\Psi}_t$, respectively. Using these definitions, we can
 1081 express the difference in average probabilities as:
 1082

$$\begin{aligned} 1083 \left| \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\mathcal{E}_t] - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] \right| &= \left| \frac{1}{T} \sum_{t=1}^T \Psi_t(\hat{\tau}_t) - \Psi_t(\tau_t) \right| \\ 1084 &= \left| \frac{1}{T} \sum_{t=1}^T \Psi_t(\hat{\tau}_t) - \Psi_t(\tau_t) + \Psi_t(\tau_t) - \hat{\Psi}_t(\hat{\tau}_t) \right| \\ 1085 &= \left| \frac{1}{T} \sum_{t=1}^T \Psi_t(\hat{\tau}_t) - \hat{\Psi}_t(\hat{\tau}_t) \right|. \end{aligned}$$

1092 The last equality holds because $\Psi_t(\tau_t) = \hat{\Psi}_t(\hat{\tau}_t) = 1 - \alpha$, by definition of the thresholds τ_t and $\hat{\tau}_t$.
 1093 Expanding $\Psi_t(\hat{\tau}_t)$ and $\hat{\Psi}_t(\hat{\tau}_t)$, we have:
 1094

$$1095 \left| \frac{1}{T} \sum_{t=1}^T \Psi_t(\hat{\tau}_t) - \hat{\Psi}_t(\hat{\tau}_t) \right| = \left| \frac{1}{T} \sum_{t=1}^T \sum_{i \in [n] \cup \{n+t\}} \mathbb{1}[v_i \leq \hat{\tau}_t] (w_t^*(Z_i) - \hat{w}_t(Z_i)) \right|.$$

1099 Substituting $w_t^*(Z_i)$ and $\hat{w}_t(Z_i)$, we obtain:
 1100

$$\begin{aligned} 1101 \left| \frac{1}{T} \sum_{t=1}^T \sum_{i \in [n] \cup \{n+t\}} \mathbb{1}[v_i \leq \hat{\tau}_t] \left(\frac{r_t^*(Z_i)}{\sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j)} - \frac{\hat{r}_t(Z_i)}{\sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j)} \right) \right| \\ 1102 &\leq \left| \frac{1}{T} \sum_{t=1}^T \sum_{i \in [n] \cup \{n+t\}} \mathbb{1}[v_i \leq \hat{\tau}_t] \left(\frac{r_t^*(Z_i) \cdot \sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j) - \hat{r}_t(Z_i) \sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j)}{\sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j) \cdot \sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j)} \right) \right|. \end{aligned}$$

1107 Simplifying the numerator of the fraction, let:
 1108

$$1109 \text{Term}_i = r_t^*(Z_i) \cdot \sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j) - \hat{r}_t(Z_i) \cdot \sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j).$$

1112 Expanding Term_i , we have:
 1113

$$1114 \text{Term}_i = r_t^*(Z_i) \cdot \sum_{j \in [n] \cup \{n+t\}} (\hat{r}_t(Z_j) - r_t^*(Z_j)) + (r_t^*(Z_i) - \hat{r}_t(Z_i)) \cdot \sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j).$$

1116 Summing over $i \in [n] \cup \{n+t\}$, we bound $|\text{Term}_i|$ as:
 1117

$$1118 \sum_{i \in [n] \cup \{n+t\}} |\text{Term}_i| \leq \sum_{i \in [n] \cup \{n+t\}} r_t^*(Z_i) \cdot \sum_{j \in [n] \cup \{n+t\}} |\hat{r}_t(Z_j) - r_t^*(Z_j)| + \sum_{i \in [n] \cup \{n+t\}} |r_t^*(Z_i) - \hat{r}_t(Z_i)| \cdot \sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j).$$

1121 Combining terms and simplifying, we find:
 1122

$$\begin{aligned} 1123 \left| \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\mathcal{E}_t] - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] \right| \\ 1124 &= \left| \frac{1}{T} \sum_{t=1}^T \sum_{i \in [n] \cup \{n+t\}} \mathbb{1}[v_i \leq \hat{\tau}_t] \left(\frac{\text{Term}_i}{\sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j) \cdot \sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j)} \right) \right| \\ 1125 &\leq \frac{1}{T} \sum_{t=1}^T \sum_{i \in [n] \cup \{n+t\}} \frac{|\text{Term}_i|}{\sum_{j \in [n] \cup \{n+t\}} r_t^*(Z_j) \cdot \sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j)} \\ 1126 &\leq \frac{1}{T} \sum_{t=1}^T \frac{2}{\sum_{j \in [n] \cup \{n+t\}} \hat{r}_t(Z_j)} \cdot \sum_{j \in [n] \cup \{n+t\}} |\hat{r}_t(Z_j) - r_t^*(Z_j)| \end{aligned}$$

