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Abstract. Accurate segmentation of anatomical structures from cone-
beam computed tomography (CBCT) is essential for clinical applications
in dentistry, maxillofacial surgery, and orthodontics. The ToothFairy3
Challenge has a comprehensive 77-class segmentation task, emphasizing
both accuracy and computational efficiency. In this work, we present
a method based on the nnU-Net framework, enhanced with a Structure
Aware Post-processing (SAP) strategy. nnU-Net serves as a backbone for
multi-class segmentation, while SAP refines predictions by introducing
individualized thresholds for each anatomical structure, thereby mitigat-
ing noise and preserving clinically important fine structures. To further
improve efficiency, we disabled mirroring augmentation during training
and employed inference acceleration strategies, including the removal
of test-time augmentation and optimized interpolation on floating-point
tensors. Experimental results validate the effectiveness of our approach
in balancing segmentation accuracy with computational efficiency. To
further ensure robustness in challenging clinical scenarios, we also utilize
an interactive refinement module based on nnInteractive. This strategy
allows clinicians to correct local segmentation errors with minimal user
guidance, providing a safety net for complex anatomical variations.
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1 Introduction

Cone-beam computed tomography (CBCT) has become an indispensable imag-
ing modality in dentistry, maxillofacial surgery, and orthodontics due to its short
acquisition time, low radiation dose, and high spatial resolution for hard tissues
[13,1]. Accurate delineation of anatomical structures from CBCT is essential
for surgical planning, risk assessment, and clinical decision-making. Building
on the success of previous ToothFairy challenges, the ToothFairy3 – MICCAI
2025 competition pushes the boundaries of multi-class segmentation with an
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expanded dataset encompassing 77 anatomical categories, including newly in-
troduced structures such as the pulp cavity, incisive nerve, and lingual foramen.
This task emphasizes not only segmentation accuracy but also computational
efficiency, reflecting the growing demand for real-time, reliable clinical tools.

Traditionally, the identification and delineation of anatomical structures in
CBCT images have relied heavily on manual segmentation by experienced radi-
ologists and dental professionals. The process requires substantial expertise and
can take considerable time per case, making it impractical for routine clinical
workflows where rapid decision-making is essential [16,5]. Moreover, the sub-
jective nature of manual segmentation can lead to inconsistent results across
different practitioners, potentially affecting treatment planning reliability.

In recent years, artificial intelligence techniques, particularly deep learning-
based approaches using convolutional neural networks (CNNs), have demon-
strated remarkable success in medical image segmentation tasks [15,10,9,17].
These automated methods have shown promising results in various dental imag-
ing applications, offering the potential to significantly reduce processing time
while maintaining or even improving segmentation accuracy. Deep learning frame-
works have proven particularly effective at learning complex patterns and fea-
tures from medical images, enabling robust identification of anatomical struc-
tures across diverse patient populations and imaging conditions [2,11,8].

Despite these advances, significant challenges remain for the ToothFairy3
task. First, the large number of categories (77) introduces class imbalance, as
certain anatomical structures are underrepresented compared to larger, more
prominent ones such as the mandible. This imbalance risks biasing the model
toward dominant classes. Second, fine-scale structures like the incisive nerve or
lingual foramen are difficult to segment reliably, requiring high-resolution fea-
tures without overwhelming memory usage. Third, efficiency must be considered
alongside accuracy: prolonged inference times or excessive memory consumption
may render otherwise accurate models impractical for real-world clinical use [6,7].
Striking a balance between precision and computational efficiency is therefore
essential.

To address these challenges, we propose a solution based on nnU-Net, en-
hanced with Structure Aware Post-processing (SAP) [14,4]. nnU-Net provides
a strong backbone for multi-class segmentation, automatically adapting to the
CBCT dataset’s characteristics, while SAP refines predictions by removing spu-
rious regions and ensuring anatomical plausibility. This approach aims to achieve
high segmentation accuracy across 77 classes while maintaining computational
efficiency, aligning with the dual objectives of the ToothFairy3 challenge. Despite
the high performance of automated models, purely automatic segmentation may
still falter in cases with severe artifacts or ambiguous boundaries (e.g., discon-
tinuous inferior alveolar canals). To address this, we incorporate an interactive
segmentation paradigm as a complementary refinement step. By leveraging user-
provided point prompts, this module enables precise correction of difficult tar-
gets, ensuring that the system meets the rigorous reliability standards required
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for surgical planning. The contributions of our work can be summarized as fol-
lows:

• We employed an automated segmentation framework based on nnU-Net with
SAP to address the multi-class segmentation challenge in CBCT images.

