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Abstract

Analogical reasoning is a unique ability of001
humans to address unfamiliar challenges by002
transferring strategies from relevant past ex-003
periences. One key finding in psychology004
is that compared with irrelevant past experi-005
ences, recalling relevant ones can help hu-006
mans better handle new tasks. Coinciden-007
tally, the NLP community has also recently008
found that self-generating relevant examples009
in the context can help large language mod-010
els (LLMs) better solve a given problem than011
hand-crafted prompts. However, it is yet not012
clear whether relevance is the key factor elic-013
iting such capability, i.e., can LLMs benefit014
more from self-generated relevant examples015
than irrelevant ones? In this work, we system-016
atically explore whether LLMs can truly per-017
form analogical reasoning on a diverse set of018
reasoning tasks. With extensive experiments019
and analysis, we show that self-generated ran-020
dom examples can surprisingly achieve com-021
parable or even better performance on certain022
tasks, e.g., 4% performance boost on GSM8K023
with random biological examples. We find024
that the accuracy of self-generated examples025
is the key factor and subsequently design two026
novel methods with improved performance and027
significantly reduced inference costs. Over-028
all, we aim to advance a deeper understand-029
ing of LLM analogical reasoning and hope030
this work stimulates further research in the de-031
sign of self-generated contexts. Our code base032
is available at https://anonymous.4open.033
science/r/LLM_Analogical_Reasoning.034

1 Introduction035

A hallmark of human intelligence is that they can036

solve novel problems by drawing analogy from037

relevant past experiences, a concept known as ana-038

logical reasoning in cognitive science (Vosniadou039

and Ortony, 1989). As indicated by the name, re-040

calling previously acquired relevant experiences041

can facilitate humans to better tackle new tasks,042

Input

Output

Q: The second and ninth terms of an arithmetic sequence 
are 2 and 30, respectively. What is the fiftieth term?

# Instruction:
## Recall relevant examples:
## Solve the initial problem:

# Relevant examples:
Q: In an arithmetic sequence, the first term is 3 and the 

A: To find the tenth term, we can use the formula for the 
common difference is 4. What is the tenth term?

nth term of the sequence ... So the tenth term is 39. ...

# Solve the initial problem:
We can use the formula for the nth term of an arithmetic 
sequence a_n = a_1 + (n-1)d. We are given the values of 
a_2 and a_9 ... So the fiftieth term is 194.

Figure 1: Illustration of LLM analogical reasoning in
Yasunaga et al. (2024). LLMs are prompted to self-
generate relevant examples as context before solving
the new problem.

whereas irrelevant ones are rarely beneficial and 043

can even be distracting (Gentner and Smith, 2012). 044

For instance, when faced with a novel math prob- 045

lem about determinants (e.g., calculating the value 046

of a given fourth-order determinant), humans can 047

resolve this by reflecting upon the methodology 048

employed to ascertain the value of a third-order 049

determinant, whereas biological knowledge (e.g., 050

how the human body regulates its temperature) can 051

generally be considered irrelevant. 052

With the recent advancements in scaling up 053

model size and data, LLMs have demonstrated 054

impressive zero-shot and few-shot performance 055

across various reasoning tasks, especially, through 056

advanced prompting methods like chain-of-thought 057

(CoT) (Wei et al., 2022). Compared to common ap- 058

proaches such as zero or few-shot CoT (Zhou et al., 059

2022; Kojima et al., 2022; Zhang et al., 2023a), 060

Yasunaga et al. (2024) introduce LLM analogical 061

reasoning, i.e., LLMs self-generate examples rel- 062

evant to the query as context to better solve new 063

problems; see Fig. 1 for an example. However, it 064

remains unclear whether relevance is the key to 065

eliciting such capability in LLMs. While several 066
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studies explore the influence of the relevance of067

