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Abstract

With a growing number of BERTology work an-001
alyzing different components of pre-trained lan-002
guage models, we extend this line of research003
through an in-depth analysis of discourse infor-004
mation in pre-trained and fine-tuned language005
models. We move beyond prior work along006
three dimensions: First, we describe a novel007
approach to infer discourse structures from ar-008
bitrarily long documents. Second, we propose a009
new type of analysis to explore where and how010
accurately intrinsic discourse is captured in the011
BERT and BART models. Finally, we assess012
how similar the generated structures are to a013
variety of baselines as well as their distribution014
within and between models.015

1 Introduction016

Transformer-based machine learning models are017

an integral part of many recent improvements in018

Natural Language Processing (NLP). With their019

rise spearheaded by Vaswani et al. (2017), the020

pre-training/fine-tuning paradigm has gradually021

replaced previous approaches based on architec-022

ture engineering, with transformer models such as023

BERT (Devlin et al., 2018), BART (Lewis et al.,024

2020), RoBERTa (Liu et al., 2019) and others de-025

livering state-of-the-art performances on a wide026

variety of tasks. Besides their strong empirical027

results on most real-world problems, such as sum-028

marization (Zhang et al., 2020; Xiao et al., 2021a),029

question-answering (Joshi et al., 2020; Oğuz et al.,030

2021) and sentiment analysis (Adhikari et al., 2019;031

Yang et al., 2019), uncovering what kind of lin-032

guistic knowledge is captured by this new type of033

pre-trained language models (PLMs) has become a034

prominent question by itself. As part of this line of035

research, called BERTology (Rogers et al., 2020),036

researchers explore the amount of linguistic under-037

standing encapsulated in PLMs, exposed through038

either external probing tasks (Raganato and Tiede-039

mann, 2018; Zhu et al., 2020; Koto et al., 2021a)040

or unsupervised methods (Wu et al., 2020; Pandia 041

et al., 2021) to analyze the syntactic structures (e.g., 042

Hewitt and Manning (2019); Wu et al. (2020)), 043

relations (Papanikolaou et al., 2019), ontologies 044

(Michael et al., 2020) and, to a more limited ex- 045

tend, discourse related behaviour (Zhu et al., 2020; 046

Koto et al., 2021a; Pandia et al., 2021). 047

Generally speaking, while most previous 048

BERTology work has focused on either sentence 049

level phenomena or connections between adja- 050

cent sentences, large-scale semantic and pragmatic 051

structures (oftentimes represented as discourse 052

trees/graphs) have been less explored. These struc- 053

tures (e.g., discourse trees) play a fundamental role 054

in expressing the intent of multi-sentential docu- 055

ments and, not surprisingly, have been shown to 056

benefit many NLP tasks such as summarization 057

(Gerani et al., 2019), sentiment analysis (Bhatia 058

et al., 2015; Nejat et al., 2017; Hogenboom et al., 059

2015) and text classification (Ji and Smith, 2017). 060

With multiple different theories for discourse 061

proposed in the past, the RST (Mann and Thomp- 062

son, 1988) and PDTB (Prasad et al., 2008) frame- 063

works have received most attention. RST-style 064

discourse structures thereby consist of a single 065

rooted tree covering whole documents, compris- 066

ing of: (1) A tree structure, combining clause-like 067

sentence fragments (Elementary Discourse Units, 068

short: EDUs) into a discourse constituency tree, 069

(2) Nuclearity, assigning every tree-branch primary 070

(Nucleus) or peripheral (Satellite) importance in a 071

local context and (3) Relations, defining the con- 072

nection and direction between siblings in the tree. 073

Given the importance of large-scale discourse 074

structures, we extend the line of BERTology re- 075

search with novel experiments to test for the pres- 076

ence of intrinsic discourse information in estab- 077

lished PLMs. More specifically, we aim to better 078

understand to what extend RST-style discourse in- 079

formation is stored as latent trees in encoder self- 080
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attention matrices1. While we focus on the RST081

formalism in this work, our presented methods are082

theory-agnostic and, hence, applicable to discourse083

structures in a broader sense, including other tree-084

based theories, such as PDTB. Our contributions085

in this paper are:086

(1) A novel approach to extract discourse informa-087

tion from arbitrarily long documents with limited-088

size transformer models. This is a non-trivial issue,089

which has been mostly by-passed in previous work090

through the use of proxy tasks.091

(2) An exploration of discourse information locality092

across pre-trained and fine-tuned language models,093

finding that discourse is consistently captured in a094

fixed subset of self-attention heads.095

(3) An in-depth analysis of the discourse quality in096

pre-trained language models and their fine-tuned097

extensions. We compare constituency and depen-098

dency structures of 2 PLMs fine-tuned on 4 tasks099

and 7 fine-tuning datasets to gold-standard dis-100

course trees, finding that the captured discourse101

structures outperform simple baselines by a wide102

margin and even show superior performance com-103

pared to distantly supervised models.104

(4) A similarity analysis between PLM inferred dis-105

course trees and supervised, distantly supervised106

and simple baselines, which reveals that PLM con-107

stituency discourse trees do align relatively well108

with previously proposed supervised models, but109

also capture complementary information, making110

them a valuable resource for ensemble methods.111

(5) A detailed look at information redundancy in112

self-attention heads to better understand the struc-113

tural overlap between self-attention matrices and114

models. Our results indicate that similar discourse115

information is consistently captured in the same116

heads, even across fine-tuning tasks.117

2 Related Work118

At the base of our work are two of the most pop-119

ular and frequently used PLMs: BERT (Devlin120

et al., 2018) and BART (Lewis et al., 2020). We121

choose these two popular approaches in our study122

due to their complementary nature (encoder-only123

vs. encoder-decoder) and based on previous work124

by Zhu et al. (2020) and Koto et al. (2021a), show-125

ing the effectiveness of BERT and BART models126

for discourse related tasks.127

Our work is further related to the field of dis-128

1We focus on discourse structure and nuclearity, leaving
the relation classification for future work.

