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ABSTRACT

Multimodal large language models (LLMs) have demonstrated impressive capabilities in generating
high-quality images from textual instructions. However, their performance in generating scientific
images—a critical application for accelerating scientific progress—remains underexplored. In this
work, we address this gap by introducing ScImage, a benchmark designed to evaluate the multimodal
capabilities of LLMs in generating scientific images from textual descriptions. ScImage assesses
three key dimensions of understanding: spatial, numeric, and attribute comprehension, as well as
their combinations, focusing on the relationships between scientific objects (e.g., squares, circles).
We evaluate five models, GPT-4o, Llama, AutomaTikZ, Dall-E, and StableDiffusion,using two
modes of output generation: code-based outputs (Python, TikZ) and direct raster image generation.
Additionally, we examine four different input languages: English, German, Farsi, and Chinese. Our
evaluation, conducted with 11 scientists across three criteria (correctness, relevance, and scientific
accuracy), reveals that while GPT-4o produces outputs of decent quality for simpler prompts involving
individual dimensions such as spatial, numeric, or attribute understanding in isolation, all models
face challenges in this task, especially for more complex prompts.1

1 INTRODUCTION

Artificial intelligence (AI) has become an increasingly valuable tool in academic research, offering support across
various aspects of the scientific process (Byun & Stuhlmüller, 2023; Chen & Eger, 2023; Lu et al., 2024a; Nechakhin
et al., 2024; Shao et al., 2024). For instance, platforms such as Elicit (Byun & Stuhlmüller, 2023)2 and ResearchRabbit3
facilitate finding relevant literature for specific research topics. Tools like Grammarly assist with grammatical refinement
and phraseology in academic writing and LLM assisted text production is nowadays common (Liang et al., 2024).
LLMs can also generate new ideas for scientific papers that rival the ideas produced by human scientists (Si et al.,
2024). Even more holistically, approaches like The AI Scientist (Lu et al., 2024a) have demonstrated the capability to
generate entire research output, encompassing everything from initial conceptualization to experimental design and
paper drafting.

Despite these advancements, a critical subproblem remains relatively unexplored: the AI-driven generation of scientific
visualizations, including illustrative figures, charts, and plots (Voigt et al., 2024). These visual elements play a pivotal
role in scientific communication (Lee et al., 2016), serving as essential tools for researchers, educators, and students
to convey complex ideas, data, and concepts. The ability to automate the creation of accurate scientific images from
textual descriptions could significantly enhance both the efficiency and effectiveness of scientific communication
and production. Compared to previous attempts at automating image generation, AI-driven generation of scientific
visualizations does not strictly rely on tabular data input (Yamada et al., 2018), does not require cumbersome parameter
adjustments (Lindsay et al., 2017), and produces a variety of outputs beyond just statistical images (Waskom, 2021).

Scientific visualizations often require precise spatial composition, accurate numeric representations, and correct
attribution of complex scientific objects. These elements must be combined in ways that adhere to established
conventions within scientific domains. While general-purpose text-to-image models have made significant strides (Esser
et al., 2024; Touvron et al., 2023; Ramesh et al., 2021), the requirements, e.g., precise and high-resolution graphical
representations, pose unique challenges for scientific image generation, as illustrated in Figure 1. Moreover, the
representation of objects in scientific domains—such as batteries in circuit diagrams or trees in graph theory—differs
significantly from their appearance in real-life images.

1Our code and ScImage are available: anonymous.
2https://elicit.com/
3https://www.researchrabbit.ai/
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“A binary tree with a total of 12 nodes.” “y = 3^{x} and its inverse function.” “A three-by-four matrix."

Figure 1: Illustration of scientific text-to-image generation. The text shown below is the generation query. Images on
the left meet the expectations for general text-to-image tasks, while those on the right highlight the specific requirements
of scientific image generation. All figures are from our ScImage experiments.

In response to this need, we present ScImage, a comprehensive benchmark aimed at evaluating the capabilities of
multimodal LLMs in generating scientific images conditioned on textual descriptions. Our benchmark includes a
diverse set of skills that test key dimensions of scientific image production individually and in combination, covering a
wide range of scientific objects, their attributes, and relations. As scientific figures are often generated with high-level
coding languages such as TikZ or Python, we evaluate standard LLMs (all capable of generating code output) such as
LLAMA 3.1 8B and GPT-4O, in addition to inherent multimodal models such as DALL·E on ScImage.

Our findings highlight the need for continued research in enhancing the capabilities of multimodal LLMs for scientific
image generation. By providing a standardized benchmark and in-depth analysis, ScImage aims to drive progress in
this critical area, ultimately supporting more efficient scientific image production.

Key contributions of this work include:

• We provide a benchmark, ScImage, for testing the model capability of scientific text-to-image generation
along (predominantly) three understanding dimensions: numeric, spatial, and attribute comprehension.

• We explore five state-of-the-art models on ScImage, both code-based and genuine multimodal.4

• We comprehensively assess the models using almost a dozen human scientists5 across three evaluation aspects:
correctness, relevance, and scientificness, and four languages: English, German, Chinese, and Farsi.

• We analyze model performances across different object types, comprehension dimensions, and input languages.

• We provide human evaluation scores for ∼3k generated scientific images, totaling an annotation value of
approximately 3,000 USD.6 These evaluation scores serve as a “ground truth” for the evaluation of generation
performance and support future research on developing automated metrics for assessing scientific images.

2 RELATED WORK

In computer vision and multimodal studies, there are many benchmarks and datasets serving various purposes, including
object detection (Lin et al., 2014), image classification (Krizhevsky et al., 2009, Deng et al., 2009), hand-written digits
recognition (Deng, 2012), and image captioning (Sharma et al., 2018, Chen et al., 2015), but the majority focus on
real world images. Although datasets like Paper2Fig (Rodriguez et al., 2023) and DaTikZ (Belouadi et al., 2024a;b)
include scientific figures and captions extracted from research papers, there is no structured evaluation of the limitations
and capabilities of scientific text-to-image models. In Section 2.1 and 2.2, we review existing benchmarks designed to
assess model abilities: visual understanding (e.g., using images as inputs (Thrush et al., 2022; Huang et al., 2023; Wu
et al., 2024), discussed in Section 2.1) and ability of text-to-image generation (Section 2.2). All surveyed datasets and
benchmarks in this study are summarized in Table 8 in Appendix A.

4Counting models with different outputs as distinct, we explore up to 8 different models, viz., (1) AUTOMATIKZ, (2) LLAMA 3.1
8B, (3) STABLE DIFFUSION, (4) DALL·E, (5) GPT-4O, where LLAMA 3.1 8B and GPT-4O use both (6) TikZ and (7) Python as
output. For our multilingual evaluation, we further include (8) the recent OpenAI-o1 with python output.

5Our scientists are PhD students and higher. We use the term ‘scientist’ to differentiate them from crowd-workers or early career
academics such as Bachelor students.

6For English, we evaluate 404 prompts for 7 different models, yielding 2828 individual images (308 of which have compile
errors, receiving an automatic score of zero). For the later multilingual phase, we evaluate 460 images (58 with compile errors). In
total, we thus evaluate 3288 prompts, 366 of which have compile errors.
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2.1 IMAGE AS INPUT

Benchmarks that use images as input often take the form of visual question answering (VQA), where images are paired
with questions about their content (Biten et al., 2019; Das et al., 2024; Yue et al., 2023; Wang et al., 2024). For example,
the Multimodal Visual Patterns (MMVP) Benchmark (Tong et al., 2024) focuses on challenging cases, comprising 150
CLIP-blind pairs (images that the CLIP model perceives as similar despite clear visual distinctions) with questions
designed to probe specific image details, such as relative position, object counting, or other attributes.