1134 Using the assumption that $\hat{r}_t(Z_j)$ and $r_t^*(Z_j)$ are bounded, we further simplify:
 1135

$$1136 \quad \left| \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\mathcal{E}_t] - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] \right| \leq 2\beta \left[\frac{1}{T} \sum_{t=1}^T \frac{1}{n} \sum_{j \in [n]} |\hat{r}_t(Z_j) - r_t^*(Z_j)| + \frac{1}{n} \cdot \frac{1}{T} \sum_{t=1}^T |\hat{r}_t(Z_{n+t}) - r_t^*(Z_{n+t})| \right].$$

1140 Finally, bounding the terms using Corollary 2 and Lemma 8, we conclude the proof. \square
 1141

1142 **Theorem 1.** *Under the assumptions 1, 2 and 3, with probability at least $1 - \delta$, the gap between the
 1143 averaged hallucination rate over T time steps and the target level α is bounded as*

$$1145 \quad \left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \alpha \right| \leq \tilde{\mathcal{O}} \left(\max \left\{ T^{-\frac{2}{3}} V_T^{\frac{2}{3}}, T^{-\frac{1}{2}} \right\} + 1/n \right) \quad (19)$$

1148 when the parameter of the online ensemble is properly set. Here, $V_T = \sum_{t=2}^T \|\mathcal{D}_t(\mathbf{z}) - \mathcal{D}_{t-1}(\mathbf{z})\|_1$
 1149 measures the variation of input densities and the notation $\tilde{\mathcal{O}}$ hides logarithmic factors of T and $1/\delta$.
 1150

1151 *Proof.* The error decomposition is:
 1152

$$1153 \quad \left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \alpha \right| \leq \underbrace{\left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] \right|}_{\text{term (a)}} + \underbrace{\left| \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\hat{\mathcal{E}}_t] - \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\mathcal{E}_t] \right|}_{\text{term (b)}} + \underbrace{\left| \frac{1}{T} \sum_{t=1}^T \mathbb{P}[\mathcal{E}_t] - \alpha \right|}_{\text{term (c)}}. \quad (43)$$

1158 Using Lemma 5, term (a) is bounded as:
 1159

$$1160 \quad \text{term (a)} \leq \tilde{\mathcal{O}}(T^{-\frac{1}{2}}).$$

1162 Using Lemma 9, term (b) is bounded as:
 1163

$$1164 \quad \text{term (b)} \leq \tilde{\mathcal{O}} \left(n^{-\frac{1}{2}} + \max \left\{ T^{-\frac{1}{3}} V_T^{\frac{1}{3}}, T^{-\frac{1}{2}} \right\} \right).$$

1166 By definition, $\mathbb{P}[\mathcal{E}_t] = \alpha$, so term (c) is zero:
 1167

$$1168 \quad \text{term (c)} = 0.$$

1170 Combining these bounds yields:
 1171

$$1172 \quad \left| \frac{1}{T} \sum_{t=1}^T \widehat{\text{err}}_t - \alpha \right| \leq \tilde{\mathcal{O}} \left(\max \left\{ T^{-\frac{2}{3}} V_T^{\frac{2}{3}}, T^{-\frac{1}{2}} \right\} + n^{-\frac{1}{2}} \right).$$

1175 This completes the proof. \square
 1176

1178 E OMITTED EXPERIMENTAL DETAILS

1180 E.1 OMITTED DATASET DETAILS

1182 **MedLFQA** (Jeong et al. (2024)) MedLFQA is a long-form medical question-answering dataset
 1183 that integrates several previously established benchmarks. Each prompt in the dataset is paired with
 1184 responses generated by either an LLM or a human. To obtain sub-claims annotated with factuality
 1185 labels, Cherian et al. (2024) first use GPT-3.5-Turbo to generate responses for the prompts and GPT-
 1186 4o to parse these responses into self-contained sub-claims. Then, the factuality of each sub-claim
 1187 is assessed by querying GPT-3.5-Turbo, which evaluates the claims based on the LLM or human-
 1188 generated responses provided for the prompts.

1188 **WikiData** (Cherian et al. (2024)) WikiData is constructed by first sampling names from Wikipedia
 1189 and then querying GPT-3.5-Turbo with the prompt: *“Write me a short biography of [NAME].”*. After
 1190 that, the generated biographies are parsed into self-contained sub-claims using GPT-4o. Factuality
 1191 labels for these sub-claims are assigned using a variant of the FAcTScore procedure developed by
 1192 Min et al. (2023). This process involves identifying relevant Wikipedia passages using the BM25
 1193 ranking function and incorporating them into the LLM prompt to determine whether the claims are
 1194 supported.