demonstrations in in-context learning (ICL) and068

CoT (Liu et al., 2022; Kim et al., 2022; Lyu et al.,069

2023; Chen et al., 2023; Yang et al., 2023; Wang070

et al., 2023a; Alkhamissi et al., 2023; Yasunaga071

et al., 2024; Luo et al., 2024), none of them in-072

vestigate whether self-generated relevant examples073

consistently outperform irrelevant ones in LLM074

analogical reasoning.075

In this paper, to systematically assess the capa-076

bility of LLMs to perform analogical reasoning,077

we conduct a series of ablation experiments on a078

variety of reasoning tasks including problems from079

GSM8K (Cobbe et al., 2021), MATH (Hendrycks080

et al., 2021), and BIG-Bench Hard (BBH) (Suz-081

gun et al., 2022). Furthermore, we evaluate the082

generalizability of our findings to other reasoning083

tasks, e.g., GPQA (Rein et al., 2024), in Section 4.3.084

With extensive experiments, we aim to address the085

following two research questions:086

• Q1. Are self-generated relevant examples more087

beneficial to LLMs than random ones?088

• Q2. If not, what is the pivotal factor for LLMs’089

performance in analogical reasoning?090

To answer these questions, we empirically ana-091

lyze the analogical reasoning abilities of GPT-3.5092

(turbo), GPT-4o-mini, the Llama series (Touvron093

et al., 2023), and Qwen 2.5 (Yang et al., 2024) mod-094

els. Surprisingly, experimental results show that095

prompting LLMs to self-generate random exam-096

ples can achieve comparable or even better perfor-097

mance on certain tasks which is not in line with098

the key claim of analogical reasoning in Gentner099

and Smith (2012), indicating that LLMs cannot100

always perform analogical reasoning. As for Q2,101

we point out through controlled experiments that102

the key factor is the accuracy of self-generated ex-103

amples. Informed by these findings, we design two104

approaches that can outperform existing methods105

with significantly reduced inference costs. Specif-106

ically, we ask LLMs to randomly generate a few107

problems and manually verify their correctness,108

then use this fixed set of problems as in-context109

learning demonstrations for all test samples. Con-110

sistent observations across different model types111

and scales consolidate the conclusions. We sum-112

marize the major contributions of our work below:113

• To the best of our knowledge, we, for the first114

time, extensively assess the ability of LLMs to115

perform analogical reasoning and explore their116

counterintuitive behavior on certain tasks. 117

• With extensive experiments and analysis, we 118

demonstrate the effectiveness and limitations of 119

different types of self-generated contexts. 120

• Building on the findings, we propose two novel 121

ICL-based approaches that improve performance 122

while significantly reducing inference costs. 123

2 Related Work 124

This work mainly explores whether LLMs can truly 125

perform analogical reasoning. In light of this, we 126

review two lines of research that form the basis of 127

this work: chain-of-thought prompting and LLM 128

analogical reasoning. 129

2.1 Chain-of-Thought Prompting 130

Chain-of-thought (CoT) prompting induces LLMs 131

to generate intermediate reasoning steps before gen- 132

erating the final answer (Wei et al., 2022), greatly 133

improving the reasoning capabilities of LLMs. Typ- 134

ical CoT prompting approaches include few-shot 135

CoT (Wei et al., 2022; Zhou et al., 2022; Wang 136

et al., 2022b; Li et al., 2022; Wang et al., 2022a), 137

taking several labeled demonstrations of the reason- 138

ing process, and zero-shot CoT, comprising only 139

instructions like “Let’s think step by step” (Ko- 140

jima et al., 2022; Zelikman et al., 2022; Zhang 141

et al., 2023a). Other ongoing research on CoT 142

has also explored (i) optimizing the demonstration 143

selection (Fu et al., 2022; Li and Qiu, 2023; Qin 144

et al., 2024), (ii) optimizing the quality of reason- 145

ing chains (Khot et al., 2022; Chen et al., 2022; 146

Shinn et al., 2023; Besta et al., 2024), and (iii) CoT 147

in smaller models (Magister et al., 2022; Ho et al., 148

2022; Fu et al., 2023; Ranaldi and Freitas, 2024). 149

2.2 LLM Analogical Reasoning 150

While few-shot CoT can provide more detailed 151

reasoning guidance, it requires labeled examples 152

which can be unavailable for a new task. To tackle 153

this problem, Yasunaga et al. (2024) propose ana- 154

logical prompting to guide LLMs to self-generate 155

relevant exemplars as few-shot demonstrations, 156

which is similar to analogical reasoning, i.e., hu- 157

mans can address new problems by drawing anal- 158

ogy from relevant past experience (Vosniadou and 159

Ortony, 1989; Holyoak, 2012). LBS3 (Luo et al., 160

2024) explores curriculum learning which can bet- 161

ter reflect human learning habits. In this work, we 162

step forward to explore the intrinsic principle of 163

LLM analogical reasoning. Specifically, we aim 164
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Prompt: self-generate relevant examples
Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to 
solve the initial problem.

# Initial Problem: [The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:
Offer five diverse examples of math problems that are relevant or analogous to the initial problem. For each problem, elaborate on the solution and 
conclude with the ultimate answer (enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random examples
Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to 
solve the initial problem.

# Initial Problem: [The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of math problems. For each problem, elaborate on the solution and conclude with the ultimate answer 
(enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 2: Example prompts for GSM8K (mathematical reasoning). Top: The original prompt used in Yasunaga et al.
(2024) for self-generating relevant math problems. Bottom: The prompt designed for self-generating random math
problems. We mark the differences between these two prompts in blue and green respectively.

to investigate whether LLMs can authentically ex-165

hibit such reasoning capabilities and determine the166

extent to which the relevance of self-generated ex-167

amples contributes to enhancing this process.168

3 Methodology169

Our analysis is based on the analogical prompt-170

ing approach outlined in Yasunaga et al. (2024).171

Specifically, for a given target problem x, analogi-172

cal prompting introduces instructions like:173

# Problem: [x]174
# Relevant problems: Recall five relevant and
diverse problems. For each problem, describe
it and explain the solution.

175

# Solve the initial problem:176

The goal is to induce LLMs to self-generate rel-177

evant examples, aiding them to solve the target178

problem via in-context learning. To ensure better179

performance and efficiency, several key technical180

decisions are made in Yasunaga et al. (2024):181

• The self-generated examples should be relevant182

and diverse, achieved through a specially de-183

signed instruction.184

• Generate relevant problems and the solution to185

the initial problem in one pass.186

• 3 to 5 self-generated examples perform the best.187

In this work, we leverage similar prompts1 to 188

guide LLMs to generate different types of irrele- 189

vant examples as context; see Fig. 2 for example 190

prompts: 191

• N/A: generate problems that are N/A (not appli- 192

cable) to the initial problem. 193

• Randomsame: randomly generate examples of the 194

same problem type (e.g., math). 195

• Randomdiff: randomly generate examples of dif- 196

ferent problem types (e.g., any type except math). 197

• Randombio: randomly generate biological prob- 198

lems. 199

Yasunaga et al. (2024) demonstrate that self- 200

generating relevant examples can consistently out- 201

perform zero-shot CoT and few-shot CoT (hand- 202

crafted examples or retrieved top-k most similar 203

training samples) on different tasks. Therefore, 204

we do not include these two methods in our work. 205

Interested readers can refer to the corresponding 206

results and analysis in Yasunaga et al. (2024). In 207

addition, we show prompts for different methods 208

on all datasets in Appendix A.1. 209

1Since our work aims to comprehensively explore and
analyze the intrinsic principle of LLM analogical reasoning
proposed in Yasunaga et al. (2024), we should follow the
original design of the instructions to have a fair comparison
and reliable analysis.
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4 Experiment210

4.1 Experimental Setup211

We construct the evaluation suite based on diverse212

reasoning-intensive tasks, including mathematical213

reasoning and other reasoning (e.g., logical and214

temporal reasoning) tasks:215

• Mathematical reasoning. We work with two216

commonly used datasets, GSM8K (Cobbe et al.,217

2021) and MATH (Hendrycks et al., 2021). For218

each dataset, we randomly sample 500 examples219

from the original test set and run experiments220

three times with different random seeds (resulting221

in different test samples).222

• Other reasoning. Following Yasunaga et al.223

(2024), we evaluate five reasoning tasks in BIG-224

Bench Hard (BBH) (Suzgun et al., 2022): tem-225

poral sequences (temporal reasoning), logical de-226

duction five objects and reasoning about colored227

objects (logical reasoning), formal fallacies (de-228

ductive reasoning) and word sorting (symbolic229

reasoning). For each task, we use all test samples230

for evaluation and run experiments three times231

with different random seeds.232

We mainly use GPT-3.5 (gpt-3.5-turbo) as the233

LLM (see Appendix A.3 for more results with GPT-234

4o-mini) and obtain all outputs from it with the235

temperature set to 0. We ask the LLM to self-236

generate 5 examples for GSM8K, 3 examples for237

MATH and BBH following Yasunaga et al. (2024).238

4.2 Main Results239

We now address the research questions asked in §1240

with empirical results.241

Q1. Are self-generated relevant examples more bene-

ficial to LLMs than random ones?

