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Value Function Decomposition in Markov Recommendation
Process

Anonymous Author(s)

ABSTRACT
Recent advances in recommender systems have shown that user-
system interaction essentially formulates long-term optimization
problems, and online reinforcement learning can be adopted to im-
prove recommendation performance. The general solution frame-
work incorporates a value function that estimates the user’s ex-
pected cumulative rewards in the future and guides the training of
the recommendation policy. To avoid local maxima, the policy may
explore potential high-quality actions during inference to increase
the chance of finding better future rewards. To accommodate the
stepwise recommendation process, one widely adopted approach to
learning the value function is learning from the difference between
the values of two consecutive states of a user. However, we argue
that this paradigm involves an incorrect approximation in the sto-
chastic process. Specifically, between the current state and the next
state in each training sample, there exist two separate random fac-
tors from the stochastic policy and the uncertain user environment.
Original TD learning under these mixed random factors may result
in a suboptimal estimation of the long-term rewards. As a solution,
we show that these two factors can be separately approximated by
decomposing the original temporal difference loss. The disentan-
gled learning framework can achieve a more accurate estimation
with faster learning and improved robustness against action ex-
ploration. As empirical verification of our proposed method, we
conduct offline experiments with online simulated environments
built based on public datasets.

KEYWORDS
Recommender Systems, Reinforcement Learning, Markov Decision
Process
ACM Reference Format:
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Recommendation Process. In Proceedings of (WWW ’25). ACM, New York,
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1 INTRODUCTION
Recommender systems play a crucial role in enhancing user experi-
ence across a variety of online platforms such as e-commerce, news,
social media, and micro-video platforms. Their primary objective
is to filter and recommend content that aligns with users’ interests
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Figure 1: The proposed decomposition method on the RL
backbone (i.e. HAC) in KuaiRand dataset improves the over-
all performance and is more robust to exploration of recom-
mendation actions.

and preferences, improving user engagement with the platform.
Early studies considered this as a ranking problem and built col-
laborative filtering solutions [20, 21, 34] aimed at minimizing the
errors between item-wise labels and the ranking score prediction.
Later approaches found that sequential modeling [17, 18, 36] of user
histories can better capture the dynamics of user interest and offer
more accurate predictions of the future. In recent studies, many
recommendation scenarios have shown that the learning target
should also go beyond immediate feedback and extend to the future
influence, in which reinforcement learning (RL) methods [2, 49]
can further improve the long-term cumulative reward and achieve
state-of-the-art recommendation performance.

The fundamental idea behind RL-based recommendation meth-
ods is considering the user-system interaction sequence as aMarkov
Decision Process (MDP) [31, 32, 35] so that each recommendation
action only depends on the current user state and optimize the long-
term performance. Specifically, each context-aware user request
consists of the user‘s static profile features and dynamic interac-
tion history, which is later encoded as the user state. Between the
consecutive user states, the recommendation policy first takes the
current state as input and outputs a recommendation list (or item)
as the action, then the user environment receives this action and
generates user feedback that will determine the immediate reward
and the transition toward the next state. This interaction between
the policy and the user forms a full cycle in the Markov Recommen-
dation Process (MRP). Then the goal is usually formulated as the
maximization of the cumulative reward which represents the long-
term performance of the policy. In other words, RL-based methods
optimize the policy with the total effect in the future as a target label,
which is different from traditional learning-to-rank methods [27]
that only optimize the policy with immediate feedback. Then, the
key to effective guidance of the policy is finding an accurate value
function that approximates the expected long-term reward for sam-
pled actions in given states. To accommodate the stepwise samples
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in recommendation problems and rapidly adapt the dynamic user
interests in the online learning environment, a temporal difference
(TD) learning technique is adopted [38, 49] that either minimizes
the error between the two consecutive state evaluation (denoted
as Value-based TD) or minimize that between the two consecu-
tive state-action pairs (denoted as action’s Quality-based TD), as
illustrated in Figure 2-a.

Though they are effective, we find that it is challenging to obtain
a stable and accurate value function in online RL due to the severe
exploration-exploitation trade-off [4, 10, 26] in recommender sys-
tems. On one hand, TD learning may achieve better value function
accuracy when the policy’s exploration of actions is restricted to a
small variance (which may work well in simple scenarios with a
small item candidate pool), but it also reduces the chance of finding
better actions and has a higher chance being trapped in local max-
ima. On the other hand, the policy may increase the magnitude of
action exploration to find potentially better policies, but this also
makes it harder for stable and accurate value function learning due
to the increased variance. In this paper, we argue that one of the key
reasons that limit the accuracy of the value function is the mixed
view of the two random factors in the MRP: the policy’s random
action exploration and the stochastic user environment. As
we will illustrate in section 3.2 and Appendix A, mixing the two
random factors would introduce a negative effect on stepwise TD
learning. As a consequence, the resulting value function becomes
suboptimal and limits the effectiveness of exploration.

