
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIDDEN BREAKTHROUGHS
IN LANGUAGE MODEL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Loss curves are smooth during most of model training, so visible discontinuities
stand out as possible conceptual breakthroughs. Studying these breakthroughs en-
ables a deeper understanding of learning dynamics, but only when they are properly
identified. This paper argues that similar breakthroughs occur frequently through-
out training but they are obscured by a loss metric that collapses all variation into
a single scalar. To find these hidden transitions, we introduce POLCA, a method
for decomposing changes in loss along arbitrary bases of the low-rank training sub-
space. We use our method to identify clusters of samples that share similar changes
in loss during training, disaggregating the overall loss into that of smaller groups
of conceptually similar data. We validate our method on synthetic arithmetic and
natural language tasks, showing that POLCA recovers clusters that represent in-
terpretable breakthroughs in the model’s capabilities. We demonstrate the promise
of these hidden phase transitions as a tool for unsupervised interpretability.

1 INTRODUCTION

As large language models train, various internal structures develop during abrupt phase transitions.
These sudden drops in loss reveal the formation of mechanisms for in-context learning (Olsson et al.,
2022b), natural language grammar (Chen et al., 2024a), hierarchical generalization (Murty et al.,
2023), and many other concepts (McGrath et al., 2022; Lovering et al., 2022; Power et al., 2022;
Abbe et al., 2021). However, the loss curve as a whole remains stubbornly smooth. As a result, these
momentary conceptual breakthroughs are treated as isolated curiosities, while the majority of training
behavior is considered predictable.

These breakthroughs, when identifiable, are extremely consequential for our understanding of neural
networks. Phase transitions represent critical periods of learning, so understanding when they occur
provides key insights for training and optimization. For instance, introducing noisy data or changing
the optimizer during a phase transition can significantly reduce the downstream performance of a
model (Achille et al., 2017; Chen et al., 2024a). Prior work identifies phase transitions through a top-
down approach by measuring the training dynamics of a predefined concept or skill and searching for
sudden changes. We instead propose a bottom-up unsupervised method for finding phase transitions
by grouping data points that have similar training behavior. This data-centric approach can be used to
inform optimization choices such as data selection or learning rate scheduling. Like other bottom-up
interpretability methods such as SAEs, PCA, and transcoders, our method seeks concepts that are used
naturally by the model, rather than imposing an assumed structure onto learning and representation.

This work shows that in fact, a model undergoes many breakthroughs during training, but most
are concealed when averaging all data into a single loss curve. Instead of averaging, we divide
up the loss curve in two different ways to find hidden breakthroughs. First, we disaggregate the
aggregate loss into losses on individual examples. By clustering the individual loss curves, we
identify subsets of data that experience synchronized changes in loss, implying that they rely on
the same conceptual breakthrough. However, any individual example might benefit from multiple
breakthroughs; such an example may undergo changes synchronized with different data subsets at
different times. Furthermore, distinct concepts might appear simultaneously, erroneously merging
their data clusters. This means we may have to identify multiple separate breakthroughs which affect
the loss curve of a single example.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: A smooth loss function may change sharply for a particular direction or data subset. POLCA
works by decomposing and disaggregating the loss to discover these sharp changes. Left: Loss L(x; θ)
changes as the parameter setting θ moves in a low-rank training subspace. The loss is sigmoidal
on each axis, with differently timed inflections along basis vectors b1 and b2. These breakthroughs
disappear in the smooth sum of the sigmoids which represents the exact loss. Right: The average of
sigmoidal functions—including loss along basis vectors b1 and b2—elides individual breakthroughs.
The more differently-timed breakthroughs underlie the loss, the more hidden each breakthrough is.

To disentangle these effects for a single sample, we separate the optimization space into specific
gradient directions. When the loss changes during training, it is the result of movement across all
parameters in a high-dimensional space. We decompose this loss change from an exact trajectory in
the full-rank parameter space into a collection of movements along each dimension. By analyzing
these loss curves along specific basis vectors, we identify conceptual breakthroughs that rely on
particular directions of movement. The latter analysis permits further granularity in clustering data,
as final performance on an individual example may rely on multiple conceptual breakthroughs, each
corresponding to a particular linear direction in training. In summary:

• We introduce a modified form of Loss Change Allocation (Lan et al., 2020) called Projection
Oriented Loss Change Allocation (POLCA) to measure changes in loss due to parameter
adjustments in arbitrary directions during training (Section 3.2).

• We show that some learned concepts can be identified by clustering exact loss, while others
cannot (Section 4.2).

• Using POLCA, we extend our cluster analysis to identify conceptual breakthroughs in a
restricted gradient subspace that are obscured in the exact loss curves. We automatically
identify specific concepts learned during breakthroughs in both synthetic (Section 4) and
natural language settings (Section 5).

2 BACKGROUND: HOW MUCH CAN WE LEARN FROM LEARNING DYNAMICS?

Various loss phase transitions have been interpreted as conceptual breakthroughs. But why expect
additional interpretable breakthroughs to underlie periods of undifferentiated, gradual model improve-
ment? Our approach is justified by the nature of the loss surface’s complexity, illustrated by Figure 1,
in which a smooth curve emerges by eliding phase transitions from each dimension.

Why expect multiple phase transitions? A very early phase transition is to be expected early
in training after a brief memorization stage (Shwartz-Ziv & Tishby, 2017). In this sense, the
most celebrated breakthroughs are not the first phase transitions in their training curves. Some
breakthroughs even depend on earlier breakthroughs, as observed in synthetic tasks (Abbe et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2021) and in grammar acquisition (Chen et al., 2024a). If one concept depends on another, each must
appear at a different timestep, requiring multiple phase transitions. Furthermore, as shown by Saxe
et al. (2019), summing many breakthroughs can result in a smooth curve, supporting our hypothesis
that these phase transitions can appear in stable regions of the loss curve.

Multiple phase transitions can also come from differences in gradient scale along different directions.
Ma et al. (2022) even attributed the early edge-of-stability phase transition (Jastrzȩbski et al., 2020;
Cohen et al., 2022) to multiscale structure of the loss surface and, furthermore, noted that this
multiscale structure emerges at the range where models become singular: their loss lacks a quadratic
approximation in terms of model parameters, creating conditions for phase transitions under Singular
Learning Theory (Watanabe, 2010; Wei et al., 2020; Wang et al., 2024). They argued that this
structure is the product of both nonuniform data and nonconvex objectives, respectively justifying the
disaggregation and decomposition which we apply to interpret training dynamics.

Why disaggregate the aggregate loss? We track learning on training datapoints and subpopulations,
rather than the whole training set, because relevant skills can be acquired at different rates (Arora &
Goyal, 2023; Chen et al., 2024b). Individual samples thus exhibit changes in loss out of line with the
monotonic average trend (Xia et al., 2023; Rosenfeld & Risteski, 2024). In full-batch gradient descent,
Cohen et al. (2022) identified non-monotonicity arising from oscillation about the maximum Hessian
eigenvector. Rosenfeld & Risteski (2024) demonstrated that these oscillations occur across different
axes for different samples and identified the primary cause: surprisingly human-interpretable semantic
features. Even when the loss seems stable, performance can oscillate on edge cases until the model
develops relevant capabilities (Qin et al., 2024; Bhaskar et al., 2024). We hypothesize that oscillation
represents competing skills that are relevant to different subsets of data. To test this hypothesis, and to
interpret the meaning of these directions, we disaggregate the loss into clusters with similar dynamics.

Why decompose the exact loss? Michaud et al. (2024) analyzed the scaling behavior of models
with respect to individual tokens and identified a limitation of token-wise analysis of breakthroughs,
which they called polygenic scaling effects—samples which combine multiple skills and therefore
exhibit breakthroughs at multiple scales. Our POLCA decomposition directly addresses this limitation
by decomposing the loss of each token along multiple basis vectors. If we assume that a specific
skill is enabled by movement along a particular skill’s basis vector, then the loss change attributed to
movement along that vector will accelerate at the moment the skill is acquired, for every sample that
requires that skill. In this manner, the sample transitions from early to late dynamics through a basis-
specific loss phase transition. In other words, by monitoring changes in directions corresponding
to specific skills, we support the speculation of Nanda et al. (2023) that “phase transitions are
everywhere.”