In the scientific domain, VQA examples are typically sourced from exams, quizzes, or textbooks (Yue et al., 2023; Lu
et al., 2024b; Li et al., 2024). Additionally, ScienceQA (Lu et al., 2022) is a benchmark that uses images as contextual
inputs for questions, rather than directly asking about the image’s content. This dataset also incorporates Chain of
Thought (CoT) reasoning to enhance interpretability alongside the answers.

Another type of visual understanding benchmark focuses on caption-image alignment. Winoground (Thrush et al.,
2022), for instance, challenges models to match images with their corresponding captions. The dataset includes pairs
where objects or predicates are swapped, such as “there is a mug in some grass” versus “there is some grass in a mug”,
to test fine-grained comprehension of texts.

2.2 IMAGE AS OUTPUT

Compared to visual understanding, benchmarks that assess individual dimensions of abilities in text-to-image generation
models remain relatively scarce. One benchmark designed for this purpose is T2I-CompBench (Huang et al., 2023),
which includes 6k compositional text prompts, categorized into three groups: attribute binding (e.g., color and shape),
object relationships (e.g., spatial arrangements), and complex compositions. While we are inspired by this benchmark,
we note that it does not target the scientific domain.

In the context of vector graph and scientific figure generation, Zou et al. (2024) develop an evaluation set to assess
models’ abilities in prompt comprehension and vector graph generation. Belouadi et al. (2024a) introduce a dataset
that pairs scientific paper captions (as input) with TikZ code (as output), which can be compiled into vector graphs.
Additionally, Shi et al. (2024) explore models’ capabilities to replicate chart images by converting them into Python
code. Compared to these works, which focus on specific evaluation settings (such as TikZ or vector graphic or
chart generation), our evaluation setup is broader, more targeted and more structured: we assess model performance
across different input languages and output formats (TikZ vs. Python vs. plain image), object types and aspects of
understanding.

2.3 EVALUATION OF TEXT-TO-IMAGE MODELS

Existing evaluations of text-to-image models primarily focus on text-image alignment and image quality for real-world
images, as demonstrated by benchmarks such as MS COCO (Lin et al., 2014) and studies in Sharma et al. (2018)
and Chen et al. (2015). Later works, such as Lee et al. (2024) and Cho et al. (2023), broaden the scope of evaluation
to include aspects like aesthetics, originality, social bias, and efficiency, but these still remain within the domain of
real-world images.

Benchmarks designed for evaluating real-life images are insufficient for assessing the quality of generated scientific
graphs. Compared to general images, scientific graphs must prioritize accuracy in representing scientific concepts
and ideas. This includes ensuring the precision of numerical values in charts or plots, and adhering to established
conventions when translating real-world objects into graphical representations (e.g., depicting a “battery” in electric
circuit diagrams within the domains of engineering and physics).

For figures in the scientific domain, metrics like CLIPScore and Fréchet Inception Distance (FID) are employed to
assess the quality of generated graphics (Zou et al., 2024). Additionally, Shi et al. (2024) utilize GPT-4V for automated
evaluations of image quality. However, as highlighted by the MMVP benchmark (Tong et al., 2024), automated
evaluations can be unreliable, particularly when recognizing precise directions in text and images, such as “up” and
“down”. The precision required for evaluating scientific graphs presents significant challenges for current automated
metrics. To address this gap, we resort to human evaluation instead of automatic evaluation, using a panel of 11
scientists. Additionally, we show that, indeed, standard multimodal metrics employed in the community have low
correlations to our human annotators in our scientific domain.
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3 ScImage

3.1 TASK SETUP

ScImage evaluates the capability of multimodal LLMs to generate scientific graphs from textual descriptions. We
design prompts that require models to understand and visualize scientific concepts, emphasizing three key dimensions of
understanding: (a) Spatial understanding: Assessing the models’ ability to interpret and represent spatial relationships
between objects, such as “left of” and “on top of”. (b) Numeric understanding: Evaluating the models’ capacity to
handle and visualize numerical requests accurately, such as the exact number of objects or requests like ‘more’ and
‘half’.7 (c) Attribute binding: Testing the models’ ability to correctly represent object attributes such as color, size,
and shape. Figure 2 demonstrates these three key dimensions of understanding.

Attribute Numeric Spatial

Attribute Numeric Attribute Spatial Numeric Spatial Attribute Numeric Spatial
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A circle and a triangle intersect.
Therer are N squares and 3*N 

circles, where N > 1.

A binary tree with 5 nodes. 

The nodes are connected 

with arrows that point to the 

children nodes.

A transparent box contains 3 

red balls and 5 black balls.

A red circle is on the left side of 

the canvas, and a blue square is 

on the lower right side.

A bar chart with 5 bars and 

mark the leftmost bar in blue.

Figure 2: Illustration of the three understanding dimensions. The first row shows the individual dimensions of Attribute,
Numeric and Spatial understanding. The second row illustrates the combination of two or three dimensions.

Output mode The task involves generating images either (i) directly text-image or (ii) text-code-image through
intermediate code (Python or TikZ) — which then has to be compiled to images — based on textual prompts.

Prompting We instruct the models to generate scientific graphs with prompts. Each prompt consists of an auxiliary
instruction and a generation query. The auxiliary instruction is used to constrain the model to generate scientific graphs
in either (i) direct text-image or (ii) text-code-image mode. Language models can exhibit sensitivity to variations in
prompts (Leiter & Eger, 2024). To mitigate the impact of this variability and ensure a fair comparison between models,
we conduct pilot tests to find prompts that generally lead all tested models to generate required output type (i.e., Python
code, TikZ code, or images) in a scientific style. Our resulting auxiliary instructions are shown in Table 9 in Appendix B.
Examples of code and image output are presented in Appendix C and Appendix D.

3.2 DATASET CONSTRUCTION

We begin with a comprehensive survey of relevant scientific datasets and benchmarks, as detailed in Table 8 in Ap-
pendix A, also including math and science textbooks. This gave us the intuition that scientific graphs are described by
objects and their properties (attributes) as well as their relative positioning (spatial relations) and numeric information
(e.g., how many objects). Additionally, annotations often emphasize parts of the scientific image.

Thus, we develop prompt requirements to ensure that varying aspects of scientific text generation are covered. We
require that each prompt must explicitly define: (a) the core visual elements (objects) to be generated in the graph,
e.g. cycle, square, etc.; (b) specific attributes of the object (attribute binding), e.g., red cycle, or count of the object
(numeric), e.g. three cycles. We further require (c) the positioning arrangement and placement (spatial) of objects
within the graph, e.g. on the bottom or in relation to another object (to the left). (d) We finally consider any required
labels, legends, or additional textual elements (annotations). Further, for graphs containing multiple objects, the prompt

7The articles ‘a’ and ‘an’ are not interpreted as numerical descriptors.
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Object Type Query Template Attribution Generation Query Understanding Dimension

2D shape A/An {object} with a/an {color}
border. circle, blue A circle with a blue border. Attribute

3D shape
Two {color} spaces divide a/an
{3D-object} into four parts. blue, pyramid Two blue spaces divide a pyramid into

four parts.
Attribute, Numeric

Chart

In a bar chart, a/an {color-1} bar is
to the right of a/an {color-2} bar,
and the leftmost bar is the
{tallest/shortest} in the chart.

blue, orange, tallest
In a bar chart, a blue bar is to the right of
an orange bar, and the leftmost bar is the
tallest in the chart.

Attribute, Numeric, Spatial

Graph theory
representation

A binary tree with a total of
{number} nodes.