To address the aforementioned limitations, we propose to de-
compose the standard TD learning paradigm of the value function
into two separate sub-problems with respect to each random fac-
tor, as shown in Figure 2-b. In the first sub-problem, our primary
focus is developing an accurate approximation of the user state’s
long-term utility, mitigating the influences from the random policy.
In contrast, the second sub-problem focuses on refining a precise
function for the state-action pair, which captures the recommenda-
tion actions’ effectiveness, excluding the influence of the inherent
randomness of the user environment. We show that the decom-
posed objectives bound the original TD learning objective, and the
exclusion of unrelated random factors potentially speeds up the
learning process. As empirical verification, we show the superiority
of our solution in finding better policies through online evaluation
of simulated environments. Meanwhile, the resulting framework
becomes more robust to action exploration as exemplified in Fig-
ure 1. In extreme cases where the policy “overexplores” the action
space, the proposed method can still effectively optimize the value
function while the baseline crashes in terms of recommendation
performance.

In summary, our contributions are as follows:

• We specify the challenge of suboptimal TD learning under
the mixed random factors between policy action explo-
ration and stochastic user environment.

• We propose a decomposed TD learning framework that sep-
arately addresses the two random factors and empirically
shows its superiority in online RL-based solution.

• We verify that the proposed decomposition technique pro-
vides more robust performance under action exploration

and a faster learning process across multiple TD-learning-
based methods.

2 RELATEDWORK AND PROBLEM
DEFINITION

2.1 Reinforcement Learning for
Recommendation

The RL-based recommendation system [1, 38, 49] operates within
the Markov Decision Process (MDP) framework, aiming to optimize
cumulative rewards which reflects the long-term user satisfaction.
While tabular-based methods [29] can optimize an evaluation ta-
ble in simple settings, they are constrained to a small fixed set of
state-action pairs. For larger action space and state space, studies
have found solutions with value-based methods [33, 39, 48, 51],
policy gradient methods [6, 7, 13, 14, 23, 42], and actor-critic meth-
ods [5, 43–46, 49, 50]. Among existing methods, the temporal differ-
ence (TD) technique [38] has beenwidely used to learn and optimize
long-term rewards due to its stepwise learning framework that well-
suits the recommendation task and online learning environment.
Our method also aligns with this paradigm. Despite the efficacy of
TD learning, reinforcement learning encounters new challenges
in accommodating recommender systems, including exploration
in combinatorial state/actions space [10, 16, 25, 26], dealing with
unstable user behavior [3, 8], addressing heterogeneous user feed-
back [5, 9], and managing multi-task learning [11, 28, 40].

Additionally, in the realm of general reinforcement learning [38],
there are several works that described possible alternatives for
TD learning [30, 37] in specific scenarios. One of the works that
is closer in methodology is the Dueling DQN [41]. It proposes a
way to decompose the 𝑄 function into a value function and advan-
tage function so that one can learn a 𝑉 function in the Q-learning
framework.

2.2 Problem Formulation
In this section, we present the Markov Recommendation Process
(MRP) for online RL. Assume a candidate pool of N items denoted by
I and assume a pre-defined reward function 𝑟 (·) for the observed
user feedback. Then, the MRP components are:

• S: the continuous representation space of the user state, and
each state 𝑠𝑡 encodes the user and context information upon the
recommendation request at step 𝑡 .

• A: the action space corresponds to the possible recommendation
lists. For simplicity, we consider the list of fixed size 𝐾 so the
action space is A = I𝐾 .

• 𝑟 (𝑠𝑡 , 𝑎𝑡 ): the immediate reward that captures the user feedback
for the recommendation action 𝑎𝑡 ∈ A on user state 𝑠𝑡 ∈ S. In
this paper, we denote 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) .

• 𝜋 : S → A, the recommendation policy that outputs an item
or a list of items as an action for each request, and we assume
that the policy applies random action exploration in the online
learning setup.

• 𝑃 : S × A → S, the stochastic state transition function where
the randomness only comes from the user environment. In other
words, the recommendation problem has a stochastic partially

2
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Figure 2: The general Markov Recommendation Process. Standard TD approaches (left) either adopt𝑄-based or𝑉 -based TD. Our
solution (right) decomposes the learning into two objectives for random policy and stochastic user environment respectively.

observable user environment, and the next-state distribution of
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is assumed unknown.

Then, for each stepwise interaction cycle, a training sample collects
the information as a tuple D𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑) where 𝑑 ∈ {0, 1}
represents whether the session ends after taking action 𝑎𝑡 . Follow-
ing the intuition of long-term performance optimization, the Goal
is to learn a policy that can generate an action 𝑎𝑡 at any step 𝑡
that maximizes the user’s expected cumulative reward over the
interactions in the future:

E[𝑟𝑡 ] = E[
∞∑︁
𝑖=0

𝛾𝑖𝑟𝑡+𝑖 ] (1)

where 𝛾 ∈ [0, 1] is the discount factor that balances the focus of
immediate reward and the long-term rewards, and the expectation
term implicitly includes the two random sampling factors i.e. policy
and user environment. Note that in the online RL setting, we ignore
the user’s leave-and-return behavior (and the influence of signal
𝑑) by the end of each session, and assume an infinite horizon of
the MRP as reflected in Eq.(1). Additionally, the user state encoder
usually adopts neural networks to encode the user profile and
context features and uses sequential models to dynamically encode
the user interaction history in practice. In this work, we consider
the detailed encoder design as complementary work and focus on
the reasoning of the learning framework.