The results averaged over all random seeds are242

reported in Table 1 and Table 2; more detailed243

results for every seed are shown in Appendix A.2.244

• Self-generated relevant examples achieve the245

best average performance on BBH. From the246

results in Table 1, we can observe that the superi-247

ority of self-generated relevant examples is empiri-248

cally substantiated on BBH. Specifically, using rel-249

evant examples, denoted by ‘relevant’, outperforms250

other approaches on temporal and logical reason-251

ing tasks. While it performs worse than ‘N/A’ on252

deductive and symbolical reasoning, it can still im-253

Level 1

Level 2

Level 3Level 4

Level 5
73.2

75.4

77.6

79.8

49.6
51.2

52.8
54.4

38.4

39.8

41.2

42.6

25.2

26.4

27.6

28.8

14.8
15.6

16.4
17.2

Relevant
N/A
Random (same)
Random (diff)
Random (bio)

Figure 3: Comparison of all methods at different diffi-
culty levels on MATH. Level 1 represents the easiest
and level 5 is the hardest. ‘relevant’ clearly performs
worse than other approaches at all difficulty levels.

prove the accuracy by 1.3% on average compared 254

to ‘N/A’. 255

However, the results on mathematical reasoning 256

tasks are quite counterintuitive as described below: 257

• Relevant examples do not guarantee better 258

performance. Different from BBH, all types of 259

self-generated irrelevant examples consistently out- 260

perform relevant ones on both mathematical rea- 261

soning datasets, showing that LLMs cannot yet per- 262

form analogical reasoning on these tasks. Interest- 263

ingly, when we use randomly generated biological 264

examples (e.g., how the process of photosynthe- 265

sis occurs in plants), they can yield about 2.5% 266

better results on average compared to generating 267

relevant math problems. Besides, ‘N/A’ achieves 268

the best average result as it is the second-best on 269

both datasets. 270

Problems in MATH span various subjects and 271

difficulty levels. To investigate whether the infe- 272

rior performance of relevant examples on MATH 273

is accidentally caused by certain categories, we fur- 274

ther report the accuracy across different subjects 275

and difficulty levels in Table 3 and Fig. 3. The 276

consistent performance gap between ‘relevant’ and 277

other methods across different problem categories 278

demonstrates the inherent flaws of relevant exam- 279

ples, indicating that mathematical reasoning tasks 280

exhibit different analogical reasoning paradigms 281

from BBH. 282

It might present challenges to prompt LLMs to 283

accurately generate specific types of demonstra- 284

tions. Therefore, given the unexpected results on 285

mathematical reasoning tasks, one may wonder: 286

Q1-1. Are self-generated examples really relevant or

irrelevant to the query?
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Method Temporal
sequences

Logical deduction
five objects

Reasoning about
colored objects

Formal
fallacies

Word
sorting Average

Relevant 60.0 51.2 76.7 51.2 76.9 63.2

N/A 57.5 45.3 75.5 53.3 77.7 61.9
Randomsame 53.1 48.8 73.5 52.4 74.1 60.4
Randomdiff 44.3 44.8 72.4 51.2 69.2 56.4
Randombio 57.1 49.5 76.1 50.8 74.9 61.7

Table 1: Accuracy (%) of different methods on five reasoning tasks in BBH. Bold indicates the best results. Self-
generated relevant examples achieve the best average performance. Detailed results for different seeds are reported
in Appendix A.2.

Method Task

GSM8K MATH Average

Relevant 71.5 33.3 52.4

N/A 75.5 36.1 55.8
Randomsame 75.1 36.3 55.7
Randomdiff 76.3 34.1 55.2
Randombio 75.3 34.6 54.9

Table 2: Accuracy (%) of different methods on two
mathematical reasoning tasks. Self-generated irrele-
vant examples are consistently better than relevant ones.
Table 13 in Appendix A.2 reports detailed results for
different seeds.

To quantitatively measure the relevance between287

the generated examples and the query, we com-288

pute the average cosine similarity between them.289

Following Zhang et al. (2023a), we use the sen-290

tence transformer (Reimers and Gurevych, 2019)291

to encode all samples. For each method, the re-292

ported result is averaged across three seeds (see293

Appendix A.4 for the decomposition of relevance).294

As observed from Table 4, relevant examples295

are much more semantically similar to the query296

than irrelevant ones and the relevance score of ‘rel-297

evant’ is more biased towards ‘oracle’ rather than298

‘random’ or ‘N/A’, demonstrating that LLMs in-299

deed follow instructions to generate specific types300

of demonstrations. Furthermore, we calculate the301

average similarity score between self-generated rel-302

evant examples and queries for BBH (0.46), which303

is slightly lower than the score of mathematical rea-304

soning tasks (0.48). This result demonstrates that305

the difference in analogical reasoning performance306

between BBH (Table 1) and mathematical reason-307

ing (Table 2) is not because LLMs can generate308

more relevant examples for BBH.309

We provide a case study in Table 6 to delve310

deeper into the demonstrations of different meth-311

ods. As we can notice, the example generated by312

‘relevant’ is more related to the query as they both313

involve the mathematical concept ‘number bases’. 314

In contrast, examples such as ‘What is the value of 315

x in the equation 2x + 5 = 10?’ (N/A) or ‘How 316

do you bake chocolate chip cookies?’ (Randomdiff) 317

are less relevant to the query. This comparison 318

highlights once again that relevance may not be the 319

key factor for analogical reasoning performance on 320

mathematical reasoning tasks. To understand bet- 321

ter the underlying reasons for the counterintuitive 322

results, we then ask the following question: 323

Q2. If relevance is not the key factor, what is more

important for the accuracy of analogical reasoning?