12 A binary tree with a total of 12 nodes. Numeric

Matrix A {number_1}-by-{number_2}
matrix. 6, 3 A six-by-three matrix. Numeric

Real-life object There are {number-1} boxes on a
{number-2} degree slope. 4, 30 There are 4 boxes on a 30 degree slope. Numeric, Spatial

Table
A table with {number-1} rows and
{number-2} columns. The row index
is marked in the first column.

3, 5
A table with three rows and five columns.
The row index is marked in the first
column.

Attribute, Numeric, Spatial

Annotation The English text (the name of the
object) is {preposition} the {object}. to the left of, triangle The English text (the name of the object)

is to the left of the triangle.
Spatial

Function &
Coordinate

y = {function} and its inverse
function. 3^x y = 3^x and its inverse function. Numeric

Table 1: Illustration of constructing generation queries.

must additionally specify the quantity of each object type, the relative spatial or logical relationships between objects,
and the individual properties of each object group. Individual aspects are typically optional, i.e., not every prompt has
to specify numerical or spatial components. Specific details on dataset construction follow below.

Generation Queries Q We adopt a structured methodology that leverages a dictionary D along with a set of query
templates T to create a diverse, comprehensive, and traceable set of generation queries Q for the ScImage evaluation
dataset.

Dictionary D defines key elements relevant to scientific figures, including objects (e.g., square and circle), attributes
(e.g., color and size), spatial relations (e.g., left, right, between), and numeric values (e.g., three, five, two more).
8 We filter out objects highly dependent on the context of the original paper, such as mathematical formulas adjacent to
figures and line segments with specific values. Additionally, we simplify complex objects—such as intricate circuit
designs and automata intended for specific applications. Next, we manually define representative spatial relations,
such as "to the left" and "at the center of", to describe the positions of objects within graphs. Additionally, we create
attribute sets to capture detailed object properties, including size, color, and line thickness. Numerical requests are also
incorporated into the dictionary to replace values in bar charts or assess models’ accuracy in representing object counts.
We then collect attributes and relations that appear at least three times and then manually compile a list of attributes and
spatial relations by merging similar ones and removing domain-specific ones.

At the top level, D is organized into classes for objects, attributes, numeric, and spatial relationships. Each class then
contains a list of descriptive words specifying the class. When selecting a descriptive word from D for a given blank in
the query templates ti, we first locate the specific list corresponding to the word class and then randomly choose an
item from it.9 For clarity, we present a snippet of D below:

D = {"2D_objects": ["square", "circle", ...],
"3D_objects": ["cube", "sphere", ...],
"colors": ["red", "blue", ...],
"spatial_relations": ["left", "right", ...],
...}

We define a set of query templates T , where each template ti ∈ T is one or several sentences with one or more
placeholders. These placeholders are designed to be filled with elements dj ∈ D, which may include objects, attributes,
or relations. To construct a generation query qk ∈ Q, we select a query template ti and populate its placeholders with

8DATIKZ is unsuitable for our exploration, as it contains textual descriptions ‘in the wild’ and additionally its captions are often
unsuitable for reconstructing the output image at hand.

9During the word collection process, we excluded complex and rare terminologies due to potential bias. Consequently, attributes
such as ‘hinges’ and ‘hyperstatic structures’ were omitted.
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appropriate attributions from D. This process allows us to create diverse queries with meta-info. The final step in
preparing our generation prompt involves prefixing the constructed generation query qk with task-specific auxiliary
instructions, as detailed in Section 3.1. This structured approach ensures transparency and flexibility across diverse
queries, while minimizing potential biases toward specific objects, attributes, and other contextual elements.

Further, ScImage is crafted to cover a wide range of scientific graph types and complexities. We classify the object
types of all prompts based on the following categories: 2D geometric shapes, 3D geometric shapes, charts, graph theory
representations, matrices, real-life object modeling, tables, additional annotations, functions & coordinates. For each
category, we create multiple templates that vary in complexity and combine different aspects of spatial, numeric, and
attribute understanding. For each template, we create four different generation queries by sampling different elements
from the dictionary D. In total, we have 101 query templates and 404 generation queries. Examples of ScImage are
shown in Table 1.

3.3 EVALUATION

We employ a multi-faceted evaluation approach to assess the quality and accuracy of the generated scientific graphs:

Human Evaluation Our human evaluators assess the generated images based on three criteria: Correctness:
Assessing the accuracy of the visual representation in relation to the textual prompt. Relevance: Evaluating how well
the model avoids generating redundant or irrelevant objects or attributes of objects. Scientific Style: Evaluating the
appropriateness of the image for use in scientific publications. Each criterion is rated on a scale from 1 to 5, with 5
being the highest score. An additional score of 0 is assigned in cases where code generation cannot be compiled into an
image due to compilation errors.10 The detailed evaluation guideline is given in Appendix E.

We employ a panel of 11 expert annotators, carefully selected to represent the target users of scientific plots and graphs.
This panel consists of: eight Ph.D. students, one postdoctoral researcher, and two faculty members from mathematics
and computer science, ensuring domain expertise in evaluating scientific visualizations. We provide each annotator
with detailed annotation guidelines given in the Appendix E. Furthermore, before formal annotation distribution, we
conduct a calibration session to match the understanding of the annotation standard. We randomly assign examples to
annotators and further assign at least two annotators per instance to mitigate annotation biases.

Agreement Correctness Relevance Scientificness
Joint Spearman r 0.67 0.62 0.73

Joint Pearson r 0.70 0.64 0.71
Joint Weighted Kappa 0.50 0.41 0.45
Pair Spearman r (Eng) 0.73 0.64 0.63

Pair Pearson r (Eng) 0.75 0.65 0.63
Pair Weighted Kappa (Eng) 0.61 0.52 0.47

Pair Spearman r (Multi) 0.80 0.75 0.73
Pair Pearson r (Multi) 0.80 0.77 0.79

Pair Weighted Kappa (Multi) 0.64 0.60 0.66
Pair Spearman r (Eng + Multi) 0.76 0.68 0.67

Pair Pearson r (Eng + Multi) 0.77 0.69 0.67
Pair Weighted Kappa (Eng + Multi) 0.62 0.55 0.52

Table 2: Agreement of joint evaluation in the cali-
bration session (joint) and pair agreement (agreement
across all examples of two sets of annotations) in the
final evaluation for English and multilingually.

Agreements Table 2 presents the agreement scores (Spear-
man’s r, Pearson’s r and weighted Kappa) from both the small-
scale calibration session (joint evaluation: 315 images are eval-
uated by all evaluators) and the later pairwise evaluation (pair
evaluation: every image is evaluated by a pair of evaluators)
using various models (see Section 4). A relatively strong pos-
itive correlation with Pearson r and Spearman r between 0.62
and 0.80 is observed across all evaluation criteria. Weighted
kappa, a chance-corrected measure of agreement for ordinally
scaled samples, is within commonly accepted ranges for agree-
ment, with almost all measures above 0.5. The multilingual
evaluation, conducted by a subset of 6 more experienced eval-
uators, shows a higher level of agreement than the English
evaluation. Overall, weighted kappa is 0.62 for correctness for
combined English and multilingual evaluation and above 0.52

for relevance and scientificness.

We tax the value of our evaluation at roughly 3,000 USD, with up to 11 annotators involved for up to 7 hours each, all
working for a conservative estimate of 40 USD per hour (including taxes), on average.

Automatic Evaluation We also test how well recent automatic text-to-image evaluation metrics correlate with our
human judgements. We explore 5 recent multimodal metrics. These achieve a highest Kendall correlation with human
scores of 0.26, where the agreement on the correctness dimension is highest and lowest on scientificness (maximum
Kendall of 0.15). This underscores the value and necessity of our human annotation campaign. Details are given in
Appendix G.