3 METHOD
3.1 Reinforcement Learning with Temporal

Difference
Directly optimizing Eq.(1) requires the sampling of the user’s tra-
jectories, but this is impractical for recommendation scenarios with
large numbers of users and items. As an alternative, Temporal Dif-
ference (TD) learning can naturally accommodate the stepwise
online learning environment of the recommender system, taking
advantage of dynamic programming(DP) and Monte Carlo meth-
ods(MC). Specifically, for each given data sample D𝑡 it defines a
value function 𝑉 (𝑠𝑡 ) that estimates Eq.(1) at any step 𝑡 . Then the
temporal difference between two consecutive states can be captured
by the value function estimator:

𝑉 (𝑠𝑡 ) = E𝑎𝑡 |𝑠𝑡E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

]
(2)

where the first expectation considers the random policy and the
second expectation corresponds to the stochastic user environment.
Then we can (approximate it with sampling and) optimize the
difference between 𝑉 (𝑠𝑡 ) and 𝑉 (𝑠𝑡+1) through the error to the
observed immediate reward, which derives the standard value-
based TD loss:

LVTD =

(
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 )

)2
(3)

Similarly, the difference between state-action pairs also has the
corresponding approximation:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾E𝑎𝑡 |𝑠𝑡 [𝑄 (𝑠𝑡+1, 𝑎𝑡+1)]

]
(4)

which derives the following Q-based TD loss:

LQTD =

(
𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
(5)

These two types of functions describe different segments of the
MDP as illustrated in Figure 2-a. While the learned value function
𝑉 estimates the expected performance of the observed user state,
the learned 𝑄 function estimates the expected performance of an
action on a given state.

Ideally, when the value function or the Q function is well-trained
and accurately approximates the expected cumulative reward, we
can use them to guide the policy either through the advantage
boosting loss as in A2C [19]:

Lpolicy = −𝐴𝑡 log𝜋 (𝑎𝑡 |𝑠𝑡 )
𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 )

(6)

where the larger advantage 𝐴𝑡 an action generates, the more likely
this action gets selected; or we can optimize the policy in an end-to-
end manner through expected reward maximization as in DDPG:

Lpolicy = −𝑄 (𝑠𝑡 , 𝑎𝑡 )
𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 )

(7)

where a larger 𝑄 estimation of the action induces a higher chance
of selection.

3.2 The Challenge of Mixing Random Factors
Though the aforementioned TD learning has been proven effective,
the overall framework essentially ignores the effect of the mixed
random factors from policy and the user environment as described

3
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in section 1. Specifically, the randomness in the user environment
merely depends on the user’s decision which is conditionally inde-
pendent from the policy, but it directly affects the observed reward
for a given state-action pair. For example, the user may still skip
the recommended item when something else draws the attention,
even if the item is attractive to the user. In contrast, the policy’s
action is a controllable random factor in terms of the exploration
magnitude. It is conditioned on the given state, but only indirectly
affects the observed reward with the existence of stochastic users.

However, TD learning in Eq.(3) and Eq.(5) does not distinguish
these two factors which results in suboptimal estimation. Partic-
ularly, we can define the random difference brought by the user
as Δ𝑢 which partially explains the error between the estimation of
next-state’s 𝑉 and the 𝑄 of the current state-action pair:

𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) = 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + Δ𝑢 (8)

which instantiates the statistical relation:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

]
(9)

Similarly, we can define Δ𝜋 as the difference brought by the pol-
icy’s random action which partially explains the error between the
estimation the state value 𝑉 and 𝑄 of the state-action pair:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑉 (𝑠𝑡 ) + Δ𝜋 (10)

which instantiates the statistical relation:

𝑉 (𝑠𝑡 ) = E𝑎𝑡 |𝑠𝑡
[
𝑄 (𝑠𝑡 , 𝑎𝑡 )

]
(11)

Then, combining Eq.(3) and Eq.(8), the value-based TD learning
for the value function 𝑉 becomes:

LVTD =

(
𝑄 (𝑠𝑡 , 𝑎𝑡 ) + Δ𝑢 −𝑉 (𝑠𝑡 )

)2
(12)

where the existence of Δ𝑢 (which is conditionally independent
from 𝑄) makes it harder to reach the correct estimation of Eq.(11).
Furthermore, during policy optimization such as Eq.(6), the ad-
vantage term will also include this user random factor (i.e. 𝐴𝑡 =

𝑄 (𝑠𝑡 , 𝑎𝑡 ) + Δ𝑢 −𝑉 (𝑠𝑡 )). This may misguide the policy because of
the user’s influence in Δ𝑢 . Similarly, combining Eq.(5) with Eq.(10),
the Q-based TD learning for the 𝑄 function becomes:

LQTD =

(
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) + 𝛾Δ𝜋 −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
(13)

where the existence of Δ𝜋 (which is independent of the previous
stochastic user state transition) introduces extra noise for the ap-
proximation of Eq.(9). This may potentially downgrade the effec-
tiveness of the 𝑄 function (e.g. using Eq.(7)) and become reluctant
to guide the policy learning.

In both cases, the inaccurate TD learning is suboptimal and re-
quires more sampling efforts to approach a valid approximation,
which potentially results in slower and harder training. Further-
more, when adopting action exploration in online RL, one may have
to restrict the exploration magnitude to a relatively low level in
order to keep 𝛿𝜋 small and increase the accuracy of the estimation.
However, this scarifies the model’s exploration ability and has a
lower chance of reaching global maxima.

3.3 Exclude Irrelevant Random Factors in TD
Decomposition

As a straightforward derivation from the analysis in section 3.2,
we propose to eliminate the irrelevant terms during training. The
resulting framework consists of two separate learning objectives
for random policy and stochastic user environment respectively.