Looking back at Table 6, an interesting obser- 324

vation is that the self-generated relevant example 325

appears to be more difficult to solve than the irrel- 326

evant ones, regardless of whether they are math 327

problems or not. Consequently, the accuracy of 328

relevant examples may be lower. To verify this, we 329

conduct a pilot experiment on MATH. Specifically, 330

we randomly select 50 samples for different types 331

of generated math problems, i.e., Relevant, N/A 332

and Randomsame, and manually evaluate their ac- 333

curacy. We exclude other methods as it is difficult 334

to define the ‘accuracy’ of the examples they gen- 335

erate. From the results in Table 5, we can observe 336

that while the examples generated by ‘relevant’ are 337

more related to the test query, they are less accu- 338

rate, raising the question whether the performance 339

of different approaches on mathematical reasoning 340

tasks is strongly correlated with the accuracy of 341

self-generated examples. 342

Proxy Approaches However, as the accuracy of 343

the examples located at the output cannot be di- 344

rectly controlled, we meticulously design a vari- 345

ant called ICL, which extracts the generated ex- 346

amples from the model output as in-context learn- 347

ing (ICL) demonstrations and combines them with 348

the query as input to LLMs, as a proxy for the 349
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Method Precalculus
Intermediate

Algebra
Algebra Prealgebra

Counting &
Probability Geometry

Number
Theory

Relevant 10.4 9.8 51.8 56.8 22.1 24.2 37.0

N/A 9.1 15.7 55.5 61.0 28.7 25.8 34.2
Randomsame 12.3 17.6 54.4 60.6 25.4 25.8 34.9
Randomdiff 13.0 14.1 52.7 56.8 26.2 24.2 33.6
Randombio 13.0 12.2 53.0 59.2 28.7 25.8 32.2

Table 3: Accuracy (%) across different subjects in the MATH dataset. Self-generated irrelevant examples outperform
relevant ones on 6 out of 7 subjects.

Input

Output

Randomly recall five examples of math problems. Note that your problems should be distinct from each other (e.g., involving 
different numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Q: If John has 5 apples and he buys 8 more, how many apples does he have in total?
A: To find the total number of apples John has, we add the number of apples he initially has to the number of apples he buys. 
So, we calculate 5 + 8 = 13. Therefore, John has \boxed{13} apples in total.

Q: Find the derivative of the function f(x) = 3x^2 + 2x - 5.
A: To find the derivative of f(x), we apply the power rule to each term. The derivative of 3x^2 is 6x, the derivative of 2x is 2, 
and the derivative of a constant -5 is 0. Therefore, the derivative of f(x) is f'(x) = 6x + 2. So, the derivative is \boxed{6x + 2}.

...

Figure 4: Example prompts and outputs for randomly generating math problems. We manually verify the answers
to ensure the correctness of the generated examples.

Method GSM8K MATH Average

Relevant 0.54 0.41 0.48

N/A 0.19 0.28 0.24
Randomsame 0.30 0.20 0.25
Randomdiff 0.15 0.10 0.13
Randombio 0.06 0.11 0.09

Oracle 0.65 0.63 0.64

Table 4: Average relevance score (semantic similarity)
between self-generated examples and the query. ‘Oracle’
stands for the average similarity score between the query
and k most similar training samples (k is the number of
self-generated examples).

Relevant N/A Randomsame

Accuracy 62.0 72.0 86.0

Table 5: Accuracy (%) of self-generated examples on
the MATH dataset. The examples generated by ‘rele-
vant’ are less accurate.

original method. We also consider the following350

two variants: (a) GPT4-Calibration which replaces351

the answers of demonstrations in ICL with GPT4-352

generated answers, and (b) Random changes the353

answers of demonstrations in ICL to random num-354

bers. Our manual verification confirmed that GPT4-355

generated answers were mostly accurate. We con-356

duct this experiment on GSM8K and MATH with357

GPT-3.5 as the LLM reasoner.358

From the results of different variants reported 359

in Table 7, we can see that increasing the accu- 360

racy of generated examples can indeed improve 361

the performance: GPT4-Calibration consistently 362

outperforms ICL by incorporating more accurate 363

answers. In contrast, random always performs the 364

worst among all variants. Therefore, the key factor 365

influencing the performance on mathematical rea- 366

soning is the accuracy of self-generated examples 367

rather than their relevance. 368

It is worthwhile to note that while several pa- 369

pers explore how the correctness of demonstration 370

answers influences in-context learning (Min et al., 371

2022; Yoo et al., 2022; Wei et al., 2023; Pan et al., 372

2023; Kossen et al., 2024), our work differs from 373

them in the following aspects: (i) The examples in 374

our work are generated by LLMs rather than real 375

data from NLP benchmarks, i.e., randomly sampled 376

from the training set. In addition, there are ratio- 377

nales (CoT) in self-generated examples, which are 378

different from the input-label format of in-context 379

learning investigated in these papers; and (ii) These 380

studies mainly evaluate in-context learning on dif- 381

ferent classification or multi-choice datasets, i.e., 382

the output space is a finite set. In contrast, we are 383

evaluating mathematical reasoning tasks, where the 384

output space is infinite. 385

Given the above findings, a natural question is: 386
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Query: For how many ordered pairs (A,B) where A and B are positive integers is AAA7 +BBB7 = 6667?

Relevant
In a certain base, the sum of two three-digit numbers is 777. If the digits of one of the numbers are
reversed, the sum becomes 888. What is the base of this number system?

N/A What is the value of x in the equation 2x + 5 = 10?

Randomsame
In a bag, there are 5 red marbles, 3 blue marbles, and 2 green marbles. If you randomly pick 2 marbles
from the bag without replacement, what is the probability that both marbles are red?

Randomdiff How do you bake chocolate chip cookies?
Randombio How does the process of photosynthesis occur in plants?
Oracle Find the number of ordered pairs (a, b) of complex numbers such that a3b5 = a

7
b
2
= 1.

