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ABSTRACT

Vision—language(VL) models are increasingly deployed in non-stationary settings, yet un-
der sequential adaptation they often preserve primitive recognition while losing composi-
tional structure, especially with tight rehearsal budgets and no task IDs. We address this
gap by asking how a continual VL system can maintain structurally dependable behaviour
while safeguarding zero-shot performance. We introduce COMPO-REALIGN, a structure-
first recipe built around three components: a reversible composer that maps primitive em-
beddings to compositions by design, a multi-positive InfoNCE that jointly aligns textual
and composed views of the same target, and a spectral trust region that clips updates
when alignment sensitivity inflates. Across compositional DIL and multi-domain MTIL
retrieval, COMPO-REALIGN sets a new state of the art, improves over the strongest prior
by +2.4 R@1, and reduces forgetting by 40%. We provide a compact, reversible alignment
head with geometry-aware training for compositionally robust VL continual learning.

1 INTRODUCTION

Vision—-language models (VLMs)(Radford et al., 2021} |Guo et al., [2025) are increasingly deployed in non-
stationary settings(Zhou et al., 2025)—new domains, evolving tasks, and shifting data sources in retrieval,
assistance, and analytics(Lin et al.| [2025). In these environments, systems must adapt rapidly while pre-
serving generalization and reliability on unseen data. Practical constraints are pronounced: privacy and cost
often preclude large-scale rehearsal, memory budgets are tight, and task identities may be unavailable at test
time(Liu et al., 2025b)).

Substantial progress has improved continual visual-language learning(VL) through geometry/topology
preservation and distillation (Ni et al.l 2023} |Zheng et al.l 2023 |[Zhu et al.l 2023} |Gao et al., 2024} |Jha
et al., 2024), scalable streaming protocols (Garg et al., 2024), and error-aware consolidation (Cui1 et al.|
2024). Replay and data-free surrogates (e.g., negative-text or synthetic pairs) reduce forgetting under lim-
ited memory (Yan et all 2022; |Smith et al.l 2023} [Lei et al., 2023} Wu et al., [2025)); parameter-efficient
prompts/adapters mitigate interference at low update cost (Qian et al.| [2023; [Tang et al., 2024; Xu et al.|
2024; |Luo et al.|, [2025; [Huang et al.l 2025a).Yet a practical pain point persists: under sequential adapta-
tion, models can maintain overall task/domain competence while degrading in fine-grained, combinatorial
generalization, especially when rehearsal is scarce and no task-ID is available. This gap concerns how
VL representations remain structurally dependable across tasks—not merely whether average accuracy or
zero-shot scores are preserved.

How can a continual VLM maintain structurally dependable behaviour under strict memory and no task IDs,
while safeguarding zero-shot performance? We pursue a structure-first approach that anchors the meaning
of complex inputs across tasks, studies its geometric stability, and leverages small text-centric buffers as
symbolic scaffolds.
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Our contributions are as follows: (i) Phenomenon and diagnostics. We identify and quantify a recurrent
deterioration in structural dependability during continual VL, and introduce light, reproducible diagnos-
tics—retention ratios, cycle consistency proxies, and Jacobian-spectrum indicators—that reveal tight links
between alignment geometry and downstream behaviour. (ii) Simple, budget-friendly recipe. We demon-
strate that a minimal training scheme—anchoring multiple textual views of the same target and stabilizing
local sensitivity—substantially improves retention, lowers forgetting, and preserves zero-shot transfer across
DIL/MTIL/VQA tracks, outperforming strong replay/regularization and adapter baselines under the same
rehearsal budgets. (iii) Performance (state-of-the-art across settings). Under identical rehearsal budgets,
our approach achieves best-in-class results on continual retrieval and VQA across DIL/MTIL tracks—raising
compositional retention and zero-shot stability while reducing forgetting.

2 RELATED WORKS

Continual VL under non-stationary streams. Early continual captioning framed forgetting as transient-
vs-shared dynamics in sequence models, introducing task-conditioned gating and gradient masking to pro-
tect recurrent states and vocabularies (Del Chiaro et al., [2020). For contrastive VL, recent work scales
to multi-domain retrieval and pretraining: momentum/distillation and topology-aware objectives curb drift
across datasets and time (e.g., BMU-MoCo for video-text (Gao et al. 2022, Open-VCLIP for zero-shot
video (Weng et al [2023), CTP for VL continual pretraining with compatible momentum and topology
preservation (Zhu et al.l2023)). At web scale, TiC-CLIP shows that warm-starting from the last checkpoint
plus replay offers a practical path close to retraining-from-scratch (Garg et al. |2024). For retrieval, DKR
emphasizes rectifying mismatched affinities before distillation to avoid propagating earlier errors (Cui et al.|
2024). Much of this line has focused on task/domain retention and large-scale training mechanics. How-
ever, real deployments also require compositional robustness—i.e., preserving how attributes and objects
bind—when rehearsal is scarce and task identities are unknown.

Zero-shot stability and structure preservation. A second line studies how to keep VL geometry sta-
ble so zero-shot transfer remains reliable. Mod-X preserves off-diagonal similarity structure to maintain
negative-pair geometry across domains (Ni et al., [2023)), ZSCL performs reference-set distillation with
weight averaging to protect zero-shot predictions (Zheng et al.| 2023), CTP distils neighbourhood/topo-
logical relations (Zhu et al., 2023)), and ZAF stabilizes consecutive zero-shot outputs on unlabeled data as
a strong anti-forgetting signal (Gao et al., 2024). Probabilistic fine-tuning (CLAP4CLIP) further improves
calibration and continual robustness (Jha et al.,|2024). These approaches strengthen global stability but still
leave open whether the model retains the internal structure that enables binding—for instance, whether a
composition embedding can reliably support recovering its primitive set and resist counterfactual swaps.

Against this backdrop, this paper targets the above pain point from a structure-first perspective: we use a
minimal head that (i) treats textual and composed representations as joint positives to keep the “meaning of
a composition” anchored, (ii) makes the primitive—composition map reversible by design so binding remains
recoverable.

3 EXPLORATORY STUDY

Continual VLMs often preserve primitives (attributes/objects) while forgetting how to compose them(Liu
et al., 2025b). We ask: Q1: Under a sequence of tasks that preserves the same set of primitives (at-
tributes/objects/relations) but rotates their compositions, do VLMs retain primitive recognition yet forget
how to bind them? Q2: If forgetting occurs, does it coincide with a loss of reversibility between primi-
tive and composition embeddings and with an inflation of the alignment Jacobian spectrum? Q3: With a
strict rehearsal budget, is a text-centric micro-buffer more effective than an image-centric one, hinting that
structure anchoring beats raw memory?
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Figure 1: Exploratory curves with error bands. Primitives are stable; composition degrades with task
index, most for FT.
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Figure 2: Error contour over Jacobian spectrum vs. CCE. Composition error grows with spectral sensi-
tivity and irreversibility; text-centric micro-buffers curb both.