course parsing. With a rich history of traditional 129

machine learning models (e.g., Hernault et al. 130

(2010); Ji and Eisenstein (2014); Joty et al. (2015); 131

Wang et al. (2017), inter alia), recent approaches 132

slowly shifted to successfully incorporate a vari- 133

ety of PLMs into the process of discourse pre- 134

diction, such as ELMo embeddings (Kobayashi 135

et al., 2019), XLNet (Nguyen et al., 2021), BERT 136

(Koto et al., 2021b), RoBERTa (Guz et al., 2020) 137

and SpanBERT (Guz and Carenini, 2020). De- 138

spite these works showing the usefulness of PLMs 139

for discourse parsing, all of them cast the task 140

into a “local" problem, using only partial infor- 141

mation through the shift-reduce framework (Guz 142

et al., 2020; Guz and Carenini, 2020), natural docu- 143

ment breaks (e.g. paragraphs (Kobayashi et al., 144

2020)) or by framing the task as an inter-EDU 145

sequence labelling problem on partial documents 146

(Koto et al., 2021b). However, since we believe 147

that the true benefit of discourse information only 148

emerges when complete documents are considered, 149

we propose a new approach to connect PLMs and 150

discourse structures in a “global” manner, supersed- 151

ing the local proxy-tasks with a new methodology 152

to explore arbitrarily long documents. 153

Aiming to better understand what information 154

is captured in PLMs, the line of BERTology re- 155

search has recently emerged (Rogers et al., 2020), 156

with early work mostly focusing on the syntac- 157

tic capacity of PLMs (Hewitt and Manning, 2019; 158

Jawahar et al., 2019; Kim et al., 2019), in parts 159

also exploring the internal workings of transformer- 160

based models (e.g., self-attention matrices (Ra- 161

ganato and Tiedemann, 2018; Mareček and Rosa, 162

2019)). More recent work started to explore the 163

alignment of PLMs with discourse information, en- 164

coding semantic and pragmatic knowledge. Along 165

those lines, Wu et al. (2020) present a parameter- 166

free probing task for both, syntax and discourse. 167

Compared to our work, their tree inference ap- 168

proach is however computationally expensive and 169

only explores the outputs of the BERT model. Fur- 170

ther, Zhu et al. (2020) use 24 hand-crafted rhetor- 171

ical features to execute three different supervised 172

probing tasks, showing promising performance of 173

the BERT model. Similarly, Pandia et al. (2021) 174

aim to infer pragmatics through the prediction of 175

discourse connectives by analyzing the model in- 176

puts and outputs and Koto et al. (2021a) analyze 177

discourse in PLMs through seven supervised prob- 178

ing tasks, finding that BART and BERT contain 179
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Figure 1: Small-scale example of the discourse ex-
traction approach. Purple=EDUs, green=sub-word em-
beddings, red=input slices of size tmax, orange=PLM,
blue=self-attention values, grey-scale=frequency count.

most information related to discourse. In contrast180

to the approach taken by both Zhu et al. (2020)181

and Koto et al. (2021a), we use an unsupervised182

methodology to test the amount of discourse in-183

formation stored in PLMs (which can also conve-184

niently be used to infer discourse structures for185

new and unseen documents) and extend the work186

by Pandia et al. (2021) by taking a closer look at187

the internal workings of the self-attention compo-188

nent. Looking at all these prior works analyzing the189

amount of discourse in PLMs, structures are solely190

explored through the use of proxy tasks, such as191

connective prediction (Pandia et al., 2021), rela-192

tion classification (Kurfalı and Östling, 2021) and193

others (Koto et al., 2021a). However, despite the194

difficulties of encoding arbitrarily long documents,195

we believe that to systematically explore the rela-196

tionship between PLMs and discourse, considering197

complete documents is imperative. Along these198

lines, recent work started to tackle the inherent199

input-length limitation of general transformer mod-200

els through additional recurrence (Dai et al., 2019),201

compression modules (Rae et al., 2019) or sparse202

patterns (e.g., Kitaev et al. (2020); Beltagy et al.203

(2020)). Still mostly based on established PLMs204

(e.g., BERT) and with no dominant solution yet,205

we believe that even with the input length restric-206

tion being actively tackled, an in-depth analysis207

of traditional PLMs with discourse is highly valu- 208

able to establish a solid understanding of intrinsic 209

linguistic properties. 210

Besides the described BERTology work, we got 211

encouraged to explore fine-tuned extensions of stan- 212

dard PLMs through previous work showing the 213

benefit of discourse parsing for many downstream 214

tasks, such as summarization (Gerani et al., 2019), 215

sentiment analysis (Bhatia et al., 2015; Nejat et al., 216

2017; Hogenboom et al., 2015) and text classifica- 217

tion (Ji and Smith, 2017). Conversely, recent work 218

also shows promising results when inferring dis- 219

course structures from related downstream tasks, 220

such as sentiment analysis (Huber and Carenini, 221

2020) and summarization (Xiao et al., 2021b). 222

Given this bidirectional synergy, we move beyond 223

traditional experiments focusing on standard PLMs 224

and additionally explore discourse structures of 225

fine-tuned PLMs. 226

3 Discourse Extraction Method 227

With PLMs rather well analyzed according to their 228

syntactic capabilities, large-scale discourse struc- 229

tures have been less explored. One reason for this is 230

the input length constraint of transformer models. 231

While this is generally not prohibitive for intra- 232

sentence syntactic structures (e.g., presented in Wu 233

et al. (2020)), it does heavily influence large-scale 234

discourse structures, operating on complete (poten- 235

tially long) documents. Overcoming this limitation 236

is non-trivial, since traditional transformer-based 237

models only allow for fixed, short inputs. 238

Aiming to systematically explore the ability 239

of PLMs to capture discourse, we investigate a 240

novel way to effectively extract discourse struc- 241

tures from the self-attention component of the 242

BERT and BART models. We thereby extend the 243

tree-generation approach proposed in Xiao et al. 244

(2021b) to support the input length constraints of 245

standard PLMs using a sliding-window approach in 246

combination with matrix frequency normalization 247

and an EDU aggregation method. 248

The Tree Generation Procedure by Xiao et al. 249

(2021b) explores a two-stage approach to obtain 250

discourse structures from a transformer model, by- 251

passing the input-length constraint. Using the intu- 252

ition that the self-attention score between any two 253

EDUs is an indicator of their semantic/pragmatic 254

relatedness and hence should influence their dis- 255

tance in a projective discourse tree, they use the 256

CKY dynamic programming approach (Jurafsky 257
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and Martin, 2014) to generate constituency trees258