Table 6: Demonstration examples of different methods on the MATH dataset. The example generated by ‘relevant’
is more related to the query than other examples generated by ‘N/A’ or ‘random’.

Variant GSM8K MATH

Relevant N/A Randomsame Relevant N/A Randomsame

ICL 71.2 73.8 72.0 37.0 39.8 39.2
GPT4-Calibration 75.2 75.6 75.6 44.4 41.2 40.0
Random 70.0 72.0 68.4 36.0 38.0 37.8

Table 7: Accuracy (%) of different variants on GSM8K and MATH. When using GPT4-generated answers (mostly
accurate), ‘GPT4-Calibration’ consistently outperforms ‘ICL’ for all methods. In contrast, ‘random’ always performs
worse than ‘ICL’.

Method Task

GSM8K MATH Average

Relevant 71.5 33.3 52.4
N/A 75.5 36.1 55.8
Randomsame 75.1 36.3 55.7
Randomdiff 76.3 34.1 55.2
Randombio 75.3 34.6 54.9

ICLmath 75.7 36.8 56.3
ICLbio 77.9 34.9 56.4

Table 8: Comparison of different methods on two math-
ematical reasoning tasks.

Q2-1. Can we ask the LLM to randomly generate a

few math or biological problems and manually verify

their correctness, then use this fixed set of problems

as ICL demonstrations for all test queries?

We refer to these two methods as ICLmath and387

ICLbio, and conduct experiments with them on388

GSM8K and MATH (see Fig. 4 for example389

prompts and outputs for generating math problems).390

Detailed prompts and outputs for different methods391

are provided in Appendix A.5. Following the origi-392

nal setting, we ask the LLM to randomly generate393

5 examples for GSM8K and 3 examples for MATH.394

As observed from Table 8, ensuring the accuracy395

of self-generated examples does lead to better per-396

formance regardless of the problem type. ICLmath397

and ICLbio achieve similar average performance,398

once again demonstrating that relevance does not399

matter (see Appendix A.6 for more analysis on rel-400

evance). Moreover, both ICL variants only need401

to generate examples once, which significantly re- 402

duces the inference cost and further demonstrates 403

their superiority. 404

4.3 Further Analysis 405

Difference from Previous Work Apart from the 406

comprehensive analysis, we have designed two 407

novel ICL-based approaches that are completely 408

different from the one in Yasunaga et al. (2024) 409

(Q2-1). The difference lies mainly in the following 410

two aspects: (i) The key claim in Yasunaga et al. 411

(2024) is that we should guide the model to self- 412

generate relevant examples as context. Motivated 413

by the analysis and findings in our work (Q1 and 414

Q2), our methods focus on ensuring the accuracy of 415

self-generated examples rather than their relevance, 416

which leads to better performance regardless of 417

the problem type. (ii) As we have demonstrated 418

that the relevance of self-generated examples does 419

not matter, there is no need to generate relevant 420

examples for each test query (the original method 421

in Yasunaga et al. (2024)). In contrast, our meth- 422

ods use a fixed set of examples for all test queries, 423

which significantly reduces the inference cost. 424

Generalization to Open-Source LLMs Our ex- 425

periments and analysis so far used GPT-3.5 as the 426

LLM, which is closed-source and gets updated over 427

time. To verify whether the observations and con- 428

clusions are consistent across different models and 429

additionally for reproducibility, we extend the ex- 430

periments to Llama-2-Chat (Touvron et al., 2023). 431
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Method Relevant N/A Randomsame Randomdiff Randombio ICLmath ICLbio

Llama-2-70b-Chat 45.1 51.4 50.9 54.3 47.1 55.5 56.1
Llama-3-8B-Instruct 69.5 72.3 72.6 74.1 73.5 75.8 76.8
Llama-3.1-8B-Instruct 74.8 77.3 78.4 78.8 77.6 80.2 81.0
Qwen2.5-14B-Instruct 86.5 89.1 88.2 89.7 88.4 91.1 90.6

Table 9: Accuracy (%) of different methods on GSM8K using Llama-2-70b-Chat, Llama-3-8B-Instruct, Llama-
3.1-8B-Instruct and Qwen2.5-14B-Instruct models. Self-generated relevant examples always perform worse than
irrelevant ones and both ICL variants outperform other approaches.

Variant Method

Relevant N/A Randomsame

ICL 56.2 58.2 58.6
GPT4-Calibration 60.8 61.0 60.8
Random 53.2 54.0 59.6

Table 10: Accuracy (%) of different variants on GSM8K
using Llama-2-70b-Chat. ‘GPT4-Calibration’ consis-
tently performs better than ‘ICL’ and ‘random’.

Specifically, we use vLLM to serve a Llama-2-70b-432

Chat model for experiments and report the results433

of different methods/variants on GSM8K in Table 9434

and Table 10. We can draw similar observations:435

(i) self-generated relevant examples underperform436

all types of irrelevant ones, (ii) ‘GPT4-Calibration’437

consistently outperforms the other two variants,438

and (iii) ICLmath and ICLbio perform better than439

other approaches, demonstrating that the conclu-440

sions can be generalized to different models.441

We further conduct experiments with Llama-3-442

8B-Instruct, Llama-3.1-8B-Instruct (Dubey et al.,443

2024) and Qwen2.5-14B-Instruct (Yang et al.,444

2024). The results reported in Table 9 demonstrate445

the generalizability of the conclusions across dif-446

ferent model types and scales. In addition, since447

investigating analogical reasoning requires LLMs448

to self-generate different types of problems, we449

only experiment with instruction-tuned LLMs to450

ensure that they can follow the given instructions.451

Generalization to Different Tasks To test the452

generalizability of our findings beyond the math453

domain, we further conduct experiments on Com-454

monsenseQA (commonsense reasoning) (Talmor455

et al., 2019), MBPP (code generation) (Austin et al.,456

2021) and GPQA (question answering of very hard457

questions) (Rein et al., 2024). The comparison458

between different methods is shown in Table 11,459

which demonstrates that our findings can be gener-460

alized to different types of tasks.461

Comparison Beyond Analogical Reasoning We462

consider two widely used methods Self-consistency463

(Wang et al., 2023b) and Auto-CoT (Zhang et al.,464

Dataset Relevant N/A Randomsame Randomdiff Randombio ICLsame ICLbio

CSQA 70.8 73.4 71.2 72.9 72.6 74.6 74.1
MBPP 58.2 59.8 60.6 59.6 60.2 62.0 61.4
GPQA 31.6 34.4 33.7 33.1 32.6 35.8 36.2

Table 11: Accuracy (%) of different methods on Com-
monsenseQA, MBPP, and GPQA. ‘same’ in ICLsame
stands for ‘generating correct problems of the same
type as the dataset’.