To answer the above questions, we construct continual streams 77 — 75 — - - - where each task reuses the
same primitive inventory (e.g., color/shape/material for CLEVR-like data; attribute/object for MIT-States)
but exposes disjoint or low-overlap compositions. We sequentially tune a frozen CLIP-style backbone
with lightweight heads/LoRA (no task IDs), under small rehearsal budgets {0, 16, 64,256} samples per
task, comparing SEQFT, EWC, LWF, ADAPTER-ONLY, and REPLAY variants. We evaluate: (i) primi-
tive recognition (attributes, objects), (ii) composition accuracy in classification/retrieval/VQA, (iii) binding
robustness via hard-negative margins, and (iv) two structural diagnostics: cycle-consistency error (CCE) of
primitive<>composition mappings and Jacobian spectral indicators (e.g., maximal singular value of Js/0e,,
where s is the image—text similarity and e, a primitive embedding). Definitions, datasets, baselines, and
computation details are given in Appendix [A.T]

Findings. = We observe three consistent phenomena across the exploratory setup. (i) Primitives remain
stable while composition degrades with task index and the Compositional Retention Ratio drops clearly
below one, with zero-shot composition affected the most, and text-centric replay outperforming fine-tuning
and EWC under the same budget, which is evident in the error-band curves in Fig.[I] (ii) Composition error
increases jointly with the Jacobian spectral radius and the cycle-consistency error, and the quiver field reveals
descent directions toward a low-error basin, with empirical task means for fine-tuning drifting into higher-
risk regions while Replay-Text stays within a broadened low-error area, as shown by the nonlinear contour
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Figure 3: Subspace-drift heatmaps (text tower). Colors show Grassmann distances across layers (y) vs.
tasks ().

maps in Fig.[2] (iii) Subspace drift concentrates in deeper layers and late tasks for fine-tuning, is moderated
but not eliminated by EWC, and is smallest and more localized for Replay-Text, which is reflected by the
iso-contoured heatmaps and hotspot markers in Fig.[3]

Takeaway.  These observations support a structure-before-memory principle: continual VLMs prefer-
entially retain first-order primitives while losing higher-order binding structure, and this loss is heralded
by reduced reversibility and unstable alignment geometry. We therefore motivate COMPO-REALIGN: a
parameter-efficient head that enforces reversible primitive<>composition alignment via cycle consistency
while constraining the alignment Jacobian spectrum across tasks.

4 METHOD

We propose COMPO-REALIGN, a minimal head for continual VLMs built on three ideas: one composer,
one objective, and one stabilizer. (1) A reversible composer maps a small set of primitive embeddings
to a composition embedding with an orthogonal core, hence invertible by construction. (2) A single
multi—positive InfoNCE objective treats the text composition and the composed-from-primitives embedding
as two positive views for the image, implicitly tying the two composition views together without extra cy-
cle/set losses. (3) A spectral trust region clips parameter gradients whenever the Jacobian sensitivity to
primitive anchors becomes too large, stabilizing alignment geometry without adding losses. A tiny fext-
centric buffer optionally supplies paraphrastic templates and hard negatives but still reuses the same single
objective.

Let f, : X — R and ft: Y— R4 be frozen encoders whose outputs we Lo-normalize. For an image z, a
composition text ., and its m primitives {p; }™,,

Jo() fi(ye) fi(pi)

Zy = LU e, = I e,; = U _ ¢RI (1

fo @)z I1fe(ye)ll2” P (o)l

We denote U, = [¢p(Aep1);...; d(Aepm)] € R™*4 the adapted primitive stack (row-wise), where A €
R?*4 is a light adapter and ¢ : RY —R? a tiny MLP.

4.1 REVERSIBLE COMPOSER: BIJECTION BY CONSTRUCTION

If a model can compose a composition embedding directly from primitives and that embedding behaves like
the textual one, binding is preserved. Making the core transform orthogonal turns reversibility into a design
property rather than a penalty.
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We average adapted primitives then mix them through an orthogonal map:

1 . R(©)u
= Z o(Aepi), e. = ”R((@))unz, 2
where R(©) € R4*? is orthogonal via the Cayley transform
RO) = I-8)I+8)", S=%i0-0"), 0 eRrR™. (3)
Then R(©) " R(0©) = I'and R(©)~! = R(O)". dis embedding dimension; m is the number of primitives.

4.2 ONE OBJECTIVE: MULTI-POSITIVE INFONCE (TwO POSITIVES BY DEFAULT)

The textual composition e, and the composed embedding €. are two views of the same concept. Using them
as joint positives for the image says: “match the image to both ways you encode the composition,” which
implicitly co-locates e, and €. without explicit cycle/set losses.

Let s(a,b) = a' b be cosine similarity since vectors are unit-normalized. For a batch {(z, i, €c.:, €ci) 2,
and temperature 7 > 0, define the two-positive symmetric InfoNCE:

Lose = Zl eXP 5(Zu,ir€c,i)/T) + exp(s(zu,i, €c,i)/T) @
B [exp( (Zu,i, €c,7)/T) + exp(s(2u,is €c ])/T)]
Lo — Z exp 5(€ci» 2v,i)/T) + exp(s(€ci, 20v,i)/7) )
B B lexp(s(ecis zo5)/7) + exp(s(€ci 20)/7)]
ETr] = (‘Cu—n + ‘Cc—w) (6)
Buffer extension. If a buffered paraphrase ¥/, is available, we simply add e, =7 ff ’((yy /[ S an extra positive

for sample 1, i.e., the numerators/denominators above receive an extra exp( (zv,i,€l)/ T) and its symmetric
counterpart. This generalizes Eq. [4|to a multi-positive InfoNCE without adding a new loss.

4.3 GEOMETRY AS A TRUST REGION: SPECTRAL CLIPPING

The exploratory study shows composition failure correlates with large Jacobian spectra. We therefore clip
the step whenever local sensitivity becomes too large, instead of adding another loss.

Let vec(U,,) € R™ be the stacked adapted primitives and
0 8(zy, €.)
Ovec(Up)

We estimate 0,5 ~ ||J,v]||2 with one or two power iterations on a random unit vector v. Given a target
P p g
~ > 0, we rescale the gradient gy of parameters 6§ € {©, A, ¢} as

g — g, a = min{l, 7 } (8)

Umax

Jp — c RlX’rnd. (7)

This spectral trust region caps harmful sensitivity while keeping the objective L1; unchanged.

4.4 TRAINING IN CONTINUAL STREAMS

At task t we update only ©, A, ¢ with encoders frozen and no task IDs. For each minibatch: (i) encode
(2, ye, {p:}); (i) compose €, via Egs. “ (iii) compute Ly in Eq. Ion current samples (optionally adding
buffered paraphrases as extra positives); (iv) estimate gpax and apply spectral clipping Eq. [8} (v) take an
optimizer step. Refer to Appx. [B.I.3]for the detailed calculation process.
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Table 1: Retrieval / ITM results on compositional DIL (Track A) and multi-domain MTIL (Track B).
We report averages across their respective task streams. 1 higher is better; AF and ZSTD | lower (closer to
0 for ZSTD) is better. CRR measures compositional binding retention.

Method AvgRel T CRRT AF] ZSTD
Image—Text Text—Image
SeqFT 41.2 29.4 0.72 16.3 —8.7
EWC 45.0 33.1 0.77 124 —6.9
LwF 46.1 342 0.78 11.7 —6.0
Replay-Text 51.8 38.7 0.84 7.5 —4.1
ConStruct-VL |Smith et al.[(2023) 50.9 374 0.83 7.9 —4.6
IncCLIP|Yan et al. (2022) 53.1 41.2 0.86 6.7 -3.3
Mod-X N1 et al.| (2023) 52.7 39.5 0.85 6.9 —-3.8
ZSCL Zheng et al.[(2023) 54.2 40.8 0.86 6.1 -2.9
DKR [Cui et al.[(2024) 55.0 42.1 0.87 5.6 —2.5
GIFT [Wu et al.| (2025) 55.6 42.5 0.88 53 -2.3
ZAF |Gao et al.[(2024) 54.7 42.0 0.87 54 —2.0
C-CLIP Liu et al.| (2025a) 56.4 43.0 0.88 5.1 -2.1
DIKI Tang et al.[(2024)) 56.0 43.2 0.89 5.0 -1.9
COMPO-REALIGN (ours) 58.8 45.1 0.91 3.2 —1.3

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks and Protocols. We evaluate COMPO-REALIGN on three complementary continual tracks:
(i) Compositional DIL without task-ID: CLEVR/CoGenT (controlled primitives), MIT-States and VAW/VG-
Attr (attribute x object), and ConStruct-VL SVLC sequences (structured concepts; ITM) with ARO/Sug-
arCrepe as probe-only compositional tests; (ii) Multi-domain retrieval MTIL: COCO — Flickr30K
— ECommerce-T2I — RSICD (union-of-domains testing); (iii) Continual VQA: CLOVE (scene- and
function-incremental) and VOQACL (skill xconcept). All streams expose the same primitive inventory but
rotate compositions or domains. Details of splits, task orders and memory budgets appear in Appx.