Why is linear decomposition sufficient? In practice, a conceptual breakthrough might not occur
in a single direction that persists throughout training. However, there is an abundance of evidence
that linear bases of the low-rank (Gur-Ari et al., 2018) training subspace are conceptually meaningful.
In the late stages of training, loss is convex on the line connecting a pair of checkpoints (Frankle
et al., 2020) if those checkpoints express similar capabilities (Juneja et al., 2023) and mechanisms
(Lubana et al., 2023). If a pair of high-dimensional models lack this linear connection, they still
connect nonlinearly (Draxler et al., 2019); however, while parameter settings sampled from their
linear connections improve broadly on the capabilities of the original models, those sampled from
their nonlinear connections are less robust than the originals (Juneja et al., 2023, ref Appendix G).
These observations suggest that linear decomposition should preserve meaningful conceptual features
on the loss surface, and our experiments show that the resulting directions are interpretable in practice.

3 METHODS

The key to our approach is the separate consideration of how each example’s datapoint loss changes
throughout training. We contrast this individualized metric with aggregated loss across an entire
dataset. Using the datapoint loss, we can cluster individual examples on the basis of their loss L(wt),
change in loss L(wt)− L(wt−1), or magnitude of change |L(wt)− L(wt−1)| during training.

Our objective is to decompose the loss itself into specific directions in the weight space, motivated
by several considerations: First, while we have moved from an aggregated loss metric to a more

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

granular datapoint loss metric, we are still only considering breakthroughs that are general enough to
be perceived in loss curves. Second, an individual datapoint may benefit from a variety of conceptual
breakthroughs, but will not be clustered on the breakthroughs individually. Finally, once we have
identified a subset of the data as benefiting from a particular conceptual breakthrough, decomposing
into individual weight directions allows us to locate where in the weights the breakthrough occurs
and to thereby identify the mechanism involved.

Next we break this loss down by directional movement during training, allowing us to discover
breakthroughs that are specific to a given direction. Our procedure follows three steps: (1) select
a basis, (2) decompose the loss along that basis to highlight particular learning events, (3) cluster
datapoints according to their shared learning events.

3.1 FINDING THE BASIS

Algorithm 1 Finding the decomposed optimization basis

input: Training set X , Model checkpoints {θt}Tt=1.
B0 ← ∅ ∈ Rd×0.
for t = 1 . . . T do

Π⊥ ← I −Bt−1(B
⊤
t−1Bt−1)

−1B⊤
t−1

H ← ∇2
θL(X, θ).

Define B+ ∈ Rd×k as the top k eigenvectors of Π⊥H (e.g., via the Lanczos method).
Bt ← [Bt−1, B

+].
end for
return BT

To decompose the loss, we first require an interpretable orthogonal basis. We efficiently compute the
eigenvectors of the Hessian matrix with CoLA (Potapczynski et al., 2023) and use them to construct
a restricted training subspace. We expect this basis to be interpretable because each basis vector
captures a large gradient covariance and therefore represents a potential decision boundary. We select
this basis for interpretability, but our approach can use an arbitrary choice of basis tailored to the
intended use-case for the identified clusters.

The basis is constructed as shown in Algorithm 1. Given T intermediate training checkpoints and
a number k of eigenvectors to compute at each checkpoint, we seek a low rank Tk-dimensional
subspace which captures most of the movement during optimization (Gur-Ari et al., 2018). We
construct this basis iteratively, starting with B0 = ∅: at each checkpoint t, we take checkpoint
weights Wt ∈ Rd and project their loss Hessian onto the nullspace of B ∈ Rd×(t−1)k. From the
resulting projection, we append the top k eigenvectors to Bt−1. We compute the eigenvectors using
Hessian-vector products Golmant et al. (2018) to avoid explicitly constructing the full Hessian matrix.
The resulting basis is designed to include directions of highest curvature at each checkpoint so that it
will capture synchronized loss behavior throughout training. Note that the very top eigenvectors are
likely to reflect local oscillation, rather than conceptually meaningful long-term movement (Song
et al., 2024), but as we continue to add to the low rank basis, we include more directions of long-term
stable movement. We discard the oscillatory directions which do not provide an overall decrease in
loss over the course of training according to POLCA by removing the directions with an increase
in the mean projected loss from checkpoint 1 to T . In this manner, we first construct a basis based
on local information, then filter out directions that do not represent long-term movement. This
construction finds local high-curvature directions that may be important for breakthroughs in the
intermediate stages of training while ensuring that the basis does not overfit to local oscillations.

3.2 DECOMPOSING THE LOSS WITH PROJECTION ORIENTED LOSS CHANGE ALLOCATION
(POLCA)

To decompose the loss along our basis, we propose a modified version of Loss Change Allocation
(LCA) (Lan et al., 2020). LCA is a tool for analyzing changes in aggregated loss on dataset X between
two checkpoints. The output of LCA is the empirical loss change between a pair of checkpoints which
can be attributed to the motion of each individual weight unit. Given two consecutive checkpoints with
parameters θt and θt+1, LCA reformulates the change in loss as its first-order Taylor approximation,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a sum of the loss changes attributed to the movement of each individual model parameter θ(j):

L(X; θt+1)− L(X; θt) ≈
d∑

j=0

(∇θL(X; θt))
(j)(θ

(j)
t+1 − θ

(j)
t) =

d∑
j=0

LCA(X; θ(j)) (1)

The POLCA decomposition differs from LCA in three key ways. First, we do not restrict each
direction to correspond to a single unit θ(j), instead permitting an arbitrary orthonormal basis vector
b ∈ BT to replace the axis-aligned basis vectors in LCA; we project onto this basis vector using the
dot product ⟨b, ·⟩. Second, we are interested in changes in the loss on each individual example x ∈ X ,
not the entire dataset X . These first two modifications provide the first-order POLCA decomposition:

L(X; θt+1)− L(X; θt) =
∑
x∈X

L(x; θt+1)− L(x; θt)

≈
∑
x∈X

∑
b∈BT

⟨b,∇θL(x; θt)⟩⟨b, θt+1 − θt⟩ (2)

The third key difference is that we use a second-order approximation because this basis is constructed
explicitly from the Hessian eigenvectors. To understand why this choice of basis warrants a second-
order approximation, recall that each basis vector b is an eigenvector of the Hessian matrixHt′(X)
at some timestep t′, where b is chosen because it has the largest eigenvalue λt′(X, b) over the whole
dataset. If we assume that the top eigenvectors of the aggregate Hessian maintain high curvature
at other points in training and on individual datapoints, then the scaling factor in the second-order
Taylor term will be very large even at the datapoint level. Limiting the approximation to only
the first order term gives poor guarantees on error, as the second-order term could be expected to
dominate. Although empirically the difference between the first and second-order values is small
(see Appendix I), we nonetheless guarantee a better estimate due to lower Lagrange error bounds by
computing the second-order approximation below.

Exact computation of the second-order term would be intractable, requiring computation of the top
eigenvalues/vectors for each individual datapoint x. Instead, we can approximate it by substituting
the true eigenvalue, denoted λt(X, b) := b⊤Ht(X)b, with the curvature of the individual loss in the
direction b, i.e. λt(x, b) = b⊤Ht(x)b. If the aggregate Hessian eigenvector b is close to the span of
the top eigenvectors of the datapoint-specific Hessian for x, this provides a reasonable estimate while
reducing calculation to a single Hessian-vector product per eigenvector. We therefore approximate
the basis projection of the datapoint Hessian h(x, b, θt) as derived in Appendix C.

h(x, b, θt) =
λt(x, b)

2
⟨θt+1 − θt, b⟩2 (3)

≈ λt(X, b)

2
· ⟨θt+1 − θt, b⟩2 ×

⟨L(x; θt+1)− L(x; θt), b⟩
⟨L(X; θt+1)− L(X; θt), b⟩

(4)

= h̃(x, b, θt) (5)

Equipped with this second-order approximation of the datapoint Hessian’s projection onto our basis,
we account for the high curvature and possible domination by the higher order term by modifying
Equation 2 into the second-order Taylor expansion using the approximation from Equation 5. We can
compute this second-order term with limited additional computational complexity by keeping track
of the eigenvalues for each Hessian eigenvector and the aggregate gradient at each checkpoint.