The first objective optimizes the 𝑄 function with the 𝑉 function
fixed (with stopped gradient):

LactionTD =

(
𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉 (𝑠𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
(14)

which directly matches Eq.(9). This objective focuses on learning
a correct estimate of 𝑄 (𝑠𝑡 , 𝑎𝑡 ), which is conditioned on the sam-
pled action. In other words, LactionTD optimizes 𝑄 to capture Δ𝜋
and eliminate the effect of Δ𝑢 by error minimization. The second
objective optimizes the 𝑉 function with the 𝑄 function fixed:

LstateTD =

(
𝑉 (𝑠𝑡 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
(15)

which directly matches the goal of Eq.(11). This objective focuses on
learning the correct value function𝑉 (𝑠𝑡 ) of a given statewithout the
influence of a random action exploration. In other words, LstateTD
optimizes 𝑉 to capture Δ𝑢 and eliminate the effect of Δ𝜋 through
error minimization.

Combining the two objectives, we form the TD Decomposi-
tion framework that simultaneously optimizes 𝑄 and 𝑉 as shown
in Figure 2-b, and both functions can be approximated by neural
networks. While the state learning objective LstateTD uses𝑄 as the
label for 𝑉 , the LactionTD uses immediate reward 𝑟𝑡 and 𝑉 as tar-
gets for𝑄 . The combined learning framework is theoretically more
accurate due to the removed noise from irrelevant random factors
and consistently bounds the original TD learning. In comparison,
optimizing the standard LVTD and LQTD sometimes misguide the
learning of 𝑉 and 𝑄 . We present the details of these analyses in
Appendix A.

In addition to the improved accuracy, the decomposed TD also
has several extra advantages:
• Because the decomposition removes the irrelevant terms in each

separate learning task, the corresponding𝑉 and𝑄 can learn from
more accurate signals with fewer samples. In other words, we
expect a faster learning under this new framework as we will
verify in section 4.2.2.

• When increasing the exploration of action, the Δ𝜋 is only cap-
tured by 𝑄 (𝑠𝑡 , 𝑎𝑡 ) in Eq.(14). The large variance of Δ𝜋 does not
affect the learning of 𝑉 since it is removed from Eq.(15). Intu-
itively, this would help improve the robustness against action
exploration as we provide empirical evidence in section 4.3.2.

• The framework will learn both 𝑉 and 𝑄 functions which can
adapt to TD-based methods that uses either Eq.(3) or Eq.(5). This
means that this decomposition is a general technique that
can benefit a wide range of RL-based recommender systems,
including but not limited to A2C and DDPG.

3.4 Action Discrepancy and Debiased
Decomposition

In online RL, another challenge that may affect the accuracy of TD
learning is the discrepancy between the action distribution in the

4
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past and the present, especially when the policy frequently changes
along with user dynamics and continuous training. Without loss
of generality, let 𝜋 (𝑎𝑡 |𝑠𝑡 ) represent the likelihood of generating 𝑎𝑡
using the current policy and let 𝑝 (𝑎𝑡 |𝑠𝑡 ) represent the observed like-
lihood from the past policy when the sample is collected. Consider
the correct expected loss as:

E𝑎𝑡∼𝜋 [LstateTD] (16)

taking the derivative and the minimization point with zero gradient
corresponds to:

2
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡 ) (𝑉 (𝑠𝑡 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 )) = 0

⇒𝑉 (𝑠𝑡 )
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡 ) =
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡 )𝑄 (𝑠𝑡 , 𝑎𝑡 ))

⇒𝑉 (𝑠𝑡 ) = E[𝑄 (𝑠𝑡 , 𝑎𝑡 )] = 𝑉 ∗

(17)

where 𝑉 ∗ represents the correct value estimation. Yet, the sampled
action in the past does not necessarily follow the distribution of 𝜋 ,
which explains the aforementioned discrepancy. As a countermea-
sure in our decomposed TD learning, we include an extra debias
term 𝛽 for the state TD:

L𝛽−stateTD = 𝛽

(
𝑉 (𝑠𝑡 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
𝛽 =

𝜋 (𝑎𝑡 |𝑠𝑡 )
𝑝 (𝑎𝑡 |𝑠𝑡 )

(18)

which is theoretically derived from the following transformation:

E𝑎𝑡∼𝜋 [LstateTD] =
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡 )
(
𝑉 (𝑠𝑡 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
=

∫
𝑎𝑡

𝑝 (𝑎𝑡 |𝑠𝑡 )
𝜋 (𝑎𝑡 |𝑠𝑡 )
𝑝 (𝑎𝑡 |𝑠𝑡 )

(
𝑉 (𝑠𝑡 ) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
= E𝑎𝑡∼𝑝 [L𝛽−stateTD]

(19)

Intuitively, this debias term would help refine the learning of 𝑉
towards a closer estimation of the correct target 𝑉 ∗ of the current
policy even when the sample comes from a policy in the past.

4 EXPERIMENTS
In this section, we illustrate the experimental support for our claims
through the evaluation of simulated online learning environments.
We summarize our research focus as follows:

• Verify the correctness and faster convergence of our decom-
position method by recommendation performance compar-
ison with stepwise TD counterpart.

• Verify that the proposed TD decomposition is more robust
to action exploration.

• Analyze the behavior of the state TD loss and action TD
loss and the stability of the combined optimization.