Metrics.  We report R@1/5/10, MRR/mR for retrieval/ITM, VQA accuracy (Avg/Last/AF), continual
summaries (Avg/Last/ForgettingBWT/FWT), Zero-Shot Transfer Degradation (ZSTD) and Compositional
Retention Ratio (CRR). Formal definitions are in Appx.

Baselines. We compare against strong replay (IncCLIP, SGP, ConStruct-VL, QUAD, GIFT, TiC-CLIP
strategies), regularization/distillation (Mod-X, ZSCL, CTP, DKR, Proxy-FDA, MG-CLIP, CLAP4CLIP,
S&D, ZAF, C-CLIP), and adapters/MoE (RATT', TRIPLET, DDAS, DIKI, RAIL, LADA, CL-MoE) meth-
ods, plus generic SeqFT/EWC/LwF/Replay. We mark methods that require a task-ID at inference with “{”.
Full citations and per-method settings are in Appx.

5.2 MAIN RESULTS

Across all tracks, COMPO-REALIGN delivers the best average performance and the strongest structure re-
tention. The retrieval/matching table (Tab.|1) shows that COMPO-REALIGN sets a new state of the art across
compositional DIL and multi-domain MTIL, improving Avg R@1 (Image—Text) by +2.4 absolute over the
strongest prior (C-CLIP/DIKI) and reducing forgetting by roughly 40% relative (AF 3.2 vs. 5.0-5.1). No-
tably, CRR rises to 0.91, indicating substantially better preservation of attribute—object binding, and ZSTD



Under review as a conference paper at ICLR 2026

Table 2: Continual VQA (Track C). Average accuracy (%) on CLOVE-scene (DIL), CLOVE-function
(TIL), and VQACL (skill xconcept), plus average forgetting AF].

Method CLOVE-scene Avg T CLOVE-function Avg T VQACL Avgt AF|
SeqFT 54.2 49.5 46.3 9.8
EWC 56.7 51.0 48.2 8.0
LwF 57.4 52.1 49.0 7.6
SGP|Lei et al.|[(2023) 60.2 54.8 51.3 6.3
TRIPLET Qian et al.| (2023) 61.0 56.5 53.1 5.8
QUAD Marouf et al.| (2025) 62.3 571 54.0 5.2
CL-MoE|Huai et al.[(2025) 63.5 59.2 55.4 4.7
CoMPO-REALIGN(ours) 65.1 60.4 56.8 3.6

Table 3: Single-factor ablations across Tracks A+B (Retrieval/ITM) and Track C (Continual VQA).
Metrics (left): Avg R@1 1 (two directions), CRR 1, AF |, ZSTD |; Metrics (right): CLOVE-
scene/func/VQACL accuracy T, AF |. Each row toggles exactly one component away from the full model.

Track A+B: Retrieval / ITM (averaged) Track C: Continual VQA (averaged)

\
Vasiant R@11-T+ R@IT—IT  CRR?T AF | ZSTD | ‘ CLOVE-scene? CLOVE-func. + VQACLT  AF
Datasets: COCO, Flickr30K, ECommerce-T2I, RSICD Datasets: CLOVE-scene, CLOVE-function, VQACL

Full (ours) 58.8 45.1 0.91 3.2 -1.3 | 65.1 60.4 56.8 3.6
w/o composed positive (text-only InfoNCE) ~ 56.9 (-1.9) 432 (1.9 0.87 (-0.04) 4.0 (+0.8) —1.9 (~0.6) 63.2 (—1.9) 58.6 (—1.8) 55.0 (—=1.8) 4.3 (+0.7)
w/o spectral trust region (no clipping) 579 (0.9 443 (-0.8) 0.89 (-0.02) 4.3 (+1.1) —1.6 (—0.3) 64.2 (—0.9) 59.7 (0.7 56.0 (—0.8) 4.2 (+0.6)
orthogonal core — linear mix (no Cayley) 572 (-1.6) 440 (—1.1) 0.88 (-0.03) 3.8 (+0.6) —1.5(-0.2) 63.6 (—1.5) 59.1 (-1.3) 55.6 (—1.2) 4.1 (+0.5)
buffer size M = 0 (no text buffer) 56.3 (—2.5) 42.6 (—2.5) 0.86 (-0.05) 4.7 (+1.5) —1.9 (-0.6) 62.8 (—2.3) 58.0 (—2.4) 543 (—2.5) 4.6 (+1.0)
mean — attention pooling 58.5 (—0.3) 449 (-0.2) 091 (-0.000 3.3 (+0.1) —1.3 (-0.0) 65.0 (—0.1) 60.2 (—0.2) 56.7 (—0.1) 3.7 (+0.1)
w/o primitive shaper (¢ and A removed) 57.6 (-1.2) 44.1 (-1.00 0.88 (-0.03) 3.9 (+0.77 —1.6 (-0.3) 64.0 (—1.1) 59.3 (-1.1) 55.7 (-1.1) 4.1 (+0.5)
temperature 7 = 0.10 (default 0.07) 574 (-1.4) 439 (-1.2) 0.89 (-0.02) 3.7 (+0.5 —1.6 (-0.3) 64.1 (-1.0) 59.4 (-1.0) 558 (-1.00 3.9 (+0.3)

is the smallest in magnitude, evidencing minimal harm to zero-shot transfer. On continual VQA (Tab. [2)),
CoMPO-REALIGN surpasses recent prompt/MoE approaches, yielding consistent gains on CLOVE-scene,
CLOVE-function, and VQACL with the lowest AF.

5.3 SINGLE-FACTOR ABLATION

We conduct single-factor ablations to verify the contribution of each design choice. As shown in Tab. (3| we
can observe that: (i) Two-positive alignment is the main driver. Removing the composed positive incurs
the largest drops on retrieval (R@1 I—-T —1.9, T—=I —1.9; CRR —0.04; AF +0.8) and VQA (CLOVE-scene
—1.9, VQACL —1.8), confirming that treating textual and composed views as joint positives is critical for
binding retention. (ii) Spectral trust region guards stability. Disabling clipping barely changes top-1 re-
trieval but increases forgetting notably and worsens ZSTD, showing it acts as a geometry safety valve rather
than a pure accuracy booster. (iii) Orthogonal core matters for structure. Replacing the Cayley core with
a linear mix consistently reduces CRR (—0.03) and harms both retrieval and VQA (& 1-1.6 point drops),
supporting “reversibility by design” as a robust inductive bias. (iv) Tiny text buffer is high leverage. Elimi-
nating the buffer hurts across the board, indicating that symbolic anchors are far more memory-efficient than
image storage. (v) Mean vs. attention pooling. Attention yields near-identical accuracy with higher latency,
validating our mean-pooling default for simplicity and speed. (vi) Primitive shaper and temperature are
modest but helpful. Removing ¢/ A or drifting 7 trades away about 1 point on average; both mainly affect
CRR and AF, consistent with their roles in smoothing primitive geometry and hardness.

