
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Value Function Decomposition in Markov Recommendation
Process

Anonymous Author(s)

ABSTRACT
Recent advances in recommender systems have shown that user-
system interaction essentially formulates long-term optimization
problems, and online reinforcement learning can be adopted to im-
prove recommendation performance. The general solution frame-
work incorporates a value function that estimates the user’s ex-
pected cumulative rewards in the future and guides the training of
the recommendation policy. To avoid local maxima, the policy may
explore potential high-quality actions during inference to increase
the chance of finding better future rewards. To accommodate the
stepwise recommendation process, one widely adopted approach to
learning the value function is learning from the difference between
the values of two consecutive states of a user. However, we argue
that this paradigm involves an incorrect approximation in the sto-
chastic process. Specifically, between the current state and the next
state in each training sample, there exist two separate random fac-
tors from the stochastic policy and the uncertain user environment.
Original TD learning under these mixed random factors may result
in a suboptimal estimation of the long-term rewards. As a solution,
we show that these two factors can be separately approximated by
decomposing the original temporal difference loss. The disentan-
gled learning framework can achieve a more accurate estimation
with faster learning and improved robustness against action ex-
ploration. As empirical verification of our proposed method, we
conduct offline experiments with online simulated environments
built based on public datasets.

KEYWORDS
Recommender Systems, Reinforcement Learning, Markov Decision
Process
ACM Reference Format:
Anonymous Author(s). 2018. Value Function Decomposition in Markov
Recommendation Process. In Proceedings of (WWW ’25). ACM, New York,
NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recommender systems play a crucial role in enhancing user experi-
ence across a variety of online platforms such as e-commerce, news,
social media, and micro-video platforms. Their primary objective
is to filter and recommend content that aligns with users’ interests

A note.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, May, 2025, Sydney, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Magnitude of Exploration Magnitude of Exploration

Average Reward Min Reward

Figure 1: The proposed decomposition method on the RL
backbone (i.e. HAC) in KuaiRand dataset improves the over-
all performance and is more robust to exploration of recom-
mendation actions.

and preferences, improving user engagement with the platform.
Early studies considered this as a ranking problem and built col-
laborative filtering solutions [20, 21, 34] aimed at minimizing the
errors between item-wise labels and the ranking score prediction.
Later approaches found that sequential modeling [17, 18, 36] of user
histories can better capture the dynamics of user interest and offer
more accurate predictions of the future. In recent studies, many
recommendation scenarios have shown that the learning target
should also go beyond immediate feedback and extend to the future
influence, in which reinforcement learning (RL) methods [2, 49]
can further improve the long-term cumulative reward and achieve
state-of-the-art recommendation performance.

The fundamental idea behind RL-based recommendation meth-
ods is considering the user-system interaction sequence as aMarkov
Decision Process (MDP) [31, 32, 35] so that each recommendation
action only depends on the current user state and optimize the long-
term performance. Specifically, each context-aware user request
consists of the user‘s static profile features and dynamic interac-
tion history, which is later encoded as the user state. Between the
consecutive user states, the recommendation policy first takes the
current state as input and outputs a recommendation list (or item)
as the action, then the user environment receives this action and
generates user feedback that will determine the immediate reward
and the transition toward the next state. This interaction between
the policy and the user forms a full cycle in the Markov Recommen-
dation Process (MRP). Then the goal is usually formulated as the
maximization of the cumulative reward which represents the long-
term performance of the policy. In other words, RL-based methods
optimize the policy with the total effect in the future as a target label,
which is different from traditional learning-to-rank methods [27]
that only optimize the policy with immediate feedback. Then, the
key to effective guidance of the policy is finding an accurate value
function that approximates the expected long-term reward for sam-
pled actions in given states. To accommodate the stepwise samples

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, May, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

in recommendation problems and rapidly adapt the dynamic user
interests in the online learning environment, a temporal difference
(TD) learning technique is adopted [38, 49] that either minimizes
the error between the two consecutive state evaluation (denoted
as Value-based TD) or minimize that between the two consecu-
tive state-action pairs (denoted as action’s Quality-based TD), as
illustrated in Figure 2-a.

Though they are effective, we find that it is challenging to obtain
a stable and accurate value function in online RL due to the severe
exploration-exploitation trade-off [4, 10, 26] in recommender sys-
tems. On one hand, TD learning may achieve better value function
accuracy when the policy’s exploration of actions is restricted to a
small variance (which may work well in simple scenarios with a
small item candidate pool), but it also reduces the chance of finding
better actions and has a higher chance being trapped in local max-
ima. On the other hand, the policy may increase the magnitude of
action exploration to find potentially better policies, but this also
makes it harder for stable and accurate value function learning due
to the increased variance. In this paper, we argue that one of the key
reasons that limit the accuracy of the value function is the mixed
view of the two random factors in the MRP: the policy’s random
action exploration and the stochastic user environment. As
we will illustrate in section 3.2 and Appendix A, mixing the two
random factors would introduce a negative effect on stepwise TD
learning. As a consequence, the resulting value function becomes
suboptimal and limits the effectiveness of exploration.

To address the aforementioned limitations, we propose to de-
compose the standard TD learning paradigm of the value function
into two separate sub-problems with respect to each random fac-
tor, as shown in Figure 2-b. In the first sub-problem, our primary
focus is developing an accurate approximation of the user state’s
long-term utility, mitigating the influences from the random policy.
In contrast, the second sub-problem focuses on refining a precise
function for the state-action pair, which captures the recommenda-
tion actions’ effectiveness, excluding the influence of the inherent
randomness of the user environment. We show that the decom-
posed objectives bound the original TD learning objective, and the
exclusion of unrelated random factors potentially speeds up the
learning process. As empirical verification, we show the superiority
of our solution in finding better policies through online evaluation
of simulated environments. Meanwhile, the resulting framework
becomes more robust to action exploration as exemplified in Fig-
ure 1. In extreme cases where the policy “overexplores” the action
space, the proposed method can still effectively optimize the value
function while the baseline crashes in terms of recommendation
performance.

In summary, our contributions are as follows:

• We specify the challenge of suboptimal TD learning under
the mixed random factors between policy action explo-
ration and stochastic user environment.

• We propose a decomposed TD learning framework that sep-
arately addresses the two random factors and empirically
shows its superiority in online RL-based solution.

• We verify that the proposed decomposition technique pro-
vides more robust performance under action exploration

and a faster learning process across multiple TD-learning-
based methods.

