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Machine learning and deep learning are rapidly transforming medical image analysis, offering promis-1

ing avenues to improve diagnostic accuracy and efficiency across numerous clinical applications.2

Among the applications that can benefit significantly from these advances is the detection of colorectal3

cancer (CRC), a major global health concern with approximately two million new cases detected4

annually [12]. Most CRCs originate from adenomatous polyps, whereas hyperplastic polyps pose5

limited risk of transitioning to cancer [5], making the classification of polyps into these subgroups6

important to ensure correct treatment. Despite the importance of colonoscopy, it remains highly7

operator-dependent, and variations in visual perception and clinical skill reduce the effectiveness of8

screenings [8]. AI-based systems have been proposed to assist in polyp detection and classification,9

but they typically rely on large-scale labelled datasets — which are costly and time-consuming to10

obtain. Self-supervised learning (SSL) offers a promising alternative by enabling models to learn11

useful representations from unlabeled data. Some of the most successful SSL approaches are joint12

embedding architectures (JEAs), which align representations of augmented views of the same input.13

These methods are motivated by the MultiView assumption [15]: the relevant information is shared14

across augmented views, and aligning these views encourages the encoder to learn useful representa-15

tions. Modern JEAs, such as SimCLR, Barlow Twins, and Masked Siamese Networks, have achieved16

outstanding results relying on this assumption [6, 3, 1, 2, 10, 16, 9]17

However, the MultiView assumption can be overly permissive. It does not distinguish between18

task-relevant and task-irrelevant (nuisance) information that may be shared across views. In settings19

such as colonoscopy, augmented views often preserve the strong background textures, irrelevant to20

downstream diagnostic tasks. Standard SSL methods may entangle such nuisance features with the21

more subtle task-relevant signals, degrading downstream performance. To address this, we introduce22

the Nuisance-Free MultiView (NF-MV) assumption, an information-theoretic perspective on the23

MultiView setting that explicitly excludes shared nuisance structure from the representation. Under24

NF-MV, we frame the goal of SSL as learning representations sufficient for the task while being25

invariant to nuisance information. We implement this framework using side information—auxiliary26

data that shares nuisance structure but lacks task-relevant information—and penalize representational27

overlap using a Jensen-Shannon divergence between main and side representations. This leads to28

a simple and general extension of standard joint embedding objectives, suited to the difficulties of29

representation learning in medical domains such as colonoscopy. Experiments show that our method30

attains polyp-classification performance comparable to that of models pre-trained on substantially31

larger private datasets.32

Applications in Medical Imaging and Endoscopy.33

SSL is set to become a key tool in medical and endoscopic image analysis. For instance, Wang et al.34

[16] aligns spatiotemporal views to train encoders on endoscopy videos. Hirsch et al. [9] applied35

the Masked Siamese Network approach to endoscopic video analysis, while M2CRL [10] combines36

contrastive learning and masked image modelling, achieving impressive results. These methods37

typically rely either on private datasets or curated clips that emphasise frames with visible polyps.38

For example, M2CRL leverages 10 publicly available datasets totalling over 33,000 videos and 5.539
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million frames, but primarily focuses on sequences where non-polyp frames have been filtered out. In40

contrast, full-length colonoscopy videos are dominated by negative frames. The REAL-Colon dataset41

[4], which we use for pre-training in our colonoscopy experiments, reflects this distribution: 87.6%42

of frames contain no polyps. Developing methods and frameworks that can effectively utilise this43

under-explored redundancy in real-world datasets has been a central motivation for our work.44

NF-MV Assumption45

In the standard MultiView SSL setting for JEAs we assume access to one unlabeled dataset X , and46

some stochastic augmentation A. We define the set of paired views x1, x2 ∼ A(x). By the MultiView47

assumption, the downstream tasks optimized during pre-training can be expressed as:48

T = {y : I(y;x2|x1) < ϵ, I(y;x1|x2) < ϵ}, ϵ > 0. (1)

In realistic settings, shared but irrelevant factors often persist across augmentations and become49

entangled with the learned representation. Based on this, we propose a new perspective on the50

MultiView assumption: by defining what to consider as a nuisance, it is possible to control what the51

algorithm considers as relevant or irrelevant information. That is, the modeller specifies a structure52

n that should be considered irrelevant, and this nuisance specification induces a family of tasks for53

which the nuisance carries no label information.54

Assumption 1 (Nuisance-Free MultiView Assumption (NF-MV)). Let x1, x2 be two views of an55

input x, and let n1, n2 be nuisance variables extracted from x1, x2, respectively. We assume:56

I(y;x2 | x1) ≤ ε, I(y;x1 | x2) ≤ ε, and I(y;n1) = I(y;n2) = 0

Then we say the Nuisance-Free MultiView assumption holds for y.57

If we substitute the MultiView assumption for the proposed Nuisance-Free MultiView Assumption, a58

new, strictly smaller, set of tasks arise.59

Definition 1 (NF-MV Induced Task Set). Given nuisance n, we define the set of induced tasks as:60

Tnf (n) := {y : I(y;x2 | x1) ≤ ε, I(y;x1 | x2) ≤ ε, I(y;n) = 0}

This task set consists of all labels that can be predicted equally well from either view and are61

independent of the nuisance. Once the modeller specifies a nuisance variable n, this isolates the62

subset of MultiView-induced tasks that are consistent with the modelling choice of what information63

should be ignored. If n is sufficiently well-defined, then Tnf (n) captures the tasks which we are64

interested in, allowing us to target the learning without access to fine-grained labels.65