Overall, these ablations corroborate the minimal recipe: one composer, one objective, one stabilizer—each
contributes complementary gains.
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Figure 4: Geometry-structure coupling. Three scatter panels annotate Pearson/Spearman coefficients; the
contour panel overlays the task trajectory (77 — Tg), which remains in a low-error basin under COMPO-
REALIGN.

5.4 MECHANISM VALIDATION

Geometry-Structure Coupling We quantify how geometric sensitivity and reversibility—estimated Ja-
cobian spectral radius Omax(Jp) and cycle consistency error (CCE)—relate to compositional performance
(R@1, CRR, ZSTD). We report task-wise statistics and correlations, and visualize (i) scatter plots with re-
gression lines and Pearson/Spearman coefficients, and (ii) an error contour over (Gmax, CCE) with the task
trajectory overlaid. Across tasks, 0.y is strongly anti-correlated with R@1 and CRR( Fig. Eh,b), and CCE
is positively correlated with |ZSTD| (Fig.[dk). The deeper-layer correlations are stronger (L10-L12), indi-
cating that late-layer alignment geometry is pivotal for preserving composition. The trajectory in Fig. @d
stays within a low-error basin, consistent with our structure-before-memory account.

Invertible Readout and Binding Robustness We test whether the composed embedding €. admits an
invertible readout of the underlying primitive set and whether such invertibility translates into binding ro-
bustness under counterfactual perturbations. We measure: (i) Readout accuracy: from €. we predict the
multi-hot primitive set via the inverse map g, and report Top-k accuracy, PR-AUC and ROC-AUC. (ii)
Counterfactual margins: we measure the contrast margin v = (2, teXtyue) — gleaNx s(zy, texter) under

attribute-swap and object-swap candidates /. We compare the full model to ablations: no orthogonal core
(linear mix), text-only positive (remove composed positive), and no spectral clipping. We adopted the pass-
ing criterion: Top-3/Top-5 substantially higher than ablations and significantly larger counterfactual margins
(Wilcoxon, p < 0.01).

The inverse readout from €, achieves strong Top-3/Top-5 and area metrics, with PR/ROC curves in Fig.
and [53 clearly dominating ablations. Removing the composed positive yields the largest drop, indicating
that two-view alignment (textual e. and composed €.) is key to identifiability. Under counterfactual swaps,
the full model produces significantly larger margins and fewer hard-negative reversals. Fig.[5c|and [5d| show
that reversibility improves binding discriminability, rather than superficial alignment.

Evidence from Text-Centric Micro-Buffer as “Structural Anchors” With a fixed rehearsal budget
M =64 text snippets per task, we manipulate three factors of the text-centric micro-buffer: (i) semantic
diversity (coverage of primitive pairs and lexical entropy), (ii) template morphology (“attr—obj” vs. “obj
with attr”), and (iii) language (EN/ZH/ES). We then measure changes relative to an image-only buffer with
the same budget. If text acts as a structural anchor, we expect diversity to positively correlate with compo-
sitional retention ACRR, and advantages to persist across templates and languages. The results show that:
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Figure 5: Readout quality & counterfactual robustness in one figure. (a—b) Invertible readout quality:
PR/ROC curves for full, w/o orthogonal, text-only, and w/o spectral variants from €.. (c—d) Binding ro-
bustness under counterfactuals: Boxplot+strip overlays of attribute/object swap margins y; the full model
shifts the distribution right with fewer hard-negative hits.
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Figure 6: Text as structural anchors. (a) higher semantic diversity correlates with larger ACRR; (b) gains
persist across template morphology and tasks; (c) advantages hold across EN/ZH/ES.

(i) Diversity helps structure. The scatter+-density in Fig. [6h shows a clear positive trend. (ii) Robust to
surface form. Fig. [6p shows both “attr—obj” and “obj with attr” templates improve CRR across tasks with
minimal gap. (iii) Cross-language holds. Fig. [k indicates consistent gains for EN/ZH/ES, with modest
variation due to tokenizer overlap. These support the view that text anchors structure more efficiently than
pixels under the same budget.

6 CONCLUSION

We tackled the core challenge of preserving compositional structure in continual vision—language learning
under strict memory and no task IDs, proposing COMPO-REALIGN. Our approach consistently improves
compositional retention, reduces forgetting, and attains state-of-the-art retrieval and VQA under identical
rehearsal budgets, while maintaining zero-shot stability. Empirically, the tight coupling we observe between
Jacobian-spectrum/CCE indicators and downstream performance highlights geometry as a reliable handle
for safeguarding structure.

Future work will explore lightly unfreezing encoders under geometric constraints, and extensions to stream-
ing video and multilingual settings for real-world deployment.
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A DETAILS OF THE EXPERIMENTAL SETUP

A.1 EXPLORATORY STUDY SETUP

A.1.1 DATASETS, TASK STREAMS, AND MODELS

Synthetic. CLEVR-like with Color x Shape x Material x Size; tasks reuse the same primitive marginals
but rotate disjoint composition subsets. Real. MIT-States (attribute x object) with ARO/SugarCrepe-style
compositional probes plus a GQA subset for attribute/relational VQA templates. Streams. K € [4, 6] tasks;
each task samples a fresh composition set with limited or no overlap; primitive coverage remains stable.
Backbone and heads. Frozen CLIP ViT-B/16 (unless specified), with lightweight projection head + LoRA
on text tower and final projection. No task IDs; identical step budgets per task. Baselines. SEQFT, EWC,
LwF, ADAPTER-ONLY, and REPLAY (Text-centric vs. Image-centric) under matching rehearsal budgets
{0, 16, 64, 256 }/task.

A.1.2 METRICS

Primitive/Composition Accuracy. Report per-task accuracy for attributes/objects and for compositions
(pair or multi-attribute bindings), and compute forgetting (max previous minus current). Compositional

Retention Ratio (CRR). Let Afnt[)r, AW and AY) be accuracies at task ¢.

obj? pair
A%
t) _ pair
CRR® = YRR )
attr obj

Binding Contrast Margin (BCM). For a true image—text pair, v = s(&, Yue) — Maxyen s(x,y) where
N is a set of hard negatives from counterfactual compositions (swap attribute/object). Cycle Consistency
Error (CCE). Fit two light maps between text embeddings: R.., reconstructs a composition embedding
from its primitives; R, . recovers primitives from a composition. Define

. (10)

with symmetric variants on the image side if desired. Jacobian spectral indicators. For similarity
s(fo(x), ft(y)) and a primitive embedding e,,, compute J, = 0s/0e, and track omax(Jp) and condition
number. Subspace drift. Use principal angles/CCA to measure Grassmannian distance between the current
and a historical composition subspace (per tower/layer).

CCE = HEp —Ryee (Rcep(Ep))’

A.1.3 TRAINING PROTOCOL AND HYPERPARAMETERS

Frozen backbone; AdamW; LoRA ranks € {8,16}; head LR 2x 10~%, LoRA LR 1 x 10~*, weight decay
1072; batch size 256; per-task steps fixed across methods. Text-centric buffers store composition templates
and hard-negative variants; image-centric buffers store images/patches under the same item budget.