2 RELATEDWORK AND PROBLEM
DEFINITION

2.1 Reinforcement Learning for
Recommendation

The RL-based recommendation system [1, 38, 49] operates within
the Markov Decision Process (MDP) framework, aiming to optimize
cumulative rewards which reflects the long-term user satisfaction.
While tabular-based methods [29] can optimize an evaluation ta-
ble in simple settings, they are constrained to a small fixed set of
state-action pairs. For larger action space and state space, studies
have found solutions with value-based methods [33, 39, 48, 51],
policy gradient methods [6, 7, 13, 14, 23, 42], and actor-critic meth-
ods [5, 43–46, 49, 50]. Among existing methods, the temporal differ-
ence (TD) technique [38] has beenwidely used to learn and optimize
long-term rewards due to its stepwise learning framework that well-
suits the recommendation task and online learning environment.
Our method also aligns with this paradigm. Despite the efficacy of
TD learning, reinforcement learning encounters new challenges
in accommodating recommender systems, including exploration
in combinatorial state/actions space [10, 16, 25, 26], dealing with
unstable user behavior [3, 8], addressing heterogeneous user feed-
back [5, 9], and managing multi-task learning [11, 28, 40].

Additionally, in the realm of general reinforcement learning [38],
there are several works that described possible alternatives for
TD learning [30, 37] in specific scenarios. One of the works that
is closer in methodology is the Dueling DQN [41]. It proposes a
way to decompose the 𝑄 function into a value function and advan-
tage function so that one can learn a 𝑉 function in the Q-learning
framework.

2.2 Problem Formulation
In this section, we present the Markov Recommendation Process
(MRP) for online RL. Assume a candidate pool of N items denoted by
I and assume a pre-defined reward function 𝑟 (·) for the observed
user feedback. Then, the MRP components are:

• S: the continuous representation space of the user state, and
each state 𝑠𝑡 encodes the user and context information upon the
recommendation request at step 𝑡 .

• A: the action space corresponds to the possible recommendation
lists. For simplicity, we consider the list of fixed size 𝐾 so the
action space is A = I𝐾 .

• 𝑟 (𝑠𝑡 , 𝑎𝑡): the immediate reward that captures the user feedback
for the recommendation action 𝑎𝑡 ∈ A on user state 𝑠𝑡 ∈ S. In
this paper, we denote 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡) .

• 𝜋 : S → A, the recommendation policy that outputs an item
or a list of items as an action for each request, and we assume
that the policy applies random action exploration in the online
learning setup.

• 𝑃 : S × A → S, the stochastic state transition function where
the randomness only comes from the user environment. In other
words, the recommendation problem has a stochastic partially

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Value Function Decomposition in Markov Recommendation Process WWW ’25, May, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

a) Standard TD approach b) TD Decomposition approach

 ...

 ...

Figure 2: The general Markov Recommendation Process. Standard TD approaches (left) either adopt𝑄-based or𝑉 -based TD. Our
solution (right) decomposes the learning into two objectives for random policy and stochastic user environment respectively.

observable user environment, and the next-state distribution of
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is assumed unknown.

Then, for each stepwise interaction cycle, a training sample collects
the information as a tuple D𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑) where 𝑑 ∈ {0, 1}
represents whether the session ends after taking action 𝑎𝑡 . Follow-
ing the intuition of long-term performance optimization, the Goal
is to learn a policy that can generate an action 𝑎𝑡 at any step 𝑡
that maximizes the user’s expected cumulative reward over the
interactions in the future:

E[𝑟𝑡] = E[
∞∑︁
𝑖=0

𝛾𝑖𝑟𝑡+𝑖] (1)

where 𝛾 ∈ [0, 1] is the discount factor that balances the focus of
immediate reward and the long-term rewards, and the expectation
term implicitly includes the two random sampling factors i.e. policy
and user environment. Note that in the online RL setting, we ignore
the user’s leave-and-return behavior (and the influence of signal
𝑑) by the end of each session, and assume an infinite horizon of
the MRP as reflected in Eq.(1). Additionally, the user state encoder
usually adopts neural networks to encode the user profile and
context features and uses sequential models to dynamically encode
the user interaction history in practice. In this work, we consider
the detailed encoder design as complementary work and focus on
the reasoning of the learning framework.

3 METHOD
3.1 Reinforcement Learning with Temporal

Difference
Directly optimizing Eq.(1) requires the sampling of the user’s tra-
jectories, but this is impractical for recommendation scenarios with
large numbers of users and items. As an alternative, Temporal Dif-
ference (TD) learning can naturally accommodate the stepwise
online learning environment of the recommender system, taking
advantage of dynamic programming(DP) and Monte Carlo meth-
ods(MC). Specifically, for each given data sample D𝑡 it defines a
value function 𝑉 (𝑠𝑡) that estimates Eq.(1) at any step 𝑡 . Then the
temporal difference between two consecutive states can be captured
by the value function estimator:

𝑉 (𝑠𝑡) = E𝑎𝑡 |𝑠𝑡E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

]
(2)

where the first expectation considers the random policy and the
second expectation corresponds to the stochastic user environment.
Then we can (approximate it with sampling and) optimize the
difference between 𝑉 (𝑠𝑡) and 𝑉 (𝑠𝑡+1) through the error to the
observed immediate reward, which derives the standard value-
based TD loss:

LVTD =

(
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)

)2
(3)

Similarly, the difference between state-action pairs also has the
corresponding approximation:

𝑄 (𝑠𝑡 , 𝑎𝑡) = E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾E𝑎𝑡 |𝑠𝑡 [𝑄 (𝑠𝑡+1, 𝑎𝑡+1)]

]
(4)

which derives the following Q-based TD loss:

LQTD =

(
𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(5)

These two types of functions describe different segments of the
MDP as illustrated in Figure 2-a. While the learned value function
𝑉 estimates the expected performance of the observed user state,
the learned 𝑄 function estimates the expected performance of an
action on a given state.

Ideally, when the value function or the Q function is well-trained
and accurately approximates the expected cumulative reward, we
can use them to guide the policy either through the advantage
boosting loss as in A2C [19]:

Lpolicy = −𝐴𝑡 log𝜋 (𝑎𝑡 |𝑠𝑡)
𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)

(6)

where the larger advantage 𝐴𝑡 an action generates, the more likely
this action gets selected; or we can optimize the policy in an end-to-
end manner through expected reward maximization as in DDPG:

Lpolicy = −𝑄 (𝑠𝑡 , 𝑎𝑡)
𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡)

(7)

where a larger 𝑄 estimation of the action induces a higher chance
of selection.