Relevant Self-consistency Auto-CoT ICLmath ICLbio

74.8 77.6 75.9 80.2 81.0

Table 12: Comparison between our designed methods
and baselines beyond analogical reasoning.

2023b), and compare our designed approaches with 465

them on GSM8K using Llama-3.1-8B-Instruct. For 466

Self-consistency, we employ 5 decoding paths for 467

majority voting. The results reported in Table 12 468

demonstrate that our methods can also outperform 469

other baselines beyond analogical reasoning. 470

In addition, we show the robustness to prompt 471

format, the effect of the number of demonstrations, 472

more analysis on ICLmath and ICLbio, the results of 473

repeating problems and explicitly controlling the 474

semantics of generated examples in Appendix A.7 475

∼ A.11, respectively. 476

5 Conclusion 477

In this work, we have systematically assessed the 478

capability of LLMs to perform analogical reason- 479

ing. We have identified key research questions and 480

empirically analyzed a representative set of LLMs 481

on a diverse collection of reasoning tasks. Exten- 482

sive experimental results and analysis show that 483

LLMs cannot always perform analogical reason- 484

ing and the key influencing factor is the accuracy 485

of self-generated examples rather than their rele- 486

vance. Given these findings, we have designed two 487

ICL-based approaches with better performance and 488

significantly reduced inference costs. In the future, 489

we would like to investigate additional analogical 490

prompting methods to generate more accurate ex- 491

amples. 492
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Limitations493

This work has several limitations. First, due to the494

inference cost of ChatGPT2, we conduct experi-495

ments on subsets of the test data for mathematical496

reasoning tasks. Besides, we include 6 datasets re-497

quiring different reasoning capabilities in this work.498

A further improvement could be to explore more499

diverse types of tasks.500
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A Appendix758

A.1 Prompts for Different Methods759

The prompts for different methods on all datasets760

are shown in Fig. 5 ∼ Fig. 7.761

A.2 Detailed Results for Different Random 762

Seeds 763

We report detailed results for different random 764

seeds in Table 13 ∼ Table 14. 765

A.3 Results with GPT-4o-mini 766

We conduct experiments with GPT-4o-mini on 767

GSM8K and present the results in Table 15, verify- 768

ing the generalizability of our findings to GPT-4o- 769

mini. 770

A.4 Decomposition of Relevance 771

The relevance can be further separated into seman- 772

tic relevance and procedure (reasoning steps) rel- 773

evance. Our analysis in Q1-1 has demonstrated 774

that semantic relevance does not matter. To in- 775

vestigate the importance of procedure relevance, 776

we perform a similar analysis. Specifically, we 777

compute the average cosine similarity between the 778

rationales of the generated examples and the ratio- 779

nale of the query to quantitatively measure their 780

relevance. The results on GSM8K are reported 781

in Table 16, which highlight that procedure rele- 782

vance is not the key factor for analogical reasoning 783

performance on mathematical reasoning tasks. 784

A.5 Prompts and Outputs for Example 785

Generation 786

We show detailed prompts and outputs for ran- 787

domly generating math and biological problems 788

in Fig. 8 and Fig. 9, respectively. 789

A.6 Guided Problem Generation 790

In addition to random problem generation in §4.2- 791

Q2-1, we further investigate guided problem gener- 792

ation. Specifically, we randomly select 5 training 793

samples to guide LLMs to self-generate relevant 794

math problems. We then manually verify their cor- 795

rectness and use this fixed set of problems as ICL 796

demonstrations for experiments. The performance 797

of this approach (56.1) is slightly lower than that of 798

ICLmath (56.3), verifying that relevance is not the 799

key influencing factor. 800

A.7 Robustness to Prompt Format 801

To verify the robustness of different methods 802

to prompt format, we experiment with two new 803

prompts paraphrased from the original one by GPT- 804

4 and present the results on GSM8K in Table 17. 805

We also observe better performance with irrelevant 806

examples than relevant ones, showing the robust- 807

ness. 808
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Seed GSM8K MATH

Relevant N/A Randomsame Randomdiff Randombio Relevant N/A Randomsame Randomdiff Randombio

42 71.8 76.6 73.2 74.0 74.0 37.4 42.2 41.6 39.0 39.2

100 71.2 75.2 75.2 75.8 74.8 29.0 30.6 32.6 29.4 31.2

1000 71.4 74.8 77.0 79.2 77.0 33.6 35.6 34.6 34.0 33.4

Average 71.5±0.3 75.5±0.8 75.1±1.5 76.3±2.1 75.3±1.2 33.3±3.4 36.1±4.7 36.3±3.8 34.1±3.9 34.6±3.3

Table 13: Accuracy (%) of all methods with different random seeds on two mathematical reasoning tasks.

Seed Temporal
sequences

Logical deduction
five objects

Reasoning about
colored objects

Formal
fallacies

Word
sorting Average

42

Relevant 58.0 52.8 76.0 50.4 77.2 62.9
N/A 56.4 44.8 77.6 54.0 76.8 61.9
Randomsame 52.4 48.8 74.8 51.6 72.8 60.1
Randomdiff 43.2 46.8 74.0 52.4 67.6 56.8
Randombio 56.8 52.0 74.0 52.0 76.4 62.2

100

Relevant 58.4 50.8 78.4 51.2 76.8 63.1
N/A 55.2 46.0 74.8 52.8 79.2 61.6
Randomsame 50.8 48.4 73.6 53.2 75.2 60.2
Randomdiff 46.4 46.8 72.8 50.0 70.4 57.3
Randombio 58.0 48.4 78.4 51.2 73.6 61.9