A.2 MAIN EXPERIMENTAL SETUP

A.2.1 BENCHMARKS AND TASK CONSTRUCTION

Track A — Compositional DIL (no task-ID). CLEVR/CoGenT. We follow CoGenT A—B remaps
(colors<»shapes/materials) to stress compositionality under matched primitive marginals. Tasks expose dis-
joint or low-overlap attribute—object compositions. MIT-States (AttrxObj) and VAW/VG-Attr. We fix
the attribute and object vocabularies; each task rotates the visible pairs. ConStruct-VL SVLC Smith et al.
(2023)). Using Visual Genome/VAW-derived sequences, we adopt the official order over color/material/size,

13
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spatial relations, action relations, and state. Each task is image—text matching (ITM) with balanced posi-
tives/negatives. Probe-only suites. ARO and SugarCrepe are used for compositional probing each round;
they do not participate in training. Rehearsal budgets. {0,16,64,256} fext snippets per task (default text-
centric); when a baseline requires images we match its memory cap.

Track B — Multi-domain retrieval MTIL. COCO—Flickr30K—ECommerce-T2I—RSICD, follow-
ing Cui et al.| (2024)); N1 et al.| (2023)); Zheng et al.|(2023)). Each round introduces a new domain; test queries
are drawn from the union of all seen domains. We do not supply domain-ID at test unless a method mandates
it (marked “17).

Track C — Continual VQA. CLOVE |Lei et al.|(2023): scene-incremental (DIL) with evolving environ-
ments and function-incremental (TIL) with evolving skills; one model across tasks. VQACL |Zhang et al.
(2023)): outer tasks are reasoning skills (Count/Color/Location/. .. ), and within each skill the object classes
are partitioned into groups that arrive over time; evaluation requires transferring the learned skill to unseen
concept groups. We follow authors’ official splits and answer vocabularies.

A.2.2 EVALUATION METRICS AND CONTINUAL SUMMARIES

Retrieval / ITM. Recall@K (RQK, K € {1, 5, 10}), mean reciprocal rank (MRR), and mean rank (mR).
We report per-task and averaged scores.

VQA. Exact-match accuracy (%). Following |[Zhang et al.| (2023); [Lei et al.[ (2023)); |Q1ian et al.| (2023));
Huai et al.[(2025)), we summarize with Avg (mean over tasks), Last (after the final task), and AF (average
forgetting).

CL summaries. Let A, , denote performance on task ¢ after finishing task u. For T tasks,

T
1
AVg = T ; At,T: Last = AT,T;

1 T-1

T-1
. 1
Forgetting = 71 ; Qeﬁ{?ﬂ} Ay — At’T>7 BWT = 71 2 (At,T — At’t).

FWT is the pre-training performance on unseen tasks relative to a zero-shot reference A7°: FWT =
1 T S
T—1 Zt:2(‘4t,t71 - A?)'

Zero-shot transfer. ZSTD [Zheng et al|(2023)) is the drop in zero-shot accuracy on held-out classification
sets (e.g., ImageNet variants) measured before vs. after each task.

Compositional diagnOStiCS. CRR — ?z\ir " (SCC. 3; higher indicates preser\/ed bindin be Ond inde'
At Ao, g y
attr* “1obj

pendent primitive accuracy. We also track ARO/SugarCrepe scores and non-optimized structural correlates
(inverse readout accuracy; estimated Jacobian spectral radius distribution).

A.2.3 COMPARED METHODS

We group methods by learning principle and use official code or faithful re-implementations with authors’
validated hyperparameters; task-ID-at-test baselines are marked “{”.

e Replay. IncCLIP Yan et al.[(2022); SGP |Le1 et al.| (2023); ConStruct-VL Smith et al.| (2023);
QUAD Marouf et al.[(2025); GIFT [Wu et al.| (2025)); TiC-CLIP strategies |Garg et al.[(2024)).
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* Regularization/Distillation. Mod-X N1 et al.| (2023)); ZSCL |Zheng et al.| (2023)); CTP [Zhu et al.
(2023); DKR|Cui et al.[(2024); Proxy-FDA [Huang et al.|(2025a)); MG-CLIP|Huang et al.|(2025b);
CLAP4CLIP Jha et al.| (2024); S&D |Yu et al. (2024b)); ZAF Gao et al.| (2024); C-CLIP Liu et al.
(2025a)).

* Adapters/MoE/Architecture. RATT' |Del Chiaro et al| (2020); TRIPLET Qian et al.| (2023);
DDAS|Yu et al.|(2024a)); DIKI|Tang et al.|(2024); RAIL Xu et al.| (2024); LADA [Luo et al.[(2025);
CL-MoE Huai et al.| (2025).

* Generic CL baselines. SeqFT, EWC, LwF, Replay-Image/Text, and Joint upper bound.

A.2.4 HYPERPARAMETERS

Text-centric micro-buffer. We maintain a tiny buffer B of size M € {0, 16, 64,256} per task, containing
short composition templates and a 1:1 mix of hard negatives. Hard negatives are mined online by nearest-
neighbor swap on the text side (replace the attribute or relation while keeping the object). Each step we
sample bp snippets (default bz = 32) and reuse the same objective (Eq.[d): buffered paraphrases are simply
added as extra positives in the numerators/denominators.

Objective (two positives by default). The single training loss is the symmetric multi-positive InfoNCE
of Eq. @] with temperature 7 = 0.07. Unless noted, we use only in-batch negatives (no queue) to keep the
method minimal. For VQA, the image acts as the key and each candidate answer text acts as a query; €. is
computed from the primitive set implied by the question type.

Spectral trust region. We stabilize geometry by clipping the step rather than adding a loss (Eq.[8)). Imple-
mentation uses a directional derivative of s(z,, €.) = 2, €. wrt. vec(U,) € R™?: draw a random unit vector
v, compute Tax ~ ||Jpv||2 with one power-iteration using autograd. grad (create_graph=True), and
scale parameter gradients by & = min{1,y/0max - We sety = 6.0 for ViT-B/16 and y = 7.5 for ViT-L/14.
Overhead is < 2% wall time.

Optimization & schedules. We use AdamW (3; = 0.9, 8> = 0.98, weight decay 10~2) with cosine decay
and 5% warmup on the first task only; subsequent tasks warm-start without warmup (per time-continual
evidence). Global batch size is B = 256 for retrieval/ITM and B = 128 for VQA (achieved via DDP +
gradient accumulation). We train 20k steps per task on Tracks A/B and 10k on Track C, with early stopping
on the current task’s validation. Mixed precision uses BF16 when available, otherwise FP16 with loss
scaling. We apply gradient-norm clipping at 1.0.

Data processing. Images are resized to 2242 with RandomResizedCrop and horizontal flip p = 0.5.
We avoid color jitter in attribute-heavy tasks (MIT-States, SVLC) to prevent color-label leakage; for
generic retrieval we use a mild ColorJitter (brightness/contrast/saturation 0.2). Text is lowercased
and punctuation-normalized; we do not paraphrase on-the-fly beyond the buffer.

Initialization. A is identity-initialized, ¢ uses Kaiming uniform, and © is small random skew with scale
1073 so that R(©) ~ I at start. Attention-pooling parameters (W, w) are zero-initialized to start from
mean pooling.

Hardware & reproducibility. We train on 8 xA100 80GB (retrieval/ITM) and 4xA100 80GB (VQA).
Distributed data parallel with find_unused parameters=False. We fix seeds {0, 1,2}, enable
cuDNN deterministic, and control dataloader workers for repeatability. All reported numbers are mean=+std
over seeds.
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Ablation toggles. We vary: pooling (mean vs. attention), temperature 7 € {0.03,0.05,0.07,0.10}, spec-
tral threshold v € {5, 6, 7,8}, buffer size M € {0, 16, 64,256}, and optional LoRA on CLIP projections
with rank r € {4,8,16}. Unless stated, defaults are mean pooling, 7 = 0.07, v = 6.0/7.5 (B/L), and
M = 64.