3.2 The Challenge of Mixing Random Factors
Though the aforementioned TD learning has been proven effective,
the overall framework essentially ignores the effect of the mixed
random factors from policy and the user environment as described

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, May, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

in section 1. Specifically, the randomness in the user environment
merely depends on the user’s decision which is conditionally inde-
pendent from the policy, but it directly affects the observed reward
for a given state-action pair. For example, the user may still skip
the recommended item when something else draws the attention,
even if the item is attractive to the user. In contrast, the policy’s
action is a controllable random factor in terms of the exploration
magnitude. It is conditioned on the given state, but only indirectly
affects the observed reward with the existence of stochastic users.

However, TD learning in Eq.(3) and Eq.(5) does not distinguish
these two factors which results in suboptimal estimation. Partic-
ularly, we can define the random difference brought by the user
as Δ𝑢 which partially explains the error between the estimation of
next-state’s 𝑉 and the 𝑄 of the current state-action pair:

𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) = 𝑄 (𝑠𝑡 , 𝑎𝑡) + Δ𝑢 (8)

which instantiates the statistical relation:

𝑄 (𝑠𝑡 , 𝑎𝑡) = E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

]
(9)

Similarly, we can define Δ𝜋 as the difference brought by the pol-
icy’s random action which partially explains the error between the
estimation the state value 𝑉 and 𝑄 of the state-action pair:

𝑄 (𝑠𝑡 , 𝑎𝑡) = 𝑉 (𝑠𝑡) + Δ𝜋 (10)

which instantiates the statistical relation:

𝑉 (𝑠𝑡) = E𝑎𝑡 |𝑠𝑡
[
𝑄 (𝑠𝑡 , 𝑎𝑡)

]
(11)

Then, combining Eq.(3) and Eq.(8), the value-based TD learning
for the value function 𝑉 becomes:

LVTD =

(
𝑄 (𝑠𝑡 , 𝑎𝑡) + Δ𝑢 −𝑉 (𝑠𝑡)

)2
(12)

where the existence of Δ𝑢 (which is conditionally independent
from 𝑄) makes it harder to reach the correct estimation of Eq.(11).
Furthermore, during policy optimization such as Eq.(6), the ad-
vantage term will also include this user random factor (i.e. 𝐴𝑡 =

𝑄 (𝑠𝑡 , 𝑎𝑡) + Δ𝑢 −𝑉 (𝑠𝑡)). This may misguide the policy because of
the user’s influence in Δ𝑢 . Similarly, combining Eq.(5) with Eq.(10),
the Q-based TD learning for the 𝑄 function becomes:

LQTD =

(
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) + 𝛾Δ𝜋 −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(13)

where the existence of Δ𝜋 (which is independent of the previous
stochastic user state transition) introduces extra noise for the ap-
proximation of Eq.(9). This may potentially downgrade the effec-
tiveness of the 𝑄 function (e.g. using Eq.(7)) and become reluctant
to guide the policy learning.

In both cases, the inaccurate TD learning is suboptimal and re-
quires more sampling efforts to approach a valid approximation,
which potentially results in slower and harder training. Further-
more, when adopting action exploration in online RL, one may have
to restrict the exploration magnitude to a relatively low level in
order to keep 𝛿𝜋 small and increase the accuracy of the estimation.
However, this scarifies the model’s exploration ability and has a
lower chance of reaching global maxima.

3.3 Exclude Irrelevant Random Factors in TD
Decomposition

As a straightforward derivation from the analysis in section 3.2,
we propose to eliminate the irrelevant terms during training. The
resulting framework consists of two separate learning objectives
for random policy and stochastic user environment respectively.

The first objective optimizes the 𝑄 function with the 𝑉 function
fixed (with stopped gradient):

LactionTD =

(
𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉 (𝑠𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(14)

which directly matches Eq.(9). This objective focuses on learning
a correct estimate of 𝑄 (𝑠𝑡 , 𝑎𝑡), which is conditioned on the sam-
pled action. In other words, LactionTD optimizes 𝑄 to capture Δ𝜋
and eliminate the effect of Δ𝑢 by error minimization. The second
objective optimizes the 𝑉 function with the 𝑄 function fixed:

LstateTD =

(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(15)

which directly matches the goal of Eq.(11). This objective focuses on
learning the correct value function𝑉 (𝑠𝑡) of a given statewithout the
influence of a random action exploration. In other words, LstateTD
optimizes 𝑉 to capture Δ𝑢 and eliminate the effect of Δ𝜋 through
error minimization.

Combining the two objectives, we form the TD Decomposi-
tion framework that simultaneously optimizes 𝑄 and 𝑉 as shown
in Figure 2-b, and both functions can be approximated by neural
networks. While the state learning objective LstateTD uses𝑄 as the
label for 𝑉 , the LactionTD uses immediate reward 𝑟𝑡 and 𝑉 as tar-
gets for𝑄 . The combined learning framework is theoretically more
accurate due to the removed noise from irrelevant random factors
and consistently bounds the original TD learning. In comparison,
optimizing the standard LVTD and LQTD sometimes misguide the
learning of 𝑉 and 𝑄 . We present the details of these analyses in
Appendix A.

In addition to the improved accuracy, the decomposed TD also
has several extra advantages:
• Because the decomposition removes the irrelevant terms in each

separate learning task, the corresponding𝑉 and𝑄 can learn from
more accurate signals with fewer samples. In other words, we
expect a faster learning under this new framework as we will
verify in section 4.2.2.

• When increasing the exploration of action, the Δ𝜋 is only cap-
tured by 𝑄 (𝑠𝑡 , 𝑎𝑡) in Eq.(14). The large variance of Δ𝜋 does not
affect the learning of 𝑉 since it is removed from Eq.(15). Intu-
itively, this would help improve the robustness against action
exploration as we provide empirical evidence in section 4.3.2.

• The framework will learn both 𝑉 and 𝑄 functions which can
adapt to TD-based methods that uses either Eq.(3) or Eq.(5). This
means that this decomposition is a general technique that
can benefit a wide range of RL-based recommender systems,
including but not limited to A2C and DDPG.