L(X; θt+1)− L(X; θt) ≈
∑
x∈X

∑
b∈BT

⟨b,∇θL(x; θt)⟩⟨b, θt+1 − θt⟩+ h̃(x, b, θt) (6)

=
∑
x∈X

∑
b∈BT

POLCA(x, b; θt) (7)

3.3 CLUSTERING THE LOSS

POLCA, above, provides curves that show how a decomposed loss changes with respect to each
training example. We assume that if several examples show similarly timed loss changes in the same
direction, they likely rely on the same conceptual breakthroughs or learning events; therefore, they

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

are likely to share a required skill, or specific capability needed for a given task. We cluster POLCA
training histories to recover these skill groups. For each datapoint x, we compute the total cumulative
change in loss along each basis vector b by summing over the previous POLCA values. We denote
this sum the projected loss Lb(x, θt).

Lb(x, θt) =

t−1∑
i=0

POLCA(x, b; θi) (8)

We obtain 1d projected loss trajectories for breakthrough clustering by computing Lb(x, θt) at every
time t. We cluster trajectories using Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) Campello et al. (2013) because it distinguishes cluster outliers and discovers
clusters with variable density (i.e., similarly shaped curves that lay far apart in their metrics). We
cluster the trajectories for each basis vector separately to ensure that the clustering can capture
multiple skills per token.

3.4 DEFINING AND IDENTIFYING HIDDEN BREAKTHROUGHS

We use POLCA to recover hidden breakthroughs in training. As in prior literature, we use the terms
breakthrough and phase transition interchangeably to mean a period of sudden change in a given
metric (Olsson et al., 2022a; Chen et al., 2024a; Murty et al., 2023). We use the formulation defined
by Chen et al. (2024b) to compute the start of a breakthrough in a given function f for a given
datapoint x and basis vector b:

break(f, x,∆) = argmax
t

[f(x, t+∆)− f(x, t)]− [f(x, t)− f(x, t−∆) (9)

Here, break(f, x,∆) approximates the maximum point of acceleration of x in f . f can be either the
projected loss Lb for a given basis vector b or the exact loss L. We define a hidden breakthrough as a
breakthrough that occurs in the flat region of the exact loss curve. That is, if we set a threshold τ
beyond which the exact loss curve is flat, then a given set X ′ ⊆ X has a hidden breakthrough in a
metric f if the expected value of the start of breakthroughs in X ′ is greater than τ :

hidden(f,X ′,∆) = 1

{
Ex∈X′

[
argmax

t
[f(x, t+∆)− f(x, t)]− [f(x, t)− f(x, t−∆)

]
> τ

}
(10)

Using this definition, we can compute which clusters have hidden breakthroughs in the projected or
exact loss.

4 ARITHMETIC LANGUAGE MODELING

We validate our POLCA clustering method in a synthetic setting using an arithmetic addition task. Our
clusters reflect categorical concepts within the data, even when those concepts are not discoverable
by clustering directly on loss curves. Specifically, if we cluster on exact loss curves we recover digit
positions, but if we cluster on POLCA curves we also recover the skill of “carrying” a digit.

4.1 EXPERIMENTS

Data Our synthetic experiments use data from the arithmetic addition setting in Chen et al. (2024b),
where the model is trained to compute the sum of two 3-digit numbers. This setting has 4 skills
corresponding to each of the digits in the output sum. Note that the digit in the 1000s place is always
a <0> or <1> token since the two input summants are 3 digits long. As shown in Appendix Figure 6
and Chen et al. (2024b), the skills corresponding to the digits have different loss curves, so we will
easily recover the digit skill categories by clustering exact loss curves. Unlike our source material,
we also consider an additional skill: arithmetic carries to the output token (Figure 2). This skill
corresponds to the case where instead of simply adding the two tokens at the corresponding digit
in the input, the model must learn to carry a 1 from the previous digit in order to predict the correct
answer for a given token. Digit-specific addition skills lead to clearly distinguishable loss curves,
whereas carrying skills are not clear from the exact loss (Appendix Figure 7), but become clear on
the decomposed gradient basis. We provide additional skill and labeling details in Appendix E.1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1

9 0 7
+ 5 2 6

1

Output
token 1 4 3 3
Digit
skill 1000s 100s 10s 1s

Carry
skill Carry No

carry Carry No
carry

Arithmetic skills:

Figure 2: Diagram of arith-
metic addition task. An exam-
ple of 3-digit addition, labeled
with the skills required for each
of the output tokens.

0 2000 4000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
1
2

(a) Mean exact loss trajectories per
cluster.

1 2
Cluster

0

500

1000

Digit skill
1000s
100s
10s
1s

Carrying skill
Carry
No carry

(b) Arithmetic skill composition of
the clusters.

Figure 3: Exact loss trajectory clustering on the arithmetic task.
We use HDBSCAN to cluster the exact loss trajectories. This ap-
proach, unlike our POLCA clustering method, fails to recover clus-
ters associated with the carrying skill (the maximum fraction of
carries is 0.51).

Setup details We train a 3-layer (9m parameter) Transformer model with embedding dimension 512,
4 attention heads per layer, and an MLP dimension of 2048 (Nanda & Bloom, 2022). We choose this
model size to align with prior work (Olsson et al., 2022a) and to maximize the granularity at which
we can feasibly compute the POLCA values. For a validation set with 1250 data points and 5000
output tokens, we compute the loss and POLCA values for each token at intervals of 20 iterations
throughout training. We choose the training steps between each POLCA computation to achieve as
fine-grained analysis as possible without exploding the compute time. We compute the POLCA basis
using the eigenvectors of the Hessian estimated using a 1250 data point sample of the training set as
detailed in Algorithm 1. We compute one new basis vector every 200 iterations for a total of 50 basis
vectors. We provide further ablations on the decomposition strategy and choice of POLCA basis in
Appendices G and H. We train the model for 10000 iterations, but trim the x-axis of the plots at 4000
to better show the breakthrough behavior.

Clustering As described in Section 3.1, some of the top Hessian directions may represent directions
of oscillation (and not learning) during training. To ensure that we are investigating directions where
the model is learning on average, we only consider the basis vectors for which the mean projected
loss decreases. Then for each remaining basis vector, we remove all of the tokens for which the
decomposed loss increases. This removes 2360.8 out of 5000 tokens on average. We use HDBSCAN
to cluster the remaining tokens, discarding the tokens it marks as outliers. Through this process, we
find subpopulations of the data that have similar projected loss trajectories.

4.2 RESULTS

Decomposition
strategy

Maximum carry
homogeneity

Clusters with
hidden

breakthroughs
Exact loss 0.514 0.0

Change in exact loss 0.524 0.0
LCA (Lan et al., 2020) 0.0185 0.019

POLCA 0.973 0.355

Table 1: Cluster quality comparison. We com-
pute the maximum fraction of points within all clus-
ters that contain a carry for the specified digit and
the fraction of clusters with hidden breakthroughs
past the plateau in the exact loss at τ = 1000. For
details and other metrics, see Appendix G.

Comparison to the exact loss In our cluster-
ing experiments on arithmetic addition skills,
we first consider whether directional decomposi-
tion is necessary for identifying individual con-
cepts. As a baseline, we therefore cluster tokens
solely on their exact loss curves for successive
timesteps, rather than estimating the loss decom-
posed along a low rank basis.

According to the HDBSCAN loss clustering re-
sults in Figure 3, we can recover—to a substan-
tial degree—the digit skill by clustering only on
the exact loss, likely because the digits have very
different loss trajectories. However, as shown in
Figure 3 and Table 1, we cannot recover clusters that are homogenous with respect to the carrying
skill from the exact loss alone.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2000 4000
Iteration

−1

0

Pr
oj

ec
te

d
lo

ss
Cluster

1
2
3

(a) Median projected loss of basis
vector #1’s POLCA clusters.