1000

Relevant 63.6 50.0 75.6 52.0 76.8 63.6
N/A 60.8 45.2 74.0 53.2 77.2 62.1
Randomsame 56.0 49.2 72.0 52.4 74.4 60.8
Randomdiff 43.2 40.8 70.4 51.2 69.6 55.0
Randombio 56.4 48.0 76.0 49.2 74.8 60.9

Average

Relevant 60.0±2.6 51.2±1.2 76.7±1.2 51.2±0.7 76.9±0.2 63.2±0.3
N/A 57.5±2.4 45.3±0.5 75.5±1.5 53.3±0.5 77.7±1.0 61.9±0.2
Randomsame 53.1±2.1 48.8±0.3 73.5±1.1 52.4±0.6 74.1±1.0 60.4±0.3
Randomdiff 44.3±1.5 44.8±2.8 72.4±1.5 51.2±1.0 69.2±1.2 56.4±1.0
Randombio 57.1±0.7 49.5±1.8 76.1±1.8 50.8±1.2 74.9±1.1 61.7±0.6

Table 14: Accuracy (%) of all methods with different random seeds on BBH.

A.8 Different Numbers of Demonstrations809

While we mainly follow the setting in Yasunaga810

et al. (2024) to ask the LLM to generate k = 5811

examples for GSM8K, we further investigate the ef-812

fect of the number of demonstrations. Specifically,813

we conduct controlled experiments with k = 3 and814

report the results in Table 18. We can observe815

that irrelevant examples consistently outperform816

relevant ones across different numbers of demon-817

strations, emphasizing their effectiveness.818

A.9 More Analysis on ICLmath and ICLbio819

Our designed method ICLmath generates correct820

and relevant examples, and ICLbio generates cor-821

rect and irrelevant examples. From the results in822

Table 8, we can see that ICLmath and ICLbio achieve823

similar average performance, demonstrating that824

relevance does not matter.825

We further change the correct answers of the826

demonstrations in ICLmath and ICLbio to random 827

answers, obtaining ICLwrong
math and ICLwrong

bio . Obvi- 828

ously, ICLwrong
math generates incorrect and relevant 829

examples, and ICLwrong
bio generates incorrect and ir- 830

relevant examples. The comparison between these 831

four methods in Table 19 further supports our claim 832

that the key factor influencing the performance 833

on mathematical reasoning is the accuracy of self- 834

generated examples rather than their relevance. 835

A.10 Repeating Problems 836

While generating a few accurate problems as ICL 837

demonstrations can achieve better performance, a 838

bolder idea might be to generate one problem and 839

repeat it multiple times as few-shot demonstrations 840

for ICL. To investigate this, we randomly select a 841

generated math problem and repeat it to perform 842

ICL, denoted by ICLmath_repeat. From the results 843

shown in Table 20, we can see that ICLmath_repeat 844
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Method Relevant N/A Randomsame Randomdiff Randombio ICLmath ICLbio

GPT-4o-mini 90.7 91.9 92.6 92.3 93.2 94.2 94.5

Table 15: Accuracy (%) of different methods on GSM8K using GPT-4o-mini. Self-generated relevant examples
always underperform irrelevant ones and both ICL variants perform better than other approaches.

Relevant N/A Randomsame Randomdiff Randombio Oracle

GSM8K 0.50 0.16 0.28 0.19 0.08 0.62

Table 16: Procedure (reasoning steps) relevance be-
tween self-generated examples and the query.

Relevant N/A Randomsame Randomdiff Randombio

Prompt1 71.2 74.9 75.3 75.9 74.3
Prompt2 72.0 75.2 74.7 76.2 75.5

Table 17: Accuracy (%) of different methods with two
new prompts.

consistently performs worse than ICLmath on both845

datasets, indicating that the diversity of generated846

problems also matters.847

A.11 Explicit Semantic Control848

We explore explicitly controlling the semantics of849

generated examples (including both problems and850

reasoning paths) on GSM8K using Llama-3.1-8B-851

Instruct. Specifically, we investigate the following852

two approaches: (i) prompting the model to gen-853

erate semantically similar and correct examples,854

and (ii) prompting the model to generate semanti-855

cally different and correct examples. The results856

reported in Table 21 further verify the correctness857

of our conclusions.858

Number Relevant N/A Randomsame Randomdiff Randombio

3 73.1 77.3 75.0 75.3 75.5
5 71.5 75.5 75.1 76.3 75.3

Table 18: Accuracy (%) of all methods with different
numbers of demonstrations.

ICLmath ICLwrong
math ICLbio ICLwrong

bio

56.3 50.9 56.4 51.3

Table 19: Comparison between different ICL variants.

Method Task

GSM8K MATH Average

ICLmath 75.7 36.8 56.3
ICLmath_repeat 73.8 36.2 55.0

Table 20: Comparison of two ICL variants on the
GSM8K and MATH datasets.

Relevant N/A Randomsame Similar and Correct Different and Correct

74.8 77.3 78.4 80.3 80.6

Table 21: Accuracy (%) of different methods on
GSM8K using Llama-3.1-8B-Instruct.
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Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:
Offer five diverse examples of math problems that are relevant or analogous to the initial problem. For each problem, elaborate on the solution and conclude with the 
ultimate answer (enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate N/A examples

Your task is to tackle mathematical problems. When presented with a math problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## N/A Problems:
Offer five diverse examples of math problems that are n/a to the initial problem. For each problem, elaborate on the solution and conclude with the ultimate answer 
(enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of math problems. For each problem, elaborate on the solution and conclude with the ultimate answer (enclosed in \boxed{}). For 
each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random no-math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems (remember not to output math problems) as examples. 
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of any type, except math problems. For each problem, elaborate on the solution and conclude with the ultimate answer (enclosed in 
\boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random biological examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random biological problems (remember not to output math problems) as 
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:
Randomly offer five diverse examples of biological problems (remember not to output math problems). For each problem, elaborate on the solution and conclude with 
the ultimate answer (enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 5: Prompts for different methods on GSM8K.
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Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Relevant Problems:
Recall three examples of math problems that are relevant to the initial problem. Note that your problems should be distinct from each other and from the initial problem 
(e.g., involving different numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate N/A examples