• The proposed approach optimizes the trade-off between segmentation quality
and computational efficiency, ensuring both clinical accuracy and practical
feasibility.

• Our approach achieved top-three performance in the ToothFairy3 Challenge
validation phase, demonstrating its effectiveness for comprehensive dental
and maxillofacial structure segmentation.

2 Proposed Method

2.1 Framework Overview

As shown in Fig. 1, we propose a segmentation approach for CBCT images, lever-
aging nnU-Net as the foundational architecture with disabled mirroring aug-
mentation, combined with a SAP strategy. Disabling mirroring augmentation
preserves the inherent left-right anatomical asymmetry of oral structures, en-
abling the model to learn structure-specific positional features. Structure Aware
Thresholds provide adaptive morphological optimization, thereby minimizing
false positives across diverse oral tissues.

2.2 Data Preprocessing

We employed nnU-Net’s automated preprocessing pipeline to optimize data han-
dling and network configuration for our multi-structure segmentation task. The
preprocessing stage involved comprehensive dataset validation to ensure anno-
tation consistency and data integrity across all CBCT volumes. The framework
automatically determined optimal patch sizes, spacing parameters, and intensity
normalization strategies based on the inherent characteristics of the dataset. This
automated approach eliminates manual hyperparameter tuning while ensuring
that preprocessing parameters are specifically tailored to the morphological and
intensity characteristics of CBCT imaging data.

Additionally, the preprocessing pipeline established network topology and
memory allocation strategies optimized for 3D volumetric segmentation of high-
resolution CBCT images. The intensity normalization was performed using dataset-
specific statistics computed from foreground regions, ensuring consistent inten-
sity distributions across the training cohort.

2.3 Model Training Strategy

Model training was conducted using the 3D full-resolution configuration to pre-
serve high spatial resolution critical for accurate delineation of fine anatomical
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Fig. 1. Overview of the proposed framework. The training procedure utilized nnU-Net
with disabled mirroring augmentation to enhance structure-specific learning. During
inference, initial segmentation outputs were refined through Structure Aware Post-
processing, wherein predetermined Structure Aware Thresholds were applied to target
anatomical structures for morphological optimization.

structures. During the training phase, we selectively disabled mirroring-based
data augmentation techniques. This approach addresses the inherent positional
specificity of oral anatomical structures, where spatial location serves as one of
the fundamental identifying characteristics. For instance, the left and right infe-
rior alveolar canals, while morphologically similar, are distinguished primarily by
their anatomical position. Similarly, FDI numbering assignment for teeth would
be compromised by mirroring augmentation. Applying mirroring augmentation
would artificially transpose these position-dependent structures, compromising
the model’s ability to learn spatial-anatomical relationships essential for accurate
structure identification and increasing classification difficulty between bilaterally
symmetric yet distinct anatomical entities.
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2.4 Structure Aware Post-processing

Traditional post-processing approaches for medical image segmentation typi-
cally employ fixed filtering parameters across all anatomical structures, such as
removing connected components smaller than a predetermined volume threshold
or retaining only the largest connected component for each structure. However,
this "one-size-fits-all" strategy presents significant limitations: overly conserva-
tive thresholds may preserve noise and erroneous segmentations, while aggressive
thresholds risk eliminating clinically important small structures.

To address these limitations, we propose a Structure Aware Post-processing
method that computes individualized Structure-aware Thresholds (SAT) for each
anatomical structure, rather than applying uniform criteria across all structures.
The core insight is that different anatomical structures exhibit distinct morpho-
logical characteristics and volume distributions, necessitating structure-specific
optimization strategies.

Let S = {S1, S2, . . . , SK} denote the set of K target anatomical structures.
For each structure Si, we define a SAT τi that specifies the minimum volume
required for a connected component to be considered valid. The collection of
thresholds is represented as T = {τ1, τ2, . . . , τK}. Given an initial segmentation
prediction P, the structure-aware post-processing procedure consists of four se-
quential steps.

1. Connected Component Analysis. For each structure Si, we extract all con-
nected components from the corresponding segmentation mask:

Ci = {ci,1, ci,2, . . . , ci,ni
},

where ni denotes the number of connected components predicted for structure
Si, and each pair of components is disjoint, i.e., ci,a ∩ ci,b = ∅ for a ̸= b.

2. Volume Computation. For each connected component ci,j , we compute its
volume vi,j . In the general case with voxel volume Vvox(x, y, z), the volume is:

vi,j =
∑

(x,y,z)∈ci,j

Vvox(x, y, z).