3.4 Action Discrepancy and Debiased
Decomposition

In online RL, another challenge that may affect the accuracy of TD
learning is the discrepancy between the action distribution in the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Value Function Decomposition in Markov Recommendation Process WWW ’25, May, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

past and the present, especially when the policy frequently changes
along with user dynamics and continuous training. Without loss
of generality, let 𝜋 (𝑎𝑡 |𝑠𝑡) represent the likelihood of generating 𝑎𝑡
using the current policy and let 𝑝 (𝑎𝑡 |𝑠𝑡) represent the observed like-
lihood from the past policy when the sample is collected. Consider
the correct expected loss as:

E𝑎𝑡∼𝜋 [LstateTD] (16)

taking the derivative and the minimization point with zero gradient
corresponds to:

2
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡) (𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)) = 0

⇒𝑉 (𝑠𝑡)
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡) =
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡)𝑄 (𝑠𝑡 , 𝑎𝑡))

⇒𝑉 (𝑠𝑡) = E[𝑄 (𝑠𝑡 , 𝑎𝑡)] = 𝑉 ∗

(17)

where 𝑉 ∗ represents the correct value estimation. Yet, the sampled
action in the past does not necessarily follow the distribution of 𝜋 ,
which explains the aforementioned discrepancy. As a countermea-
sure in our decomposed TD learning, we include an extra debias
term 𝛽 for the state TD:

L𝛽−stateTD = 𝛽

(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
𝛽 =

𝜋 (𝑎𝑡 |𝑠𝑡)
𝑝 (𝑎𝑡 |𝑠𝑡)

(18)

which is theoretically derived from the following transformation:

E𝑎𝑡∼𝜋 [LstateTD] =
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡)
(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
=

∫
𝑎𝑡

𝑝 (𝑎𝑡 |𝑠𝑡)
𝜋 (𝑎𝑡 |𝑠𝑡)
𝑝 (𝑎𝑡 |𝑠𝑡)

(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
= E𝑎𝑡∼𝑝 [L𝛽−stateTD]

(19)

Intuitively, this debias term would help refine the learning of 𝑉
towards a closer estimation of the correct target 𝑉 ∗ of the current
policy even when the sample comes from a policy in the past.

4 EXPERIMENTS
In this section, we illustrate the experimental support for our claims
through the evaluation of simulated online learning environments.
We summarize our research focus as follows:

• Verify the correctness and faster convergence of our decom-
position method by recommendation performance compar-
ison with stepwise TD counterpart.

• Verify that the proposed TD decomposition is more robust
to action exploration.

• Analyze the behavior of the state TD loss and action TD
loss and the stability of the combined optimization.

4.1 Experimental Settings
4.1.1 Datasets andOnline Simulator. We include three public datasets
in our experiments: MovieLens-1M[15], Amazon(book)[22] and
KuaiRand1K[12]. The ML1M dataset contains one million user
ratings of movies, while KuaiRand1K is a dataset that includes
multi-behavior user interaction records with short videos sampled

for one thousand users. Note that the traditional offline evalua-
tion in the recommender system is not well-suited for online RL
methods since they do not provide the estimation of dynamically
changing environment and labels for unseen interaction sequences.
Instead, we preprocess the datasets and construct the simulated en-
vironment for online learning similar to that in KuaiSim[47]. Both
datasets were cleaned by removing users/items with fewer than 10
interactions and reconstructed records chronologically. In order to
generate realistic user feedback, a user response model is trained
to estimate the probability of a user’s click based on their dynamic
interaction history and static profile features. During online RL,
the user simulator will produce immediate feedback (of user clicks)
according to this model and serve as the interactive environment.
The reward design follows the KuaiSim system which considers
a reward of 1.0 for a click and -0.2 for a missing click. The maxi-
mum episode depth is limited to 20 by the temper-based user leave
model which maintains a user’s budget of temper, and the budget
decreases during the online interactions until it reaches a threshold
and triggers the leaving of the user.

4.1.2 Evaluation Protocol. After preparing datasets and their cor-
responding online simulators, we can use the simulated user en-
vironment to engage in training of online RL models. Empirically,
all tested methods converge within 30,000 steps and we evaluate
their average performance in the last 100 episode steps. As main
evaluation metrics, we include the average total reward (without
discount) of a user session and session depth as accuracy indicators.
For extreme cases, we include the minimum reward metric of
user sessions in each batch sample. We would identify the superior
performance as the aforementioned accuracy metrics have higher
values. In addition, to observe the stability of the method, we also
include the reward variance for each batch of samples.

4.1.3 Baselines. We implemented the following baselines to pro-
vide a comparison in our evaluation:

• Supervision (Non-RL): a supervised learning method similar
to [18], which uses transformer to encode user history and neu-
ral networks to encode user profile. The item-wise score is a
dot product between user encoding and item encoding, and we
optimize it through binary cross-entropy loss.

• A2C [19]: a family of actor-critic RL methods that combine
the policy gradient optimization with Eq.(6) and V-learning ap-
proaches with Eq.(3).

• DQN [31]: a model-free RL method that uses a deep neural net-
work to approximate the Q-value function with Eq.(5). DQN
employs an epsilon-greedy strategy to balance exploration and
exploitation during the learning process.

• DDPG [24]: an actor-critic framework that optimizes the critic
with Eq.(5), and optimizes the policy actions in the continuous
action space with Eq.(7) with Gaussian-based exploration.

• HAC [26]: an advanced version of DDPG specifically designed
for recommendation. It extends the actor-critic framework for
request-level scenarios and uses a vectorized hyper action to
represent each item list. HAC includes additional action space
regularization and item-wise supervision to further improve
performance and learning stability.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, May, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Performance between original and decomposed TD
method on A2C in KuaiRand dataset.

Figure 4: Performance between original and decomposed TD
method on HAC in KuaiRand dataset.

• SQN [43]: SQN augments existing recommendation models with
an additional reinforcement learning output layer that serves as
a regularizer, allowing the model to focus on specific rewards.

• Dueling DQN [41] (D-DQN): a model-free RL algorithm that
extends the Q-Learning algorithm to deal with the problem of
learning in continuous action spaces. The key innovation of
Dueling DQN is the introduction of a dueling network architec-
ture that separates the computation of state-value function as
𝑄 (𝑠𝑡 , 𝑎𝑡) = 𝑉 (𝑠𝑡)+𝐴(𝑠𝑡 , 𝑎𝑡), which achieves the value estimation
under the Q-learning objective.
For all methods, we implement an experience replay buffer for

the online learning process and the exploration of action will di-
rectly influence the sample distribution in the buffer. For frame-
works that use TD learning (i.e. A2C, DQN, DDPG, and HAC), we
apply the proposed TD decomposition to verify its effectiveness
across various RL backbones. D-DQN cannot integrate TD decom-
position since it is already a decomposition method. To ensure fair
comparison, we adopt the same neural network structure across 𝑉
functions, and the same structure across 𝑄 as well. The user states
are obtained using the same structure as the user encoder in the
Supervision baseline, and all RL methods use this same state en-
coder design. For reproduction of our empirical study, we provide
implementation and training details in our released source code 1.