based on the internal self-attention of the trans-259

former model. To generate dependency trees, a sim-260

ilar intuition is applied when inferring discourse261

trees using the Eisner (Eisner, 1996) algorithm.262

Since we explore the discourse information cap-263

tured in standard PLMs, we cannot directly trans-264

fer the two-stage approach in Xiao et al. (2021b)2.265

Instead, we propose a new method to overcome the266

length-limitation of the transformer model.267

The Sliding-Window Approach is at the core268

of our new methodology to overcome the input-269

length constraint. We first tokenize arbitrarily long270

documents with n EDUs E = {e1, ..., en} into271

the respective sequence of m sub-word tokens272

T = {t1, ...tm} with n ≪ m, according to the273

PLM tokenization method (WordPiece for BERT,274

Byte-Pair-Encoding for BART). Using the sliding275

window approach, we subdivide the m sub-word276

tokens into sequences of maximum input length277

tmax, defined by the PLM. Using a stride of 1,278

we generate (m− tmax) + 1 sliding windows W ,279

feed them into the PLM, and extract the resulting280

tmax × tmax partial self-attention matrices MP for281

a specific self-attention head3.282

The Frequency Normalization Method allows283

us to combine the partially overlapping self-284

attention matrices MP into a single document-level285

matrix MD of size m ×m. To this end, we inter-286

polate multiple overlapping windows by adding up287

the self-attention cells of tokens ti, while keeping288

track of the number of overlaps in a separate m×m289

frequency matrix MF . We then divide MD by the290

frequency matrix MF , to generate a frequency nor-291

malized self-attention matrix.292

The EDU Aggregation is the final processing293

step to obtain the document-level self-attention294

matrix MA. In this step, the m sub-word tokens295

T = {t1, ...tm} are aggregated back into n EDUs296

E = {e1, ..., en} by computing the average bidirec-297

tional self-attention score between any two EDUs298

in MD
MF

. Then, we use the resulting n × n matrix299

MA as the input to the CKY/Eisner discourse tree300

generation methods. Figure 1 visualizes the com-301

plete process on a small scale example.302

2For more information on the tree-generation approach,
we refer interested readers to Xiao et al. (2021b).

3We omit the self-attention indexes for better readability.

Dataset Task Domain

IMDB(2014) Sentiment Movie Reviews
Yelp(2015) Sentiment Reviews
SST-2(2013) Sentiment Movie Reviews
MNLI(2018) NLI Range of Genres
CNN-DM(2016) Summarization News
XSUM(2018) Summarization News
SQuAD(2016) Question-Answering Wikipedia

Table 1: The seven fine-tuning datasets used in this work
along with the underlying tasks and domains.

4 Experimental Setup 303

4.1 Pre-Trained Models 304

We select the BERT-base (110 million parameters) 305

and BART-large (406 million parameters) models 306

for our experiments. We choose these models for 307

their diverse objectives (encoder-only vs. encoder- 308

decoder), popularity for diverse fine-tuning tasks, 309

and their prior exploration in regards to discourse 310

(Zhu et al., 2020; Koto et al., 2021a). For the BART- 311

large model, we limit our analysis to the encoder, 312

as motivated in Koto et al. (2021a), leaving experi- 313

ments with the decoder for future work. 314

4.2 Fine-Tuning Tasks and Datasets 315

We explore the BERT model fine-tuned on two 316

classification tasks, namely sentiment analysis and 317

natural language inference (NLI). For our analysis 318

on BART, we select the abstractive summarization 319

and question answering tasks. Table 1 summarizes 320

the 7 datasets used to fine-tune PLMs in this work, 321

along with their underlying tasks and domains4. 322

4.3 Evaluation Treebanks 323

RST-DT (Carlson et al., 2002) is the largest En- 324

glish RST-style discourse treebank, containing 385 325

Wall-Street-Journal articles, annotated with full 326

constituency discourse trees. To generate addi- 327

tional dependency trees, we apply the conversion 328

algorithm proposed in Li et al. (2014). 329

GUM (Zeldes, 2017) is a steadily growing treebank 330

of richly annotated texts. In the current version 7.3, 331

the dataset contains 168 documents from 12 gen- 332

res, annotated with full RST-style constituency and 333

dependency discourse trees. 334

All evaluations shown in this paper are executed 335

on the 38 and 20 documents in the RST-DT and 336

GUM test-sets, to be comparable with previous 337

baselines and supervised models. 338

4We exclusively analyze published models provided on the
huggingface platform, further specified in Appendix A.
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(a) BERT: PLM, +IMDB, +Yelp, +SST-2, +MNLI

(b) BART: PLM, +CNN-DM, +XSUM, +SQuAD

Figure 2: Constituency (top) and dependency (bottom)
discourse tree evaluation of BERT (a) and BART (b)
models on GUM. Purple=high score, Blue=low score.
Heads presented left-to-right, high layers on top.
+ indicates fine-tuning dataset.