10While assigning a score of 0 may seem harsh, we also report results when ignoring all compile errors, which would constitute an
upper bound.
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4 EXPERIMENTS

We employ two types of models for image generation, corresponding to the two output modes described in Section 3.1.
For (i) direct text-image mode, we include DALL·E and STABLE DIFFUSION; for (ii) text-code-image, we include
GPT-4o, LLAMA 3.1 8B and AUTOMATIKZ (Belouadi et al., 2024a), where the model is prompted to generate
Python or TikZ code. AUTOMATIKZ is specifically fine-tuned for generating TikZ code, therefore, we only prompt
AUTOMATIKZ to generate TikZ.

Model Correctness Relevance Scientific
style

Compile
Error Rate

Automatikz 2.05 2.31 3.35 0.04
Llama_tikz 1.78 1.94 2.61 0.29

GPT-4o_tikz 3.50 3.67 3.75 0.09
Llama_python 2.10 2.54 3.18 0.28

GPT-4o_python 3.51 3.40 3.93 0.07
Stable Diffusion 2.19 2.09 1.96 -

DALL·E 2.16 2.00 1.55 -

Table 3: Overall model performance, averaged across in-
stances (compile error of code output is penalized with score
0) and annotators. The column-wise highest is marked in
bold.

Overall performance: The overall model results are pre-
sented in Table 3, showing averages based on per-instance
human evaluations and further averaged across annota-
tor pairs. Instances where code generation resulted in
compilation errors are penalized with a score of 011. In
Appendix F, we show scores where compilation errors
are ignored; potentially compilation errors could be fixed
by self-consistency checks in future approaches. Over-
all, GPT-4o in text-code-image mode (GPT-4o_tikz and
GPT-4o_python) stands out as the model achieving the
best scores across all evaluation dimensions. However, it
scores below 4 in all three evaluation dimensions, indi-
cating at least some mistakes on average in every output.

Correctness: GPT-4O outperforms all other models by a large margin (more than 1.3 points), achieving the highest
scores for both the text-tikz-image (3.50) and text-python-image (3.51) output. All other models have correctness
scores between 1.7 and 2.2, indicating low correspondence between instruction and output image. LLAMA 3.1 8B_tikz
(1.78) and AUTOMATIKZ (2.05) are the worst models. Interestingly, LLAMA 3.1 8B performs considerably better with
Python as output than with TikZ as output (2.10 vs. 1.78). Similarly, GPT-4O performs marginally better with Python
as the coding language. When ignoring compile errors (Table 18), the code generation models become substantially
better, especially LLAMA 3.1 8B improves by almost 1 point, leaving the direct text-image generation models STABLE
DIFFUSION and DALL·E among the worst models.

Relevance: GPT-4O also dominates relevance, but with a smaller margin (1.13 vis-a-vis the second best model LLAMA
3.1 8B with Python output). LLAMA 3.1 8B again prefers Python output while GPT-4O prefers TikZ. Visual models
STABLE DIFFUSION and DALL·E often include irrelevant details in their output and are among the worst; see Table 10
in Appendix D for examples.

Scientificness: Images converted from Python or TikZ code receive notably higher scores (> 2.5) in scientific style
compared to direct image generation from DALL·E and STABLE DIFFUSION (< 2). This suggests that code output as
an intermediate step offers a significant advantage for scientific graph generation, as opposed to visual models that are
primarily trained on real-life images.

However, a significant drawback of models that generate code is the potential for compilation failures. For instance,
GPT-4O experiences 35 TikZ code and 27 Python code compilation errors. LLAMA 3.1 8B has even much higher
failure cases: 116 for TikZ mode and 113 for Python code, representing approximately 28% of all prompts. Automatikz
performs best in terms of compilation success, with only 17 cases in total. The low scores observed for LLAMA 3.1
8B in Table 3 can largely be attributed to penalties for these compilation errors. If these were ignored (or could be
fixed), LLAMA 3.1 8B would outperform AUTOMATIKZ as shown in Table 18 in Appendix F (note, however, that the
comparison for both models includes different instances, thus is not fully fair in the table).

5 ANALYSIS

We conduct a more detailed analysis of model performance, focusing on understanding types (attribute, numerical and
spatial understanding) and object types to identify which categories present the greatest challenges for the models.

Types of Understanding Table 4 presents the fine-grained correctness scores for different understanding types. Figure
3 illustrates the performance of two modes of generation (text-code-image and text-image) separately. Notably, spatial
understanding appears to be the most challenging across all textual models. For instance, while GPT-4O achieves

11A score of 0 does not apply if a compile error occurs due to missing TikZ code like \begin{documentclass}. Models
sometimes assume that a document has already been set up, so we check and add codes at head and tail for generated codes before
compiling the image.
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Model Attribute Numerical Spatial Attribute &
Numerical

Attribute &
Spatial

Numerical &
Spatial

Attribute &
Numerical &

Spatial
Automatikz 2.42 1.91 1.71 2.29 2.04 2.13 1.77
Llama_tikz 2.53 1.55 1.77 1.69 1.84 1.91 1.3

GPT-4o_tikz 4.11 3.49 3.35 3.41 3.53 3.59 3.13
Llama_python 2.24 2.38 1.96 2.28 2.28 1.63 1.97

GPT-4o_python 3.95 3.92 3.47 3.46 3.34 3.28 3.13
Stable Diffusion 2.75 1.73 2.06 2.41 2.46 1.96 2.11

DALL ·E 2.68 1.77 2.13 2.36 2.31 1.94 2.07
Average 2.95 2.39 2.35 2.56 2.54 2.35 2.21

Sample Size 48 64 56 80 40 64 52

Table 4: Correctness evaluation within each understanding category (compile errors are penalized with score 0).

scores around 4.0 for attribute binding, its performance drops substantially for spatial understanding, remaining well
below 3.5.

three types

numerical & spatial

attribute & spatial

attribute & numerical

spatial

numerical

attribute

0 1 2 3

Text−Code−Image Text−Image

Figure 3: Comparison of text-code-image and text-image:
correctness scores, averaged across model types, of each
understanding category. ‘Three types’ means attribute, nu-
merical and spatial understanding combined.

In contrast, for the image generation models STABLE DIF-
FUSION and DALL·E, numerical comprehension poses
the greatest challenge (Figure 3). Both models score
between below 1.8 for numerical understanding, substan-
tially lower than their scores for attribute understanding
(∼2.7) and spatial understanding (above 2.0). This indi-
cates an interesting discrepancy between model types.

Due to their weakness in spatial understanding, tasks
that involve combined understanding types—including
numerical & spatial understanding, as well as numerical
& spatial & attribute understanding—also tend to receive
lower scores. Both GPT-4O_python and GPT-4O_tikz
record their lowest scores when addressing prompts that
require all three understanding types, in comparison to
prompts focused on individual understanding types.

Model 2D shape 3D shape Chart Graph theory Matrix Real-life object Table Annotation Function&
Coordinate

Automatikz 2.50 1.52 1.71 2.40 1.81 1.89 2.13 1.33 1.90
Llama_tikz 2.72 1.45 0.47 0.10 2.06 1.42 1.13 1.33 1.55

GPT-4o_tikz 3.90 3.19 3.12 3.63 3.00 3.14 4.38 3.56 3.45
Llama_python 2.49 1.39 3.15 0.00 0.94 2.37 0.00 2.00 2.13

GPT-4o_python 4.05 3.11 3.25 2.73 3.13 3.25 3.88 3.39 3.20
Stable Diffusion 2.08 2.43 2.11 1.43 1.56 2.96 2.13 2.11 1.75

DALL ·E 2.08 2.47 1.86 1.25 1.50 3.17 1.75 2.11 1.58
Average 2.83 2.22 2.24 1.65 2.00 2.60 2.20 2.26 2.22

Sample Size 162 97 54 20 8 38 4 9 20

Table 5: Object Complexity for Models: Correctness scores by object type.