0 2000 4000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(b) Median exact loss of basis vec-
tor #1’s POLCA clusters.

1 2 3
Cluster

0

200

400

Digit skill
1000s
100s
10s
1s

Carrying skill
Carry
No carry

(c) Arithmetic skill composition of
basis vector #1’s POLCA clusters.

0 2000 4000
Iteration

−4

−2

0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2
3

(d) Median projected loss of basis
vector #2’s POLCA clusters.

0 2000 4000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(e) Median exact loss of basis vec-
tor #2’s POLCA clusters.

1 2 3
Cluster

0

200

400
Digit skill

1000s
100s
10s
1s

Carrying skill
Carry
No carry

(f) Arithmetic skill composition of
basis vector #2’s POLCA clusters.

Figure 4: Arithmetic data clusters with POLCA. We perform POLCA clustering on the top 2 basis
vectors, and report the cluster medoid and quartiles (left), median exact loss (center), and cluster
skill composition (right) for each basis vector in order. Vertical lines mark the timestep when the
relevant basis vector was sampled; note that a vector’s phase transitions are not directly associated
with this timestep. We find that the first basis vector recovers the digit skill whereas the second basis
vector recovers the carrying skill (cluster #1 has homogeneity 0.90). The clusters computed from the
POLCA trajectories show changes in the decomposed loss that are obscured in the exact loss curves.

Recovering concepts with POLCA clustering Because exact loss clustering failed to recover the
carrying skill, we instead cluster on each basis vector’s projected loss using the POLCA decompo-
sition. The projected loss value Lb(x, θt) (Equation 8) represents the cumulative loss change of x
attributed to movement along basis vector b. By clustering the projected loss trajectories, we find that
the top 2 basis vectors produce homogeneous clusters corresponding to both the 1000s place digit and
carrying for all digits (Figure 4 Appendix Figure 8), so POLCA clustering is able to recover subtler
skills, like carrying, that are challenging to reconstruct from the exact loss or parameter-aligned LCA
curves alone (Table 1). We also use Equation 10 to compare the fraction of clusters with hidden
breakthroughs past iteration 1000 (with ∆ = 100), where the mean exact loss plateaus (Appendix
Figure 6), and find in Table 1 that POLCA discovers the highest fraction of clusters with hidden
breakthroughs.

Figure 4 shows the POLCA breakthrough clustering for the first two basis vectors. Along these
directions, certain data subpopulations have changes in the projected loss (Figures 4a and 4d) that do
not occur as visibly in their full loss curves (Figures 4b and 4e). We conclude that arithmetic carries
rely on breakthroughs along specific dimensions during training, but these breakthroughs may be
elided in the exact loss curve.

5 ENGLISH LANGUAGE MODELING

We apply our approach to a real-world causal language modeling task and show that POLCA
breakthrough clustering recovers interpretable conceptual skills in the natural language setting.

5.1 EXPERIMENTS

For the natural language modeling setting, we use the English Wikipedia dataset (Wikimedia Founda-
tion, 2022) from March 2022 to train a 3-layer (40m parameter) model. We use the same POLCA
setup as in the arithmetic addition setting (see Appendix E.2 for details). As in the arithmetic setting,
to consider directions where the model learns on average and filter out directions of oscillation, we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5000 10000
Iteration

−0.5

0.0
Pr

oj
ec

te
d

lo
ss

Cluster
1
2
3

(i) Projected loss

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(ii) Exact loss

Cluster Label Contexts closest to medoid

1

< from> and
< the> after
the first
clause in a
sentence

FA intermediate cup twice, in 1942–43 and
1944–45 seasons.\n\nAfter the war the

the 19th century. He happened to live
through the tense period of the struggle for
independence of Peru from

Voight), his mentor. While attempting to
prevent files containing information on all
IMF’s field agents from

2
Repeated
newline

2008, and 2010. In 2000, it was named a
National Blue Ribbon School of Excellence.\n\n

duplication. The program was first introduced
in 1998 and was discontinued on March 31,
2009.\n\n

and the protagonist of the Mission: Impossible
film series. He is portrayed by Tom
Cruise.\n\n

3
Comma after
parenthetical
phrase

in most countries. The largest episcopal
conferences are those of India and China,
followed by the Philippines,

in 1888 by the Swedish physicist Johannes
Rydberg, theoretically by Niels Bohr in 1913,

klas Athletic F.C. is a football club based
in Leagrave, in Luton,

(iii) Cluster data examples

(a) POLCA clusters from basis vector 13.

0 5000 10000
Iteration

−0.1

0.0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2
3

(i) Projected loss

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(ii) Exact loss

Cluster Label Contexts closest to medoid

1
Appositive
noun phrase

R appear in chapter 3 of Air Force Instruction
36-2406: Officer and Enlisted Evaluation

this was changed to the current WMCN on July
Tin Woodman of Oz: A Faithful

relative path\n A second derivative in
Newton’s notation\n A diaeresis, a type of
diacritic

2

Non-appositive
phrase
preceded by
a comma

year in fantasy, an essay on the year’s best
fantasy books, and introductory notes to the

in Saiunkoku Monogat, Gridman in Gridman the
Hyper Agent, He

to calculate the wavelengths of the hydrogen
spectral series.\n\nHistory \nIn 1880, R

3
Repeated
newline

it actually gathers together pieces originally
published during a two-year period, 1973 and
1974.\n\n

west part of the village is in Schoolcraft
Township and the east part is in Brady
Township.\n\n

(1984) and its sequel Breakin’ 2: Electric
Boogaloo (1984).\n\n

(iii) Cluster data examples

(b) POLCA clusters from basis vector 23.

Figure 5: Examples of English LM data clusters with POLCA. After clustering on POLCA
trajectories for two illustrative basis vectors, we report their average decomposed POLCA trajectories
(5a(i) and 5b(i)). Figures 5a(ii) and 5b(ii) show the average of the exact loss trajectories for each of
the POLCA trajectory clusters. For each cluster, we provide a label based on the top POS tags and
tokens in the cluster and the top 10 contexts closest to its medoid. We report the 3 contexts closest
to the cluster medoid and color the corresponding token. Clustering on the decomposed POLCA
trajectories reveals low-rank breakthroughs at times when the full-rank exact loss curve remains
smooth.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

only analyze the POLCA trajectories along the directions for which the decomposed loss decreases on
average. We also discard any trajectories for which the decomposed per-token loss increases, which
removes 6655.5 out of 12600 tokens on average. After clustering the remaining token trajectories
with HDBSCAN, we discard any marked as outliers.

Automatic labeling. To analyze the concepts represented by each cluster, we look for syntactic and
lexical patterns shared by the cluster data.1 To obtain automatic labels, we use spacy to part-of-speech
(POS) tag each target token and its preceding trigram. We compute the frequency of each POS tag
in the cluster after filtering out tokens on which decomposed loss increases. We then automatically
label each cluster with the smallest set of POS tags required to compose 70% of the cluster’s 4-gram
samples. For example, if over 70% of the token instances in a cluster are immediately following
a comma <,>, the cluster would be automatically labeled as 1 token after PUNCT. We consider
basis vectors with at least one cluster with a simple label—one including at most two POS tags
(not counting <PAD> tokens). Starting with 30 basis vectors, we remove 4 because the average
decomposed loss increases. We find 22 of the remaining basis vectors have at least one cluster
with a simple label as defined. We refine these automatically assigned labels by examining the
most frequent tokens in the cluster and the ten examples closest to the cluster medoid and manually
selecting a label that is consistent with the automatic POS label and the ten closest examples to the
medoid. See Appendix E.2 for further labeling details.