4.1 Experimental Settings
4.1.1 Datasets andOnline Simulator. We include three public datasets
in our experiments: MovieLens-1M[15], Amazon(book)[22] and
KuaiRand1K[12]. The ML1M dataset contains one million user
ratings of movies, while KuaiRand1K is a dataset that includes
multi-behavior user interaction records with short videos sampled

for one thousand users. Note that the traditional offline evalua-
tion in the recommender system is not well-suited for online RL
methods since they do not provide the estimation of dynamically
changing environment and labels for unseen interaction sequences.
Instead, we preprocess the datasets and construct the simulated en-
vironment for online learning similar to that in KuaiSim[47]. Both
datasets were cleaned by removing users/items with fewer than 10
interactions and reconstructed records chronologically. In order to
generate realistic user feedback, a user response model is trained
to estimate the probability of a user’s click based on their dynamic
interaction history and static profile features. During online RL,
the user simulator will produce immediate feedback (of user clicks)
according to this model and serve as the interactive environment.
The reward design follows the KuaiSim system which considers
a reward of 1.0 for a click and -0.2 for a missing click. The maxi-
mum episode depth is limited to 20 by the temper-based user leave
model which maintains a user’s budget of temper, and the budget
decreases during the online interactions until it reaches a threshold
and triggers the leaving of the user.

4.1.2 Evaluation Protocol. After preparing datasets and their cor-
responding online simulators, we can use the simulated user en-
vironment to engage in training of online RL models. Empirically,
all tested methods converge within 30,000 steps and we evaluate
their average performance in the last 100 episode steps. As main
evaluation metrics, we include the average total reward (without
discount) of a user session and session depth as accuracy indicators.
For extreme cases, we include the minimum reward metric of
user sessions in each batch sample. We would identify the superior
performance as the aforementioned accuracy metrics have higher
values. In addition, to observe the stability of the method, we also
include the reward variance for each batch of samples.

4.1.3 Baselines. We implemented the following baselines to pro-
vide a comparison in our evaluation:

• Supervision (Non-RL): a supervised learning method similar
to [18], which uses transformer to encode user history and neu-
ral networks to encode user profile. The item-wise score is a
dot product between user encoding and item encoding, and we
optimize it through binary cross-entropy loss.

• A2C [19]: a family of actor-critic RL methods that combine
the policy gradient optimization with Eq.(6) and V-learning ap-
proaches with Eq.(3).

• DQN [31]: a model-free RL method that uses a deep neural net-
work to approximate the Q-value function with Eq.(5). DQN
employs an epsilon-greedy strategy to balance exploration and
exploitation during the learning process.

• DDPG [24]: an actor-critic framework that optimizes the critic
with Eq.(5), and optimizes the policy actions in the continuous
action space with Eq.(7) with Gaussian-based exploration.

• HAC [26]: an advanced version of DDPG specifically designed
for recommendation. It extends the actor-critic framework for
request-level scenarios and uses a vectorized hyper action to
represent each item list. HAC includes additional action space
regularization and item-wise supervision to further improve
performance and learning stability.
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Figure 3: Performance between original and decomposed TD
method on A2C in KuaiRand dataset.

Figure 4: Performance between original and decomposed TD
method on HAC in KuaiRand dataset.

• SQN [43]: SQN augments existing recommendation models with
an additional reinforcement learning output layer that serves as
a regularizer, allowing the model to focus on specific rewards.

• Dueling DQN [41] (D-DQN): a model-free RL algorithm that
extends the Q-Learning algorithm to deal with the problem of
learning in continuous action spaces. The key innovation of
Dueling DQN is the introduction of a dueling network architec-
ture that separates the computation of state-value function as
𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑉 (𝑠𝑡 )+𝐴(𝑠𝑡 , 𝑎𝑡 ), which achieves the value estimation
under the Q-learning objective.
For all methods, we implement an experience replay buffer for

the online learning process and the exploration of action will di-
rectly influence the sample distribution in the buffer. For frame-
works that use TD learning (i.e. A2C, DQN, DDPG, and HAC), we
apply the proposed TD decomposition to verify its effectiveness
across various RL backbones. D-DQN cannot integrate TD decom-
position since it is already a decomposition method. To ensure fair
comparison, we adopt the same neural network structure across 𝑉
functions, and the same structure across 𝑄 as well. The user states
are obtained using the same structure as the user encoder in the
Supervision baseline, and all RL methods use this same state en-
coder design. For reproduction of our empirical study, we provide
implementation and training details in our released source code 1.

4.2 Main results
4.2.1 Recommendation Performance: For each experiment of all
models, we conducted five rounds of online training with different
random seeds and reported the average results in Table (1). We
can see that the A2C, DDPG, and HAC can consistently improve
performance over supervision baselines, indicating the superiority
of RLmethods that can optimize long-term user rewards. The DDPG

1https://anonymous.4open.science/r/TD_Decomposition

Figure 5:LstateTD andLactionTD curves for TD decomposition
methods

only improves the results in KuaiRand but is inferior to supervision
in ML1M, which might indicate that the ML1M environment is
easier as a recommendation task. TheDuelingDQNmethod learns V
and Advantage simultaneously and generates Q for the TD learning
process. However, this decomposition does not solve the problem
of mixing random factors and may introduce extra learning costs
to achieve the same level of accuracy. As a result, its performance
appears to be suboptimal compared to other advanced RL methods.