Your task is to tackle mathematical problems. When presented with a math problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## N/A Problems:
Recall three examples of math problems that are n/a to the initial problem. Note that your problems should be distinct from each other and from the initial problem (e.g., 
involving different numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of math problems. Note that your problems should be distinct from each other and from the initial problem (e.g., involving different 
numbers and names). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random no-math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems (remember not to output math problems) as examples. 
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of any type, except math problems. Note that your problems should be distinct from each other and from the initial problem. For each 
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random biological examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random biological problems (remember not to output math problems) as 
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of biological problems (remember not to output math problems). Note that your problems should be distinct from each other and 
from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 6: Prompts for different methods on MATH.
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Prompt: self-generate relevant examples

Your task is to tackle reasoning problems. When presented with a problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Relevant Problems:
Recall three examples of problems that are relevant to the initial problem. Note that your problems must be distinct from each other and from the initial problem. For each 
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate N/A examples

Your task is to tackle reasoning problems. When presented with a problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## N/A Problems:
Recall three examples of problems that are n/a to the initial problem. Note that your problems must be distinct from each other and from the initial problem. For each 
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random reasoning examples

Your task is to tackle reasoning problems. When presented with a problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of reasoning problems. Note that your problems must be distinct from each other and from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random no-reasoning examples

Your task is to tackle reasoning problems. When presented with a problem, recall random problems (remember not to output reasoning problems) as examples. 
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of any type, except reasoning problems. Note that your problems must be distinct from each other and from the initial problem. For 
each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate random biological examples

Your task is to tackle reasoning problems. When presented with a problem, recall random biological problems (remember not to output reasoning problems) as 
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:
Randomly recall three examples of biological problems (remember not to output reasoning problems). Note that your problems must be distinct from each other and 
from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 7: Prompts for different methods on BBH.
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Input

Output

Randomly recall five examples of math problems. Note that your problems should be distinct from each other (e.g., involving different numbers and names). 
For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Q: If John has 5 apples and he buys 8 more, how many apples does he have in total?
A: To find the total number of apples John has, we add the number of apples he initially has to the number of apples he buys. So, we calculate 5 + 8 = 13. 
Therefore, John has \boxed{13} apples in total.

Q: Find the derivative of the function f(x) = 3x^2 + 2x - 5.
A: To find the derivative of f(x), we apply the power rule to each term. The derivative of 3x^2 is 6x, the derivative of 2x is 2, and the derivative of a constant 
-5 is 0. Therefore, the derivative of f(x) is f'(x) = 6x + 2. So, the derivative is \boxed{6x + 2}.

Q: Solve for x in the equation 2x - 4 = 10.
A: To solve for x, we first add 4 to both sides of the equation to get 2x = 14. Then, we divide both sides by 2 to isolate x, resulting in x = 7. Thus, the 
solution is \boxed{x = 7}.

Q: A rectangle has a length of 10 cm and a width of 4 cm. What is its area?
A: The area of a rectangle is found by multiplying its length by its width. Therefore, the area of this rectangle is 10 * 4 = 40 square centimeters. So, the area 
is \boxed{40}.

Q: A fair six-sided die is rolled. What is the probability of rolling a number greater than 4?
A: A six-sided die has numbers 1 through 6. The numbers greater than 4 are 5 and 6, which are 2 out of the 6 possible outcomes. Therefore, the probability 
of rolling a number greater than 4 is \frac{2}{6} = \frac{1}{3}. Thus, the probability is \boxed{\frac{1}{3}}.

Figure 8: Prompts and outputs for generating math problems.

Input

Output

Randomly recall five diverse examples of biological problems (remember not to output math problems). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Q: In a certain species of plant, the allele for red flowers (R) is dominant over the allele for white flowers (r). If two heterozygous plants are crossed, what is 
the probability that an offspring will have white flowers?
A: To solve this problem, we use a Punnett square to determine the genotypes of the offspring. The cross of two heterozygous plants Rr x Rr produces the 
following genotypes: RR, Rr, Rr, and rr. The probability of an offspring having white flowers rr is 1 out of 4, since only one genotype out of the four possible 
genotypes results in white flowers. Therefore, the probability is \boxed{\frac{1}{4}}.

Q: What is the principle behind the theory of natural selection as proposed by Charles Darwin?
A: The principle behind the theory of natural selection is that individuals within a species show variation in physical characteristics and behaviors. These 
variations can affect the individuals' ability to survive and reproduce in their environment. Individuals with traits that are better suited to their environment 
are more likely to survive and reproduce, passing on those advantageous traits to their offspring. Over time, this can lead to changes in the species as a 
whole. The ultimate answer is the \boxed{survival and reproduction of the fittest}.

Q: A small pond is introduced with 10 fish, and the fish population doubles every month. How many fish will there be in the pond after 6 months?
A: To find the fish population after 6 months, we use the formula for exponential growth: P = P_0 * 2^n, where P is the final population, P_0 is the initial 
population, and n is the number of time periods (months, in this case). Plugging in the values, we get P = 10 * 2^6. Calculating this gives P = 10 * 64 = 640. 
Therefore, there will be \boxed{640} fish in the pond after 6 months.

Q: What is the primary mechanism by which the human kidney concentrates urine?
A: The primary mechanism by which the human kidney concentrates urine is through the counter-current multiplier system in the loop of Henle. This 
system allows for the reabsorption of water and solutes from the filtrate back into the bloodstream, which concentrates the urine. The key to this process is 
the creation of a high osmolarity in the medullary interstitial fluid, which draws water out of the filtrate in the collecting ducts, concentrating the urine. The 
ultimate answer is the \boxed{counter-current multiplier system}.

Q: How do antibiotics kill bacteria?
A: Antibiotics can kill bacteria through several mechanisms, including inhibiting cell wall synthesis, disrupting protein synthesis, impairing nucleic acid 
synthesis, and interfering with metabolic pathways. The specific mechanism depends on the class of antibiotic. For example, penicillin disrupts the 
synthesis of the bacterial cell wall, leading to cell lysis and death. Therefore, the ultimate answer is by \boxed{inhibiting vital processes} specific to bacteria.

Figure 9: Prompts and outputs for generating biological problems.
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