Object Categories Table 5 presents the average correctness scores for each object category. The performance of
different model types (Text-TikZ-Image, Text-Python-Image, and Text-Image) is visualized separately in Figure 4. In
general, graph theory representation (e.g. nodes and edges in a binary tree or graph) poses great challenges for models,
with an average score below 1.7 across all models, compared to above 2.0 the remaining object categories.

As illustrated in Figure 4, GPT-4O is the top-performing model across all object types, with both TikZ and Python-
generated images consistently achieving the highest scores within each category. However, GPT-4O shows slightly
lower performance in generating matrices (TikZ score: 3.00), 3D shapes (Python score: 3.11), and real-life object
models (TikZ score: 3.14).

LLAMA 3.1 8B (in both TikZ and Python code) clearly struggles with the representation of graph theory structures,
such as nodes and edges, with a correctness score close to 0. Similarly, it performs poorly in table generation, scoring
1.13 with TikZ and 0 with Python. The largest discrepancy between TikZ and Python output is observed in chart
generation, where TikZ achieves a score of 0.47, while Python scores 3.15. In contrast, TikZ outperforms Python in
matrix generation, with correctness scores of 2.06 and 0.94, respectively. This may be attributed to the availability of
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Chart

Graph (Node & Edge)

Matrix
Real-life Object

Table

Annotation

Function & Coordinate
2D

3D

Text-Tikz-Image

Automatikz
Llama_tikz
GPT-4o_tikz

Chart

Graph (Node & Edge)

Matrix
Real-life Object

Table

Annotation

Function & Coordinate
2D

3D

Text-Python-Image

Llama_python
GPT-4o_python

Chart

Graph (Node & Edge)

Matrix
Real-life Object

Table

Annotation

Function & Coordinate
2D

3D

Text-Image

Stable Diffusion
DALL·E

Figure 4: Generation performance of models on different object types. The same scale is used for three radar bars, with
the center as correctness score 0, and the outermost circle as 5.

Criteria Correctness Relevance Scientific style
Language EN DE ZH FA EN DE ZH FA EN DE ZH FA

Llama_tikz 1.88 1.48 1.50 1.23 2.18 1.78 2.10 1.68 2.78 2.23 2.80 2.90
GPT-4o_tikz 3.85 4.03 3.98 3.68 4.03 4.23 4.60 3.98 4.10 4.43 4.40 3.98

OpenAI-o1_tikz 4.43 3.68 3.83 4.05 4.45 3.80 4.10 4.18 4.40 3.88 4.03 4.05
Llama_python 2.53 1.35 1.75 1.78 2.70 1.53 2.00 1.90 3.20 2.50 3.10 3.30

GPT-4o_python 3.38 4.15 4.13 3.48 3.35 4.18 4.23 3.35 3.88 4.50 4.83 3.85
OpenAI-o1_python 4.28 3.45 4.10 3.60 4.10 3.45 3.93 3.60 4.50 4.08 4.30 4.05

DALL-E 1.98 2.15 1.83 1.93 1.88 2.03 2.03 2.00 1.40 1.58 1.53 1.50
Average 3.19 2.90 3.01 2.82 3.24 3.00 3.28 2.95 3.46 3.31 3.57 3.38

Table 6: Multilingual performance of overall generations.

libraries with Python and TikZ code. Matplotlib in Python is frequently used for chart and plot representation, while the
usage of matrix presentation with proper math format is rare.

AUTOMATIKZ shows the lowest scores for annotation (1.33) and 3D geometric shape generation (1.52) across all object
types. It performs best in 2D geometric shape generation (2.52), though it still lags behind GPT-4O, which scores
above 3.

Figure 4 reveals that code-generated images are of higher quality for 2D geometric shapes compared to 3D shapes,
while visual models exhibit the opposite trend. STABLE DIFFUSION and DALL·E perform best in real-life object
modeling, with scores of 3.12 and 3.24, respectively, and in 3D geometric shape generation, with scores of 2.43 and
2.47.

Multilingual Evaluation We further evaluate model performance across diverse languages. Due to the high annotation
costs, we sample 20 instructions and translate them into Chinese, German and Farsi by native language co-authors. Each
prompt is derived from a unique template to ensure diversity. Moreover, these instructions are curated to encompass
all understanding dimensions: the single dimension of spatial, attribute, or numerical understanding; combinations of
two dimensions (e.g., prompts requiring both attribute and numerical understanding); and prompts requiring all three
understanding dimensions. We then feed the 20 prompts to all models except for AUTOMATIKZ, which is our only
model fine-tuned on English TikZ data, and STABLE DIFFUSION. We additionally include the very recently released
OpenAI o1-preview here, which focuses on science, coding, and math (OpenAI, 2024).

Results are shown in Table 6. Interestingly, English does not always lead to best results on average. While correctness
is highest with English prompts with a margin of 0.18 ahead of Chinese, outputs generated from Chinese prompts are
better according to relevance and scientificness. Farsi is worst on average. Among models, LLAMA 3.1 8B becomes
considerably worse regarding correctness and relevance in languages other than English, while GPT-4O often even
performs better in non-English languages. Remarkably, OpenAI o1-preview is better than GPT-4O in English (and
regarding its maximum scores), often by a considerable margin (e.g., 4.28 vs. 3.38 in correctness for English input with
python output), but performs substantially worse in non-English languages (e.g., 3.45 vs. 4.15 in German with python
output), except for Farsi.

Output code difference As shown in Table 7, Python code generation outperforms TikZ output across all three
evaluation criteria: Correctness, Relevance and Scientific style. Furthermore, the Python code output exhibits a lower
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compile error rate (0.17 for Python vs. 0.19 for TikZ). The disparity may be attributed to the richer resources of
available Python code in the training data for LLMs.

Code Correctness Relevance Scientific style Error rate
TikZ 2.64 2.81 3.18 0.19

Python 2.81 2.97 3.56 0.17

Table 7: Comparison of TikZ code performance and Python
code performance: scores averaged from model GPT-4O
and LLAMA 3.1 8B. Compile errors are penalized with a
score 0.

Qualitative Analysis We diagnose some issues by
closely examining the generated output images, specifi-
cally highlighting problems that point to areas for future
improvement in the models. For instance, the generated
images from some models reveal a lack of physics knowl-
edge. In cases requiring an image of liquid in a container
(Figure 5), the liquid is often placed incorrectly, not at the
bottom of the container. This issue occasionally occurs

with AUTOMATIKZ and LLAMA 3.1 8B, but it is not observed in models like GPT-4O, STABLE DIFFUSION and
DALL·E.

Llama Python                 Automatikz                            GPT-4o Python                 Automatikz                            GPT-4o Python                   GPT-4o TikZ                            

There are 4 boxes on a 
30-degree slope.

There are five boxes 
on a 30-degree slope.

A football moves 
along a parabola.

A football moves 
along a parabola.

A container is half 
filled with water.

A 1000 ml measuring cup 
is filled with 300 ml of 
the light blue solution.

Figure 5: Incorrect output from models arguably due to a lack of world knowledge

A challenging scenario for most models is generating an object moving along a parabolic path. GPT-4O and LLAMA
3.1 8B occasionally depict a correct downward-opening parabola, but upward-opening parabolas also exist in their
generation, indicating a lack of understanding of the trajectory of how an object moves. Another common issue across
models is their difficulty in generating images that depict “boxes placed on a slope at a specific angle”. Although
GPT-4O sometimes manages to generate the correct image, their performance is inconsistent. This suggests a lack of
understanding of the interaction between gravity and the support surface, as well as difficulty positioning objects at the
correct angle on a 2D plane.