4.4 Baselines and Evaluation Metrics339

Simple Baselines: We compare the inferred con-340

stituency trees against right- and left-branching341

structures. For dependency trees, we evaluate342

against simple chain and inverse chain structures.343

Distantly Supervised Baselines: We compare our344

results against the approach by Xiao et al. (2021b),345

using similar CKY and Eisner tree-generation346

methods to infer constituency and dependency tree347

structures from their summarization model trained348

on the CNN-DM and New York Times (NYT) cor-349

pora (called SumCNN-DM and SumNYT)5.350

Supervised Baseline: We select the popular Two-351

Stage discourse parser (Wang et al., 2017) as our352

supervised baseline, due to its strong performance,353

available model checkpoints and code6, as well as354

the traditional architecture. We use the published355

Two-Stage parser checkpoint on RST-DT (from356

here on called Two-StageRST-DT) and re-train the357

discourse parser on GUM (Two-StageGUM). We358

convert the generated constituency structures into359

dependency trees following Li et al. (2014).360

Evaluation Metrics: We apply the original parse-361

val score to compare discourse constituency struc-362

tures with gold-standard treebanks, as argued in363

Morey et al. (2017). To evaluate the generated364

dependency structures, we use the Unlabeled At-365

tachment Score (UAS).366

5www.github.com/Wendy-Xiao/summ_
guided_disco_parser

6www.github.com/yizhongw/StageDP

5 Experimental Results 367

5.1 Discourse Locality 368

Our discourse tree generation approach described 369

in section 3 directly uses self-attention matrices 370

to generate discourse trees. The standard BERT 371

model contains 144 of those self-attention matri- 372

ces (12 layers, 12 self-attention heads each), all 373

of which potentially encode discourse structures. 374

For the BART model, this number is even higher, 375

consisting of 12 layers with 16 self-attention heads 376

each. With prior work suggesting the locality of 377

discourse information in PLMs (e.g., Raganato and 378

Tiedemann (2018); Mareček and Rosa (2019); Xiao 379

et al. (2021b)), we analyze every self-attention ma- 380

trix individually to gain a better understanding of 381

their alignment with discourse information. 382

Besides investigating standard PLMs, we also 383

explore the robustness of discourse information 384

across fine-tuning tasks. We believe that this is an 385

important step to better understand if the captured 386

discourse information is general and robust, or if it 387

is “re-learned” from scratch for downstream tasks. 388

To the best of our knowledge, no previous analysis 389

of this kind has been performed in the literature. 390

To this end, Figure 2 shows the constituency and 391

dependency structure overlap of the generated dis- 392

course trees from every individual self-attention 393

head with the gold-standard tree structures of the 394

GUM dataset7. The heatmaps clearly show that 395

constituency discourse structures are mostly cap- 396

tured in higher layers, while dependency structures 397

are scattered throughout. Comparing the patterns 398

between models, we find that, despite being fine- 399

tuned on different downstream tasks, the discourse 400

information is consistently encoded in the same 401

self-attention heads. Even though the best perform- 402

ing self-attention matrix is not consistent, discourse 403

information is clearly captured in a “local" subset 404

of self-attention heads across all presented fine- 405

tuning task. This plausibly suggests that the dis- 406

course information in pre-trained BERT and BART 407

models is robust and general, requiring only minor 408

adjustments depending on the fine-tuning task. 409

5.2 Discourse Quality 410

We now focus on assessing the discourse informa- 411

tion captured in the single best-performing self- 412

attention head. In Table 2, we compare the quality 413

7The analysis on RST-DT shows similar trends and can be
found in Appendix B.
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Model
RST-DT GUM

Span UAS Span UAS

BERT

rand. init ↓ 25.5 ↓ 13.3 ↓ 23.2 ↓ 12.4
PLM • 35.7 • 45.3 • 33.0 • 45.2
+ IMDB ↓ 35.4 ↓ 42.8 • 33.0 ↓ 43.3
+ Yelp ↓ 34.7 ↓ 42.3 ↓ 32.6 ↓ 43.7
+ SST-2 ↓ 35.5 ↓ 42.9 ↓ 32.6 ↓ 43.5
+ MNLI ↓ 34.8 ↓ 41.8 ↓ 32.4 ↓ 43.3

BART

rand. init ↓ 25.3 ↓ 12.5 ↓ 23.2 ↓ 12.2
PLM • 39.1 • 41.7 • 31.8 • 41.8
+ CNN-DM ↑ 40.9 ↑ 44.3 ↑ 32.7 ↑ 42.8
+ XSUM ↑ 40.1 ↑ 41.9 ↑ 32.1 ↓ 39.9
+ SQuAD ↑ 40.1 ↑ 43.2 ↓ 31.3 ↓ 40.7

Baselines

Right-Branch/Chain 9.3 40.4 9.4 41.7
Left-Branch/Chain-1 7.5 12.7 1.5 12.2
SumCNN-DM(2021b) 21.4 20.5 17.6 15.8
SumNYT(2021b) 24.0 15.7 18.2 12.6
Two-StageRST-DT(2017) 72.0 71.2 54.0 54.5
Two-StageGUM 65.4 61.7 58.6 56.7

Table 2: Original parseval (Span) and Unlabelled At-
tachment Score (UAS) of the single best performing
self-attention matrix of the BERT and BART models
compared with baselines and previous work. ↑, •, ↓
indicate better, same, worse performance compared to
the PLM. “rand. init"=Randomly initialized transformer
model of similar architecture as the PLM.

of generated discourse structures between differ-414

ent pre-trained and fine-tuned models, as well as415

additional baselines8. The results are separated416

into three sub-tables, showing the results for BERT,417

BART and baseline models on the RST-DT and418

GUM treebanks. In the BERT and BART sub-table,419

we further annotate each performance with ↑, •, ↓,420

indicating the relative performance to the standard421

pre-trained model as superior, equal, or inferior.422

Taking a look at the top sub-table (BERT) we423

find that, as expected, the randomly initialized424

transformer model achieves the worst performance.425

Fine-tuned models perform equal or worse than the426

standard PLM. Despite the inferior results of the427

fine-tuned models, the drop is rather small, with428

the sentiment analysis models consistently outper-429

forming NLI. This seems reasonable, given that430

the sentiment analysis objective is intuitively more431

aligned with discourse structures (e.g., long-form432

reviews with potentially complex rhetorical struc-433

tures) than the between-sentence NLI task, not in-434

volving multi-sentential text.435

8For a more detailed analysis of the min., mean, median
and max. self-attention performances see Appendix C.