5.2 RESULTS

On language models, POLCA clustering again reveals hidden breakthroughs along each basis vector.
We show a selection of clusters from specific basis vectors in Figure 5 (see Figures 10 and 11 in
Appendix K for more examples). Using POLCA clustering on projected loss trajectories for our basis
vectors, we find token subpopulations that correspond to various grammatical constructions and have
breakthroughs in the loss projected onto that basis. For instance, we show a cluster corresponding to
predicting < to> and < from> after the first clause in a sentence in Figure 5a(ii). We also observe
clusters whose projected loss trajectories move in opposing directions along certain basis vectors.
For instance, in Figure 5b(i) and 5b(ii), cluster 1 contains appositive noun phrases and cluster 2
has noun phrases with similar syntactic patterns that are not appositive (such as list items). These
clusters visibly mirror each other’s movement in direction, if not in magnitude—decreases in loss are
generally larger than the opposing cluster’s increases in loss which mirror them.

Figure 5 shows that despite their smooth exact loss curves, POLCA clusters have sudden changes
in their decomposed loss curves at different points during training. Clusters from the exact loss
curves, by contrast, do not reveal breakthroughs except very early in training (Appendix Figure 9).
We conclude that POLCA reveals breakthroughs in the decomposed loss that are obscured in the
exact loss. Through clustering, POLCA can explain how different skills are learned during training.

6 CONCLUSIONS

This work introduces POLCA clustering, a method to identify learned skills from decomposed loss
trajectories. POLCA decomposes the loss on two levels: individual datapoints and specific directions
in the weight space. We use this decomposition to discover clusters that share breakthroughs obscured
by loss metrics. In language modeling and synthetic settings, these clusters recover interpretable
skills which appear to emerge at particular moments during training.

These are promising findings for meaningfully interpreting large models. By recovering breakthroughs
in identifiable skills, we support the hypothesis that high-dimensional learning typically entails a
series of phase transitions at various scales. When a phase transition appears in training, it suggests a
naturally discrete category; the model either knows the concept or doesn’t know it, with little middle
ground. Humans think in categorical concepts, so they are far more interpretable than the continuous
data interpolations that appear in much of learning theory.

1In principle, our method can uncover skills that are not describable through these templates, but templating
allows automatic labeling. Our templating approach is similar to the automated explainer tool N2G (Foote et al.,
2023), a popular ngram-based evaluation metric for unsupervised interpretability methods (Gao et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We implement our models and experiments using open-source libraries and datasets. We provide
detailed hyperparameters in Section D and a thorough explanation of the experimental setup in
Section E. We will open-source our code upon acceptance.

ETHICS STATEMENT

This work provides a method for better understanding the training dynamics of language models. The
trained models may contain biases from the training datasets.

ACKNOWLEDGEMENTS

This work was informed by helpful conversations with Nikhil Vyas, Nicholas Lourie, Mike Lepori,
and Ekdeep Singh Lubana. This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE 2140743. Any opinion, findings,
and conclusions or recommendations expressed in this material are those of the authors(s) and do not
necessarily reflect the views of the National Science Foundation. This work was enabled in part by a
gift from the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for the Study
of Natural and Artificial Intelligence.

REFERENCES

Emmanuel Abbe, Enric Boix-Adsera, Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. The
staircase property: How hierarchical structure can guide deep learning, 2021.

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. CoRR, abs/1711.08856, 2017. URL http://arxiv.org/abs/1711.08856.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.
arXiv preprint arXiv:2307.15936, 2023.

Adithya Bhaskar, Dan Friedman, and Danqi Chen. The Heuristic Core: Understanding Subnetwork
Generalization in Pretrained Language Models, June 2024. URL http://arxiv.org/abs/2403.
03942. arXiv:2403.03942 [cs].

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on
hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and
Guandong Xu (eds.), Advances in Knowledge Discovery and Data Mining, pp. 160–172, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37456-2.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra. Sudden
drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms, 2024a.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher Ré.
Skill-it! a data-driven skills framework for understanding and training language models. Advances
in Neural Information Processing Systems, 36, 2024b.

Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability, 2022.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially No
Barriers in Neural Network Energy Landscape. arXiv:1803.00885 [cs, stat], February 2019. URL
http://arxiv.org/abs/1803.00885. arXiv: 1803.00885.

Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez. Neuron to graph:
Interpreting language model neurons at scale, 2023. URL https://arxiv.org/abs/2305.19911.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259–3269. PMLR, 2020.

11

http://arxiv.org/abs/1711.08856
http://arxiv.org/abs/2403.03942
http://arxiv.org/abs/2403.03942
http://arxiv.org/abs/1803.00885
https://arxiv.org/abs/2305.19911

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//arxiv.org/abs/2406.04093.

Noah Golmant, Zhewei Yao, Amir Gholami Gholami, Michael Mahoney, and Joseph Gonzalez.
pytorch-hessian-eigenthings: efficient pytorch hessian eigendecomposition, October 2018. URL
https://github.com/noahgolmant/pytorch-hessian-eigenthings.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace, 2018.

Stanisław Jastrzȩbski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho*, and Krzysztof Geras*. The break-even point on optimization trajectories of deep neural
networks. In International Conference on Learning Representations, 2020.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear connec-
tivity reveals generalization strategies. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=hY6M0JHl3uL.

Janice Lan, Rosanne Liu, Hattie Zhou, and Jason Yosinski. Lca: Loss change allocation for neural
network training, 2020.

Charles Lovering, Jessica Forde, George Konidaris, Ellie Pavlick, and Michael Littman. Evaluation
beyond task performance: Analyzing concepts in alphazero in hex. Advances in Neural Information
Processing Systems, 35:25992–26006, 2022.

Ekdeep Singh Lubana, Eric J. Bigelow, Robert P. Dick, David Krueger, and Hidenori Tanaka.
Mechanistic mode connectivity, 2023. URL https://arxiv.org/abs/2211.08422.

Chao Ma, Daniel Kunin, Lei Wu, and Lexing Ying. Beyond the quadratic approximation: the
multiscale structure of neural network loss landscapes. arXiv preprint arXiv:2204.11326, 2022.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg, Demis
Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in
alphazero. Proceedings of the National Academy of Sciences, 119(47):e2206625119, 2022.

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling, 2024.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Grokking of
hierarchical structure in vanilla transformers. arXiv preprint arXiv:2305.18741, 2023.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/
TransformerLens, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023. URL https://arxiv.org/abs/2301.05217.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022a. URL https://arxiv.org/abs/
2209.11895.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022b.

Andres Potapczynski, Marc Finzi, Geoff Pleiss, and Andrew Gordon Wilson. CoLA: Exploiting
Compositional Structure for Automatic and Efficient Numerical Linear Algebra. arXiv preprint
arXiv:2309.03060, 2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

12

https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://openreview.net/forum?id=hY6M0JHl3uL
https://arxiv.org/abs/2211.08422
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tian Qin, Naomi Saphra, and David Alvarez-Melis. Sometimes i am a tree: Data drives unstable
hierarchical generalization, 2024. URL https://arxiv.org/abs/2412.04619.

Elan Rosenfeld and Andrej Risteski. Outliers with opposing signals have an outsized effect on neural
network optimization. In The Twelfth International Conference on Learning Representations,
2024.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019. doi: 10.1073/pnas.1820226116. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1820226116.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information,
2017. URL https://arxiv.org/abs/1703.00810.

Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does SGD really happen in tiny subspaces? In
High-dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning, 2024.
URL https://openreview.net/forum?id=iITzMuv9sL.

George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differ-
entiation and specialization of attention heads via the refined local learning coefficient. ArXiv,
abs/2410.02984, 2024. URL https://api.semanticscholar.org/CorpusID:273162605.

Sumio Watanabe. Asymptotic equivalence of bayes cross validation and widely applicable in-
formation criterion in singular learning theory. ArXiv, abs/1004.2316, 2010. URL https:
//api.semanticscholar.org/CorpusID:15093314.

Susan Wei, Daniel Murfet, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella. Deep
learning is singular, and that’s good. IEEE Transactions on Neural Networks and Learning Systems,
34:10473–10486, 2020. URL https://api.semanticscholar.org/CorpusID:225041126.

Wikimedia Foundation. Wikimedia downloads, 2022. URL https://dumps.wikimedia.org.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen,
Luke Zettlemoyer, and Ves Stoyanov. Training trajectories of language models across scales, 2023.