6 CONCLUDING REMARKS

Our study presents the first comprehensive evaluation of multimodal LLMs for scientific image generation, using
our novel ScImage benchmark. Our assessment reveals both significant progress and persistent challenges in the
field. While models like GPT-4O sometimes demonstrate proficiency in tasks involving individual dimensions of
understanding (spatial, numeric, or attribute-based in isolation), all evaluated models struggle with complex tasks
requiring combined understanding. On average, even GPT-4O performs below 4 on correctness on our benchmark. For
example, due to its lack of world knowledge or an inability to correctly plan how a 3D object should be presented, GPT4
sometimes has difficulty arranging objects correctly in a two-dimensional image. .Code based models have difficulties
especially with spatial understanding, while image based models struggle the most with numeric understanding.

We find that code-based outputs generally outperform direct image generation in producing scientifically styled images.
However, performance varies considerably across different object types and languages, highlighting the need for
more robust and consistent modeling approaches in the scientific domain. These findings underscore the importance
of continued research to enhance multimodal LLMs’ capabilities in scientific image generation. By providing a
standardized benchmark and detailed analysis, ScImage aims to drive progress in this critical area, supporting more
efficient scientific communication and accelerating cross-disciplinary research.

As multimodal LLMs evolve, their potential to revolutionize scientific content generation remains an exciting frontier in
AI research. Future work should focus on improving models’ ability to handle complex, multi-dimensional reasoning
tasks and ensure consistent performance across diverse scientific domains and languages. As science serves humanity
and should be accessible by everyone to foster diversity and inclusion, this concerns particularly open-source models
which can be considered at best mediocre for the tasks sketched in ScImage, with performances that substantially lag
behind closed-source proprietary models like GPT-4.
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A BENCHMARK SURVEY

Dataset Size Sci-domain Input Output Type of challenges
STVQA
Biten et al. (2019) ∼23k × image + question answer to the question text identification, recognation and reasoning

TextVQA
Singh et al. (2019)

∼45k questions
∼28k images × image + question answer to the question text identification, recognation and reasoning

EXAMS-V
Das et al. (2024) ∼20.9k ✓ image + questions answer to the question text identification, exam question reasoning

MMVP
Tong et al. (2024) 300 × image + question answer to the question images with similar CLIP embeddings despite

visual distinctions.

MMMU
Yue et al. (2023) 11.5K ✓ image + question answer to the question knowledge and reasoning of college exams

science QA
Lu et al. (2022) 21K ✓ image + question answer + explanation (CoT) scientific problem and image reasoning

MathVista
Lu et al. (2024b) ∼6k ✓ image + question answer to the question math problem solving

SciBench
Wang et al. (2024) 869 ✓ image + question answer to the question college level problem solving

ArXivQA
Li et al. (2024) 100K ✓ image + question answer to the question GPT-4V generated questions for arXiv paper figures

VGbench
Zou et al. (2024) 4219 ✓ image + question answer to the question object category, color, object function, position, etc.

CONTEXTUAL
Wadhawan et al. (2024) 506 × image + question answer to the question

image reasoning
(avoid textual recognition or
reasoning from language models)

MMTBench
Ying et al. (2024) 32k × image + question answer to the question

visual recognition, localization,
OCR, counting, 3D perception,
temporal understanding, et al.

R-Bench
Wu et al. (2024)

4500 images
∼11.6k questions × image + question answer to the question hallucination test: object reasoning,

relationship (between objects) reasoning

MM_Vet
Yu et al. (2024)

187 imaegs
205 questions × image + question answer to the question

object recognition, spatial awareness,
knowledge reasoning, math capability
OCR, text generation

Paper2Fig
Rodriguez et al. (2023) 100k ✓ caption image scientific image generation

Datikz
Belouadi et al. (2024a) 120k ✓ caption image scientific image generation with TikZ code

VGbench
Zou et al. (2024) 5845 ✓ caption Image generate SVG, TikZ, and Graphviz images

T2I-CompBench
Huang et al. (2023) 6k × caption image attribute binding, object relationships,

complex composition

PAINTSKILLS
Cho et al. (2023) ∼65k × caption image object recognition, object counting

spatial relation, etc

HEIM
Lee et al. (2024) - × caption image reasoning, knowledge, multilinguality, etc

ChartMimic
Shi et al. (2024) 1000 ✓ chart image + instruction Python code chart image to Python code conversion

Wino-ground
Thrush et al. (2022) 1600 ×

text-image pairs
(aim: match the correct text-image pairs
given two captions and two images)

reasoning of objects and relationship difference
by swapping words in 2 captions

Table 8: Summary of challenging benchmarks in visual reasoning and text-to-image generation.

B GENERATION INSTRUCTION

Generation Mode Final Prompt
Text-image “Please generate a scientific figure according to the following requirements: {generation query}”.
Text-code-image “Please generate a scientific figure according to the following requirements: {generation query}.

Your output should be in [Python/Tikz] code. Do not include any text other than the [Python/Tikz] code.”

Table 9: Auxiliary instruction for constraining the model to generate scientific graphs in corresponding mode.
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C CODE OUTPUT

GPT-4o Tikz Code

\documentclass{standalone}
\usepackage{tikz}
\begin{document}

\begin{tikzpicture}

% Green cone
\fill[green] (0,0) -- (-1,-2) --

(1,-2) -- cycle;

% Brown ellipsoid
\shade[ball color=brown] (3,-1)

ellipse (1.5 and 1);

\end{tikzpicture}

\end{document}

Llama Tikz Code

\documentclass{standalone}
\usepackage{tikz}
\begin{document}

\begin{tikzpicture }[scale =2]
\draw[fill=green !80] (0,0) --

(1,0) arc (0:180:1) -- cycle;
\draw[fill=brown !80] (1,0) --

(1.5 ,0.5) -- (1,1) -- cycle;

\begin{scope}[shift ={(1 ,0)}]
\draw[fill=brown !80] (0,0) --

(0.5 ,0) -- (0.5 ,0.5) -- cycle;
\end{scope}

\end{tikzpicture}

\end{document}

Figure 6: TikZ code snippets of GPT-4o and Llama models for generating a cone and ellipsoid.
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GPT-4o Python Code

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d.art3d

import Poly3DCollection
# Create figure and 3D axis
fig = plt.figure ()
ax = fig.add_subplot (111,

projection='3d')
# Define a function to create a cone
def create_cone(ax, radius , height ,

color):
u = np.linspace(0, 2 * np.pi,

100)
x = radius * np.cos(u)
y = radius * np.sin(u)
z = np.zeros_like(x)
verts = [list(zip(x, y, z))]
verts.append ([(0, 0, height)])

# Apex of the cone
faces = Poly3DCollection(verts ,

color=color , alpha =0.6)
ax.add_collection3d(faces)

# Create a function to plot an
ellipsoid

def create_ellipsoid(ax, rx, ry, rz,
color):
u = np.linspace(0, 2 * np.pi,

100)
v = np.linspace(0, np.pi, 100)
x = rx * np.outer(np.cos(u),

np.sin(v))
y = ry * np.outer(np.sin(u),

np.sin(v))
z = rz *

np.outer(np.ones_like(u),
np.cos(v))

ax.plot_surface(x, y, z,
color=color , alpha =0.6)