In the center sub-table (BART), a different trend 436

emerges. While the worst performing model is still 437

(as expected) the randomly initialized system, fine- 438

tuned models mostly outperform the standard PLM. 439

Interestingly, the model fine-tuned on the CNN- 440

DM corpus consistently outperforms the BART 441

baseline, while the XSUM model performs bet- 442

ter on all but the GUM dependency structure eval- 443

uation. On one hand, the superior performance 444

of both summarization models on the RST-DT 445

dataset seems reasonable, given that the fine-tuning 446

datasets and the evaluation treebank are both in the 447

news domain. The strong results of the CNN-DM 448

model on the GUM treebank, yet inferior perfor- 449

mance of XSUM, potentially hints towards depen- 450

dency discourse structures being less prominent 451

when fine-tuning on the extreme summarization 452

task, compared to the longer summaries in the 453

CNN-DM corpus. The question-answering task 454

evaluated through the SQuAD fine-tuned model un- 455

derperforms the standard PLM on GUM, however 456

reaches superior performance on RST-DT. Since 457

the SQuAD corpus is a subset of Wikipedia articles, 458

more aligned with news articles than the 12 genres 459

in GUM, we believe the stronger performance on 460

RST-DT (i.e., news articles) is again reasonable, 461

yet shows weaker generalization capabilities across 462

domains (i.e., on the GUM corpus). Interestingly, 463

the question-answering task seems more aligned 464

with dependency than constituency trees, in line 465

with what would be expected from a factoid-style 466

question-answering model, focusing on important 467

entities, rather than global constituency structures. 468

Directly comparing the BERT and BART mod- 469

els, the former performs better on three out of four 470

metrics. At the same time, fine-tuning hurts the 471

performance for BERT, however, improves BART 472

models. Plausibly, these seemingly unintuitive re- 473

sults may be caused by the following co-occurring 474

circumstances: (1) The inferior performance of 475

BART can potentially be attributed to the decoder 476

component capturing parts of the discourse struc- 477

tures, as well as the larger number of self-attention 478

heads “diluting” the discourse information. (2) 479

The different trends regarding fine-tuned models 480

might be directly influenced by the input-length 481

limitation to 512 (BERT) and 1024 (BART) sub- 482

word tokens during the fine-tuning stage, hamper- 483

ing the ability to capture long-distance semantic 484

and pragmatic relationships. This, in turn, limits 485

the amount of discourse information captured, even 486
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Figure 3: PLM discourse constituency (left) and depen-
dency (right) structure overlap with baselines and gold
trees (e.g., BERT ↔ Two-Stage (RST-DT)) according
to the original parseval and UAS metrics.

for document-level datasets (e.g., Yelp, CNN-DM,487

SQuAD). With this restriction being more promi-488

nent in BERT, it potentially explains the compara-489

bly low performance of the fine-tuned models.490

Finally, the bottom sub-table puts our results491

in the context of baselines. Compared to sim-492

ple right- and left-branching trees (Span), the493

PLM-based models reach clearly superior per-494

formance. Looking at the chain/inverse chain495

structures (UAS), the improvements are gener-496

ally lower, however, the vast majority still out-497

performs the baseline. Comparing the first two498

sub-tables against completely supervised meth-499

ods (Two-StageRST-DT, Two-StageGUM), the BERT-500

and BART-based models are, unsurprisingly, infe-501

rior. Lastly, compared to the distantly supervised502

SumCNN-DM and SumNYT models, the PLM-based503

discourse performance shows clear improvements504

over the 6-layer, 8-head standard transformer.505

5.3 Discourse Similarity506

Further exploring what kind of discourse informa-507

tion is captured in the PLM self-attention matrices,508

we directly compare the emergent discourse struc-509

tures with baseline trees. This way, we aim to bet-510

ter understand if the information encapsulated in511

PLMs is complementary to existing methods, or if512

the PLMs only capture trivial discourse phenomena513

and simple biases (e.g., resemble right-branching514

constituency trees). Since the GUM dataset con-515

tains a more diverse set of test documents (12 gen-516

res) than the RST-DT corpus (news), we perform517

our experiments from here on exclusively on GUM.518

Figure 3 shows the micro-average structural over-519

lap of discourse constituency (left) and dependency520

(right) trees between the PLM-generated structures521

(a) Head-aligned (b) Model-aligned

Figure 4: Nested aggregation approach for discourse
similarity. Grey cells contain same-head/same-model
((a)/(b)), white cells indicate between-head/between-
model ((a)/(b)). Column indices equal row indices.