13

https://arxiv.org/abs/2412.04619
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://arxiv.org/abs/1703.00810
https://openreview.net/forum?id=iITzMuv9sL
https://api.semanticscholar.org/CorpusID:273162605
https://api.semanticscholar.org/CorpusID:15093314
https://api.semanticscholar.org/CorpusID:15093314
https://api.semanticscholar.org/CorpusID:225041126
https://dumps.wikimedia.org

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

Our method of constructing a basis is inspired by the existing literature on training in restricted
subspaces, but represents an obvious site of improvement. The top eigenvectors of the Hessian,
like the axis-aligned basis, could represent many concepts in superposition. Therefore, some non-
orthogonal basis might represent interpretable concepts more cleanly than our orthogonal basis,
though it would no longer provide a low-rank decomposition. Furthermore, our basis is constructed
by local curvature and then filtered to favor directions of long-term movement; other bases may favor
long-term movement by construction. In general, we consider the ideal basis to be an open question.

Our experiments are limited to small models. The two main challenges with scaling POLCA are the
Hessian basis computation and the frequency of checkpoints used to sample the POLCA trajectories.
Scaling this work to larger models may require using a basis that is less computationally expensive
to compute than Hessian eigenvectors, but our results from Appendix H indicate that this is likely
possible with limited impact on the cluster quality. The small scale of models that we use in our
experiments allows for very high granularity of checkpoints used to compute both the basis and
the POLCA trajectories. For larger models, this may be computationally infeasible and a lower
checkpoint frequency may be needed, resulting in less signal for clustering the POLCA trajectories.

Our current experiments are limited to language models. However, in principle our approach is
model-agnostic and can be applied to any deep neural network. Applying POLCA to other modalities
is an exciting direction for future work.

The labeling approach that we use in the natural language setting relies on POS tagging. This labeling
strategy allows for unsupervised, automatic identification of these syntactic skills and ensures strict
interpretable labels. However, it fails to capture many human-interpretable language modeling skills.
The discarded vectors may (and likely do) contain other interpretable skill clusters that are not found
by automated labeling.

B STATEMENT ON USE OF LARGE LANGUAGE MODELS

We used generative AI for debugging and minor grammar edits when writing. The authors made all
significant contributions to the research, analyses, and writing.

C DERIVATION OF APPROXIMATE SECOND-ORDER TERM

We can approximate the difference between the gradient at time t and t+ 1 as

gt+1(X)− gt(X) ≈ Ht(X)(θt+1 − θt) (11)

⟨gt+1(X)− gt(X), b⟩ ≈ b⊤Ht(X)b⟨b, θt+1 − θt⟩ (12)
= λt(X)⟨b, θt+1 − θt⟩ (13)

If we assume b to also be an eigenvector of the datapoint Hessians H′
t(x), we can apply a similar

argument for the gradient on the datapoint level.

⟨g′t+1(x)− g′t(x), b⟩ ≈ b⊤H′
t(x)b⟨b, θt+1 − θt⟩ (14)

Note that the assumption above (of matching Hessian eigenvectors between data points and their
aggregate) is unlikely to be correct. If this assumption is violated, then the scaling factor in the
following second-order Taylor term will be minuscule on the datapoint level. In practice, we have
found that the second-order term has limited impact at the datapoint level (see Appendix I), but we
nonetheless use it to improve our approximation. Then we may approximate it as:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

⟨g′t+1(x)− g′t(x), b⟩
⟨gt+1(X)− gt(X), b⟩ ≈ b⊤H′

t(x)b⟨b, θt+1 − θt⟩
λt(X, b)⟨b, θt+1 − θt⟩

(15)

⟨g′t+1(x)− g′t(x), b⟩
⟨gt+1(X)− gt(X), b⟩ ≈ ⟨h′

t(x), b⟩⟨b, θt+1 − θt⟩
λt(X, b)⟨b, θt+1 − θt⟩

(16)

λt(X, b)
⟨g′t+1(x)− g′t(x), b⟩
⟨gt+1(X)− gt(X), b⟩ ≈ ⟨h′

t(x), b⟩ (17)

Empirical Validation We run a small-scale empirical study to test the accuracy of this estimation.
For a sample of 400 tokens and the first 10 POLCA checkpoints and the top 5 basis vectors in the
arithmetic setting, we compute the root mean squared error (RMSE) between the approximated
second-order term λt(X, b)

⟨g′
t+1(x)−g′

t(x),b⟩
⟨gt+1(X)−gt(X),b⟩ and the true second-order term ⟨h′

t(x), b⟩ averaged
across tokens, checkpoints, and basis vectors. We find that our approximation has an RMSE of 0.145
when compared to the ground truth second-order term, indicating that this approximation is close to
the real value.

D HYPERPARAMETERS

In the tables below, we provide the hyperparameters used during training of the models in the synthetic
arithmetic and language modeling settings. We use NVIDIA H100 80GB HBM3 GPUs for our
experiments and run each training run on a single GPU.

We selected the clustering hyperparameters to maximize empirical performance in the synthetic
setting and used similar values relative to the number of tokens in the natural language experiments.
We chose the POLCA hyperparameters to maximize the frequency of POLCA checkpoints and basis
checkpoints within computational constraints.

Table 2: Hyperparameters for training the synthetic arithmetic model

Hyperparameter Value
Number of Parameters 9475594
Iterations 10000
Epochs 1
Batch size 64
Number of training tokens 2560000
Optimizer AdamW
Learning rate 1e-5
Weight decay 0.1
Betas (0.9, 0.95)
LR Schedule min(i/100, 1.0)

Table 3: POLCA hyperparameters for the synthetic setting

Hyperparameter Value
Basis checkpoint interval (iterations) 200
T 50
k 1
POLCA checkpoint interval (iterations) 5

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Arithmetic clustering hyperparameters

Hyperparameter Value
Clustering algorithm HDBSCAN
Minimum cluster size 150
Minimum samples Number of tokens / 15

Table 5: Hyperparameters for training the natural language model

Hyperparameter Value
Number of Parameters 40274737
Iterations 14000
Epochs 1
Batch size 64
Number of training tokens 114688000
Optimizer AdamW
Learning rate 1e-5
Weight decay 0.1
Betas (0.9, 0.95)
LR Schedule min(i/100, 1.0)

Table 6: POLCA hyperparameters for the natural language setting

Hyperparameter Value
Basis checkpoint interval (iterations) 750
T 30
k 1
POLCA checkpoint interval (iterations) 200

Table 7: Natural language clustering hyperparameters

Hyperparameter Value
Clustering algorithm HDBSCAN
Minimum cluster size 300
Minimum samples Number of tokens / 15

E EXPERIMENTAL DETAILS

E.1 ARITHMETIC SETTING

Setup. In the arithmetic experiments in Section 4, we train a 3-layer (9m parameter) Transformer
model with embedding dimension 512, 4 attention heads per layer, and an MLP dimension of 2048
(Nanda & Bloom, 2022). For a validation set with 1250 data points and 5000 output tokens, we
compute the loss and POLCA values for each token at intervals of 20 iterations throughout training.
We compute the POLCA basis using the eigenvectors of the Hessian estimated using a 1250 data
point sample of the training set. We compute a new basis vector every 200 iterations for a total of 50
basis vectors.

Labeling details. We automatically label each token with the ground truth value of the digit and
carry skills using the definition of these two skills. We label the digit skill based on the position of the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

token in the output: the first token is 1000s, the second token is 100s, the third is 10s, and the fourth
is 1s. We label the carry skill by computing the sum up to the next lowest digit place and determining
whether it resulted in a carry to the current token. For instance, for an output in the 10s place, if the
two inputs in the 1s place sum to 10 or higher, then it will be labeled with "carry", otherwise it will
be labeled with "no carry".

E.2 NATURAL LANGUAGE SETTING

Setup. For the natural language experiments in Section 5, we train on the English Wikipedia
dataset (Wikimedia Foundation, 2022) from March 2022. We use the same POLCA setup as in the
arithmetic addition setting. We train a 3-layer (40m parameter) transformer model with embedding
dimension 512, 4 attention heads, and an MLP dimension of 2048 (Nanda & Bloom, 2022). We
compute the loss and POLCA values for each token on a validation set of 12600 output tokens. We
analyze intermediate checkpoints at intervals of 200 iterations throughout training. We apply POLCA
to the basis derived from the eigenvectors of the Hessian estimated using a 1000 data point sample of
the training set as detailed in Algorithm 1 with k = 1. We compute a new basis vector every 750
iterations.