B SUPPLEMENTARY TECHNICAL DETAILS

B.1 IMPLEMENTATION DETAILS

B.1.1 BACKBONES & HEADS.

We freeze both image and text encoders of a CLIP-style model and learn only a tiny head. Results are
reported with ViT-B/16 and ViT-L/14; the representation size d is the native CLIP projection (no extra
projection layers). Let f, : X —R? and f; : ) — R? be the frozen encoders with L2-normalized outputs.
Our head COMPO-REALIGN contains three lightweight parts:

 Primitive shaper ¢ o A. We use a single-hidden-layer MLP
¢(u) = Wo GELU(W1 LN(u)), Wi, W, € R4,

with dropout 0.1 and a residual connection u + u + ¢(w). It is preceded by a linear adapter
A € R?*4 (identity init.). For m primitives {p; }/",,

__film) _ |
i | fe(i)l2’ upi = (Aeyi).

Permutation-invariant composer. By default we average then mix (Eq.[2):

_ = . RO)a
_ 1 ) et S
B i ST TR@)al,

We also implement an attention-pooling variant for completeness:

e)(p('wT tanh(Wa'U/p,i))
Z;.”Zl exp(wT tanh(Wou,, ;))

o =

m
o Uy = Z ity i, €. =norm(R(O) ty),
=1

with W, € R?*4, 4w € R?. We found attention matches mean pooling but adds latency; mean is
thus the default.

Orthogonal core via Cayley. We parameterize R(©) € R4*? as (Eq.
RO)=T-S)(I+S5)~", S=30-07),

so R" R = I by construction and R~! = R". We compute (I + S§)~! with a single LU factor-
ization per forward pass and add +cI with e = 1075 for numerical safety; orthogonality holds to
machine precision.

B.1.2 TOKENIZATION & PROMPTS.

We use CLIP’s tokenizer. For text compositions y. we adopt class-agnostic templates that expose primitives
explicitly, e.g.,

* MIT-States/VAW/VG-Attr: “a photo of a {attr} {obj}”.
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Algorithm 1 COMPO-REALIGN: Training at Task ¢ (no task IDs)

1:

2:
3
4
5
6:
7
8
9

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

Inputs: dataset D, with triples (x, y., {pe}}” ,); frozen encoders fi, fi;
trainable head params (©, A, ¢); temperature 7; spectral cap +;
(optional) text micro-buffer By,s; power-iteration steps Tpow € {1,2}

for epoch=1,..., E do

for mini-batch B = {(z;, Yc.i, {pie}721)} 21 C Dy do
Encode & normalize
s Jo(ms) et Je(Ye,i) L epis fe(pie)
T (@)l T feye) 2 7 fepie)ll2

Adapt primitives & average
Ui G(Aey;g) forl =1,...,m; u; + %Z;nzl Uiy

Reversible composition (Cayley core) (Eqgs. BH2)
S 1O-0T), RO)(I-S)I+S) " &, DO

T e
B [R(©)]
Add paraphrase positives
/ fe(yeiy)

L T
ey )l
Multi-positive symmetric InfoNCE (Eq.[)
P; <+ {€c.i, €.} UP;; compute Ly over {2z, ;, P} 2,
Estimate local sensitivity (power iteration on JVP)
sample unit v € R™%; G i < 0
fort=1,...,T, do
W 4 Vyeo(u, )| 5(Zv,i, €c,i)| - v (JVP via autodiff)

vt w/[[wllzt G + ]2
Spectral trust region (per batch) (Eq.[8)

P, {6/(:77”- }‘7‘ from By, with e

6—\max — E Zil ET\max,i; o min{L ’Y/a—max}

scale head gradients: gg A,¢ < @ - €0.4,¢
Update (head only; encoders frozen)

(©, A, ¢) < OPTIMIZER STEP (Vo 4,6 L)

Output: updated head (©, A, ¢) at task ¢ (with f,, f; frozen)

* ConStruct-VL (SVLC): “the image describes {concept}” where {concept} is a color/material/size
or a relation clause (“{obj1} left of {0bj2}”).

* Retrieval on COCO/Flickr30K/etc.: standard CLIP prompts plus two paraphrases per concept to
reduce prompt bias.

For VQA, the question is encoded as text; answers come from the task’s closed set and are scored by
image—text similarity. When primitives are needed (e.g., “Color of {obj}?”), we use dataset metadata when
available; otherwise a light rule-based extractor maps adjectives/nouns in the question to {attr, obj}.

Parameter footprint. On ViT-B/16, ¢ and A together add ~ 2d? parameters and the skew form © adds

@. This is < 1% of the frozen backbone. We do nor use LoRA by default to keep the method minimal;
LoRA(8) on projection layers is included only in ablations.
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B.1.3 PSEUDOCODE

Computation flow. For each mini-batch, we first encode and Ly-normalize the image x;, the target compo-
sition text y. ;, and each primitive p; , using frozen f,, f;; gradients do not flow into encoders. The primitive
embeddings are then adapted and pooled: each e,, ; ; is passed through a tiny adapter-MLP stack (A, ¢) to
yield u; ¢ = ¢(Ae, i ¢); the primitive set is summarized by the mean prototype @; = % > e Wi to pre-
serve permutation invariance and stabilize gradients. We then perform reversible composition via an orthog-
onal core R(©) parameterized with the Cayley map in Eq. 3} in practice, computing (I + S)~*(I — S)u;
is implemented as a single linear solve to avoid explicit matrix inversion and to keep the cost at O(d?)
per sample (often batched and fused). The resulting composed embedding €. ; is Lo-normalized (Eq. ,
guaranteeing R(©)~! = R(©) T so that information about primitives is not collapsed by the composer.

Next, we formulate a single, symmetric multi-positive InfoNCE (Eq. ) where the positive set for each
image is P; = {ec;,€.;} U P;. Here P; contains optional text paraphrases from the micro-buffer By,s;
these are included only as additional positives and require no new losses. Negatives are the remaining texts
in the mini-batch for both the textual and composed views, yielding a denominator that aggregates |P;|
terms per sample j; the loss is computed in both directions (v—c and c—wv) with a shared temperature
7 and log-sum-exp stabilization. To stabilize alignment geometry, we estimate the local sensitivity of
$(Zy., €c,;) to the adapted primitives through one—two Jacobian—vector power iterations (JVPs) per batch,
which have the cost of a few reverse-mode passes but do not materialize the full Jacobian. The resulting
estimate 0.5 sets a spectral trust region that rescales the head gradients by & = min{1, v/ max} (Eq. ,
capping harmful sensitivity while leaving the objective unchanged. Finally, we perform an optimizer step on
head parameters only (O, A, ¢); encoders remain frozen, no task IDs are used, and the rehearsal budget is
enforced by restricting | P;| and the buffer sampling policy. This pipeline yields parameter-efficient updates
that anchor the meaning of compositions to their primitives, preserve reversibility, and maintain zero-shot
stability under strict memory.