1195 **WildChat+** To evaluate our method in a real-world dynamic setting, we construct a new dataset
 1196 from WildChat Zhao et al. (2023), which features user-generated prompts in natural, uncontrolled
 1197 environments. Since not all responses elicited by prompts in the dataset are suitable for the hallu-
 1198 cination mitigation task, we first filter them by using GPT-4o-mini to identify whether the prompts
 1199 can be answered using knowledge available on Wikipedia. For the filtered prompts, GPT-4o assigns
 1200 relevant Wikipedia titles, and we retrieve the corresponding passages using the Wikipedia API. Fi-
 1201 nally, we apply the FAcTScore procedure, following Cherian et al. (2024), to annotate the factuality
 1202 labels of the claims in the responses. Due to the high cost of annotation, we randomly sample 3250
 1203 prompts from the filtered prompts for annotation.

1204 E.2 OMITTED DETAILS OF SHIFT SIMULATION

1205 Here, we describe the procedure for sampling Z_{n+t} from D_{test} to simulate covariate shifts. Each
 1206 prompt is associated with metadata, which is used to define a feature vector \mathbf{x} . Prompts Z_{n+t} are
 1207 sampled with probabilities proportional to $w(\mathbf{x}) = \exp(\mathbf{x}^T((1-\xi_t)\nu' + \xi_t\nu''))$, where ν' and ν'' are
 1208 predefined weight vectors, and $\xi_t \in [0, 1]$ is a time-varying factor. Since both D_0 and D_{test} originate
 1209 from the same underlying distribution, this resampling strategy effectively simulates a shift between
 1210 the initial distribution \mathcal{D}_0 and the time-dependent test distribution \mathcal{D}_t .

1211 For the MedLFQA dataset, the feature vector \mathbf{x} is defined using five attributes, as detailed in Cherian
 1212 et al. (2024): the length of the prompt, the length of the response, the mean log-probability of the
 1213 response given the prompt, the standard error of the log-probability of the response given the prompt,
 1214 and the dataset from which the prompt originates. ν' and ν'' are configured such that ν'' assigns
 1215 higher weights to prompts with longer responses so that the sampling favors prompts with longer
 1216 responses over time.

1217 For the WikiData dataset, the feature vector \mathbf{x} is constructed using the first, second, and third powers
 1218 of the number of views received by the Wikipedia pages corresponding to each prompt, following
 1219 Cherian et al. (2024). In this case, ν' and ν'' are chosen such that ν'' assigns higher weights to
 1220 prompts associated with less-viewed Wikipedia pages.

1221 The time-varying factor ξ_t is introduced to model four types of covariate shifts: Linear Shift (**Lin**),
 1222 Square Shift (**Squ**), Sine Shift (**Sin**), and Bernoulli Shift (**Ber**). Each type captures distinct real-
 1223 world scenarios in which data distributions evolve over time:

- 1224 • **Linear Shift (Lin):** ξ_t is defined as $\xi_t = t/T$, representing a gradual and continuous change in
 1225 the environment over T time steps.
- 1226 • **Square Shift (Squ):** ξ_t alternates between 1 and 0 every M steps, where $2M$ defines the period
 1227 length. To model a rapidly changing environment with periodic behavior, we set $M = \Theta(\sqrt{T})$.
- 1228 • **Sine Shift (Sin):** ξ_t follows a sinusoidal pattern, defined as $\xi_t = \sin(\pi t/M)$, where M represents
 1229 the period length. Similar to the Square Shift, we set $M = \Theta(\sqrt{T})$.
- 1230 • **Bernoulli Shift (Ber):** ξ_t retains the value of ξ_{t-1} with probability $p \in [0, 1]$, and switches to
 1231 $1 - \xi_{t-1}$ with probability $1 - p$. To simulate a rapidly changing environment, we set $p = \Theta(1/\sqrt{T})$.

1232 E.3 OMITTED IMPLEMENTATION DETAILS

1233 We preprocess the MedLFQA and WikiData datasets in accordance with the methodology described
 1234 by Cherian et al. (2024). For the baseline methods, SCP and CondConf, we utilize the original code
 1235 provided by Cherian et al. (2024). To implement our approach, we adapt the code from Zhang et al.
 1236 (2023) to perform the online density ratio estimation procedure, using the same hyperparameter

1242
1243 Table 4: Comparison with the method handling covariate shift on MedLFQA dataset.
1244