# Parameters for the shapes
cone_radius = 2
cone_height = 5
ellipsoid_rx = 3
ellipsoid_ry = 1.5
ellipsoid_rz = 2
# Create and plot the cone
create_cone(ax, cone_radius ,

cone_height , 'green ')
# Create and plot the ellipsoid
create_ellipsoid(ax, ellipsoid_rx ,

ellipsoid_ry , ellipsoid_rz ,
'brown ')

# Set plot limits
ax.set_xlim ([-5, 5])
ax.set_ylim ([-5, 5])
ax.set_zlim ([0, 10])
# Display the plot
plt.show()

Llama Python Code

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import

Axes3D
import numpy as np

# Create a figure and a 3D axis
fig = plt.figure(figsize =(8, 6))
ax = fig.add_subplot (111,

projection='3d')
# Define the parameters of the cone
cone_height = 5
cone_radius = 1
# Define the parameters of the

ellipsoid
ellipsoid_x_radius = 2
ellipsoid_y_radius = 1.5
ellipsoid_z_radius = 1
# Generate the vertices of the cone
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, cone_height , 100)
x = (cone_radius *

np.outer(np.cos(u), np.sin(v)))
y = (cone_radius *

np.outer(np.sin(u), np.sin(v)))
z = (cone_height *

np.ones(np.size(v))) -
(cone_radius *
np.outer(np.ones(np.size(u)),
np.cos(v)))

# Plot the cone
ax.plot_surface(x, y, z,

color='green ', alpha =0.5)
# Generate the vertices of the

ellipsoid
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, 2 * np.pi, 100)
x_ellipsoid = (ellipsoid_x_radius *

np.outer(np.cos(u), np.sin(v)))
y_ellipsoid = (ellipsoid_y_radius *

np.outer(np.sin(u), np.sin(v)))
z_ellipsoid = (ellipsoid_z_radius *

np.outer(np.ones(np.size(u)),
np.cos(v)))

# Plot the ellipsoid
ax.plot_surface(x_ellipsoid ,

y_ellipsoid , z_ellipsoid ,
color='brown ', alpha =0.5)

# Set the limits of the axes
ax.set_xlim(-3, 3)
ax.set_ylim(-3, 3)
ax.set_zlim(0, 6)

# Show the plot
plt.show()

Figure 7: Python code snippets of GPT-4o and Llama models for generating a cone and ellipsoid.
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D IMAGE EXAMPLES

Prompt GPT-4o_Tikz Llama_Tikz GPT-4o_Python Llama_Python Automatikz Stable Diffusion DALL.E

A green cone and a brown ellipsoid.

Some circles are of different sizes and the
largest one is in black.

Six straight lines are located in a coordinate
system and are symmetrical about the Y-
axis in pairs. Each pair shares the same
color.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

A three-by-four matrix.



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34




Two lines divide the dots into three clusters.
Mark the leftmost cluster in black, the mid-
dle cluster in blue, and the last one in green.

There is a cylinder on the table. The cylin-
der and the table are on the left side of the
image. The top view and the left view of the
cylinder are on the right side of the image,
and the English texts of ’top view’ and ’left
view’ are annotated beside their shapes.

Top View

Left View
top view

left view

A circle and a triangle intersect.

A parabola opening upwards.

x

y

x

y

Table 10: Comparison of Generated Images by Different Models from Various Prompts: Each column in this table
presents the side-by-side comparison of images generated by the different models in response to the corresponding
prompts. Results for each prompt are shown in each row, demonstrating the diversity of model approaches and styles.
Image outputs for the first four columns are generated through the models’ code, while the others are generated directly
by prompting the models.
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Prompt GPT-4o_Tikz Llama_Tikz GPT-4o_Python Llama_Python Automatikz Stable Diffusion DALL.E

A small ball falls from a table 1.6 meters
high and bounces to a height of 0.3 meters.
The trajectory of the ball’s fall and rebound
is represented by a light green dotted line.

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

x (meters)

y (meters)

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

Four dash lines are located in a coordinate
system and are symmetrical about the X-
axis in pairs. Each pair shares the same
color.

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

8 parallel line segments are inside a cir-
cle, with all of their endpoints on the circle.
Mark the endpoints with black dots.

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

There are N batteries and 4*N light bulbs,
where N > 1.

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

B1B2B3B4

L1−1L2−1L3−1L4−1
B0

B5

L0

L4

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

There are 4 tangent lines to a circle.

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

O 45

M

135

M 225M 315M

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

Two blue spaces divide a pyramid into four
parts.

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆⋆

C: ⋆⋆⋆⋆⋆⋆
R: ⋆⋆⋆⋆⋆
S: ⋆⋆⋆⋆⋆

Table 11: Failure Cases of Different Models: Each cell includes three rows of star ratings, indicating the levels of
Correctness, Relevance, and Scientific Style for each generated image, represented by C, R, and S, respectively.

E EVALUATION GUIDELINE

E.1 CORRECTNESS
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Score Description

5 The image fully meets all the requirements with no mistakes.
4 The image meets the key requirements, with only minor mistakes.
3 The image meets some or half of the requirements, with some mistakes.
2 The image meets only a few of the text’s requirements and contains serious mistakes.
1 The image fails to meet the requirements of the text.
0 No image content or compile error.

Table 12: Correctness Scoring Guideline

Score: 5 Score: 4.2 Score: 3 Score: 2.4 Score: 1.4

Prompt:

There are 4 line seg-
ments inside a circle.

Prompt:

The diagonal of the
square is red and very
thick.

Prompt:

There are 5 squares on
the left side of the can-
vas and 3 circles on the
right side.

Prompt:

The intersection of the
circle and the square is
filled with red.

Prompt:

The intersection of the
circle and the square is
filled with red.

Explanation:

There are 4 line seg-
ments and they are in-
side a circle.

Explanation:

The diagonal of the out-
put image is not visibly
very thick. Other than
that it’s correct.

Explanation:

partially correct: The
left graph shows a
rectangle instead of 5
squares. The right-side
graph is correct.

Explanation:

The red-marked inter-
section does not in-
volve a square. How-
ever, there is a red in-
tersection and a circle.

Explanation:

There is no square and
no intersection of two
graphs. (There is a cir-
cle and some red, but
it’s overall incorrectly
displayed).

Table 13: Correctness Guideline Examples
(Scores are averaged across multiple annotators)
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E.2 RELEVANCE

Score Description

5 The image contains no redundant objects or features.
4 The image contains a few redundant objects or features but remains highly relevant to the text’s requirements.
3 The image contains some redundant objects and some required elements.
2 The image contains more redundant objects than required elements.
1 The overall image is not relevant to the requirements.
0 No image content or compile error.

Table 14: Relevance Scoring Guideline

Score: 5 Score: 4.6 Score: 3.4 Score: 2.2 Score: 1.4

Prompt:

The diagonal of the
square is red.

Prompt:

A binary tree with a to-
tal of 7 nodes.

Prompt:

The diagonal of the
square is red and very
thick.

Prompt:

There are 4 tangent
lines to a circle.

Prompt:

There are 4 tangent
lines to a circle.

Explanation:

Fully relevant, no re-
dundant objects or fea-
tures.

Explanation:

Additionally marked
blue color for the tree
nodes.

Explanation:

One redundant diago-
nal line in the square.

Explanation:

A few redundant cir-
cles and two dotted
straight lines. Addi-
tionally, there is a red-
dish color.

Explanation:

Redundant curves in-
side the circle. Over-
all irrelevant image to
the text. Also irrele-
vant coloring.