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 PARAMETER SENSITIVITY

We evaluate COMPO-REALIGN’s sensitivity to key hyperparameters by varying one factor at a time while
keeping others at their defaults (Sec.[A.2.4). For each configuration we train across all streams and report
mean=std over 3 seeds. Retrieval is averaged R@1 (Image—Text) on Tracks A+B; VQA Avg is the mean
across CLOVE-scene, CLOVE-function, and VQACL; we also report CRR 1, AF |, and ZSTD | (closer to
0 is better). Pooling temperature T4, controls the sharpness of permutation-invariant aggregation (7poo1=0
equals uniform mean; 7po0 — 00 approaches max).

As shown in Fig. [/} We can observe the following conclusions: Temperature. A clear optimum at 7~0.07:
smaller 7 over-emphasizes hard negatives and destabilizes multi-positive logits, larger 7 softens contrast and
weakens gradients, lowering CRR and accuracy. Spectral threshold. ~ balances plasticity and stability.
Tight clipping (v < 5) slightly reduces AF and improves ZSTD magnitude but underfits retrieval, loose
clipping (7> 7) increases AF and degrades CRR. Buffer size. Text-centric anchors are high-leverage: even
M =16 recovers most gains, M =64 is near-saturation, M =128-256 brings small, consistent improvements.
LoRA rank. Optional LoRA on projections yields marginal gains up to »=8 then saturates, the minimalist
head already preserves structure. Batch size. Larger B slightly improves in-batch negatives and stabilizes
training but plateaus beyond B=256. Learning rate. The sweet spot is 2x 10™%, larger rates inflate spectral
sensitivity and forgetting despite clipping, smaller rates underfit. Positives per sample. Moving from two
to three positives (adding one paraphrase) consistently boosts CRR and both tasks with negligible ZSTD
cost, more than three yields diminishing returns. Pooling temperature. Uniform mean (7,001=0) is optimal,
sharper aggregation drifts toward “max” and hurts stability/CRR. Power iterations. One step suffices to
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Figure 7: Parameter sensitivity (mean-tstd over 3 seeds). One factor varies at a time. Retrieval: Avg
R@1 (I-T) 1. VQA Avg: mean of CLOVE-scene, CLOVE-function, VQACL 1.

estimate the spectral scale, additional iterations do not change outcomes, confirming the sensitivity map is
low-rank in practice.

C.2 ORDER SENSITIVITY (TASK & DOMAIN PERMUTATIONS)

Protocol. To rule out “lucky ordering,” we evaluate five permutations for each continual stream. Track
A (Compositional DIL) permutations: Al CLEVR/CoGenT — MIT-States — VAW/VG-Attr — SVLC;
A2 MIT-States — CLEVR/CoGenT — SVLC — VAW/VG-Attr; A3 VAW/VG-Attr — MIT-States —
CLEVR/CoGenT — SVLC; A4 SVLC — VAW/VG-Attr — MIT-States — CLEVR/CoGenT; A5 MIT-
States — SVLC — VAW/VG-Attr - CLEVR/CoGenT. Track B (MTIL retrieval) permutations: B1 COCO
— Flickr30K — EComm-T2I — RSICD; B2 Flickr30K — COCO — RSICD — EComm-T2I; B3 EComm-
T2I — COCO — Flickr30K — RSICD; B4 RSICD — EComm-T2I — COCO — Flickr30K; B5 COCO —
RSICD — EComm-T2I — Flickr30K. For each method and permutation we report Avg/Last R@1 (I—-T,
T—I), CRR, AF and ZSTD. We summarize order sensitivity by the sample standard deviation Std [-] across
permutations 7.
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Figure 8: Order sensitivity overview. COMPO-REALIGN produces tighter bands across metrics and lower
variability than strong baselines on both tracks.
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Figure 9: Detailed order effects. Our method maintains higher means and narrower uncertainty bands as
tasks accrue and achieves the smallest AF spread with the highest CRR.

Figures summarize robustness to task/domain permutations on Tracks A/B: (i) the parallel-band views
(Figs. % show that COMPO-REALIGN forms tightly bundled trajectories across all metrics, whereas
baselines spread substantially, especially on AF and ZSTD. This is corroborated by the standard-deviation
heatmaps (Fig. [8c): across-order std for Avg R@1 (I—T) drops to 0.26 on Track A and 0.24 on Track B
(ours) versus 0.45-0.52 for strong baselines, while AF variability shrinks from 0.27-0.28 (DIKI) to 0.15
(ours). (ii) task-wise error bands (Fig. @ indicate stability under accumulation: as tasks accrue, our mean
R@1 stays consistently above baselines and the shaded uncertainty narrows, suggesting reduced order-
induced drift rather than reliance on a lucky sequence. (iii) distributional views (Fig. [9b) reveal that our
AF (forgetting) not only centers lower but also exhibits the tightest interquartile range, while CRR concen-
trates higher with smaller dispersion—consistent with our geometry-stabilizing design.

C.3 CROSS-DOMAIN ZERO-SHOT STEADY STATE

Protocol. To test whether geometric stability extrapolates to unseen domains, we evaluate zero-shot perfor-
mance on held-out distributions {ImageNet (IN), IN-Sketch, IN-Renditions (IN-R), IN-Adversarial (IN-A),
ObjectNet, DomainNet-Sketch (DNet-Sketch)}. For each method, we report the zero-shot transfer degrada-
tion ZSTD (lower magnitude is better; closer to 0 is best) and the alignment spectral radius 0.« estimated
on late layers (L10-L12) of the text tower. We plot |[ZSTD]| versus the layer-mean & = % Zlo 58, our
criterion is to occupy the lower-left quadrant (smaller &, smaller |ZSTD|) across domains.

In the per-domain scatter matrix (Fig. [I0p), the points for COMPO-REALIGN consistently lie in the lower-
left quadrant—simultaneously smaller & and smaller |ZSTD|—while baselines drift toward higher & and/or
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Figure 11: Geometry-zero-shot coupling diagnostics. Strong within-domain coupling and consistent
lower-left occupancy for Ours.

larger |ZSTD|. The global scatter (Fig. @3) shows a clear positive trend between geometry and zero-
shot drift; all methods align with this slope, but Ours forms a compact cluster strictly below and to the
left of the baseline clouds. Finally, the correlation bars and quadrant-occupancy plot (Fig. [IT)) indicate
consistently positive within-domain coupling and a 6/6 lower-left occupancy for Ours, evidencing a stable
geometry—zero-shot relationship across held-out domains.

C.4 TRAINING DYNAMICS MONITORING

Protocol. We track the alignment sensitivity o,,,.x at every training step for the late text layers (L10-L12).

A clipping trigger occurs at step t and layer ¢ whenever (?ff;x(t) > ~ (trust-region threshold y=1.35).
We visualize (i) a stepxlayer time—heatmap of Gyax, and (ii) the per-step trigger rate (fraction of layers
exceeding 7). We segment training into phases: Warmup (steps 1-200), Mid (201-400), Late (401-600).
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(a) Time-heatmaps of Gmax (L10-L12 x 600 steps). Left:  (b) Per-step trigger rate (smoothed) with phase bands (left)
Compo-ReAlign; Middle: No-Clip ablation; shared col- and an embedded phase summary table (right).
orbar on the right.

Figure 12: Training dynamics: sensitivity bursts & clipping responses. Trust-region clipping suppresses
and shortens late-layer spikes, yielding fewer and shorter episodes above .

In the time-heatmaps (Fig.[12a), COMPO-REALIGN exhibits sparse, short spikes confined to early steps and
L12, while No-Clip shows broad, persistent bands above -, especially late. The trigger-rate plot with phase
bands (Fig.[T2b) indicates a rapid decay and low variance for Ours, versus sustained high triggering for No-
Clip. Together, these visuals show the trust region intercepts sensitivity bursts at critical stages, preventing
late-layer geometry blow-ups and stabilizing training.