	Lin		Squ		Sin		Ber		Fix	
	Factuality	Claims Retained								
Total	0.849±0.025	0.856±0.015	0.849±0.021	0.861±0.012	0.848±0.022	0.858±0.013	0.855±0.015	0.853±0.011	0.859±0.011	0.862±0.012
Partial	0.819±0.023	0.900±0.010	0.825±0.026	0.898±0.012	0.822±0.025	0.897±0.012	0.836±0.016	0.895±0.008	0.842±0.012	0.883±0.011
CoFact	0.895±0.026	0.715±0.031	0.897±0.022	0.718±0.030	0.894±0.018	0.715±0.031	0.900±0.019	0.713±0.027	0.904±0.014	0.713±0.027

1247
1248 Table 5: Comparison with the method handling covariate shift on WikiData dataset.
1249

	Lin		Squ		Sin		Ber		Fix	
	Factuality	Claims Retained								
Total	0.895±0.010	0.768±0.004	0.895±0.009	0.768±0.005	0.895±0.008	0.768±0.004	0.887±0.012	0.773±0.004	0.895±0.009	0.771±0.004
Partial	0.884±0.013	0.780±0.007	0.885±0.012	0.780±0.008	0.884±0.011	0.780±0.007	0.875±0.014	0.783±0.007	0.886±0.012	0.783±0.007
CoFact	0.896±0.010	0.748±0.006	0.895±0.009	0.748±0.006	0.895±0.008	0.748±0.006	0.897±0.008	0.749±0.006	0.896±0.010	0.753±0.007

1252 configuration as specified in their original implementation. All experiments are conducted on a
1253 machine equipped with a 16-core Ultra 9 285H CPU.
1254

1255 F ADDITIONAL EXPERIMENTAL RESULTS

1258 In this section, we present additional experimental results including comparisons with several oracle
1259 baselines and ablation studies of various components of our method.
1260

1261 F.1 COMPARISON WITH METHOD IN CONFORMAL PREDICTION UNDER COVARIATE SHIFT

1263 To provide a more comprehensive evaluation of CoFact, we compared it against existing approaches
1264 for handling covariate shifts by implementing the method proposed by Tibshirani et al. (2019),
1265 which specifically addresses covariate shift in conformal prediction. This method requires access
1266 to the entire set of test samples to train a fixed density ratio estimator between the training and test
1267 distributions. To thoroughly assess its performance, we implemented two variants of this method:
1268 (1) **Total**: This variant uses all test samples to estimate the density ratio and filter potentially hal-
1269 lucinated sub-claims; (2) **Partial**: This variant uses only the test samples observed during the first
1270 500 time steps to estimate the density ratio and filter potentially hallucinated sub-claims for all time
1271 steps. It is important to emphasize that both variants are impractical in our online setting, as they
1272 require access to either the entire set of test samples or a substantial portion of them in advance,
1273 which violates the constraints of online learning.
1274

1274 In addition to the four shifting scenarios introduced in the manuscript, we also evaluated these
1275 variants under an additional scenario, **Fixed Shift (Fix)**, where the test distribution remains constant
1276 but differs from the training distribution—a setting similar to that adopted by Tibshirani et al. (2019).
1277

1277 The results of these experiments on the MedLFQA and WikiData datasets are presented in Table 4
1278 and Table 5, respectively. From these results, we observe the following: First, The **Total** variant
1279 performs better than the **Partial** variant, indicating that access to all test samples improves density
1280 ratio estimation and enables the construction of more accurate factuality control. Second, CoFact
1281 consistently outperforms both **Total** and **Partial** variants across nearly all shift types and datasets
1282 in terms of factuality control. Even under fixed shifts, CoFact achieves superior or comparable
1283 performance to the baselines, demonstrating its robustness in handling both stable and dynamic
1284 covariate shifts.
1285

1286 F.2 COMPARISON WITH METHOD IN ONLINE CONFORMAL PREDICTION

1288 We also compare our method with the approach proposed by Gibbs & Candes (2021), which is
1289 designed for online conformal prediction settings where the test distribution may shift over time.
1290 However, unlike our setting, this method requires access to true labels immediately after making
1291 predictions at each time step. While this assumption is not feasible in our scenario, we implemented
1292 the method as a baseline for comparison.
1293

1293 We evaluated two update strategies from Gibbs & Candes (2021): **ACI-Simple**, defined by Equa-
1294 tion (2) in the original paper, and **ACI-Momentum**, defined by Equation (3). Additionally, we varied
1295 the step size parameter γ over $\{0.0005, 0.001, 0.005, 0.01\}$ to analyze its impact on performance.
1296 The results on the MedQA and Wiki datasets are presented in Table 6 and Table 7, respectively.
1297