Leveraging Side Information via Jensen-Shannon Divergence66

As motivated by the analysis above, it is preferred to learn an encoder that disentangles the nuisance67

features from relevant ones. To pinpoint nuisance structures we assume access to side information S ,68

that contains information that is (approximately) irrelevant but overlapping with the main dataset69

X . The nuisance is then defined as the structural overlap between X and S. When working with70

joint embedding models in a single feature space, there are additional subtleties to consider. First,71

we need to have informative representations of the side information s ∼ S in order to disregard it.72

If the representations fθ(s) are unreliable, it is not possible to disentangle the representations of73

the main data fθ(x) between relevant and irrelevant structures. Second, estimating and controlling74

mutual information in the extremely high-dimensional feature spaces where JEA methods operate is75

notoriously difficult. Estimators such as CLUB [7] and L1Out [13] suffer from high variance and76

bias in these high-dimensional spaces. Moreover, since they require neural network parametrization,77

the training procedure becomes more complex. Taking these considerations into account, we propose78

a simple objective for using side information with JEAs. Let z = fθ(A(ω)), where ω ∼ Mα =79

αX + (1 − α)S, and let Bα ∈ {0, 1} be the binary indicator with α = P(B = 0). Maximizing80

the mutual information I(z;Bα) encourages the learned representations to retain information about81

whether it originated from X or S , supporting the goal of disentangling nuisance from task-relevant82

structure. The mutual information I(z;Bα) can be expressed in closed form. A standard result from83

information theory shows that, when α = 0.5, it holds that I(z;B0.5) = JSD(p(z | X )∥p(z | S)).84

This also holds more generally, for any α, when considering a family of weighted Jensen-Shannon85

divergences. Specifically:86

I(z;Bα) = JSDα(p(z | X )∥p(z | S)) = αKL(p(z | X )∥Mα) + (1− α)KL(p(z | S)∥Mα), (2)
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where KL is the standard Kullback-Leibler divergence. This provides an estimator where the variance87

depends on the batch size instead of on the dimensionality of the feature space, and without any need88

for additional neural network parametrizations.89

Application to Colonoscopy90

To show the impact of leveraging side information on real-world applications, we evaluate our method91

on Polyp histology classification: classifying hyperplastic vs adenomatous polyps. We adapt the MSN92

framework [1] by incorporating our side information method. In addition to the original cross-entropy93

loss between anchor and target predictions p(a) and p(t) with ME-MAX regularization to avoid trivial94

solutions, we compute the JSD between aggregated anchor and target predictions across main and95

side samples.96
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Colonoscopy Data. For pre-training, we use REAL-Colon [4], a large and public dataset with97

around 2.7M frames from 60 recordings. REAL-Colon provides full length colonoscopy screenings,98

meaning that a majority of these frames are negatives without any polyps. There are in total ∼ 350K99

bounding box annotations, defining the set of positive images. The rest of the dataset is considered100

as the side information. For the downstream task we use PolypsSet [11], which provides bounding101

box annotations and binary labels for adenoma and hyperplastic polyps, with ∼ 38K frames from102

155 video sequences split on sequence level into 75%, 10%, 15% train, validation, and test. The103

learned representations are evaluated by linear probing. The results are compared to those reported104

by Hirsch et al. [9], noting that their models were pre-trained on different datasets—both public and105

private—than ours, which must be taken into account in the comparisons.

Table 1: F1 test performance on PolypsSet histology classification. Supervised learning (SL) and
SSL pre-training on private and public datasets are compared. Note that data differs between our
setting (bottom part) and that of Hirsch et al. [9] (upper part), their private data being one order of
magnitude bigger than our public. This shows that our method learns useful features more efficiently.

Method Framework Arch Private Public

FS [14] SL RN50 - 72.1
DINO [14] SSL RN50 - 72.4
MSN [9] SSL ViT-S 78.5 70.6
MSN [9] SSL ViT-B 78.2 74.6
MSN [9] SSL ViT-L 80.4 73.6

MSN SSL ViT-S - 76.1
MSN-N (ours) SSL ViT-S - 77.8
MSN-SI (ours) SSL ViT-S - 80.3

106

Results. We report macro-F1 test results for the polyp histology classification task on PolypsSet107

in Table 1. A model pre-trained on REAL-Colon with our choice for hyper-parameters (without108

incorporating side information) outperforms the best previous models pre-trained on public data by109

1.5%, and by 5.5% when comparing models with identical architectures, but underperforms when110

compared to models pre-trained on the larger private dataset. The naive incorporation MSN-N, where111

the model is trained with side information simply mixed into the dataset, improves the results by112

another 1.7%. However, when using our proposed method (MSN-SI), we achieve a F1-macro score113

of 80.3%, matching the best privately trained models while using an order of magnitude less data114

and fewer parameters. This demonstrates that, when informative data is limited but relevant side115

information is available, our method can learn useful features more efficiently — compensating for116

the data disadvantage through auxiliary structure.117
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Potential Negative Societal Impact118

This work proposes a self-supervised learning framework for medical imaging that leverages side119

information — data assumed to contain task-irrelevant structures. While this approach has potential120

to improve model generalization and reduce reliance on large annotated datasets, its misuse or misin-121

terpretation could have negative societal consequences. First, if the side information inadvertently122

includes task-relevant cues (e.g., anatomical or demographic markers), models trained under the123

Nuisance-Free MultiView assumption may learn biased or misleading representations, affecting diag-124

nostic fairness across patient groups or imaging devices. Second, as with all automated systems in125

healthcare, deploying such models without sufficient clinical validation or human oversight could lead126

to diagnostic errors or misplaced trust in algorithmic outputs. These risks underscore the importance127

of responsible data management, rigorous evaluation across diverse populations and equipment, and128

transparent collaboration between AI researchers and clinicians prior to any clinical use.129
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