In general, the proposed TD decomposition demonstrates stronger
performance than the original TD, and this observation is consis-
tent across all four backbones (A2C, DQN, DDPG, and HAC) and
across both datasets. Specifically, in the ML1M environment, the
decomposed methods exhibit slight improvements in rewards as
2.5% for A2C, 1.2% for DQN, 26.1% for DDPG, and 5.2% for HAC;
and improvements in depths as 1.9% for A2C, 1.0% for DQN, 20.9%
for DDPG and 4.3% for HAC. And the improvements in DDPG
and HAC are statistically significant. In KuaiRand1K, the relative
improvement of decomposition is 33.6% for A2C, 25.1% for DQN,
8.2% for DDPG, and 35.4% for HAC in terms of total rewards; and
26.0% for A2C, 18.7% for DQN, 5.5% for DDPG, and 27.7% for HAC.
All improvements are statistically significant (student-t test with
𝑝 < 0.05). Note that the overall improvement of TD decomposi-
tion is larger in KuaiRand than in ML1M, which indicates a harder
recommendation environment. This difference might be related to
the fact that short-video platforms involve more dynamics of users’
intensive interactions, compared with movie recommendations.

4.2.2 Faster Learning of TD Decomposition. To further illustrate
the training behavior of the TD decomposition method, we plot
the learning curves of the two most effective baselines (i.e. A2C
and HAC) and compare them with TD decomposition counterparts
in Figure 3 and Figure 4. We can see that the TD decomposition
achieves a faster and better reward boost in the beginning and
the converged point reveals consistently better performance. In
the extreme cases illustrated by the minimum reward plot, the
value functions from the original TD learning become reluctant to
guide the policy in the later training process, but the decomposition
methods achieve continuous improvement over time indicating a
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Table 1: Online simulation performance of all methods and their correspongding decomposition.The better performances
compared with native and decomposed in bold and the best in Underline.

Model Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

Non-RL 15.97 ±(2.21) - 10.28 ±(3.78) - - -
Dueling DQN 15.83 ±(0.31) - 10.79 ±(4.38) - 10.43 ±(3.27) -

A2C 17.19 ±(0.34) 17.62 ±(0.23) 11.91 ±(0.90) 15.91 ±(0.36) 11.24 ±(0.78) 13.11 ±(0.92)
DQN 15.95 ±(0.53) 16.14 ±(0.42) 10.74 ±(4.68) 13.44 ±(1.41) 10.36 ±(3.60) 11.94 ±(1.41)
DDPG 13.52 ±(1.83) 17.05 ±(1.01) 12.86 ±(1.65) 13.78 ±(1.59) 10.99 ±(1.85) 11.58 ±(1.52)
HAC 16.89 ±(1.80) 17.76 ±(0.42) 12.47 ±(1.00) 16.89 ±(0.52) 12.17 ±(0.63) 13.31 ±(1.02)
SQN 16.33 ±(0.45) 16.88 ±(0.38) 11.22 ±(0.76) 15.42 ±(0.70) 6.94 ±(0.53) 11.74 ±(0.83)

Table 2: The effect of action exploration in HAC. 𝜎 represents the magnitude of action exploration. The better performances
compared with native and decomposed in bold and the best in Underline.

𝜎
Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

1 11.95 ±(5.28) 17.70 ±(0.45) 3.14 ±(0.12) 8.54 ±(0.22) 1.20 ±(0.18) 2.01 ±(0.28)
0.9 12.48 ±(5.31) 17.66 ±(0.34) 3.24 ±(0.23) 9.01 ±(0.30) 1.17 ±(0.12) 2.14 ±(0.17)
0.7 13.35 ±(5.18) 17.38 ±(0.68) 3.33 ±(0.28) 11.76 ±(0.14) 1.25 ±(0.22) 2.82 ±(0.37)
0.5 14.32 ±(4.43) 17.58 ±(0.27) 4.32 ±(0.87) 14.86 ±(0.49) 1.31 ±(0.33) 4.17 ±(0.49)
0.3 15.48 ±(2.52) 17.59 ±(0.59) 5.89 ±(0.75) 16.19 ±(0.25) 2.30 ±(1.11) 9.31 ±(0.68)
1e-1 16.89 ±(1.80) 17.76 ±(0.42) 10.07 ±(1.09) 16.89 ±(0.52) 6.75 ±(0.84) 12.97 ±(0.86)
1e-2 17.06 ±(1.03) 17.37 ±(0.94) 12.47 ±(1.00) 16.15 ±(0.59) 12.17 ±(0.63) 13.31 ±(1.02)

more accurate guidance with continuous exploration. We present
more details about these learning curves with longer training steps
in Appendix C.

Note that the decomposition framework is a general technique
that can accommodate any RL methods that engage TD learning,
but the policy learning and action exploration might still behave dif-
ferently even with an improved value function. Figure 5 shows the
comparison of different RL backbones with the TD decomposition.
Except for the DDPG backbone is relatively unstable, all other RL
methods achieve stable learning for both LactionTD and LstateTD.