and our baseline models, as well as gold-standard 522

trees. Noticeably, the generated constituency trees 523

(on the left) are most aligned with the structures 524

predicted by supervised discourse parsers, show- 525

ing only minimal overlap to simple structures (i.e., 526

right- and left-branching trees). Taking a closer 527

look at the generated dependency structures pre- 528

sented on the right side in Figure 3, the alignment 529

between PLM inferred discourse trees and the sim- 530

ple chain structure is predominant, suggesting a 531

potential weakness in regards to the discourse cap- 532

tured in the BERT and BART model. Not surpris- 533

ingly, the highest overlap between PLM-generated 534

trees and the chain structure occurs when fine- 535

tuning on the CNN-DM dataset, well-known to 536

contain a strong lead-bias (Xing et al., 2021). 537

To better understand if the PLM-based discourse 538

structures are complementary to existing, super- 539

vised discourse parsers, we further analyze the cor- 540

rectly predicted overlap. More specifically, we 541

compute the intersection of both, the PLM model 542

and the baselines with gold-standard trees (e.g., 543

BERT ∩ Gold Trees ↔ Two-Stage (RST-DT) ∩ 544

Gold Trees) and further intersect the two resulting 545

sets. This way, we explore if the correctly pre- 546

dicted PLM discourse structures are a subset of the 547

correctly predicted trees by supervised approaches, 548

or if complementary discourse information is cap- 549

tured. We find that >20%/>16% of the correctly 550

predicted constituency/dependency structures of 551

our PLM discourse inference approach are not cap- 552

tured by supervised models, making the exploration 553

of ensemble methods a promising future avenue. A 554

detailed version of Fig. 3 as well as more specific 555

results regarding the correctly predicted overlap of 556

discourse structures are shown in Appendix D. 557

5.4 Discourse Redundancy 558

Looking at the similarity of model self-attention 559

heads in regards to their alignment with discourse 560
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(a) Constituency Similarity (b) Dependency Similarity

Figure 5: BERT self-attention similarities on GUM.
Top: Visual analysis of head-aligned (I&III) and
model-aligned (II&IV ) heatmaps. Yellow=high struc-
tural overlap, purple=low structural overlap.
Bottom: Aggregated similarity of same heads, same
models, different heads and different models showing
the min, max and quartiles of the underlying distribution.
*Significantly better than respective ̸=Head/ ̸=Model
performance with p-value < 0.05.

information, we now explore if (1) the top perform-561

ing heads hi, ..., hk of a specific model mm capture562

redundant discourse structures, and if (2) the dis-563

course information captured by a specific head hi564

across different models mm, ...,mo contain similar565

discourse information.566

Specifically, we pick the top 10 best performing567

self-attention matrices of each model, remove self-568

attention heads that don’t appear in at least two569

models (since no comparisons can be made), and570

compare the generated discourse structures in a571

nested aggregation approach.572

Figure 4 shows a small-scale example of our573

nested visualization methodology. For the (self-574

attention) head-aligned approach (Figure 4(a)),575

high similarity values along the diagonal (grey576

cells) would be expected if the same head hi en-577

codes consistent discourse information across dif-578

ferent fine-tuning tasks and datasets. Inversely, the579

model-aligned matrix (Figure 4(b)) should show580

high values along the diagonal if different heads581

hi, ..., hk in the same model mk capture redundant582

(i.e., similar) discourse information. Besides the583

visual inspection methodology presented in Figure584

4, we also compare aggregated similarities between585

the same head (=Head) against different heads586

(̸=Head) and between the same model (=Model)587

against different models ( ̸=Model) (i.e., grey cells588

(=) and white cells ( ̸=) in Figure 4(a) and (b)). In or-589

der to assess the statistical significance of the result-590

ing differences in the underlying distributions, we591

compute a two-sided, independent t-test between592

same/different models and same/different heads9. 593

The resulting redundancy evaluations for 594

BERT10 are presented in Figure 5. It appears that 595

the same self-attention heads hi consistently en- 596

code similar discourse information across models 597

indicated by: (1) High similarities (yellow) along 598

the diagonal in heatmaps I&III and (2) through 599

the statistically significant difference in distribu- 600

tions at the bottom of Figure 5(a) and (b). However, 601

different self-attention heads hi, ..., hk of the same 602

model mm encode different discourse information 603

(heatmaps II&IV ). While the trend is stronger for 604

constituency tree structures, there is a single de- 605

pendency self-attention head which does generally 606

not align well between models and heads (purple 607

line in heatmap III). Plausibly, this specific self- 608

attention head encodes fine-tuning task specific dis- 609

course information. Overall, the similarity patterns 610

observed in Figure 5(a) and (b) point towards an 611

opportunity to combine model self-attention heads 612

to improve the discourse inference performance 613

compared to the scores shown in Table 2, where 614

each self-attention head was assessed individually. 615

6 Conclusions 616

In this paper, we extend the line of BERTology work 617

by focusing on the important, yet less explored, 618

alignment of pre-trained and fine-tuned PLMs with 619

large-scale discourse structures. We propose a 620

novel approach to infer discourse information for 621

arbitrarily long documents. In our experiments, we 622

find that the captured discourse information is local 623

and general, even across a collection of fine-tuning 624

tasks. We compare the inferred discourse trees 625

with supervised, distantly supervised and simple 626

baselines to explore the structural overlap, finding 627

that constituency discourse trees align well with 628

supervised models, however, contain complemen- 629

tary discourse information. Lastly, we individually 630

explore self-attention matrices to analyze the infor- 631

mation redundancy. We find that similar discourse 632

information is consistently captured in the same 633

heads. Based on the insights we gained in this anal- 634

ysis of large-scale discourse structures in PLMs, 635

in the short term, we intend to explore new dis- 636

course inference methods using multiple (diverse) 637

self-attention heads. Long term, we plan to analyze 638

PLMs with enhanced input-length limitations. 639

9Prior to running the t-test we confirm similar variance and
the assumption of normal distribution (Shapiro-Wilk test).

10Evaluations for BART can be found in Appendix E.