4.2 Main results
4.2.1 Recommendation Performance: For each experiment of all
models, we conducted five rounds of online training with different
random seeds and reported the average results in Table (1). We
can see that the A2C, DDPG, and HAC can consistently improve
performance over supervision baselines, indicating the superiority
of RLmethods that can optimize long-term user rewards. The DDPG

1https://anonymous.4open.science/r/TD_Decomposition

Figure 5:LstateTD andLactionTD curves for TD decomposition
methods

only improves the results in KuaiRand but is inferior to supervision
in ML1M, which might indicate that the ML1M environment is
easier as a recommendation task. TheDuelingDQNmethod learns V
and Advantage simultaneously and generates Q for the TD learning
process. However, this decomposition does not solve the problem
of mixing random factors and may introduce extra learning costs
to achieve the same level of accuracy. As a result, its performance
appears to be suboptimal compared to other advanced RL methods.

In general, the proposed TD decomposition demonstrates stronger
performance than the original TD, and this observation is consis-
tent across all four backbones (A2C, DQN, DDPG, and HAC) and
across both datasets. Specifically, in the ML1M environment, the
decomposed methods exhibit slight improvements in rewards as
2.5% for A2C, 1.2% for DQN, 26.1% for DDPG, and 5.2% for HAC;
and improvements in depths as 1.9% for A2C, 1.0% for DQN, 20.9%
for DDPG and 4.3% for HAC. And the improvements in DDPG
and HAC are statistically significant. In KuaiRand1K, the relative
improvement of decomposition is 33.6% for A2C, 25.1% for DQN,
8.2% for DDPG, and 35.4% for HAC in terms of total rewards; and
26.0% for A2C, 18.7% for DQN, 5.5% for DDPG, and 27.7% for HAC.
All improvements are statistically significant (student-t test with
𝑝 < 0.05). Note that the overall improvement of TD decomposi-
tion is larger in KuaiRand than in ML1M, which indicates a harder
recommendation environment. This difference might be related to
the fact that short-video platforms involve more dynamics of users’
intensive interactions, compared with movie recommendations.

4.2.2 Faster Learning of TD Decomposition. To further illustrate
the training behavior of the TD decomposition method, we plot
the learning curves of the two most effective baselines (i.e. A2C
and HAC) and compare them with TD decomposition counterparts
in Figure 3 and Figure 4. We can see that the TD decomposition
achieves a faster and better reward boost in the beginning and
the converged point reveals consistently better performance. In
the extreme cases illustrated by the minimum reward plot, the
value functions from the original TD learning become reluctant to
guide the policy in the later training process, but the decomposition
methods achieve continuous improvement over time indicating a

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Value Function Decomposition in Markov Recommendation Process WWW ’25, May, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Online simulation performance of all methods and their correspongding decomposition.The better performances
compared with native and decomposed in bold and the best in Underline.

Model Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

Non-RL 15.97 ±(2.21) - 10.28 ±(3.78) - - -
Dueling DQN 15.83 ±(0.31) - 10.79 ±(4.38) - 10.43 ±(3.27) -

A2C 17.19 ±(0.34) 17.62 ±(0.23) 11.91 ±(0.90) 15.91 ±(0.36) 11.24 ±(0.78) 13.11 ±(0.92)
DQN 15.95 ±(0.53) 16.14 ±(0.42) 10.74 ±(4.68) 13.44 ±(1.41) 10.36 ±(3.60) 11.94 ±(1.41)
DDPG 13.52 ±(1.83) 17.05 ±(1.01) 12.86 ±(1.65) 13.78 ±(1.59) 10.99 ±(1.85) 11.58 ±(1.52)
HAC 16.89 ±(1.80) 17.76 ±(0.42) 12.47 ±(1.00) 16.89 ±(0.52) 12.17 ±(0.63) 13.31 ±(1.02)
SQN 16.33 ±(0.45) 16.88 ±(0.38) 11.22 ±(0.76) 15.42 ±(0.70) 6.94 ±(0.53) 11.74 ±(0.83)

Table 2: The effect of action exploration in HAC. 𝜎 represents the magnitude of action exploration. The better performances
compared with native and decomposed in bold and the best in Underline.

𝜎
Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

1 11.95 ±(5.28) 17.70 ±(0.45) 3.14 ±(0.12) 8.54 ±(0.22) 1.20 ±(0.18) 2.01 ±(0.28)
0.9 12.48 ±(5.31) 17.66 ±(0.34) 3.24 ±(0.23) 9.01 ±(0.30) 1.17 ±(0.12) 2.14 ±(0.17)
0.7 13.35 ±(5.18) 17.38 ±(0.68) 3.33 ±(0.28) 11.76 ±(0.14) 1.25 ±(0.22) 2.82 ±(0.37)
0.5 14.32 ±(4.43) 17.58 ±(0.27) 4.32 ±(0.87) 14.86 ±(0.49) 1.31 ±(0.33) 4.17 ±(0.49)
0.3 15.48 ±(2.52) 17.59 ±(0.59) 5.89 ±(0.75) 16.19 ±(0.25) 2.30 ±(1.11) 9.31 ±(0.68)
1e-1 16.89 ±(1.80) 17.76 ±(0.42) 10.07 ±(1.09) 16.89 ±(0.52) 6.75 ±(0.84) 12.97 ±(0.86)
1e-2 17.06 ±(1.03) 17.37 ±(0.94) 12.47 ±(1.00) 16.15 ±(0.59) 12.17 ±(0.63) 13.31 ±(1.02)

more accurate guidance with continuous exploration. We present
more details about these learning curves with longer training steps
in Appendix C.

Note that the decomposition framework is a general technique
that can accommodate any RL methods that engage TD learning,
but the policy learning and action exploration might still behave dif-
ferently even with an improved value function. Figure 5 shows the
comparison of different RL backbones with the TD decomposition.
Except for the DDPG backbone is relatively unstable, all other RL
methods achieve stable learning for both LactionTD and LstateTD.

4.3 Ablation
4.3.1 Impact of Learning Rates on Two-Step TD. Recall that in our
TD decomposition method, we perform two separate learning ob-
jectives for𝑉 and𝑄 . This means that we can separately manipulate
the learning rates for 𝑉 and 𝑄 . In Figure 6 we show the effect of
learning rate of 𝑉 with learning rate of 𝑄 fixed, and in Figure 7 we
show the effect of learning rate of 𝑄 with the learning rate of 𝑉
fixed. We can generally observe the under-fitting and over-fitting
on the two sides of the reward performance. And there are several
patterns that worth noticing:

• the reward performance is negatively correlated with the
reward variance;

• LactionTD and LstateTD behave in opposite directions when
changing the learning rate of 𝑉 , which mean that aligning
𝑉 with 𝑄 under more restrictions may loss the ability of

Figure 6: Effect of TD decomposition with HAC on KuaiRand
dataset. X-axis correspond to the learning rate for𝑉 learning.

expectation approximation and introduce larger error in
the learning of 𝑄 ;

• LactionTD andLstateTD behave in the same directions when
changing the learning rate of𝑄 , whichmeans that achieving
a more accurate 𝑄 estimation results in more accurate 𝑉
estimation.