D THEORETICAL ANALYSIS

D.1 IDENTIFIABILITY AND A CRR LOWER BOUND

We formalize when the proposed reversible composer preserves sufficient information to recover the primi-
tive set of a composition and how this yields a lower bound for a structural Compositional Retention Ratio
(CRR).

Let P = {u1,...,un} C S ! denote the adapted primitive dictionary with unit vectors u; = M.
For a composition S C [M] of size m, define the (unrotated) mean
. 1 u(s) d—1
a(S) = — ) w, e(S) == —=— e S (11)
2 [a(5)]]2

icS
The learned composer applies an orthogonal R € O(d) (Cayley core) to produce €. = R¢(S); since R is

known and R" = R™~!, the canonicalized composed embedding is R €. = ¢(S). We decode primitives by
top-m correlation:

S(c) = Top-m indices of {{c,u;)}M,. (12)
Define coherence 1 := max;+; |(u;, u;)| € [0,1) and the structural CRR for a single composition as
SnS
CRR(S) = % € [0,1]. (13)

For brevity write % := @(S) and ¢ := ¢(S). We write a < b to hide absolute constants.

We first show that coherence alone guarantees separation between members and non-members.
Lemma 1 (Norm of the mean and in/out correlations). Let S C [M] with |S| = m and coherence pi. Then

1
Jallg = — (1= m - 1)), (14)
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and foranya € S, b ¢ S,

(1) > w (@) < p. (15)
Consequently,
member score non-member score
Proof. Since ||u;||2 = 1 and |(u;, u;j)| < pfori # j,
a3 = —5 S fuisug) > — (m = mOm — 1) = = (1= om — 1), a7)

i,jES
which is Eq. Foranya € S,

(@, ug) = %((ua,ua> Y () 2 %(1 ~ (m—1)u), (18)

i€S\{a}
and for any b ¢ S,
1 1
w, = iy < —- = K. 19
(U, up) m;@ up) =R (19)
Divide both by |[|z/|2 and use Eq. [14]to obtain Eq. [16] O
Theorem 1 (Exact identifiability). Under coherence p < 2m 7, for any S with | S| = m the decoding rule
satisfies S (¢) = S. Moreover, the margin separating members from non-members obeys
1—-2m -1
Ay := min{c,ug) — max(c up) > (2m ),u (20)
a€s b¢ \/> V1= —Dp
The condition u < 5—-— is necessary (up to equality) for uniform separation across all S.

Proof. By Lemmall] forany a € S, b ¢ S,

[1—(m—1)p / —@2m-1)p
(c,uq) — {c, up) = — 1),u \F\/ﬁ 20

which is Eq. The right-hand side is positive iff 1 > (2m — 1)u, ie., p <

5T - 7, which guarantees all

members outrank all non-members and hence S (c) = S. For necessity, if 1 > 5—— one can construct u;
with pairwise inner products saturating p on two (m+1)-tuples such that the bound in Eq. mls non-positive,
preventing uniform separation for the worst-case S.

Remark. Inequality Eq. [20]attains equality on equiangular tight frames where off-diagonal inner products
are constant £, so the bound is tight in the worst case.

We next allow perturbations in the composed vector before normalization (e.g., training noise or small
modeling mismatch). Let the canonical (unrotated) pre-normalized vector be 4 and suppose the model

produces
~ _u+n

= — e RY, 22
atal " 22)

so the decoder uses ¢ in place of c.
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Lemma 2 (Lipschitzness of normalization). If |n||2 < €||@||2 with e € (0,1), then

~ 2e
- < . 23
e-dl, < 2 @)

Consequently, for any unit v € S%1,
~ 2e

— < 24
[(@v) = {ev)] < 77— 4)

Proof. Write a :== 4,  := a +n, s := ||a||2, t := ||z||2. Then

|t~ Sl [nlls _ flnllz | lindlz _ 2l¢lls

- - < —_ < = . 25
15 -2, <G - DI, + 15, - e @
Since t > s — ||n[|2 > (1 — €)s, we obtain ||¢ — c||2 (21“"!)26 = . The inner-product bound follows by
Cauchy—Schwarz. O

Theorem 2 (Robust identifiability & deterministic CRR). Let i < 5-— and define the clean margin Ag in
Eq.20) If |nll2 < el|al|2 with

Ay
26
e < 1+ A, (26)
then S (¢) = S and hence CRR(S) = 1. More generally, the perturbed margin satisfies
e ~ 4e
I;lég(@, Ug) — nb1¢a5><<c, up) > Ag — T (27)
Proof. By Lemmal[2] for any j,
~ 2¢e
’(c,uj>—<c,uj>| < % (28)
Therefore, forany a € S, b ¢ S,
~ ~ de 4e
<Ca ua) - <C; Ub> > (<C, ’U,a> - <C, Ub>) - 1—¢ > AO - 1_ E, (29)

which is Eq. If the right-hand side is positive then every member still outranks every non-member, so

S() = de Eq. O

A probabilistic CRR lower bound. To translate perturbations into a CRR bound, suppose n is an isotropic
sub-Gaussian vector with parameter o (i.e., (n,v) is o-sub-Gaussian for all ||v||o = 1). Using standard
norm tails, for some absolute ¢ > 0,

Pr(|nfl > t) < 2exp(—ct2/02) Vit > 0. (30)

Define the separation radius r* := 17 A ||l@||2. By Theorem the pairwise ranking (¢, uq) > (¢, up) holds
forall (a,b) € S x ([M]\ S) Whenever |In|l2 < r*. Hence, by a union bound over m(M — m) pairs,

Pr (g(a #5) < m(M—m) Pr(|nllz >7*) < 2m(M —m) exp( - cr*2/02). (31)
Using Eq. [[4)and Eq. [20]

2 o L—(m—1p 1—(2m—1)p
lallz > ;

m B2 Umv no i
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Therefore,

o2 m (33)

20 V2 (1 — (m —
E[CRR(S)] > 1 — 2m(M—m)eXp<—c. (45) (1~ ( 1)M)> .

and 02 < L (1 — (m — 1)u), then the failure probability decays exponentially in

In particular, if 1 < 2m171

. . 2 .
the dimensionless constant ( Ag ) and CRR is near 1.

4+ Ao
Dimension—coherence corollary. If u, ..., uys are i.i.d. uniform on S?-1 (or sub-Gaussian normalized),
then with probability at least 1 — M 2,
p< oy BN (34)
for an absolute constant C' > 0. Thus, whenever
d > (2m —1)*log M, (35)
we have p < le_l with high probability, and Theorems apply. Substituting this p into Eq. and
Eq. [33|yields explicit d—M—m trade-offs: the margin scales as Ag 2 \/% —C'"(2m — 1)\/@ ,and CRR

concentrates near 1 provided o2 < -

~ m"

The orthogonal composer R renders reversibility algorithmic (R "), while mean aggregation plus low coher-
ence produce a fight member/non-member margin Eq. 20} The normalization is stable (Lemma[2), so small
perturbations preserve identifiability (Theorem[2). This yields the exponential CRR lower bound Eq. ex-
plaining why text-centric buffers that reduce effective coherence (semantic diversity) or shrink perturbations
(spectral clipping) improve compositional retention.

E LLM USAGE

We used a large language model for minor English editing (grammar/wording/clarity) and small, localized
code fixes (e.g., resolving syntax errors, adding missing imports). The LLM did not contribute to research
ideation, experimental design, data processing, analysis, or figure generation. All technical content and
results were produced and verified by the authors, who take full responsibility for the manuscript.
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