4.3 Ablation
4.3.1 Impact of Learning Rates on Two-Step TD. Recall that in our
TD decomposition method, we perform two separate learning ob-
jectives for𝑉 and𝑄 . This means that we can separately manipulate
the learning rates for 𝑉 and 𝑄 . In Figure 6 we show the effect of
learning rate of 𝑉 with learning rate of 𝑄 fixed, and in Figure 7 we
show the effect of learning rate of 𝑄 with the learning rate of 𝑉
fixed. We can generally observe the under-fitting and over-fitting
on the two sides of the reward performance. And there are several
patterns that worth noticing:

• the reward performance is negatively correlated with the
reward variance;

• LactionTD and LstateTD behave in opposite directions when
changing the learning rate of 𝑉 , which mean that aligning
𝑉 with 𝑄 under more restrictions may loss the ability of

Figure 6: Effect of TD decomposition with HAC on KuaiRand
dataset. X-axis correspond to the learning rate for𝑉 learning.

expectation approximation and introduce larger error in
the learning of 𝑄 ;

• LactionTD andLstateTD behave in the same directions when
changing the learning rate of𝑄 , whichmeans that achieving
a more accurate 𝑄 estimation results in more accurate 𝑉
estimation.

We provide extended results with more details in appendix D
7
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Figure 7: Effect of TD decomposition with HAC on KuaiRand
dataset. X-axis correspond to the learning rate for𝑄 learning.

Figure 8: Performance of stepwise TD approach with respect
to 𝛽 in KuaiRand dataset.

Table 3: Comparison between past policy (upon sampling)
and the current policy under different exploration magni-
tude. 𝛽 represents the debias term in L𝛽−stateTD. 𝛼 represents
the absolute difference between action likelihood of the past
and the present.

𝜎 1 0.9 0.7 0.5 0.3 0.1 0.01

𝛽

ML1M 0.96 0.96 0.94 0.89 0.76 0.37 0.04

KuaiRand 1.00 1.00 1.00 0.99 0.94 0.62 0.10

Amazon 0.99 0.98 0.98 0.97 0.96 0.80 0.10

𝛼

ML1M 8e-4 1e-3 2e-3 9e-3 8e-2 3.55 7.4e2

KuaiRand 5e-6 8e-6 3e-5 4e-4 1e-2 1.47 6.5e2

Amazon 2e-4 4e-4 8e-4 3e-3 1e-2 0.59 6.5e2

4.3.2 The Robustness under Action Exploration. As we have dis-
cussed in section 3.3, the TD decomposition requires less sample to
achieve accurate value function estimation and makes it easier for

action exploration. To verify this claim, we compare the impact of
different variances 𝜎 in policy action exploration and summarize
the results of the best model HAC (with decomposition) in Table
2. We can see that TD decomposition consistently outperforms
the original TD learning across all settings of 𝜎 and appears to be
more robust to the action exploration. Specifically, in the KuaiRand
environment, the original TD crashes when the exploration magni-
tude increases to 𝜎 > 0.1, but the TD decomposition still achieves
accurate RL with even more improvement in the recommendation
performance, corresponding to the Figure 1. In the ML1M environ-
ment, the TD decomposition achieves remarkable stability even
when the exploration magnitude reaches 𝜎 = 1, while the original
TD gradually deteriorates.

4.3.3 Debased StateTD Learning and Stability. To validate the effec-
tiveness of the debias term in L𝛽−stateTD we conduct an ablation
study that removes 𝛽 during learning on all four RL methods of
TD decomposition. The results are summarized in Figure 8. We
can see that the removal of the debias term of 𝛽 may generate
suboptimal performance across all methods on both environments.
Additionally, we investigate the 𝛽 term and the action discrepancy
(mentioned in section 3.4) under different action exploration by
changing the magnitude of 𝜎 . Specifically, we observe the TD de-
composition in the best backbone method HAC and Table 3 shows
this comparison in terms of 𝛽 and the average absolute difference
𝛼 = |𝜋 (𝑎𝑡 |𝑠𝑡 ) − 𝑝 (𝑎𝑡 |𝑠𝑡 ) |. We can see that a larger exploration
magnitude would end up with a closer distribution between the
past and present, and the current policy has a higher chance of
generating actions in the past (i.e. larger 𝛽 and smaller 𝛼). Note
that most baseline methods achieve the best results with small 𝜎
in action exploration so that they can adapt to better states and
actions. In contrast, TD decomposition achieves the same level of
performance even with larger 𝜎 which indicates that it works well
for both stochastic policies and deterministic policies.

5 CONCLUSION
In this paper, we focus on the reinforcement learning methods that
adopt temporal difference (TD) learning in recommender systems.
We address the challenge of mixing random factors from stochastic
policy and uncertain user environment and show that the tradi-
tional TD learning for long-term reward estimation is suboptimal or
misguided. To achieve a more accurate approximation, we propose
to engage a decomposed TD learning that eliminates the irrelevant
random factors for each part and separates the approximation of 𝑉
and 𝑄 . The resulting framework achieves better recommendation
performance, a faster learning process, and improved robustness
against action exploration. While the proposed TD decomposition
focuses on the value function learning which indirectly affects the
policy learning in many RL methods, we believe that the investiga-
tion of the interactions between the value function and the actor
may provide new perspectives on the interplay between users and
the recommender system. In addition, our experiments and analysis
originally emerged from the stochastic natural in recommendation
problems, but we note that the proposed decomposition method
can potentially be generalized to other RL problems as long as
TD-based RL is adopted.
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Figure 9: Different cases of error and the corresponding rela-
tionship between𝑉 and𝑄 . The original TD lossmaymisguide
the value estimation, while the decomposed method always
minimizes the original TD.