1296 Table 6: Comparison with the method handling online conformal prediction on MedLFQA dataset.
1297

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
ACI-Simple-0.0005	0.882±0.006	0.747±0.035	0.884±0.003	0.723±0.055	0.885±0.002	0.736±0.056	0.884±0.001	0.751±0.038
ACI-Momentum-0.0005	0.882±0.007	0.747±0.035	0.885±0.003	0.723±0.055	0.885±0.003	0.733±0.056	0.885±0.001	0.747±0.037
ACI-Simple-0.001	0.909±0.003	0.635±0.051	0.912±0.003	0.617±0.073	0.912±0.002	0.608±0.077	0.911±0.003	0.653±0.070
ACI-Momentum-0.001	0.910±0.004	0.633±0.051	0.913±0.004	0.612±0.073	0.912±0.002	0.606±0.078	0.913±0.003	0.639±0.069
ACI-Simple-0.005	0.975±0.003	0.207±0.050	0.977±0.003	0.194±0.035	0.978±0.003	0.185±0.041	0.972±0.006	0.269±0.088
ACI-Momentum-0.005	0.976±0.005	0.206±0.063	0.980±0.004	0.153±0.043	0.980±0.002	0.167±0.052	0.977±0.006	0.227±0.099
ACI-Simple-0.01	0.986±0.003	0.131±0.029	0.987±0.003	0.114±0.041	0.988±0.002	0.115±0.034	0.985±0.005	0.161±0.080
ACI-Momentum-0.01	0.987±0.004	0.121±0.065	0.990±0.002	0.088±0.030	0.989±0.003	0.102±0.044	0.993±0.003	0.069±0.026
CoFact	0.895±0.026	0.715±0.031	0.897±0.022	0.718±0.030	0.894±0.018	0.715±0.031	0.900±0.019	0.714±0.036

1304 Table 7: Comparison with the method handling online conformal prediction on WikiData dataset.
1305

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
ACI-Simple-0.0005	0.894±0.004	0.766±0.004	0.895±0.005	0.765±0.005	0.894±0.004	0.764±0.003	0.892±0.006	0.760±0.011
ACI-Momentum-0.0005	0.894±0.004	0.765±0.004	0.896±0.004	0.765±0.005	0.895±0.004	0.764±0.004	0.893±0.006	0.760±0.012
ACI-Simple-0.001	0.901±0.003	0.755±0.007	0.902±0.004	0.751±0.006	0.902±0.003	0.750±0.006	0.903±0.005	0.746±0.015
ACI-Momentum-0.001	0.902±0.002	0.753±0.010	0.903±0.003	0.750±0.009	0.903±0.002	0.750±0.007	0.903±0.005	0.745±0.017
ACI-Simple-0.005	0.940±0.006	0.603±0.081	0.940±0.007	0.612±0.079	0.941±0.008	0.596±0.097	0.945±0.015	0.533±0.134
ACI-Momentum-0.005	0.944±0.007	0.586±0.080	0.945±0.006	0.578±0.089	0.944±0.007	0.577±0.101	0.948±0.016	0.508±0.148
ACI-Simple-0.01	0.952±0.011	0.504±0.117	0.952±0.011	0.509±0.123	0.951±0.013	0.514±0.127	0.961±0.011	0.440±0.124
ACI-Momentum-0.01	0.966±0.012	0.387±0.140	0.968±0.005	0.339±0.084	0.968±0.004	0.335±0.078	0.971±0.016	0.297±0.116
CoFact	0.896±0.010	0.748±0.006	0.895±0.009	0.748±0.006	0.895±0.008	0.748±0.006	0.897±0.008	0.749±0.006

1313 Table 8: Comparison with method handling robust online conformal prediction on MedLFQA dataset.
1314

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
rACI-0.05	0.893±0.002	0.343±0.081	0.894±0.002	0.322±0.078	0.894±0.002	0.321±0.057	0.894±0.001	0.358±0.058
rACI-0.10	0.891±0.004	0.285±0.075	0.891±0.003	0.294±0.059	0.891±0.003	0.298±0.061	0.892±0.003	0.273±0.064
rACI-0.15	0.888±0.006	0.271±0.071	0.887±0.007	0.263±0.079	0.887±0.006	0.271±0.065	0.889±0.005	0.248±0.070
rACI-0.20	0.884±0.009	0.249±0.080	0.886±0.005	0.233±0.050	0.886±0.006	0.236±0.057	0.886±0.006	0.226±0.062
CoFact	0.895±0.026	0.715±0.031	0.897±0.022	0.718±0.030	0.894±0.018	0.715±0.031	0.900±0.019	0.714±0.036