Labeling details. We label each token and the three tokens before it using spacy for part-of-speech
(POS) tagging. This produces a sequence of four POS tags as the automatic POS label for each token.
To label a given cluster, we compute the frequency (across the tokens in the cluster) of each POS
tag at each index. For each index in the sequence, we then automatically label the cluster with the
smallest set of POS tags at that index required to make up 70% of the cluster. We then filter out any
labels that require more than 2 POS tags to describe the cluster. To generate the labels reported in
Section 5, we manually refine the automatically generated label by looking at the top 10 contexts
closest to the medoid of the cluster. Although these manually refined labels are challenging to verify
automatically, we ensure that the contexts closest to the medoid follow the manual label and that the
manual label follows the automatic label generated using the POS tags.

F EXACT LOSS TRAJECTORIES FOR THE DIGIT AND CARRY SKILLS

0 5000 10000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
1000s
100s
10s
1s

Figure 6: Median and quartiles of the loss trajectories for each digit.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 5000 10000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
No carry 1000s
Carry 1000s

(a) 1000s place

0 5000 10000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
No carry 100s
Carry 100s

(b) 100s place

0 5000 10000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
No carry 10s
Carry 10s

(c) 10s place

0 5000 10000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
No carry 1s

(d) 1s place

Figure 7: Median and quartiles of the loss trajectories for each digit and carry combination.

G DECOMPOSITION STRATEGY COMPARISON

We investigate whether POLCA is required for decomposing the loss. We expand on the results from
Table 1 by showing the top three homogeneity scores for the carrying skill and adding empirical
Fisher information and first order POLCA results. To compute the homogeneity score for a given
basis vector, we take the maximum fraction of carries in any given cluster for that basis vector
(or across all of the clusters for exact loss or change in exact loss). We then report the top three
homogeneities across the full basis, as well as the recall and F1 score for the corresponding clusters.
We note that we exclude HDBSCAN outliers from the recall and F1 computations. Importantly, we
only consider clusters for which over 85% of the tokens with the carry skill correspond to the 10s or
100s place, since carrying to the 1000s place corresponds to simply predicting a 0 or 1 in the first
position (see Figure 2 for reference) and is recovered with high homogeneity for all trajectory types
except exact loss.

We compare carry skill homogeneity across the following trajectory types:

• Loss: Exact loss trajectories.
• Change in exact loss: We compute the change in exact loss by subtracting the loss at

checkpoint t − 1 from the loss at checkpoint t for each timestep t > 0 in the exact loss
trajectory.

• Fisher information: We approximate the empirical Fisher Information as ∥∇θL(x, θt)∥22
as in Achille et al. (2017). For each basis vector b, the Fisher Information projected onto b
is ⟨b,∇θL(x, θt)⟩2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Loss Change Allocation (LCA): We compute the datapoint-wise LCA trajectories (Equation
1) projected onto the parameters that have the top 50 highest magnitudes at the end of
training.

• First order POLCA: We calculate the POLCA trajectory without the second order term
(Equation 2)

• POLCA: We compute the projected loss (Equation 7).

The results from Table 8 demonstrate that POLCA finds the most homogeneous clusters with respect
to the carrying skill. Moreover, POLCA and first order POLCA have comparable F1 scores. Note
that many low homogeneity clusters can have high recall because they are large and thus contain
most of the carry tokens while having low homogeneity.

Table 8: Carry skill homogeneity comparison. For each type of trajectory, we compute the fraction
of points within each cluster that contain a carry to the output token and report the homogeneity,
recall, and F1 score for the three clusters with highest homogeneity across all 50 vectors. POLCA
recovers carry clusters with the highest homogeneity.

Decomposition strategy Cluster

Number Homogeneity Recall F1

Loss 1 0.514 0.771 0.617

Change in exact loss 1 0.524 0.958 0.678

1 0.664 0.947 0.781
Fisher information 2 0.643 0.740 0.688

3 0.637 0.874 0.737

1 0.792 0.772 0.782
Loss change allocation (LCA) (Lan et al., 2020) 2 0.614 0.873 0.721

3 0.592 0.626 0.609

1 0.948 0.767 0.848
First order POLCA 2 0.928 0.769 0.841

3 0.887 0.751 0.813

1 0.973 0.736 0.838
POLCA 2 0.946 0.773 0.850

3 0.903 0.762 0.827

We also compare the fraction of clusters with hidden breakthroughs for each type of trajectory. To
compute whether or not a given cluster has a hidden breakthrough, we use Equation 10 with ∆ = 100
to identify breakthroughs past iteration τ = 1000 where the exact loss plateaus. We find that POLCA
produces the highest fraction of clusters with hidden breakthroughs. We hypothesize that this is
mostly due to the basis construction, since the Fisher information and first order POLCA (both of
which are computed using the same basis as POLCA) produce the next highest fraction of clusters
with hidden breakthroughs.

Table 9: Hidden breakthroughs comparison. For each type of trajectory, we use Equation 10 to
compute the fraction of clusters with a hidden breakthrough past the plateau in the exact loss at
iteration τ = 1000.

Decomposition strategy Fraction of clusters with hidden breakthroughs

Loss 0.0
Change in exact loss 0.0
Fisher information 0.284

Loss change allocation (LCA) (Lan et al., 2020) 0.019
First order POLCA 0.307

POLCA 0.355

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H POLCA BASIS COMPARISON

We test ablated bases to analyze the effect of basis choice on the POLCA breakthrough clustering. To
do so, we compute the maximum carry skill homogeneities over all of the clusters when performing
POLCA breakthrough clustering. We use the following bases:

• Random orthonormal: randomly sampled orthonormal vectors
• Random shuffled Hessian: basis computed using Algorithm 1, but randomly shuffling the

model checkpoints
• Top Hessian eigenvectors: basis computed using Algorithm 1

We find in Table 10 that these ablations result in only slightly lower quality clusters with respect
to homogeneity (although random orthonormal vectors have lower recall than the other two bases
on average), indicating that different bases can be used for larger experiments to trade off between
compute and interpretability. We also compute the fraction of clusters with hidden breakthroughs
for each basis in Table 11 and find that the random orthonormal basis has a significantly lower
fraction of hidden breakthroughs recovered than the other two approaches, indicating that this random
orthonormal basis is not sufficient to find hidden breakthroughs late in training.

In addition to these bases, we have tested a variety of additional basis constructions, such as a stacked
Jacobian, Hessian computed using a sliding window, and Hessian computed at the end of training,
and chose to use the top Hessian eigenvectors since they had the best performance in the arithmetic
setting.

Table 10: Carry skill homogeneity comparison. For each basis, we compute the fraction of points
within each cluster that contains a carry to the output token and report the homogeneity, recall, and
F1 for the clusters with maximum homogeneity. Using the top Hessian eigenvectors recovers slightly
more homogeneous carry clusters than the other basis selection strategies. The random orthonormal
vectors have high homogeneity but lower recall than the other two bases.

POLCA basis Cluster

Number Homogeneity Recall F1

1 0.902 0.655 0.759
Random orthonormal 2 0.858 0.533 0.658

3 0.838 0.586 0.689

1 0.856 0.699 0.769
Random shuffled Hessian 2 0.852 0.734 0.789

3 0.834 0.730 0.779

1 0.973 0.736 0.838
POLCA 2 0.946 0.773 0.850

3 0.903 0.762 0.827

Table 11: Hidden breakthroughs basis comparison. For each type of basis, we use Equation 10
to compute the fraction of clusters with a hidden breakthrough past the plateau in the exact loss at
iteration τ = 1000.