We provide extended results with more details in appendix D
7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, May, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 7: Effect of TD decomposition with HAC on KuaiRand
dataset. X-axis correspond to the learning rate for𝑄 learning.

Figure 8: Performance of stepwise TD approach with respect
to 𝛽 in KuaiRand dataset.

Table 3: Comparison between past policy (upon sampling)
and the current policy under different exploration magni-
tude. 𝛽 represents the debias term in L𝛽−stateTD. 𝛼 represents
the absolute difference between action likelihood of the past
and the present.

𝜎 1 0.9 0.7 0.5 0.3 0.1 0.01

𝛽

ML1M 0.96 0.96 0.94 0.89 0.76 0.37 0.04

KuaiRand 1.00 1.00 1.00 0.99 0.94 0.62 0.10

Amazon 0.99 0.98 0.98 0.97 0.96 0.80 0.10

𝛼

ML1M 8e-4 1e-3 2e-3 9e-3 8e-2 3.55 7.4e2

KuaiRand 5e-6 8e-6 3e-5 4e-4 1e-2 1.47 6.5e2

Amazon 2e-4 4e-4 8e-4 3e-3 1e-2 0.59 6.5e2

4.3.2 The Robustness under Action Exploration. As we have dis-
cussed in section 3.3, the TD decomposition requires less sample to
achieve accurate value function estimation and makes it easier for

action exploration. To verify this claim, we compare the impact of
different variances 𝜎 in policy action exploration and summarize
the results of the best model HAC (with decomposition) in Table
2. We can see that TD decomposition consistently outperforms
the original TD learning across all settings of 𝜎 and appears to be
more robust to the action exploration. Specifically, in the KuaiRand
environment, the original TD crashes when the exploration magni-
tude increases to 𝜎 > 0.1, but the TD decomposition still achieves
accurate RL with even more improvement in the recommendation
performance, corresponding to the Figure 1. In the ML1M environ-
ment, the TD decomposition achieves remarkable stability even
when the exploration magnitude reaches 𝜎 = 1, while the original
TD gradually deteriorates.

4.3.3 Debased StateTD Learning and Stability. To validate the effec-
tiveness of the debias term in L𝛽−stateTD we conduct an ablation
study that removes 𝛽 during learning on all four RL methods of
TD decomposition. The results are summarized in Figure 8. We
can see that the removal of the debias term of 𝛽 may generate
suboptimal performance across all methods on both environments.
Additionally, we investigate the 𝛽 term and the action discrepancy
(mentioned in section 3.4) under different action exploration by
changing the magnitude of 𝜎 . Specifically, we observe the TD de-
composition in the best backbone method HAC and Table 3 shows
this comparison in terms of 𝛽 and the average absolute difference
𝛼 = |𝜋 (𝑎𝑡 |𝑠𝑡) − 𝑝 (𝑎𝑡 |𝑠𝑡) |. We can see that a larger exploration
magnitude would end up with a closer distribution between the
past and present, and the current policy has a higher chance of
generating actions in the past (i.e. larger 𝛽 and smaller 𝛼). Note
that most baseline methods achieve the best results with small 𝜎
in action exploration so that they can adapt to better states and
actions. In contrast, TD decomposition achieves the same level of
performance even with larger 𝜎 which indicates that it works well
for both stochastic policies and deterministic policies.

5 CONCLUSION
In this paper, we focus on the reinforcement learning methods that
adopt temporal difference (TD) learning in recommender systems.
We address the challenge of mixing random factors from stochastic
policy and uncertain user environment and show that the tradi-
tional TD learning for long-term reward estimation is suboptimal or
misguided. To achieve a more accurate approximation, we propose
to engage a decomposed TD learning that eliminates the irrelevant
random factors for each part and separates the approximation of 𝑉
and 𝑄 . The resulting framework achieves better recommendation
performance, a faster learning process, and improved robustness
against action exploration. While the proposed TD decomposition
focuses on the value function learning which indirectly affects the
policy learning in many RL methods, we believe that the investiga-
tion of the interactions between the value function and the actor
may provide new perspectives on the interplay between users and
the recommender system. In addition, our experiments and analysis
originally emerged from the stochastic natural in recommendation
problems, but we note that the proposed decomposition method
can potentially be generalized to other RL problems as long as
TD-based RL is adopted.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Value Function Decomposition in Markov Recommendation Process WWW ’25, May, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2021. Reinforcement learning

based recommender systems: A survey. ACM Computing Surveys (CSUR) (2021).
[2] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement learning

based recommender systems: A survey. Comput. Surveys 55, 7 (2022), 1–38.
[3] Xueying Bai, Jian Guan, andHongningWang. 2019. Amodel-based reinforcement

learningwith adversarial training for online recommendation. Advances in Neural
Information Processing Systems 32 (2019).

[4] Oded Berger-Tal, Jonathan Nathan, Ehud Meron, and David Saltz. 2014. The
exploration-exploitation dilemma: a multidisciplinary framework. PloS one 9, 4
(2014), e95693.

[5] Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan
Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, et al. 2023. Two-
Stage Constrained Actor-Critic for Short Video Recommendation. In Proceedings
of the ACM Web Conference 2023. 865–875.

[6] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,
Yuzhou Zhang, and Yong Yu. 2019. Large-scale interactive recommendation
with tree-structured policy gradient. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 3312–3320.

[7] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[8] Minmin Chen, Bo Chang, Can Xu, and Ed H Chi. 2021. User response models
to improve a reinforce recommender system. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 121–129.

[9] Xiaocong Chen, Lina Yao, Aixin Sun, Xianzhi Wang, Xiwei Xu, and Liming Zhu.
2021. Generative inverse deep reinforcement learning for online recommenda-
tion. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. 201–210.

[10] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

[11] Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang,
and Xiaoyan Zhu. 2018. Learning to collaborate: Multi-scenario ranking via
multi-agent reinforcement learning. In Proceedings of the 2018 World Wide Web
Conference. 1939–1948.

[12] Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei,
Peng Jiang, and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Rec-
ommendation Dataset with Randomly Exposed Videos. In Proceedings of the
31st ACM International Conference on Information and Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). 5 pages. https://doi.org/10.1145/3511808.3557624

[13] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao,
Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, and Yongfeng Zhang. 2021.
Towards Long-term Fairness in Recommendation. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 445–453.