8



References640

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and641
Jimmy Lin. 2019. Docbert: Bert for document classi-642
fication. arXiv preprint arXiv:1904.08398.643

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.644
Longformer: The long-document transformer. arXiv645
preprint arXiv:2004.05150.646

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.647
2015. Better document-level sentiment analysis from648
rst discourse parsing. In Proceedings of the 2015649
Conference on Empirical Methods in Natural Lan-650
guage Processing, pages 2212–2218.651

Lynn Carlson, Mary Ellen Okurowski, and Daniel652
Marcu. 2002. RST discourse treebank. Linguistic653
Data Consortium, University of Pennsylvania.654

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-655
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.656
Transformer-xl: Attentive language models beyond657
a fixed-length context. In Proceedings of the 57th658
Annual Meeting of the Association for Computational659
Linguistics, pages 2978–2988.660

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and661
Kristina Toutanova. 2018. Bert: Pre-training of deep662
bidirectional transformers for language understand-663
ing. arXiv preprint arXiv:1810.04805.664

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexan-665
der J Smola, Jing Jiang, and Chong Wang. 2014.666
Jointly modeling aspects, ratings and sentiments for667
movie recommendation (jmars). In Proceedings of668
the 20th ACM SIGKDD international conference on669
Knowledge discovery and data mining, pages 193–670
202. ACM.671

Jason M. Eisner. 1996. Three new probabilistic models672
for dependency parsing: An exploration. In COLING673
1996 Volume 1: The 16th International Conference674
on Computational Linguistics.675

Shima Gerani, Giuseppe Carenini, and Raymond T Ng.676
2019. Modeling content and structure for abstractive677
review summarization. Computer Speech & Lan-678
guage, 53:302–331.679

Grigorii Guz and Giuseppe Carenini. 2020. Corefer-680
ence for discourse parsing: A neural approach. In681
Proceedings of the First Workshop on Computational682
Approaches to Discourse, pages 160–167.683

Grigorii Guz, Patrick Huber, and Giuseppe Carenini.684
2020. Unleashing the power of neural discourse685
parsers-a context and structure aware approach using686
large scale pretraining. In Proceedings of the 28th687
International Conference on Computational Linguis-688
tics, pages 3794–3805.689

Hugo Hernault, Helmut Prendinger, Mitsuru Ishizuka,690
et al. 2010. Hilda: A discourse parser using support691
vector machine classification. Dialogue & Discourse,692
1(3).693

John Hewitt and Christopher D. Manning. 2019. A 694
structural probe for finding syntax in word represen- 695
tations. In Proceedings of the 2019 Conference of 696
the North American Chapter of the Association for 697
Computational Linguistics: Human Language Tech- 698
nologies, Volume 1 (Long and Short Papers), pages 699
4129–4138, Minneapolis, Minnesota. Association for 700
Computational Linguistics. 701

Alexander Hogenboom, Flavius Frasincar, Franciska 702
De Jong, and Uzay Kaymak. 2015. Using rhetori- 703
cal structure in sentiment analysis. Commun. ACM, 704
58(7):69–77. 705

Patrick Huber and Giuseppe Carenini. 2020. Mega 706
rst discourse treebanks with structure and nuclear- 707
ity from scalable distant sentiment supervision. In 708
Proceedings of the 2020 Conference on Empirical 709
Methods in Natural Language Processing (EMNLP), 710
pages 7442–7457. 711

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 712
2019. What does BERT learn about the structure of 713
language? In Proceedings of the 57th Annual Meet- 714
ing of the Association for Computational Linguistics, 715
pages 3651–3657, Florence, Italy. Association for 716
Computational Linguistics. 717

Yangfeng Ji and Jacob Eisenstein. 2014. Representation 718
learning for text-level discourse parsing. In Proceed- 719
ings of the 52nd Annual Meeting of the Association 720
for Computational Linguistics (Volume 1: Long Pa- 721
pers), volume 1, pages 13–24. 722

Yangfeng Ji and Noah A Smith. 2017. Neural discourse 723
structure for text categorization. In Proceedings 724
of the 55th Annual Meeting of the Association for 725
Computational Linguistics (Volume 1: Long Papers), 726
pages 996–1005. 727

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, 728
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: 729
Improving pre-training by representing and predict- 730
ing spans. Transactions of the Association for Com- 731
putational Linguistics, 8:64–77. 732

Shafiq Joty, Giuseppe Carenini, and Raymond T Ng. 733
2015. Codra: A novel discriminative framework 734
for rhetorical analysis. Computational Linguistics, 735
41(3). 736

Dan Jurafsky and James H Martin. 2014. Speech and 737
language processing, volume 3. Pearson London. 738

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-goo 739
Lee. 2019. Are pre-trained language models aware 740
of phrases? simple but strong baselines for grammar 741
induction. In International Conference on Learning 742
Representations. 743

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 744
2020. Reformer: The efficient transformer. arXiv 745
preprint arXiv:2001.04451. 746

9

https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356


Naoki Kobayashi, Tsutomu Hirao, Hidetaka Kamigaito,747
Manabu Okumura, and Masaaki Nagata. 2020. Top-748
down rst parsing utilizing granularity levels in doc-749
uments. In Proceedings of the AAAI Conference on750
Artificial Intelligence, volume 34, pages 8099–8106.751

Naoki Kobayashi, Tsutomu Hirao, Kengo Nakamura,752
Hidetaka Kamigaito, Manabu Okumura, and Masaaki753
Nagata. 2019. Split or merge: Which is better for754
unsupervised rst parsing? In Proceedings of the755
2019 Conference on Empirical Methods in Natu-756
ral Language Processing and the 9th International757
Joint Conference on Natural Language Processing758
(EMNLP-IJCNLP), pages 5797–5802.759

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021a.760
Discourse probing of pretrained language models.761
In Proceedings of the 2021 Conference of the North762
American Chapter of the Association for Computa-763
tional Linguistics: Human Language Technologies,764
pages 3849–3864.765

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021b.766
Top-down discourse parsing via sequence labelling.767
In Proceedings of the 16th Conference of the Euro-768
pean Chapter of the Association for Computational769
Linguistics: Main Volume, pages 715–726.770

Murathan Kurfalı and Robert Östling. 2021. Probing771
multilingual language models for discourse. arXiv772
preprint arXiv:2106.04832.773

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan774
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,775
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:776
Denoising sequence-to-sequence pre-training for nat-777
ural language generation, translation, and comprehen-778
sion. In Proceedings of the 58th Annual Meeting of779
the Association for Computational Linguistics, pages780
7871–7880.781