3. Threshold-based Filtering. Each connected component is retained only if its
volume exceeds the corresponding threshold:

cfilteredi,j =

ci,j , if vi,j ≥ τi,

∅, otherwise,

where ∅ denotes the empty set, i.e., the component is discarded.
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4. Final Reconstruction. The refined segmentation for structure Si is obtained
by the union of all retained components:

Ŝi =
⋃

j: vi,j≥τi

ci,j .

The complete post-processed segmentation is given by

P̂ = {Ŝ1, Ŝ2, . . . , ŜK},

which can be further represented as a labeled mask for downstream evaluation
or visualization.

This approach enables differentiated treatment of anatomical structures with
varying size characteristics. For instance, large structures such as jawbones can
utilize higher thresholds to effectively eliminate substantial noise regions, while
smaller structures like nerve canals employ lower thresholds to preserve their
inherently compact morphology. The structure-aware post-processing thus pro-
vides a framework for balancing the trade-off between noise removal and struc-
ture preservation in multi-class anatomical segmentation tasks.

To determine the optimal values for the structure-aware thresholds (τvol), we
analyze the volumetric distribution of each anatomical class within the training
dataset. The filtering strategy is empirically tailored to the scale of the target
structures. For the pharynx, we retain only the largest connected component.
For other structures, thresholds are stratified by anatomical size: massive bone
structures like the lower jawbone and upper jawbone utilize high thresholds
(10, 000 and 5, 000 voxels, respectively) to filter out major misclassifications.
Medium-sized prosthetics employ a threshold of 2, 000 voxels. Specific subsets of
teeth are assigned a threshold of 1, 500 voxels. Fine-grained structures, including
the inferior alveolar canals, use a lower threshold of 500 voxels. The detailed
configuration is presented in our Github.

2.5 Interactive Refinement Module

While the proposed nnU-Net with SAP achieves efficient automated segmenta-
tion, we introduce an interactive refinement module, nnInteractive, to handle
corner cases requiring human expertise. This module adopts a "human-in-the-
loop" workflow where clinicians can iteratively refine segmentation results using
point prompts.

Network Architecture: Unlike methods using separate image and prompt
encoders (e.g., SAM), nnInteractive employs an early prompt strategy. User-
provided prompts (e.g., foreground/background clicks) are encoded as Gaussian
heatmaps and concatenated with the original image and the current segmen-
tation mask along the channel dimension. The network input consists of eight
channels: the original image, the previous mask, and six channels representing
different interaction types (points, scribbles, bounding boxes).

AutoZoom Mechanism: To handle small, fine-grained structures like the in-
ferior alveolar canal within large FOV CBCT scans, the module incorporates an
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AutoZoom mechanism. This dynamic strategy automatically crops and resam-
ples the Region of Interest (ROI) around the user’s interaction points, allowing
the model to focus on local details at higher resolution without losing context.
This ensures that even subtle anatomical structures can be precisely corrected
with minimal user interaction (1–5 clicks).

3 Experiments and Results

3.1 Dataset and Assessment Metrics

The dataset used in Task 1 of the ToothFairy3 challenge is composed of CBCT
scans annotated with 77 anatomical classes, encompassing not only large bony
structures such as the mandible and maxilla, but also fine-grained elements such
as pulp cavities, incisive canals, and the lingual foramen [3,2,12]. The volumes
are provided in NIfTI format with intensity values in Hounsfield units. Across
all scans, the maximum spatial dimensions are (298, 512, 512), the minimum are
(170, 272, 345), and the median shape is (168, 362, 371).

For evaluation, we adopt two widely used metrics in medical image segmen-
tation: the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff
Distance (HD95). Both metrics are computed for each class on each test volume,
followed by averaging across all volumes. DSC quantifies the voxel-wise overlap
between the predicted segmentation and the ground truth, while HD95 assesses
the boundary-level agreement by measuring the distance between surfaces. To-
gether, these metrics capture both volumetric and geometric accuracy.

Although our analysis in this work focuses on DSC and HD95, it is worth
noting that computational efficiency plays a crucial role in the challenge de-
sign. Inference runtime and maximum memory usage are also recorded and will
contribute to the final ranking of submitted methods, reflecting their practical
applicability in clinical settings.