1320 Table 9: Comparison with method handling robust online conformal prediction on WikiData dataset.
1321

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
rACI-0.05	0.895±0.001	0.731±0.021	0.895±0.001	0.737±0.018	0.895±0.001	0.732±0.019	0.895±0.000	0.738±0.015
rACI-0.10	0.891±0.001	0.741±0.016	0.890±0.001	0.742±0.016	0.891±0.001	0.740±0.016	0.890±0.001	0.728±0.021
rACI-0.15	0.886±0.001	0.717±0.027	0.886±0.001	0.717±0.028	0.886±0.001	0.719±0.030	0.886±0.002	0.713±0.029
rACI-0.20	0.880±0.001	0.719±0.025	0.881±0.001	0.712±0.027	0.881±0.001	0.715±0.022	0.879±0.002	0.734±0.015
CoFact	0.896±0.010	0.748±0.006	0.895±0.009	0.748±0.006	0.895±0.008	0.748±0.006	0.897±0.008	0.749±0.006

1327 From the results, we can draw the following observations. First, the ability of ACI to precisely
1328 control the factuality level is highly sensitive to the choice of the step size γ . A step size that is
1329 too small results in poor control of factuality, while a step size that is too large produces overly
1330 conservative prediction sets with a low number of retained claims. Although the original paper
1331 recommends setting $\gamma = 0.005$, our results indicate that this choice leads to overly conservative
1332 filtering in our scenario. This suggests that ACI requires extensive tuning of γ to achieve reasonable
1333 performance across different contexts. Secondly, although CoFact does not rely on access to true
1334 labels during the online learning process, it still achieves comparable factuality control performance
1335 to ACI with well-tuned γ values, further underscoring its effectiveness in our online setting. It is
1336 important to note that while ACI can achieve controlled factuality and, in some cases, retain slightly
1337 more claims than CoFact, this does not imply that ACI is superior. ACI relies on access to true labels
1338 after making predictions at each time step, a requirement that is impractical in our online setting.
1339

1340 F.3 COMPARISON WITH ROBUST ONLINE CONFORMAL PREDICTION

1341 In this section, we relax the assumption of inaccessible true labels and instead assume access to
1342 noisy labels in the online conformal prediction setting. Under this relaxed setting, we compare our
1343 method with rACI, an extension of ACI proposed by Xi et al. (2025), which is designed to handle
1344 label noise.

1345 To simulate a weak supervision scenario, we introduced uniform random noise to the true factuality
1346 labels in our experiments and compared the performance of CoFact with rACI. The results are
1347 presented in Table 8 and Table 9 for the MedLFQA and WikiData datasets, respectively. The noise
1348 ratio was varied from 5% to 20% to evaluate the robustness of both methods under different noise
1349 conditions.

1350
1351 Table 10: Experiments with varying training fractions on MedLFQA dataset.
1352

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
train.frac=0.05	0.920 \pm 0.028	0.613 \pm 0.094	0.921 \pm 0.024	0.612 \pm 0.097	0.923 \pm 0.023	0.622 \pm 0.099	0.913 \pm 0.049	0.621 \pm 0.189
train.frac=0.1	0.902 \pm 0.015	0.669 \pm 0.050	0.900 \pm 0.019	0.674 \pm 0.053	0.904 \pm 0.018	0.683 \pm 0.050	0.911 \pm 0.029	0.673 \pm 0.126
train.frac=0.3	0.890 \pm 0.014	0.722 \pm 0.057	0.889 \pm 0.016	0.721 \pm 0.056	0.891 \pm 0.018	0.733 \pm 0.057	0.911 \pm 0.015	0.666 \pm 0.047

1355
1356 Table 11: Experiments with varying training fractions on WikiData dataset.
1357

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
train.frac=0.05	0.899 \pm 0.012	0.744 \pm 0.019	0.898 \pm 0.012	0.744 \pm 0.019	0.898 \pm 0.011	0.743 \pm 0.020	0.891 \pm 0.013	0.760 \pm 0.016
train.frac=0.1	0.905 \pm 0.013	0.741 \pm 0.013	0.905 \pm 0.013	0.741 \pm 0.013	0.905 \pm 0.013	0.741 \pm 0.013	0.897 \pm 0.015	0.749 \pm 0.017
train.frac=0.3	0.892 \pm 0.012	0.751 \pm 0.011	0.892 \pm 0.013	0.750 \pm 0.011	0.893 \pm 0.013	0.750 \pm 0.011	0.894 \pm 0.010	0.754 \pm 0.009

1361
1362 Table 12: Experiments with varying expert number base on MedLFQA dataset.
1363