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.782
2014. Text-level discourse dependency parsing. In783
Proceedings of the 52nd Annual Meeting of the As-784
sociation for Computational Linguistics (Volume 1:785
Long Papers), pages 25–35, Baltimore, Maryland.786
Association for Computational Linguistics.787

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-788
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,789
Luke Zettlemoyer, and Veselin Stoyanov. 2019.790
Roberta: A robustly optimized bert pretraining ap-791
proach. arXiv preprint arXiv:1907.11692.792

William C Mann and Sandra A Thompson. 1988.793
Rhetorical structure theory: Toward a functional the-794
ory of text organization. Text-Interdisciplinary Jour-795
nal for the Study of Discourse, 8(3):243–281.796
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A Huggingface Models943

We investigate 7 fine-tuned BERT and BART models from the huggingface model library, as well as the944

two pre-trained models. The model names and links are provided in Table 3

Pre-Trained Fine-Tuned Link

BERT-base – https://huggingface.co/bert-base-uncased
BERT-base IMDB https://huggingface.co/textattack/bert-base-uncased-imdb
BERT-base Yelp https://huggingface.co/fabriceyhc/bert-base-uncased-yelp_polarity
BERT-base SST-2 https://huggingface.co/textattack/bert-base-uncased-SST-2
BERT-base MNLI https://huggingface.co/textattack/bert-base-uncased-MNLI

BART-large – https://huggingface.co/facebook/bart-large
BART-large CNN-DM https://huggingface.co/facebook/bart-large-cnn
BART-large XSUM https://huggingface.co/facebook/bart-large-xsum
BART-large SQuAD https://huggingface.co/valhalla/bart-large-finetuned-squadv1

Table 3: Huggingface pre-trained and fine-tuned model links.

945

B Self-Attention Matrices of Pre-Trained and Fine-Tuned Models946

(a) BERT: PLM, +IMDB, +Yelp, +MNLI, +SST-2

(b) BART: PLM, +CNN-DM, +XSUM, +SQuAD

Figure 6: Constituency (top) and dependency (bottom) discourse tree evaluation of BERT (a) and BART (b) models
on RST-DT. Purple=high score, blue=low score.
+ indicates fine-tuning dataset.
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https://huggingface.co/valhalla/bart-large-finetuned-squadv1


C Detailed Self-Attention Statistics 947

Model
Span Eisner

Min Med Mean Max Min Med Mean Max

RST-DT

rand. init 21.7 23.4 23.4 25.5 7.5 10.3 10.3 13.3
PLM 19.3 27.0 27.4 35.7 6.6 17.4 21.6 45.3

+ IMDB 19.7 26.9 27.2 35.4 6.6 16.9 21.3 42.8
+ YELP 20.2 26.6 26.9 34.7 7.0 16.5 21.0 42.3
+ SST-2 19.5 27.3 27.7 35.5 7.3 17.6 21.9 42.9
+ MNLI 18.5 26.9 27.1 34.8 6.9 17.5 21.5 41.8

GUM

rand. init 18.6 21.0 21.0 23.2 7.9 10.1 10.1 12.4
PLM 17.8 24.2 24.3 32.6 6.7 16.0 21.2 45.2

+ IMDB 18.1 23.8 24.1 32.7 6.1 15.9 21.0 43.3
+ YELP 18.6 24.0 23.9 32.3 7.0 15.8 20.7 43.7
+ SST-2 18.2 24.6 24.7 32.3 6.5 16.5 21.6 43.5
+ MNLI 17.4 23.9 24.2 32.1 6.8 16.6 21.3 43.3

Table 4: Minimum, median, mean and maximum performance of the self-attention matrices on RST-DT and GUM
for the BERT model.

Model
Span Eisner

Min Med Mean Max Min Med Mean Max

RST-DT

rand. init 20.3 23.3 23.3 25.3 8.5 10.6 10.6 12.5
PLM 20.3 28.3 28.5 39.1 4.1 15.8 19.2 41.7

+ CNN-DM 20.5 28.6 28.7 40.9 3.6 15.2 19.2 44.3
+ XSUM 20.2 27.6 28.3 40.1 4.8 14.8 18.7 41.9
+ SQuAD 20.5 27.6 28.2 40.1 2.8 14.8 18.8 43.2

GUM

rand. init 18.6 21.0 21.0 23.2 8.0 10.2 10.2 12.2
PLM 16.7 23.4 23.8 31.5 2.6 15.2 18.7 41.8

+ CNN-DM 15.9 23.7 24.1 32.4 3.7 14.7 18.9 42.8
+ XSUM 16.4 23.2 23.9 31.8 3.0 14.1 18.1 39.9
+ SQuAD 16.1 23.4 23.8 31.0 2.4 14.8 18.3 40.7

Table 5: Minimum, median, mean and maximum performance of the self-attention matrices on RST-DT and GUM
for the BART model.
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D Details of Structural Discourse Similarity948

Figure 7: Detailed PLM discourse constituency (left) and dependency (right) structure overlap with baselines and
gold trees according to the original parseval and UAS metrics.

Figure 8: Detailed PLM discourse constituency (left) and dependency (right) structure performance of intersection
with gold trees (e.g., BERT ∩ Gold Trees ↔ Two-Stage (RST-DT) ∩ Gold Trees) according to the original parseval
and UAS metrics.
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E Intra- and Inter-Model Self-Attention Comparison 949
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(a) BERT constituency tree similarity on GUM
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(b) BERT dependency tree similarity on GUM
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(c) BART constituency tree similarity on GUM
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(d) BART dependency tree similarity on GUM

Figure 9: Top: Visual analysis of sorted heatmaps. Yellow=high score, purple=low score.
Bottom: Aggregated similarity of same heads, same models, different heads and different models. *=Head/=Model
significantly better than ̸=Head/ ̸=Model performance with p-value < 0.05.
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