3.2 Implementation details

Environments and Requirements. The training of our method was con-
ducted for a total of 1000 epochs. The details of the computational environment
and dependencies are summarized in Table 1.
Inference Acceleration. Since runtime was an important factor in the chal-
lenge evaluation, we applied several strategies to accelerate inference. First, we
disabled test-time augmentation in nnU-Net, which substantially reduced the
computational burden while maintaining competitive accuracy. Second, we opti-
mized the handling of multi-class predictions by refining the interpolation step.
Instead of relying on conventional integer-based resampling methods that are
computationally demanding, we leveraged PyTorch’s interpolate function on
floating-point tensors. This choice preserves numerical precision while improv-
ing throughput in large-scale volumetric segmentation. Together, these strategies
enabled efficient inference across the entire test set.
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Table 1. System Configuration

Ubuntu version Ubuntu 24.04 LTS
CPU Intel(R) Xeon(R) Platinum 8352S CPU @ 2.20GHz
RAM 503 GB
GPU 1 NVIDIA GeForce RTX 4090 (24G)
CUDA version 12.4
Programming language Python 3.9.19
Deep learning framework PyTorch (torch 1.12.1, torchvision 0.19.1)
Code will available at https://github.com/duola-wa/Toothfairy3

3.3 Results and Analysis

Quantitative Performance. The quantitative results for both the debug and
test phases are summarized in Table 2. We report the Dice similarity coefficient
and the HD95, with the former reflecting overlap accuracy and the latter as-
sessing boundary alignment. Higher Dice and lower HD95 values indicate better
performance.

Table 2. Evaluation results across debug and test phases. Dice similarity coefficient
and HD95 are reported.

Metric Statistic Debug Phase Test Phase

Dice Average

Min 0.9090 0.5671

25% 0.9371 0.7340

50% 0.9653 0.7821

75% 0.9695 0.8329

Max 0.9737 0.8670

Mean 0.9493 0.7705

Std 0.0352 0.0754

HD95 Average

Min 11.13 54.58

25% 11.16 77.29

50% 11.18 93.36

75% 28.13 122.91

Max 45.07 206.55

Mean 22.46 104.59

Std 19.58 37.21

In the debug phase, which included only three cases, our method demon-
strated high segmentation accuracy with an average Dice score of 0.949 and
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a relatively low HD95 of 22.46. However, the larger-scale test phase presented
more challenging scenarios, where the average Dice dropped to 0.770, and the
mean HD95 increased to 104.59. This performance gap highlights the difficulty
of generalization from a limited validation set to a more diverse and compre-
hensive test set. Nevertheless, the results remain competitive and validate the
robustness of our approach under varying anatomical and imaging conditions.

Qualitative Results. To provide visual insight into the segmentation perfor-
mance, Fig. 2 presents representative examples from the debug phase. These
three cases illustrate the method’s ability to accurately delineate anatomical
structures across different imaging conditions and patient anatomies. Each row
displays the input CBCT image (left), the predicted segmentation result (cen-
ter), and the corresponding ground truth annotation (right). The visual compar-
ison demonstrates the accuracy of our segmentation results on debug data, with
predicted boundaries closely matching the expert annotations across multiple
anatomical regions.

CBCT Image Ground TruthPrediction

Fig. 2. Representative segmentation results from debug phase cases. Each row shows
(from left to right): input CBCT image, predicted segmentation result, and ground
truth. The results demonstrate accurate delineation of anatomical structures across
different patient anatomies and imaging conditions on debug data.

As shown in Fig. 3, we provide a visual comparison of the segmentation
results for nnInteractive with the introduction of 3 and 5 interaction points,
respectively. This visualization highlights the impact of increasing the number
of user interactions on the segmentation accuracy. Due to the limited number of
submissions in the competition, we did not include metric-based results in this
analysis, focusing instead on the visual comparison of the segmentation outputs.
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CBCT Image nnU-NetnnInteractive (3-pt) Ground TruthnnInteractive (5-pt)

Fig. 3. The nnInteractive method is evaluated with 3 and 5 interaction points, high-
lighting the effect of prompt refinement on segmentation accuracy.

4 Conclusion

In this paper, we presented a segmentation framework for multi-class CBCT im-
ages, designed for the ToothFairy3 Challenge. Our approach leverages nnU-Net
as a backbone and introduces SAP to account for the morphological variabil-
ity of different anatomical structures. The proposed strategy enables differenti-
ated handling of large and fine-scale structures, thereby reducing false positives
while preserving clinically relevant details. Experiments demonstrated that our
method achieves consistently high accuracy in the debug phase. Importantly, by
optimizing interpolation strategies, we achieved notable improvements in infer-
ence efficiency. Furthermore, the integration of the interactive refinement module
demonstrates a viable path for clinical deployment. It bridges the gap between
fully automated processing and the need for meticulous precision in complex sur-
gical cases, effectively balancing algorithmic efficiency with clinical reliability.
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