[14] Yingqiang Ge, Xiaoting Zhao, Lucia Yu, Saurabh Paul, Diane Hu, Chu-Cheng
Hsieh, and Yongfeng Zhang. 2022. Toward Pareto efficient fairness-utility trade-
off in recommendation through reinforcement learning. In Proceedings of the
fifteenth ACM international conference on web search and data mining. 316–324.

[15] F Maxwell Harper. 2015. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis) 5 4 (2015) 1–19. F Maxwell
Harper and Joseph A Konstan. 2015. The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis) 5 4 (2015) 1–19.

[16] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A Tractable
Decomposition for Reinforcement Learning with Recommendation Sets. In Pro-
ceedings of the Twenty-eighth International Joint Conference on Artificial Intelli-
gence (IJCAI-19). Macau, China, 2592–2599. See arXiv:1905.12767 for a related
and expanded paper (with additional material and authors)..

[17] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks
meet the neighborhood for session-based recommendation. In Proceedings of the
eleventh ACM conference on recommender systems. 306–310.

[18] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[19] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in
neural information processing systems 12 (1999).

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[21] Yehuda Koren, Steffen Rendle, and Robert Bell. 2021. Advances in collaborative
filtering. Recommender systems handbook (2021), 91–142.

[22] Himabindu Lakkaraju, Julian McAuley, and Jure Leskovec. 2013. What’s in a
name? understanding the interplay between titles, content, and communities
in social media. In Proceedings of the international AAAI conference on web and
social media, Vol. 7. 311–320.

[23] Zelong Li, Jianchao Ji, Yingqiang Ge, and Yongfeng Zhang. 2022. AutoLossGen:
Automatic Loss Function Generation for Recommender Systems. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1304–1315.

[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1509.
02971

[25] Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye, Haokun Chen,
Huifeng Guo, Yuzhou Zhang, and Xiuqiang He. 2020. State representation
modeling for deep reinforcement learning based recommendation. Knowledge-
Based Systems 205 (2020), 106170.

[26] Shuchang Liu, Qingpeng Cai, Bowen Sun, Yuhao Wang, Ji Jiang, Dong Zheng,
Peng Jiang, Kun Gai, Xiangyu Zhao, and Yongfeng Zhang. 2023. Exploration and
Regularization of the Latent Action Space in Recommendation. In Proceedings of
the ACM Web Conference 2023. 833–844.

[27] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends in Information Retrieval 3, 3 (2009), 225–331.

[28] Ziru Liu, Jiejie Tian, Qingpeng Cai, Xiangyu Zhao, Jingtong Gao, Shuchang Liu,
Dayou Chen, Tonghao He, Dong Zheng, Peng Jiang, et al. 2023. Multi-Task
Recommendations with Reinforcement Learning. In Proceedings of the ACM Web
Conference 2023. 1273–1282.

[29] Tariq Mahmood and Francesco Ricci. 2007. Learning and adaptivity in interactive
recommender systems. In Proceedings of the ninth international conference on
Electronic commerce. 75–84.

[30] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. PMLR, 1928–1937.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[32] Ling Pan, Qingpeng Cai, and Longbo Huang. 2020. Softmax deep double deter-
ministic policy gradients. Advances in Neural Information Processing Systems 33
(2020), 11767–11777.

[33] Changhua Pei, Xinru Yang, Qing Cui, Xiao Lin, Fei Sun, Peng Jiang, Wenwu Ou,
and Yongfeng Zhang. 2019. Value-aware recommendation based on reinforce-
ment profit maximization. In The World Wide Web Conference. 3123–3129.

[34] Steffen Rendle. 2010. Factorizationmachines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[36] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[37] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[38] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[39] Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. 2007. Usage-based
web recommendations: a reinforcement learning approach. In Proceedings of the
2007 ACM conference on Recommender systems. 113–120.

[40] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive
layered extraction (ple): A novel multi-task learning (mtl) model for personalized
recommendations. In Proceedings of the 14th ACM Conference on Recommender
Systems. 269–278.

[41] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. 2016. Dueling network architectures for deep reinforcement learning. In
International conference on machine learning. PMLR, 1995–2003.

[42] Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng
Zhang. 2019. Reinforcement knowledge graph reasoning for explainable rec-
ommendation. In Proceedings of the 42nd international ACM SIGIR conference on
research and development in information retrieval. 285–294.

[43] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. 2020.
Self-supervised reinforcement learning for recommender systems. In Proceedings
of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval. 931–940.

[44] Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina
Christakopoulou, and Zhaochun Ren. 2022. Rethinking reinforcement learning
for recommendation: A prompt perspective. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and Development in Information

9

https://doi.org/10.1145/3511808.3557624
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, May, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Retrieval. 1347–1357.
[45] Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng,

Peng Jiang, Kun Gai, and Bo An. 2023. PrefRec: Recommender Systems with
Human Preferences for Reinforcing Long-Term User Engagement. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(Long Beach, CA, USA) (KDD ’23). Association for Computing Machinery, New
York, NY, USA, 2874–2884. https://doi.org/10.1145/3580305.3599473

[46] Wanqi Xue, Qingpeng Cai, Ruohan Zhan, Dong Zheng, Peng Jiang, and Bo An.
2022. ResAct: Reinforcing Long-term Engagement in Sequential Recommenda-
tion with Residual Actor. arXiv preprint arXiv:2206.02620 (2022).

[47] Kesen Zhao, Shuchang Liu, Qingpeng Cai, Xiangyu Zhao, Ziru Liu, Dong Zheng,
Peng Jiang, and Kun Gai. 2023. KuaiSim: A comprehensive simulator for recom-
mender systems. arXiv preprint arXiv:2309.12645 (2023).

[48] Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang, Xiwang Yang, Xiaobing
Liu, Hui Liu, and Jiliang Tang. 2021. DEAR: Deep Reinforcement Learning for
Online Advertising Impression in Recommender Systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 750–758.

[49] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM conference on recommender systems. 95–103.

[50] Xiangyu Zhao, Long Xia, Lixin Zou, Hui Liu, Dawei Yin, and Jiliang Tang. 2020.
Whole-chain recommendations. In Proceedings of the 29th ACM international
conference on information & knowledge management. 1883–1891.

[51] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1040–1048.