Table 15: Relevence Guideline Examples
(Scores are averaged across multiple annotators)
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E.3 SCIENTIFICNESS

Score Description

5 The image can be presented in a textbook or academic paper without any change.
4 The image has minor issues and requires minimal adjustments to be presented in a textbook or academic paper.
3 The image has serious issues in scientific style, including mismatched sizes, unsuitable positions, overlapping graphs or

text, incomplete graphs, etc.
2 The image’s style is not common in scientific settings.
1 The overall image is more suitable in a lifestyle context and is not appropriate for scientific demonstration.
0 No image content or compile error.

Table 16: Scientificness Quality Scoring Guideline

Score: 5 Score: 4.2 Score: 3.2 Score: 1.8 Score: 1.4

Prompt:

A binary tree with a to-
tal of 7 nodes.

Prompt:

M triangles and N cir-
cles, where M is the
same as N, and M and
N are both larger than
2.

Prompt:

Three triangles of the
same size but different
shapes.

Prompt:

A binary tree with a to-
tal of 7 nodes.

Prompt:

M triangles and N cir-
cles, where M is the
same as N, and M and
N are both larger than
2.

Explanation:

perfect scientific im-
age.

Explanation:

A scientific image, but
the triangles and cir-
cles are not arranged
properly.

Explanation:

There are many redun-
dant lines around the
triangles, which nega-
tively affects its demon-
strative purpose.

Explanation:

The representation of
nodes and colorful
edges are uncommon
in scientific images.
Also, the quality (in
terms of resolution) of
the image is not what
one would expect in
modern science.

Explanation:

The shapes are not
strictly triangles and
circles for scientific
purposes. The image
is closer to lifestyle.
Also, the quality (in
terms of resolution) of
the image is not what
one would expect in
modern science.

Table 17: Scientificness Guideline Examples
(Scores are averaged across multiple annotators)
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F EVALUATION OF SUCCESSFULLY COMPILED IMAGES

Models Correctness Relevance Scientific
Style

Compile
Error Rate

Automatikz 2.14 2.41 3.50 0.04
Llama_tikz 2.49 2.72 3.66 0.29

GPT-4o_tikz 3.84 4.02 4.10 0.09
Llama_python 2.92 3.52 4.42 0.28

GPT-4o_python 3.76 3.64 4.21 0.07
Stable Diffusion 2.19 2.09 1.96 -

DALL·E 2.16 2.00 1.55 -

Table 18: Overall Model Performance, averaged across all generated images (not including compile error cases), and
two annotators.

Criteria Correctness Relevance Scientific style
Language EN DE ZH FA EN DE ZH FA EN DE ZH FA

Llama_tikz 2.34 2.68 2.14 1.75 2.72 3.23 3.00 2.39 3.47 4.05 4.00 4.14
GPT-4o_tikz 4.05 4.24 4.18 4.32 4.24 4.45 4.84 4.68 4.32 4.66 4.63 4.68
GPT-o1_tikz 4.66 4.59 4.50 4.76 4.68 4.75 4.82 4.91 4.63 4.84 4.74 4.76

Llama_python 3.88 2.08 2.19 1.97 4.15 2.35 2.50 2.11 4.92 3.85 3.88 3.67
GPT-4o_python 3.75 4.15 4.13 4.09 3.72 4.18 4.23 3.94 4.31 4.50 4.83 4.53
GPT-o1_python 4.28 3.83 4.32 4.00 4.10 3.83 4.13 4.00 4.50 4.53 4.53 4.50

DALL-E 1.98 2.15 1.83 1.93 1.88 2.03 2.03 2.00 1.40 1.58 1.53 1.50
Average 3.56 3.39 3.33 3.26 3.64 3.54 3.65 3.43 3.93 4.00 4.02 3.97

Table 19: Multilingual performance of compiled images (compile errors from generation are not included) The highest
values across languages are highlighted in bold.

Model Attribute Numerical Spatial Attribute &
Numerical

Attribute &
Spatial

Numerical &
Spatial

Attribute &
Numerical &

Spatial
Automatikz 2.70 2.01 1.80 2.35 2.04 2.17 1.88
Llama_tikz 2.83 2.75 2.15 2.56 2.45 2.39 2.33

GPT-4o_tikz 4.11 3.99 3.54 3.9 4.03 3.77 3.54
Llama_python 2.99 3.72 2.5 3.31 2.94 2.36 2.56

GPT-4o_python 4.12 4.05 3.81 3.74 3.93 3.44 3.33
Stable Diffusion 2.75 1.73 2.06 2.41 2.46 1.96 2.11

DALL-E 2.68 1.77 2.13 2.36 2.31 1.94 2.07

Table 20: Correctness evaluation within each understanding category (compile errors are not included).

Model 2D shape 3D shape Chart Graph theory Matrix Real-life object Table Annotation Function&
Coordinate

Automatikz 2.60 1.60 1.85 2.53 2.07 1.88 2.00 1.50 2.00
Llama_tikz 3.10 1.93 1.96 1.00 2.75 1.71 1.75 2.00 1.94

GPT-4o_tikz 4.13 3.40 4.11 4.26 4.00 3.28 3.56 3.88 3.63
Llama_python 3.01 2.21 3.95 0.00 2.50 2.90 1.50 3.33 2.50

GPT-4o_python 4.28 3.47 3.31 3.63 3.57 3.42 3.25 3.88 3.20
Stable Diffusion 2.08 2.43 2.11 1.43 1.56 3.12 1.94 1.63 1.75

DALL·E 2.08 2.47 1.86 1.25 1.50 3.24 2.13 2.13 1.58

Table 21: Correctness Evaluation within each object type (compile errors are not included). The column-wise highest is
highlighted in bold.
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G AUTOMATIC EVALUATION METHODS

We also test how well recent automatic text-to-image evaluation metrics correlate with our human judgements. In
specific, we test the metrics CLIPScore (vit-base-patch16 and vit-large-patch14) (Hessel et al., 2021), ALIGNScore
(Saxon et al., 2024) and PickScore (Kirstain et al., 2023), as well as the multimodel LLM based metric DSG (Cho
et al., 2024) with Gemma-2-9B-SimPo (Team, 2024; Meng et al., 2024) for question generation. Table 22 shows
the resulting Kendall correlations on a per-image granularity. The highest correlation is reached by PickScore that
was trained on a large-scale dataset of human preference labels for generated images. However, the human Kendall
correlations for this task, with 0.75 (correctness), 0.68 (relevance) and 0.62 (scientificness) are much higher. This
suggests the need for more suitable evaluation metrics in the domain of scientific text-to-image generation.

Correctness Relevance Scientificness
DSG (Gemma2) 0.18 0.15 0.02
CLIPScore -0.00 0.01 0.04
CLIPScoreLarge 0.03 0.03 0.04
AlignScore 0.23 0.21 0.09
PickScore 0.26 0.23 0.15

Table 22: Kendall correlation between automatic metrics and human scores.

H LIMITATIONS

We note that AUTOMATIKZ may have been bad especially because it was trained on textual descriptions taken from
captions of scientific papers, which may look substantially different from the instructions used in ScImage. For
consistency, we did not develop model specific prompts, however. This holds more generally: while prompting is
known to have a (sometimes substantial) effect on model performances (Mizrahi et al., 2024; Leiter et al., 2023), our
study used one and the same prompt across all models.

One interesting avenue to explore in future work is the combination of heterogeneous LLMs, as we saw that models
have complementary strengths and limitations. We finally note that sample sizes for some of the scientific objects
considered and for the multilingual evaluation were comparatively small. This means the corresponding results need
to be interpreted with caution.

Ethically, there is that risk that naive scientific users may place unwarranted trust in the output generated by some of
the models, e.g., GPT-4O, without assessing whether the generated output confirms with their expectations or their
prompted input. The human user has to take full responsibility for the outputs created by the models explored in our
work.
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