POLCA basis Fraction of clusters with hidden breakthroughs

Random orthonormal 0.031
Random shuffled Hessian 0.304

POLCA 0.355

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I SECOND VERSUS FIRST ORDER POLCA APPROXIMATION

Table 12: Empirical comparison of second and first order POLCA values. For the arithmetic setting,
we compute the average cosine similarity and L2 distance between the second (Eq 7) and first
(Eq 2) order POLCA trajectory vectors. The first and second-order approximations of the POLCA
trajectories are very similar on average.

Cosine similarity L2 norm

5.4891 E-4 0.99987

J ADDITIONAL ARITHMETIC LANGUAGE MODELING CLUSTERS

0 2000 4000
Iteration

−0.2

0.0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2
3

(a) Median projected loss of basis
vector #3’s POLCA clusters.

0 2000 4000
Iteration

0

2

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(b) Median exact loss of basis vec-
tor #1’s POLCA clusters.

1 2 3
Cluster

0

200

400
Digit skill

1000s
100s
10s
1s

Carrying skill
Carry
No carry

(c) Arithmetic skill composition of
basis vector #3’s POLCA clusters.

Figure 8: Arithmetic data clusters with POLCA. We perform POLCA clustering on the third basis
vector, and report the cluster medoid and quartiles (left), median exact loss (center), and cluster skill
composition (right). Vertical lines mark the timestep when the relevant basis vector was sampled;
note that a vector’s phase transitions are not directly associated with this timestep. We find that the
third basis vector recovers the carrying skill in the 1000s place.

K ADDITIONAL NATURAL LANGUAGE CLUSTERS

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2

(i) Exact loss

Cluster Label Contexts closest to medoid

1
Repeated
<PAD>
tokens

Canterbury, New Zealand\nRivers of New
Zealand<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>

2
Continuing
a noun

\n Diocese of Sylhet\n\nEpiscopal Conference
of Brunei\n\nEcclesiastical Province of
Brunei
and German young people together for dialogue
and educational programs.\n\nHistory\nThe
settlement in the Silesian
of India and China, followed by the
Philippines, and Indonesia.\n\nList of Roman
Catholic dioceses

(ii) Cluster data examples

Figure 9: English language modeling data clusters with the exact loss. We cluster the exact loss
trajectories and report the average loss by cluster (9i). For each cluster, we provide a label based on
the top POS tags of tokens in the cluster and the top 10 contexts closest to the cluster medoid. We
report the 3 contexts closest to the cluster medoid. Clustering on the loss trajectories only discovers
a relatively simple skill, continuing nouns composed of multiple tokens. POLCA breakthrough
clustering recovers a similar skill in Figures 10i and 10ii as well as discovering other skills.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 5000 10000
Iteration

−1

0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2
3

(i) Projected loss

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(ii) Exact loss

Cluster Label Contexts closest to medoid

1
Punctuation
after noun
phrase

Pao Newspaper Company Limited () under Ho
Man-fat. It was initially published every
three days,
in the 6th and 5th centuries BC, to denote
some type of a sibant sound,
president of the United States the
commander-in-chief of the United States Armed
Forces. Many presidents,

2 Noun in
noun phrase

rank (four regular officers, six militia
officers, three volunteers). \n\n\n Table of
United States presidents
a tournament to have a number of teams
that is not a power of two, and gives an
extra advantage
down from 1,989 at the 2000 census. The
Albert Gallatin Area School District serves
the township

3 < of>

official from the Electorate of the Palatinate
who served Brandenburg-Prussia. He was the
son of
and civil parish in Milton Keynes, ceremonial
Buckinghamshire, England. For local
government purposes, it is part of
ering as it extends outward from the coast.
Cape Lookout State Park is located on the north
side of

(iii) Cluster data examples

(a) POLCA clusters from basis vector 10.

0 5000 10000
Iteration

−0.2

0.0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2
3

(i) Projected loss

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2
3

(ii) Exact loss

Cluster Label Contexts closest to medoid

1

Starting or
continuing
foreign
language
proper
noun

árslevelű (in Hungarian), also called Lipovina
(in Slovak), Frunza de
time and effort he devoted to medicine. He
died in Lima on 1861.\n\nCayetano
Beauharnois, Châteauguay—Huntingdon—Laprairie
and Saint

2 Repeated
newline

was an English churchman who was known for his
combative preaching and his Latin poetry.\n\n
(1984) and its sequel Breakin’ 2: Electric
Boogaloo (1984).\n\n
acon offers opportunities to participate in
student organizations, varsity athletics,
community service, and international
travel.\n\n

3 Token after
proper noun

obic bacteria are Staphylococcus spp.,
Escherichia col, Salmonella,
ede Rukawa in Slam Dunk, Ayato Sakamaki in
Diabolik Lovers,
a 4 piece South African rock band from
Johannesburg.\n\nThey formed in 1996 when
Martin, Wade and

(iii) Cluster data examples

(b) POLCA clusters from basis vector 16.

Figure 10: English language modeling data clusters with POLCA. We compute breakthrough
clustering on POLCA trajectories for each vector and report the average decomposed POLCA
trajectories (10ai and 10bi). Figures 10aii and 10bii show the average of the per-token loss trajectories
for each of the clusters found using the POLCA trajectories. For each cluster, we provide a label
based on the top tokens in the cluster and the top 10 contexts closest to its medoid. We then report the
3 contexts closest to the cluster medoid. Clustering on the decomposed POLCA trajectories reveals
breakthroughs at points in training where the per-token loss curve remains smooth.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 5000 10000
Iteration

−0.2

−0.1

0.0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2

(i) Projected loss

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2

(ii) Exact loss

Cluster Label Contexts closest to medoid

1

Verb/noun
in
sentence-
initial
phrase

publishes the pamphlet Les Peintres
impressionistes.\n Czech painter Karel
Klíč perfects
foremost mast are called jibs, headsails, or
foresails. The innermost such sail
won the Miss Minnesota USA pageant and
competed at Miss USA.\n\nAnnika Wiese of Ow

2
Repeated
<PAD>
tokens

\nSee also\nRoyal chapel (disambiguation)
\nPalatine<PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>

(iii) Cluster data examples

(a) POLCA clusters from basis vector 28.

0 5000 10000
Iteration

−0.2

−0.1

0.0

Pr
oj

ec
te

d
lo

ss

Cluster
1
2

(i) Projected loss

0 5000 10000
Iteration

0

5

10

Fu
ll-

ra
nk

lo
ss

Cluster
1
2

(ii) Exact loss

Cluster Label Contexts closest to medoid

1
Token after
<,>

the Roman goddess Ceres\n Occator (crater), a
crater on the planet Ceres, known
of his first novel, The Watsons Go to
Birmingham. Bud Caldwell, the main
character, travels
built, bypassing Fingal. Later it was joined
by the Pere Marquette railway, boost

2
Repeated
<PAD>
tokens

<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD><PAD>
<PAD><PAD><PAD>

(iii) Cluster data examples

(b) POLCA clusters from basis vector 29.

Figure 11: English language modeling data clusters with POLCA. We compute breakthrough
clustering on POLCA trajectories for each vector and report the average decomposed POLCA
trajectories (11ai and 11bi). Figures 11aii and 11bii show the average of the per-token loss trajectories
for each of the clusters found using the POLCA trajectories. For each cluster, we provide a label
based on the top tokens in the cluster and the top 10 contexts closest to its medoid. We then report the
3 contexts closest to the cluster medoid. Clustering on the decomposed POLCA trajectories reveals
breakthroughs at points in training where the per-token loss curve remains smooth.

23

	Introduction
	Background: How much can we learn from learning dynamics?
	Methods
	Finding the basis
	Decomposing the loss with Projection Oriented Loss Change Allocation (POLCA)
	Clustering the loss
	Defining and identifying hidden breakthroughs

	Arithmetic language modeling
	Experiments
	Results

	English language modeling
	Experiments
	Results

	Conclusions
	Limitations and future work
	Statement on use of large language models
	Derivation of approximate second-order term
	Hyperparameters
	Experimental details
	Arithmetic setting
	Natural language setting

	Exact loss trajectories for the digit and carry skills
	Decomposition strategy comparison
	POLCA basis comparison
	Second versus first order POLCA approximation
	Additional arithmetic language modeling clusters
	Additional natural language clusters