A RELATIONWITH STEPWISE TD LEARNING
Suppose that the two objectives achieve a certain degree of accuracy
with LactionTD < 𝛿21 and LstateTD < 𝛿22 for some small constants

𝛿1 and 𝛿2. Note that the action TD loss is semantically equivalent
to the random user error Δ𝑢 and the state TD loss is equivalent to
the random policy error Δ𝜋 . Then, we can also state Δ𝑢 < 𝛿1 and
Δ𝜋 < 𝛿2. And we can derive that the original stepwise TD loss is
also bounded as LVTD < (𝛿1 + 𝛿2)2 in the worst case scenario.

To further investigate the relationship amongLactionTD,LstateTD,
LVTD, and LQTD, we analyze the common cases in Figure 9. With-
out loss of generality, in case a) where 𝑄 is in between the two
consecutive𝑉 s or case c) where𝑉 is in between the two consecutive
𝑄s, optimizing the stepwise TD loss LVTD and LQTD would also
minimize Δ𝜋 +Δ𝑢 , which indirectly optimizes LactionTD +LstateTD.
We consider these two cases as aligned cases where the original
TD loss and the decomposed loss agree with each other. However,
in case b) where consecutive 𝑉 s locate on the same side of 𝑄 or in
case d) where consecutive 𝑄s locate on the same side of 𝑉 , min-
imizing the original stepwise TD loss no longer guarantees the
correct minimization of LactionTD and LstateTD. For example, case
b) may trivially learn the bias of all states, so that the error between
the two consecutive states’ 𝑉 approaches zero, while the error of
the policy’s effect Δ𝜋 and that of the user’s randomness Δ𝑢 are
significantly larger. This further explains why stepwise TD is subop-
timal under the mixing of random factors. In contrast, minimizing
LactionTD and LstateTD guarantees a bounded minimization of the
original TD loss for all four cases.

B FULL RESULTS OF MAIN EXPERIMENTS
Tables 4 and 5 present the depth performance results from the main
experiments and the action exploration experiments.

C TRAINING CURVES FOR LONGER STEPS
We extend the number of online learning steps to 80,000 to further
illustrate the converged performance, as shown in Figure 10.

D PERFORMANCE FOR DIFFERENT
LEARNING RATE

We provide the extended comparison results of the learning rate
effect in Figure 11.
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Table 4: The depth of action exploration in HAC.

𝜎
Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

1 13.13 ±(4.51) 18.04 ±(0.39) 5.68 ±(0.10) 10.25 ±(0.18) 4.11 ±(0.16) 4.77 ±(0.23)
0.9 13.58 ±(4.54) 18.01 ±(0.29) 5.77 ±(0.19) 10.64 ±(0.26) 4.09 ±(0.11) 4.87 ±(0.14)
0.7 14.32 ±(4.43) 17.78 ±(0.58) 5.84 ±(0.23) 12.96 ±(0.12) 4.17 ±(0.26) 5.44 ±(0.30)
0.5 14.90 ±(3.73) 17.94 ±(0.24) 6.69 ±(0.72) 15.62 ±(0.42) 4.21 ±(0.19) 6.57 ±(0.40)
0.3 16.15 ±(2.16) 17.95 ±(0.50) 8.03 ±(0.63) 16.75 ±(0.21) 5.03 ±(0.00) 10.89 ±(0.58)
1e-1 17.35 ±(1.54) 18.10 ±(0.36) 11.55 ±(0.91) 17.35 ±(0.45) 8.72 ±(0.71) 14.00 ±(0.73)
1e-2 17.49 ±(0.88) 17.76 ±(0.81) 13.59 ±(0.84) 16.72 ±(0.50) 13.33 ±(0.53) 14.31 ±(0.87)

Table 5: The depth of all methods and their correspongding decomposition.

Model Depth in ML1M Depth in KuaiRand Depth in Amazon

Original Decomposed Original Decomposed Original Decomposed

Non-RL 16.55 ±(1.90) - 11.75 ±(3.17) - - -
Dueling DQN 16.45 ±(0.26) - 12.17 ±(3.69) - 11.88 ±(2.01) -

A2C 17.61 ±(0.29) 17.97 ±(0.20) 13.10 ±(0.76) 16.51 ±(0.31) 12.53 ±(0.66) 14.13 ±(0.78)
DQN 16.55 ±(0.45) 16.71 ±(0.36) 12.14 ±(3.94) 14.41 ±(1.19) 11.79 ±(2.22) 13.12 ±(1.20)
DDPG 14.47 ±(1.55) 17.49 ±(0.87) 13.92 ±(1.41) 14.69 ±(1.35) 12.08 ±(1.81) 13.05 ±(1.98)
HAC 17.35 ±(1.55) 18.10 ±(0.36) 13.59 ±(0.84) 17.35 ±(0.45) 13.33 ±(0.53) 14.31 ±(0.87)
SQN 16.33 ±(0.45) 16.88 ±(0.38) 11.22 ±(0.76) 15.42 ±(0.70) 8.05 ±(0.45) 12.95 ±(0.71)
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Figure 10: Longer steps for Training curves of TD Decomposition with HAC.
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Figure 11: The effect of TD decomposition with HAC , where (a) and (b) denote the ML1M dataset, and the others correspond to
KuaiRand dataset .
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