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
expert.num.base=3	0.883 \pm 0.016	0.716 \pm 0.022	0.888 \pm 0.019	0.712 \pm 0.020	0.887 \pm 0.022	0.714 \pm 0.022	0.896 \pm 0.012	0.713 \pm 0.032
expert.num.base=5	0.888 \pm 0.022	0.720 \pm 0.026	0.887 \pm 0.022	0.719 \pm 0.025	0.891 \pm 0.021	0.723 \pm 0.028	0.899 \pm 0.020	0.706 \pm 0.032
expert.num.base=10	0.892 \pm 0.020	0.715 \pm 0.025	0.896 \pm 0.020	0.714 \pm 0.024	0.900 \pm 0.021	0.714 \pm 0.022	0.894 \pm 0.014	0.713 \pm 0.029

1366
1367 Table 13: Experiments with varying expert number base on WikiData dataset.
1368

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
expert.num.base=3	0.900 \pm 0.011	0.745 \pm 0.009	0.899 \pm 0.011	0.744 \pm 0.008	0.899 \pm 0.011	0.745 \pm 0.009	0.893 \pm 0.015	0.750 \pm 0.009
expert.num.base=5	0.895 \pm 0.007	0.746 \pm 0.010	0.894 \pm 0.007	0.748 \pm 0.010	0.894 \pm 0.007	0.747 \pm 0.010	0.889 \pm 0.013	0.746 \pm 0.008
expert.num.base=10	0.901 \pm 0.016	0.745 \pm 0.008	0.903 \pm 0.015	0.746 \pm 0.007	0.903 \pm 0.015	0.746 \pm 0.008	0.901 \pm 0.012	0.745 \pm 0.005

1372 From these results, we observe that while rACI exhibits some robustness to label noise, its performance
1373 deteriorates significantly as the noise level increases. Notably, on the MedQA dataset, the
1374 Claims Retained metric for rACI is extremely low, making it impractical for real-world applications.
1375 Furthermore, rACI relies on strong assumptions about the nature of noise, specifically that
1376 label-flipping probabilities are consistent across different sub-claims and samples, and that the true
1377 noise rates are known. These assumptions are rarely realistic in practical scenarios. Given these
1378 limitations, CoFact demonstrates clear advantages in terms of practicality and robustness for factuality
1379 control in online settings.

1380
1381 F.4 ABLATION STUDY ON CALIBRATION SAMPLE SIZE
1382

1383 We conducted experiments using different calibration set ratios, specifically $\{0.05, 0.1, 0.2\}$, on the
1384 MedLFQA dataset (corresponding to approximately 240, 480, and 1440 samples) and the WikiData
1385 dataset (approximately 425, 850, and 2550 samples) under four shift types. These experiments were
1386 designed to assess the impact of calibration set size on the performance of our method. The results
1387 for the two datasets are summarized in Table 10 and Table 11, respectively.

1388 The results indicate that our method exhibits strong robustness to variations in calibration set size.
1389 Even with a relatively small calibration set (approximately 240 samples for MedQA and 425 samples
1390 for Wiki), our method achieves satisfactory performance in terms of both Factuality and Claims
1391 Retained. This underscores the practicality of our approach, particularly in scenarios where only
1392 limited calibration data is available.

1393
1394 F.5 ABLATION STUDY ON VARYING EXPERT NUMBER
1395

1396 To investigate the impact of the number of experts, we adjusted the expert lifetime schedule by
1397 modifying the lifetime scaling factor from 2^i to 3^i , 5^i , and 10^i . This change alters the number of
1398 active experts at each time step to $\log_3 t$, $\log_5 t$, and $\log_{10} t$, respectively. The experimental results on
1399 the MedLFQA and WikiData datasets, evaluated under four shift types, are summarized in Table 12
1400 and Table 13.

1401 The results show that our method consistently achieves reliable performance in terms of both Fac-
1402 tuality and Claims Retained across different expert base settings. This indicates that the method is
1403 robust to variations in the number of active experts, further highlighting its adaptability to different
1404 configurations.

1404
1405 Table 14: Experiments with varying steps per update on MedLFQA dataset.
1406

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
per_step_num=5	0.893±0.024	0.723±0.020	0.890±0.025	0.722±0.027	0.887±0.029	0.726±0.023	0.896±0.014	0.712±0.030
per_step_num=10	0.897±0.024	0.703±0.028	0.895±0.025	0.701±0.028	0.897±0.025	0.709±0.027	0.902±0.012	0.696±0.027
per_step_num=20	0.899±0.024	0.696±0.031	0.900±0.025	0.693±0.032	0.899±0.025	0.698±0.030	0.904±0.011	0.684±0.028

1407
1408
1409 Table 15: Experiments with varying steps per update on WikiData dataset.
1410