10

https://doi.org/10.1145/3580305.3599473

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Value Function Decomposition in Markov Recommendation Process WWW ’25, May, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Value
space

Value
space

Value
space

Value
space

a)

b)

c)

d)

Aligned

Misguided

Aligned

Misguided

Figure 9: Different cases of error and the corresponding rela-
tionship between𝑉 and𝑄 . The original TD lossmaymisguide
the value estimation, while the decomposed method always
minimizes the original TD.

A RELATIONWITH STEPWISE TD LEARNING
Suppose that the two objectives achieve a certain degree of accuracy
with LactionTD < 𝛿21 and LstateTD < 𝛿22 for some small constants

𝛿1 and 𝛿2. Note that the action TD loss is semantically equivalent
to the random user error Δ𝑢 and the state TD loss is equivalent to
the random policy error Δ𝜋 . Then, we can also state Δ𝑢 < 𝛿1 and
Δ𝜋 < 𝛿2. And we can derive that the original stepwise TD loss is
also bounded as LVTD < (𝛿1 + 𝛿2)2 in the worst case scenario.

To further investigate the relationship amongLactionTD,LstateTD,
LVTD, and LQTD, we analyze the common cases in Figure 9. With-
out loss of generality, in case a) where 𝑄 is in between the two
consecutive𝑉 s or case c) where𝑉 is in between the two consecutive
𝑄s, optimizing the stepwise TD loss LVTD and LQTD would also
minimize Δ𝜋 +Δ𝑢 , which indirectly optimizes LactionTD +LstateTD.
We consider these two cases as aligned cases where the original
TD loss and the decomposed loss agree with each other. However,
in case b) where consecutive 𝑉 s locate on the same side of 𝑄 or in
case d) where consecutive 𝑄s locate on the same side of 𝑉 , min-
imizing the original stepwise TD loss no longer guarantees the
correct minimization of LactionTD and LstateTD. For example, case
b) may trivially learn the bias of all states, so that the error between
the two consecutive states’ 𝑉 approaches zero, while the error of
the policy’s effect Δ𝜋 and that of the user’s randomness Δ𝑢 are
significantly larger. This further explains why stepwise TD is subop-
timal under the mixing of random factors. In contrast, minimizing
LactionTD and LstateTD guarantees a bounded minimization of the
original TD loss for all four cases.

B FULL RESULTS OF MAIN EXPERIMENTS
Tables 4 and 5 present the depth performance results from the main
experiments and the action exploration experiments.

C TRAINING CURVES FOR LONGER STEPS
We extend the number of online learning steps to 80,000 to further
illustrate the converged performance, as shown in Figure 10.

D PERFORMANCE FOR DIFFERENT
LEARNING RATE

We provide the extended comparison results of the learning rate
effect in Figure 11.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, May, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 4: The depth of action exploration in HAC.

𝜎
Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

1 13.13 ±(4.51) 18.04 ±(0.39) 5.68 ±(0.10) 10.25 ±(0.18) 4.11 ±(0.16) 4.77 ±(0.23)
0.9 13.58 ±(4.54) 18.01 ±(0.29) 5.77 ±(0.19) 10.64 ±(0.26) 4.09 ±(0.11) 4.87 ±(0.14)
0.7 14.32 ±(4.43) 17.78 ±(0.58) 5.84 ±(0.23) 12.96 ±(0.12) 4.17 ±(0.26) 5.44 ±(0.30)
0.5 14.90 ±(3.73) 17.94 ±(0.24) 6.69 ±(0.72) 15.62 ±(0.42) 4.21 ±(0.19) 6.57 ±(0.40)
0.3 16.15 ±(2.16) 17.95 ±(0.50) 8.03 ±(0.63) 16.75 ±(0.21) 5.03 ±(0.00) 10.89 ±(0.58)
1e-1 17.35 ±(1.54) 18.10 ±(0.36) 11.55 ±(0.91) 17.35 ±(0.45) 8.72 ±(0.71) 14.00 ±(0.73)
1e-2 17.49 ±(0.88) 17.76 ±(0.81) 13.59 ±(0.84) 16.72 ±(0.50) 13.33 ±(0.53) 14.31 ±(0.87)

Table 5: The depth of all methods and their correspongding decomposition.

Model Depth in ML1M Depth in KuaiRand Depth in Amazon

Original Decomposed Original Decomposed Original Decomposed

Non-RL 16.55 ±(1.90) - 11.75 ±(3.17) - - -
Dueling DQN 16.45 ±(0.26) - 12.17 ±(3.69) - 11.88 ±(2.01) -

A2C 17.61 ±(0.29) 17.97 ±(0.20) 13.10 ±(0.76) 16.51 ±(0.31) 12.53 ±(0.66) 14.13 ±(0.78)
DQN 16.55 ±(0.45) 16.71 ±(0.36) 12.14 ±(3.94) 14.41 ±(1.19) 11.79 ±(2.22) 13.12 ±(1.20)
DDPG 14.47 ±(1.55) 17.49 ±(0.87) 13.92 ±(1.41) 14.69 ±(1.35) 12.08 ±(1.81) 13.05 ±(1.98)
HAC 17.35 ±(1.55) 18.10 ±(0.36) 13.59 ±(0.84) 17.35 ±(0.45) 13.33 ±(0.53) 14.31 ±(0.87)
SQN 16.33 ±(0.45) 16.88 ±(0.38) 11.22 ±(0.76) 15.42 ±(0.70) 8.05 ±(0.45) 12.95 ±(0.71)

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Value Function Decomposition in Markov Recommendation Process WWW ’25, May, 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

(a) Performance in ML1M (b) Performance in KuaiRand

Figure 10: Longer steps for Training curves of TD Decomposition with HAC.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’25, May, 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

(a) X-axis correspond to the learning rate for𝑉 learning (b) X-axis correspond to the learning rate for𝑄 learning

(c) X-axis correspond to the learning rate for𝑉 learning (d) X-axis correspond to the learning rate for𝑄 learning

Figure 11: The effect of TD decomposition with HAC , where (a) and (b) denote the ML1M dataset, and the others correspond to
KuaiRand dataset .

14

	Abstract
	1 Introduction
	2 Related Work and Problem Definition
	2.1 Reinforcement Learning for Recommendation
	2.2 Problem Formulation

	3 Method
	3.1 Reinforcement Learning with Temporal Difference
	3.2 The Challenge of Mixing Random Factors
	3.3 Exclude Irrelevant Random Factors in TD Decomposition
	3.4 Action Discrepancy and Debiased Decomposition

	4 Experiments
	4.1 Experimental Settings
	4.2 Main results
	4.3 Ablation

	5 Conclusion
	References
	A Relation with stepwise TD Learning
	B Full Results of main experiments
	C Training curves for longer steps
	D Performance for different learning rate