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
per_step_num=5	0.900±0.011	0.750±0.008	0.899±0.010	0.750±0.010	0.901±0.011	0.747±0.008	0.893±0.016	0.749±0.011
per_step_num=10	0.903±0.009	0.748±0.006	0.905±0.009	0.749±0.006	0.901±0.008	0.748±0.007	0.897±0.008	0.747±0.011
per_step_num=20	0.899±0.007	0.748±0.006	0.901±0.006	0.747±0.006	0.900±0.007	0.748±0.007	0.900±0.013	0.751±0.011

1411
1412
1413
1414 Table 16: Experiments with varying noise levels on MedLFQA Dataset.
1415

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
noise_level=0.05	0.898±0.021	0.722±0.030	0.897±0.018	0.720±0.028	0.899±0.021	0.725±0.027	0.909±0.016	0.713±0.027
noise_level=0.10	0.892±0.024	0.743±0.041	0.891±0.021	0.742±0.040	0.893±0.025	0.746±0.039	0.902±0.021	0.734±0.035
noise_level=0.15	0.884±0.028	0.776±0.048	0.879±0.024	0.776±0.047	0.882±0.028	0.781±0.046	0.893±0.026	0.768±0.041

1420
1421 Table 17: Experiments with varying noise levels on the WikiData Dataset.
1422

	Lin		Squ		Sin		Ber	
	Factuality	Claims Retained						
noise_level=0.05	0.898±0.006	0.755±0.008	0.897±0.005	0.755±0.008	0.898±0.005	0.755±0.007	0.898±0.003	0.752±0.006
noise_level=0.10	0.894±0.008	0.761±0.010	0.893±0.008	0.761±0.010	0.894±0.008	0.761±0.009	0.895±0.009	0.758±0.009
noise_level=0.15	0.892±0.009	0.765±0.010	0.891±0.009	0.765±0.010	0.892±0.008	0.765±0.010	0.894±0.010	0.761±0.011

1426 F.6 ABLATION STUDY ON VARYING STEPS PER UPDATE
14271428 To further evaluate the applicability of our method in an online batch learning setup, we performed
1429 experiments using different batch sizes ($\{1, 5, 10, 20\}$) on the MedLFQA and WikiData datasets
1430 across four shift types. The results are summarized in Table 14 and Table 15.1431 The findings indicate that our method consistently maintains strong performance in terms of both
1432 Factuality and Claims Retained when processing incoming samples in batches. This demonstrates
1433 the suitability of our approach for online batch learning scenarios.
14341435 F.7 EXPERIMENTS ON VARYING NOISE LEVELS IN FEATURE REPRESENTATION
14361437 We conducted experiments to evaluate the sensitivity of our method to feature representations by
1438 introducing Gaussian noise with varying levels of variance to the feature representations on the
1439 MedLFQA and WikiData datasets. The results are summarized in Table 16 and Table 17.1440 To ensure a meaningful analysis, the feature representations were normalized prior to adding noise,
1441 resulting in a median feature value of approximately 0.15. As such, introducing a noise level of 0.15
1442 constitutes a substantial perturbation to the features.
14431444 The results show that even under relatively high noise levels, our method consistently maintains
1445 robust performance in terms of both Factuality and Claims Retained. This highlights the resilience
1446 of our approach to variations and noise in feature representations.
14471448 G MORE CASE STUDIES
14491450 **Prompt:** What is MVC in software engineering?
14511452 **Filtered Response:** MVC stands for Model-View-Controller, which is a design pattern commonly
1453 used in software engineering.1454 - Model: Represents the data and behavior of the application. It acts as a bridge between the View
1455 and the Controller, handling the business logic and data manipulation.
1456 - View: Represents the user interface of the application. It displays the data to the user and sends
1457 user inputs to the Controller.
1458

1458 - Controller: Acts as an intermediary between the Model and the View. It processes user input from
 1459 the View, interacts with the Model to retrieve or update data, ~~and updates the View accordingly~~.

1460
 1461 MVC helps to separate concerns and facilitate maintainability, reusability, and scalability of the
 1462 codebase. ~~It is commonly used in web development frameworks like Ruby on Rails, ASP.NET~~
 1463 ~~MVC, and Spring MVC.~~

1464 In this case, CoFact effectively removes the hallucinated claims "It acts as a bridge between the
 1465 View and the Controller" while retaining most of the correct claims.

1466

1467 H LIMITATIONS AND FUTURE WORK

1468

1469 CoFact's theoretical guarantees apply to the entire time horizon and may not hold for smaller time
 1470 intervals. Developing methods that provide finer-grained factuality guarantees is an important di-
 1471 rection for future work. Additionally, while CoFact focuses on ensuring the factuality of filtered
 1472 claims, other response qualities, such as informativeness and diversity, could also be required in
 1473 certain scenarios. Extending CoFact to incorporate these aspects presents another promising avenue
 1474 for future research.

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511